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Abstract: Modeling a causal association as arising from a communication process between cause
and effect, simplifies the discovery of causal skeletons. The communication channels enabling these
communication processes, are fully characterized by stochastic tensors, and therefore allow us to use
linear algebra. This tensor-based approach reduces the dimensionality of the data needed to test for
conditional independence, e.g., for systems comprising three variables, pair-wise determined tensors
suffice to infer the causal skeleton. The only thing needed is a minor extension to information theory,
namely the concept of path information.
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The gold standard for causal inference is experimentation. Deliberately changing one
variable while keeping all other variables constant, tests for three necessary conditions of
a causal association: temporal precedence of the cause over the effect, the existence of a
physical influence, and finally, the distinction between an apparent direct association, and
a “real” direct association [1]. When experiments, or interventions, are not possible, other
methods are needed to test whether the earlier mentioned conditions are met. An important
class of methods are those that use graphical models reflecting the statistical (conditional)
independence relations resulting from observational data [2,3]. If the data are causally
sufficient, i.e., there are no unobserved variables, causal associations can be inferred if the
Markov property is applicable [2]. The vertices in the related graph represent the variables,
the directed edges represent existence and directionality of the causal associations. For
a graph to be causal, the faithfulness assumption [2] must be satisfied. This assumption
entails that the edges in a probabilistic graphical model reflect dependencies in the data
that do not result as a consequence of other pathways. For example, in a system comprising
three variables, independence of X and Z given Y, denoted as X⊥⊥Z|Y, implies that the
causal structure is a cascade. The causal skeleton, the causal graph with undirected edges,
equals X−Y−Z. When testing for conditional independence, a multivariate approach
is therefore needed; it is deemed impossible to infer a causal skeleton using bivariate
measures. An issue with multivariate approaches is the “curse of dimensionality” [4].

In this letter, we summarize our work that potentially minimizes the impact of the
curse of dimensionality, and enables us, in some cases, to use bivariate analysis to discover
the causal skeleton for multivariate systems. Our approach is based on information
theory [5]. An implicit assumption of this theory of communication is the existence of a
mechanism that enables repeatability in communication, i.e., information theory could be
used to infer causality. This idea is not new, see for example [6,7]. Mutual information, the
information theoretic measure of association between random variables [8], arises from data
transmission over a noisy discrete memoryless communication channel or channel in short.
In our approach, an edge is modeled as a channel. If the maximal amount of information
that channel can transfer, the so-called channel capacity [8], equals zero, no direct causal
relation can exist between the input and output of the channel, and the edge is not shown
in the graph. Using an additional measure of association, path-based mutual information
or path information in short, we show that for a system comprising three variables, pair-wise
determined measures can differentiate between direct and indirect associations. Because of

Entropy 2021, 23, 38. https://doi.org/10.3390/e23010038 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4621-9414
https://doi.org/10.3390/e23010038
https://doi.org/10.3390/e23010038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23010038
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/38?type=check_update&version=4


Entropy 2021, 23, 38 2 of 6

the symmetry of mutual information, directionality cannot not follow from information
theory, i.e., we can only use it to discover the causal skeleton. If one so wishes, one could
use the fact that dependence between otherwise independent causes is induced when
conditioning on the collider of a v-structure, e.g., X 6⊥⊥Z|Y for the v-structure X→Y←Z.
See for example the “Fast Causal Inference” (FCI) method described in [2]. Here we focus
on the discovery of the causal skeleton. The assumptions underlying our approach are the
same assumptions used in information theory: stationarity and ergodicity of the data [5].
We furthermore assume that the systems under consideration are noisy.

A foundational aspect of our approach is the earlier mentioned discrete memoryless
channel. This channel transforms the probability mass function of the input data into the
probability mass function of the output data via a linear transformation. In a memoryless
channel, the output solely depends on its input, i.e., it encodes the Markov property. The
linear map is the channel specific transition probability matrix [8]. The data are represented
as discrete random variables and denoted with uppercase letters, e.g., X and Y. The
related realizations are represented by the lowercase letters, i.e., x and y. Assuming a fixed,
e.g., a lexicographical, ordering of the related sample spaces or alphabets, a one-to-one
relationship exists between the realizations x and y and their positions in the respective
alphabets. When using contra-variant and covariant notation, i.e., superscript and subscript
notation, it is immediately clear from the equation whether to interpret x and y as indices
or as realizations. With px the probability that X= x, p(x), py the probability p(y), and Ay

x
the transition probability p(y|x), the channel transforms an input probability mass function
into an output probability mass function according to

py = ∑
x

pxAy
x. (1)

As of now, we will use the Einstein summation convention, i.e., summation is implied
by indices that appear both as contra-variant and covariant indices. Equation (1) can
therefore be written as

py = pxAy
x.

When transforming the input and/or output alphabets via a linear transformation, the
transition probability matrix represented using the contra-variant and covariant notation,
transforms as a proper tensor [9]. We denote a tensor with calligraphic font, e.g., A. Let us
now consider a cascade comprising three variables, the chain X→Y→Z. As we know, the
mutual information for any pair of random variables, e.g., X and Z, equals

I(X; Z) = ∑
x,z

p(x, z) log2

[
p(z|x)
p(z)

]
. (2)

Because the mediator Y is not an explicit variable in this equation, it is unknown
how Y influences I(X; Z) in this chain. The resulting uncertainty is reflected in the data
processing inequality, I(X; Z)≤min[I(X; Y), I(Y; Z)], where I(X; Y) and I(Y; Z) are the
mutual informations of the constituting direct associations of the chain. There is equality
if one or more associations are due to a noiseless channel [8]. With observational data
more information is available, allowing us to be more specific because each association
is represented by a tensor, and these tensors contain the transition probabilities that can
be determined from the data. We now make a small sidestep and introduce some new
terminology and notation. The tensor representing the association between the beginning
and the end of this chain is referred to as “the tensor of the path {X}{Y}{Z}”. A path with
one or more mediators is called an indirect path, while a path without mediators is a so-
called direct path. Using the tensors of the constituting direct paths {X}{Y} and {Y}{Z}
denoted as Cz

x = p(z|x) and Bz
y = p(z|y) respectively, and the associated expressions for the

linear transformations analogous to Equation (1), it follows that for the chain: Cz
x =A

y
xBz

y



Entropy 2021, 23, 38 3 of 6

(see Appendix A). The mutual information resulting from transmission along the path
therefore equals

I(X; Z)pin = ∑
x,z

pxz log2

[
Ay

xBz
y

pz

]
, (3)

with pz = p(z) and pxz = p(x, z). The index pin indicates that the probability distributions
are associated with the indirect path {X}{Y}{Z}. The dynamics within the chain involving
the mediator Y is now captured by the matrix product Ay

xBz
y. If the three variables in the

chain X→ Y→ Z are the only three variables in the system, then I(X; Z)pin = I(X; Z).
The direct association between X and Z is a consequence of the indirect path, so an edge
between X and Z should be removed, in other words, the graph needs to be pruned.
In Appendix B it is proven that the existence of an additional association between X
and Z, mediated by a fourth variable, does not violate the validity of Equation (3), but
that the path information does not equal the mutual information: I(X; Z)pin 6= I(X; Z).
Instead of comparing the information measures, we use the tensors. Inequality of the
path information and the mutual information implies that T {X}{Z}, the tensor of the
direct path {X}{Z}, does not equal the tensor of the indirect path information: T z

x 6=A
y
xBz

y.
Therefore, comparison of the tensors of the direct and indirect paths enables, under the
assumption of causal sufficiency, differentiating between direct and indirect associations
using pair-wise determined tensors for a system comprising three variables. It is of course
possible that the tensor of the direct association equals the tensor of the indirect association
purely by chance. Using the simplified probabilistic model from Appendix C, it can be
shown however that this probability decreases with increasing cardinalities of the alphabets
because the probability scales with 10−N(M−1). The variables N∈N and M∈N represent
the cardinalities of the input and output alphabets respectively.

The approach is also applicable to forks. Consider for example the fork Y←X→Z.
The indirect association between Y and Z is either a consequence of the path {Y}{X}{Z},
or the path {Z}{X}{Y}. Because Equation (1) expresses the law of total probability [10],
a stochastic tensor always exists for a path, irrespective of the direction in which this
path is traversed. We use the following naming convention, if the tensor of the path
{X}{Y} is denoted as A, then the stochastic tensor associated with the path {Y}{X} is
denoted as A‡, i.e., px = pyAx‡

y . The tensor A‡ is not the inverse of A because the inverse
of the stochastic tensor is in general not a stochastic tensor itself and therefore does not
represent a channel. This naming convention allows us to write the linear transformations
associated with the two paths as pyAx‡

y Cz
x = pz and pzCx‡

z A
y
x = py respectively. Because a

fork can be considered a chain, and the path information is independent of how the chain is
traversed [11], I(Y; Z)pin = I(Z; Y)pin , where pin indicates that probability distributions are
associated with the path {Y}{X}{Z}, which are identical to the probability distributions
associated with the path {Z}{X}{Y}. Like mutual information, path information cannot
be used to infer directionality either.

Extending the approach to systems comprising over three variables is straightforward
because a mediator, say S , could also be a set of variables. If the tensor of the path {X}{Z}
equals the tensor of the path {X}{S}{Z}, the association between X and Z is indirect. The
tensors of the paths from or towards S are multivariate. However, a so-called multivariate
pruning step is not needed if all but one indirect paths have channel capacities that do not
differ significantly from zero.

The concepts discussed, allow us to discover the causal skeleton in three steps. First,
using the observational data, an undirected graph is inferred in which each edge represents
a channel capable of transferring information, i.e., only edges for which the channel
capacities differ significantly from zero are shown. The channel capacity is calculated using
the Blahut-Arimoto algorithm, which uses a transition probability matrix as an input [12].
In the next step, the resulting undirected graph is pruned using the bivariate tensors that
were determined in the first step. The pruned graph is the input for the third step. In this
step the channel capacity of each indirect path is calculated for any start and end point
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connected by a direct path and two or more indirect paths. If two or more indirect paths
have a channel capacity larger than zero, the multivariate pruning step is performed. The
output of the third step is the final causal skeleton.

We applied our approach to a toy data set with a well-defined ground truth, the
“LUng CAncer Simple set”, LUCAS0 [13]. The data in this set were generated artificially
by causal Bayesian networks with binary variables and comprises 12 binary parameters,
each containing 2000 samples. To infer the skeleton, the probability transition tensors
and the 95% confidence intervals were determined for all pairs of variables. For the latter,
Jeffreys interval estimation for a binomial proportion was used [14]. The calculations were
performed on a 2010 Mac mini with an 2.4 GHz Intel Core 2 Duo processor, and 8 Gb RAM.
The proposed framework was implemented in MATLAB R2018b. The processing time was
1.9 s.

In Figure 1, the result of the bivariate pruning step is depicted. After this pruning
step resulting in the solid edges, the direct association between {Lung Cancer} and {Fatigue}
is the only candidate for which a multivariate pruning step could be needed because this is
the only direct association that could arise as a result of two indirect paths. However, the
channel capacity of the indirect path {Lung Cancer}{Genetics}{Attention Disorder}{Fatigue},
does not differ significantly from zero. Because the tensor of the direct association does not
equal the resulting tensor of the second indirect path {Lung Cancer}{Coughing}{Fatigue} either,
no multivariate pruning step is needed. The inferred causal skeleton should therefore be
equal to the skeleton of the ground truth, which is indeed the case.

Figure 1. The inferred direct and indirect associations for the LUCAS0 set after the second step, i.e.,
the bivariate pruning. The solid lines represent the remaining direct edges. The dotted lines represent
the indirect associations.

To conclude, with the addition of path information, causal skeletons are a consequence
of information theoretic considerations. Because directionality can be inferred from the
causal skeleton using aspects from the earlier mentioned FCI method, one could argue that
information theory is inherently a theory of causation. It furthermore follows from the data
processing inequality that in a noisy system the channel capacity of a cascade decreases
with increasing path length, we speculate that for larger, noisy systems, the path-based
method is less sensitive to the curse of dimensionality, as illustrated by our example where
bivariate analysis sufficed. This will be the subject of future research. It is interesting to
note that our approach is also applicable to time-series. For example, transfer entropy
[15] is proven to result from transmission over a set of discrete memoryless channels with
associated tensors [16]. In this case, directionality is also inferred.
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Appendix A. Proof of Matrix Product

Consider the chain X→Y→ Z, and the transition probability matrices Ay
x = p(y|x),

Bz
y = p(z|y), and Cz

x = p(z|x). For this chain Cz
x =A

y
xBz

y.

Proof. Consider the linear transformation pz = pyBz
y related to the association Y→ Z.

The input for this linear transformation, py, is itself the result of the linear transformation
related to the association X→Y: py = pxAy

x. Substituting the latter expression in the linear
transformation pz = pyBz

y, results in the expression

pz = pxAy
xBz

y. (A4)

Because the linear transformation related to the association X→Z equals pz = pxCz
x, it

follows that for the chain Cz
x =A

y
xBz

y.

Because the transition probability matrices Ay
z = p(y|x) and Bz

y = p(z|y) are associated
with the direct paths {X}{Y} and {Y}{Z} respectively, the transition probability matrix
Ay

xBz
y is associated with the indirect path {X}{Y}{Z}. This is used in Appendix B.

Appendix B. Proof of Inequality Path Information and Mutual Information in Case of
Multiple Indirect Paths

Consider system comprising the chains X→Y→ Z and X→U→ Z.

Proof. The product Ay
xBz

y is associated with path {X}{Y}{Z},

I(X; Z)pin = ∑
x,z

pxz log2

[
Ay

xBz
y

pz

]
,

where index pin indicates that the probability distributions are associated with the indirect
path {X}{Y}{Z}. Because X 6⊥⊥ Z|Y, the product Ay

xBz
y does not equal p(z|x), i.e.,

I(X; Z)pin 6= I(X; Z),

with pin indicating that the probability distributions for the left-hand side of the equation
are associated with the indirect path {X}{Y}{Z}.

Appendix C. Simple Probabilistic Model for Coincidental Equality of Direct and
Indirect Associations

Let us assume that the tensor for the indirect path is a stochastic N×M tensor, where
N∈N and M∈N represent the cardinalities of the input and output alphabets, respectively.
Per element of this tensor, an associated sample space is determined, consisting of integers
≥ 1. The cardinality of the sample space is equal to the product of each tensor element and
10ς, where ς∈N represents the number of significant digits. Finally, a new N×M transition
probability tensor is constructed by selecting per tensor element a number at random from
the associated sample space, and multiplying it by 10−ς. The probability that this newly
constructed stochastic tensor equals the tensor of the indirect association p(ς, N, M) scales
with 10−ς·N(M−1). For binary data, this probability is small for ς≥2, e.g., p(2, 2, 2)≈10−4.
The probability approaches zero rapidly with increasing cardinalities. The probability that
the tensor of the direct association is equal to the tensor of the indirect association purely
by chance is therefore negligible.



Entropy 2021, 23, 38 6 of 6

References
1. Eichler, M. Causal inference with multiple time series: Principles and problems. Philos. Trans. Ser. Math. Phys. Eng. Sci. 2013,

371, 20110613. [CrossRef]
2. Spirtes, P.; Glymour, C.N.; Scheines, R.; Heckerman, D. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000.
3. Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009.
4. Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the Curse of Dimensionality in Estimating Multivariate Transfer Entropy.

Phys. Rev. Lett. 2012, 108, 258701. [CrossRef]
5. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
6. Kontoyiannis, I.; Skoularidou, M. Estimating the Directed Information and Testing for Causality. IEEE Trans. Inf. Theory 2015, 62,

6053–6067. [CrossRef]
7. Ay, N. Confounding Ghost Channels and Causality: A New Approach to Causal Information Flows. Available online: http:

//xxx.lanl.gov/abs/2007.03129 (accessed on 20 December 2020)
8. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 1991.
9. Dullemond, K.; Peeters, K. Introduction to Tensor Calculus. Available online: https://www.ita.uni-heidelberg.de/~dullemond/

lectures/tensor/tensor.pdf (accessed on 28 December 2020).
10. Papoulis, A.; Pillai, S.U. Probability, Random Variables, and Stochastic Processes, 4th ed.; McGraw Hill: New York, NY, USA, 2002.
11. Sigtermans, D. A Path-Based Partial Information Decomposition. Entropy 2020, 22, 952. [CrossRef] [PubMed]
12. Blahut, R. Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 1972, 18, 460–473. [CrossRef]
13. LUCAS and LUCAP Are Lung Cancer Toy Datasets. Available online: http://www.causality.inf.ethz.ch/data/LUCAS.html

(accessed on 20 December 2020).
14. Brown, L.; Cai, T.; Dasgupta, A. Interval Estimation for a Binomial Proportion. Stat. Sci. 2001, 16. [CrossRef]
15. Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [CrossRef] [PubMed]
16. Sigtermans, D. Towards a Framework for Observational Causality from Time Series: When Shannon Meets Turing. Entropy 2020,

22, 426. [CrossRef] [PubMed]

http://dx.doi.org/10.1098/rsta.2011.0613
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TIT.2016.2604842
http://xxx.lanl.gov/abs/2007.03129
http://xxx.lanl.gov/abs/2007.03129
https://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
https://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
http://dx.doi.org/10.3390/e22090952
http://www.ncbi.nlm.nih.gov/pubmed/33286721
http://dx.doi.org/10.1109/TIT.1972.1054855
http://www.causality.inf.ethz.ch/data/LUCAS.html
http://dx.doi.org/10.1214/ss/1009213286
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://www.ncbi.nlm.nih.gov/pubmed/10991308
http://dx.doi.org/10.3390/e22040426
http://www.ncbi.nlm.nih.gov/pubmed/33286199

	Proof of Matrix Product
	Proof of Inequality Path Information and Mutual Information in Case of Multiple Indirect Paths
	Simple Probabilistic Model for Coincidental Equality of Direct and Indirect Associations
	References

