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Abstract: The goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact
solutions of nonlinear partial differential equations and to show that several well-known methods
for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show
that the Hirota method is connected to a particular case of SEsM for a specific form of the function
from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential
functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the
Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the
soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials. Then we
show that a particular case of SEsM can be used in order to reproduce the methodology of the inverse
scattering transform method for the case of the Burgers equation and Korteweg-de Vries equation.
This particular case is connected to use of a specific case of Step 2 of SEsM. This step is connected to:
(i) representation of the solution of the solved nonlinear partial differential equation as expansion as
power series containing powers of a “small” parameter ε; (ii) solving the differential equations arising
from this representation by means of Fourier series, and (iii) transition from the obtained solution
for small values of ε to solution for arbitrary finite values of ε. Finally, we show that the much-used
homogeneous balance method, extended homogeneous balance method, auxiliary equation method,
Jacobi elliptic function expansion method, F-expansion method, modified simple equation method,
trial function method and first integral method are connected to particular cases of SEsM.

Keywords: nonlinear partial differential equations; exact solutions; Simple Equations Method (SEsM);
Hirota method; inverse scattering transform method; homogeneous balance method; extended
homogeneous balance method; auxiliary equation method; Jacobi elliptic function expansion method;
F-expansion method; modified simple equation method; trial function method; first integral method

1. Introduction

Nature and human society are rich sources of complex systems (examples can be
found, e.g., in economics, social sciences, network theory, dynamics of research groups,
etc. [1–7]). Because of this the complex systems attract much research attention in the last
decades, see for examples, [8–22]. Most of the complex systems are nonlinear—many such
examples can be found in the fluid mechanics or solid-state physics [23–29]. The effects
connected to the nonlinearity can be studied, for example, by means of time series analysis
or by means of models based on differential or difference equations (additional information
about the methodology of the nonlinear time series analysis, some applications of this
methodology and basic information about nonlinear differential equations, can be seen,
e.g., in [30–45]). Very often the used model equations are nonlinear partial differential
equations, and because of this the methodology for solving such equations is interesting to
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the researchers. Many years ago the methodology for obtaining exact solutions of nonlinear
partial differential equations was connected to transformations that transform the solved
nonlinear partial differential equation to a linear differential equation. One example is
the Hopf-Cole transformation [46,47] which transforms the nonlinear Burgers equation to
the linear heat equation. An appropriate transformation of the Korteweg-de Vries equation
connected this equation to the famous equation of Schrödinger and led to the development of
the Method of inverse scattering transform [48–50]. Almost at the same time, Hirota developed
a method for obtaining exact solutions of NPDEs—Hirota method [51,52]. This method is based
on the bilinearization of the solved nonlinear partial differential equation after appropriate
transformation of the nonlinearity of the equation. Truncated Painleve expansions may lead
to many of these appropriate transformations [53–57]. We note the work of Kudryashov
who formulated the Method of Simplest Equation (MSE) [58] based on determination of
singularity order n of the solved NPDE and on searching of a particular solution of this
equation as series containing powers of solutions of a simpler equation called the simplest
equation. The methodology was extended [59] and applied for obtaining traveling wave
solutions of nonlinear partial differential equations (see, e.g., [60–62]). We write several
more words on the work of Kudryashov as it is of interest for our discussion below in the
text and the Method of Simplest Equation leads to interesting results. Kudryashov [63] used
various transformations in order to transform the nonlinearity of a generalized evolution
equation of the wave dynamics and to obtain exact solutions of this equation. This research
was continued in [57,64,65] and recent results connected to the application of the Method
of Simplest Equation can be found, for example, in [66–70].

Recently we presented an algorithm for obtaining exact and approximate solutions of
nonlinear partial differential equations called Simple Equations Method (SEsM) [71–74].
We shall discuss this algorithm and its connection to other methods below in this text. We
note that some elements of the methodology can be seen in our articles written almost
30 years ago [75–80]. More than 10 years ago [81,82] we have used the ordinary differ-
ential equation of Bernoulli as simplest equation [83] and applied methodology called
Modified Method of Simplest Equation to ecology and population dynamics [84]. In these
publications we have used the concept of the balance equation. The Modified Method
of Simplest Equation—MMSE [85,86]—is based on the determination of the kind of the
simplest equation and truncation of the series of solutions of the simplest equation by
means of application of a balance equation and it is equivalent of the Method of Simplest
Equation mentioned above. Up to 2018 our contributions to the methodology and its
application have been connected to the MMSE [87–95]. We note especially the article [94]
where we have extended the methodology of the MMSE to simplest equations of the class(

dkg
dξk

)l

=
m

∑
j=0

djgj (1)

where k = 1, . . . , l = 1, . . . , and m and dj are parameters. Equation (1) contains as
particular cases, for example: (i) trigonometric functions; (ii) hyperbolic functions; (iii)
elliptic functions of Jacobi; (iv) elliptic function of Weierstrass.

In the course of time, we extended the algorithm of the Modified Method of Simplest
Equation. Here we are going to discuss the last version which is connected to the possibility
of use of more than one simple equation. This modification is called SEsM—Simple
Equations Method. The reason for the use of this name is that the used simple equations
are more simple than the solved nonlinear partial differential equation, but these simple
equations in fact can be quite complicated. Thus we have to substitute the word “simplest”
by the word “simple”. A variant of SEsM based on two simple equations was applied
in [96] and the first description of the algorithm was made in [71] and then in [72–74].
For more applications of particular cases of the algorithm see [97,98].

We note that SEsM is not a universal algorithm for obtaining exact analytical solutions
of nonlinear differential equations. With very large probability there are many exact solu-
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tions of nonlinear differential equation which can not be obtained by SEsM. The presence of
such solutions is of large interest for us as it shows possible ways for further development
of SEsM. We note also that some steps of SEsM are not rigidly fixed. Examples are the
choice of transformations in Step 1 of SEsM and the selection of the simple equation in
Step 5. This flexibility increases the number of equations which can be treated by SEsM but
the set of these equations is still a subclass of the class of nonlinear differential equations
that possess exact solutions.

The organization of the text below is as follows. We describe SEsM in Section 2.
In Section 3 we show that the famous method of Hirota is connected to a particular case of
SEsM and then we use the connection between SEsM and Hirota method in order to show
that SEsM can lead to solutions of integrable differential equations: examples are the three-
solution solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear
Schrödinger equation and the soliton solution of the Ishimori equation. In Section 4
we discuss the connection between SEsM and the inverse scattering transform method.
This connection is shown in the examples of the Burgers equation and the Korteweg-de
Vries equation. In Section 5 we formulate several assumptions which show that numerous
methods for obtaining exact particular solutions of nonlinear partial differential equations,
namely, homogeneous balance method, extended homogeneous balance method, auxiliary
equation method, Jacobi elliptic function expansion method, F-expansion method, modified
simple equation method, trial function method, first integral method, are connected to
particular cases of SEsM. Generalizations of some of these methods are formulated. Several
concluding remarks are summarized in Section 6.

2. Simple Equations Method (SEsM)

Simple Equations Method (SEsM) is an algorithm for obtaining exact and approxi-
mate solutions of nonlinear differential equations. In general (Figure 1) the algorithm is
designed to obtain solutions of systems of N nonlinear differential equations by the use of
solutions of M simple equations. The most applications of the algorithm up to now are
for obtaining solutions of 1 nonlinear differential equations by the use of solutions of (a)
one simple equation or (b) more than one simple equation (see, e.g., [83–95] where the
corresponding particular case of SEsM called Modified Method of Simplest Equation is
applied for obtaining exact solutions of numerous nonlinear partial differential equations).
The development of SEsM started with the use of a solution of one simple equation in order
to obtain a solution of one nonlinear differential equation. This version of the algorithm
was called Modified Method of Simplest Equation. We shall show below that SEsM is
capable to lead to particular exact solutions of nonlinear differential equations. In addition,
we shall show that SEsM is connected to the method of Hirota and to the inverse scattering
transform method and because of this SEsM can lead not only to particular solutions of
some nonlinear differential equations.

SEsM has seven steps which are shown in Figure 2.
We consider a system of nonlinear partial differential equations

Ai[u1(x, . . . , t), . . . , un(x, . . . , t)] = 0, i = 1, . . . , n, (2)

whereAi[u1(x, . . . , t), . . . , un(x, . . . , t), . . . ] depend on the functions u1(x, . . . , t), . . . , un(x, . . . , t)
and some of their derivatives (ui can be a function of more than 1 spatial coordinates).
Then we proceed as follows.

(1.) We apply transformations

ui(x, ..., t) = Ti[Fi(x, . . . , t), Gi(x, . . . , t), . . . ], (3)

where Ti(Fi, Gi, . . . ) is some function of other functions Fi, Gi, . . . . In general Fi(x, . . . , t),
Gi(x, . . . , t), . . . are functions of several spatial variables as well as of the time.
The transformation has the goal to transform the nonlinearity of the solved dif-
ferential equations to more treatable kind of nonlinearity or the transformation may
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even remove the nonlinearity. In the case of one solved equation the transformation
T(F, G, . . . ) can be: the Painleve expansion; u(x, t) = 4 tan−1[F(x, t)] in the case
of the sine–Gordon equation; u(x, t) = 4 tanh−1[F(x, t)] in the case of sh-Gordon
(Poisson–Boltzmann equation) (for applications of the last two transformations, see,

e.g., [75–78]); u(x, t) = F(x,t)
G(x,t) ; u(x, t) =

I
∑

i=0
ai [F(x,t)]i

J
∑

j=0
bj [G(x,t)]j

; or another transformation.

In numerous particular cases, one may skip this step (then we have just ui(x, ..., t) =
Fi(x, ..., t)) but in many cases the step is necessary for obtaining a solution of the
studied nonlinear PDE. The application of (3) to (2) leads to a nonlinear PDEs for the
functions Fi, Gi, . . . .

SIMPLE EQUATIONS METHOD (SEsM)

GENERAL CASE:

SYSTEM OF N DIFFERENTIAL EQUATIONS

USE OF M SIMPLE EQUATIONS

SIMPLE EQUATIONS METHOD (SEsM)

PARTICULAR CASE:

1 DIFFERENTIAL EQUATION

USE OF M SIMPLE EQUATIONS

SIMPLE EQUATIONS METHOD (SEsM)

PARTICULAR CASE:

1 DIFFERENTIAL EQUATION

USE OF 1 SIMPLE EQUATION

(MODIFIED METHOD OF SIMPLEST EQUATION)

Figure 1. The general case of simple equations method (SEsM) and its particular cases. The general
case of the SEsM is for a system of N differential equations and the solution is constructed on the basis
of solutions of M simple equations (we note that he parameter M may depend on the parameter N).
A particular case of the general SEsM is the case when one has to solve one differential equation
and the solution is constructed on the basis of solutions of M simple equations. The simplest case of
SEsM is when one has to solve one differential equation and the solution is constructed by solutions
of one simple equation. This particular case is known as the Modified Method of Simplest Equation.

We note that no general form of the transformations Ti is known up to now and
because of this we cannot write a general relationships for these transformations here.
Moreover, some equations can be treated without such transformations. The transfor-
mations allow us to extend the class of equations for which exact solutions can be
obtained by means of SEsM.

(2.) The functions Fi(x, ..., t), Gi(x, . . . , t), . . . are represented as a function of other func-
tions fi1, ..., fiN , gi1, . . . , giM, . . . . The functions f and g are connected to solutions of
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some differential equations (these equations can be partial or ordinary differential
equations) which are more simple than Equation (2). We note that the possible values
of N and M are N = 1, 2, . . ., M = 1,2,... (there may be an infinite number of functions
f too). The forms of the functions Fi( f1, . . . , fN), Gi(x, . . . , t), . . . can be different.
For an example for the case of a single solved equation the function F can have
the form

F = α +
N

∑
i1=1

βi1 fi1 +
N

∑
i1=1

N

∑
i2=1

γi1,i2 fi1 fi2 +
N

∑
i1=1
· · ·

N

∑
iN=1

σi1,...,iN fi1 . . . fiN , (4)

where α, βi1 , γi1,i2 , σi1,...,iN . . . are parameters. Of course F( f1, . . . , fN) can have an-
other form too (i.e., the form of F can be different from (4)). SEsM is very flexible
with respect to the form of Fi, Gi, . . . . We note that the relationship (4) contains,

as a particular case, the relationship used by Hirota [51]. The power series
N
∑

i=0
µn f n

(where µ is a parameter) used in the previous versions of the methodology based
on one simple equation (i.e., the Modified Method of Simplest Equation) are also a
particular case of the relationship (4).

(3.) In general the functions used in Fi, Gi, . . . - the functions fi1, . . . , fiN , gi1, . . . , giM are
solutions of some partial differential equations. These equations are more simple
than the solved nonlinear partial differential equation. There are two possibilities: (i)
one may use solutions of the simple partial differential equations if such solutions
are available, or (ii) one transforms the more simple partial differential equations
by means of appropriate ansätze (e.g., traveling-wave ansätze such as ξ = α̂x + β̂t;
ζ = µ̂y + ν̂t; . . . ). Then the solved differential equations for fi1, . . . , fiN , gi1, . . . , giM,
. . . may be reduced to differential equations El , containing derivatives of one or
several functions

El
[
a(ξ), aξ , aξξ , . . . , b(ζ), bζ , bζζ , . . .

]
= 0; l = 1, . . . , N + M + . . . . (5)

In many cases (e.g., if the equations for the functions f1, . . . are ordinary differential
equations) one may skip this step, but the step may be necessary if the equations for
f1, . . . are complicated partial differential equations.

(4.) We assume that the functions a(ξ), b(ζ), etc., are functions of other functions, such as,
v(ξ), w(ζ), etc., e.g,

a(ξ) = A[v(ξ)]; b(ζ) = B[w(ζ)]; . . . . (6)

Note that SEsM does not prescribe the forms of the functions A , B, . . . . Thus, different
relationships are possible. Often one uses a finite-series relationship, for example,

a(ξ) =
ν2

∑
µ1=−ν1

qµ1 [v(ξ)]
µ1 ; b(ζ) =

ν4

∑
µ2=−ν3

rµ2 [w(ζ)]µ2 , . . . . (7)

where qµ1 , rµ2 , . . . are parameters. However, other kinds of relationships, and more
complicated ones, are also possible.

(5.) The functions v(ξ), w(ζ), . . . are solutions of simple ordinary differential equations.
For about 10 years we have used the particular case of the described methodology
that was based on the use of just one simple equation. This simple equation was
called the simplest equation and the methodology based on one equation was called
the Modified Method of Simplest Equation. SEsM contains the Modified Method of
Simplest Equation as a particular case.

(6.) The application of the steps 1–5 to Equation (2) transforms the left-hand side of these
equations. The results of this transformation can be functions which are sums of
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terms where each term contains some function multiplied by a coefficient. This
coefficient contains some of the parameters of the solved equations and some of the
parameters of the solutions. In most cases, a balance procedure must be applied in
order to ensure that the above-mentioned relationships for the coefficients contain
more than one term (e.g., if the result of the transformation is a polynomial, then the
balance procedure has to ensure that the coefficient of each term of the polynomial is
a relationship that contains at least two terms). This balance procedure may lead to
one or more additional relationships among the parameters of the solved equation
and parameters of the solution. These relationships are known as balance equations.

(7.) We may obtain a nontrivial solution of Equation (2) if all coefficients mentioned in
Step 6 are set to 0. This condition usually leads to a system of nonlinear algebraic
equations for the coefficients of the solved nonlinear PDE and for the coefficients of
the solution. Any nontrivial solution of this algebraic system leads to a solution the
studied nonlinear partial differential equation. Usually, the above system of algebraic
equations contains many equations and because of this, the support of a computer
algebra system is needed.

Figure 3 shows the most frequently used particular cases of SEsM: the cases when one
searches for a solution of one nonlinear differential equation (the cases are: (i) solutions of
m > 1 simple equations are used, or (ii) the solution of just one simple equation is used).
In these cases, we search for solution u of the solved equation and at step 1 of SEsM we
transform u by means of a transformation T. The solved equation is transformed into an
equation for the function F and at the following steps of SEsM F is represented by functions
fi which are constructed by the known solutions of the used simple equations. Thus
the solved nonlinear differential equation is reduced to a system of nonlinear algebraic
equations and each nontrivial solution of this system leads to a particular solution of
the solved differential equation. In the most simple case of SEsM (the Modified Method
of Simplest Equation) we skip the Step 1 (the one with the transformation T) and F is
represented as a power series of the solution f of a single simple equation. The substitution
of these power series in the solved equation reduces this equation to a system of nonlinear
algebraic equations and each nontrivial solution of this system leads to an exact particular
solution of the solved nonlinear differential equation.

Below we age going to discuss the relation among SEsM and several much-used
methods for obtaining exact solutions of nonlinear partial differential equations.
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TRANSFORMATION OF NONLINEARITIES

STEP 1:

SIMPLE EQUATIONS METHOD (SEsM)

M SIMPLE EQUATIONS

N DIFFERENTIAL EQUATIONS

BY TRANSFORMATION OF

UNKNOWN FUNCTIONS

STEP 2:

TRANSFORMED FUNCTIONS

ARE CONSTRUCTED

BY BASIC FUNCTIONS

STEP 3:

THE BASIC FUNCTIONS

ARE CONSTRUCTED BY

STEP 4:

 

SOLUTIONS OF PARTIAL

DIFFERENTIAL EQUATIONS 

THE LAST SOLUTIONS ARE

CONSTRUCTED BY SOLUTIONS OF

ORDINARY DIFFERENTIAL EQUATIONS

(ODEs)

STEP 5:

THE ODEs ARE SELECTED

(THEY ARE CALLED SIMPLE EQUATIONS)

STEP 6:

APPLICATION OF STEPS 1−6

TRANSFORMS IT TO A SYSTEM OF

NONLINEAR ALGEBRAIC EQUATIONS

STEP 7:

ANY NONTRIVIAL SOLUTION OF THE

SYSTEM OF ALGEBRAIC EQUATIONS

N DIFFERENTIAL EQUATIONS

TO SOLVED SYSTEM OF N DEs

LEADS TO SOLUTION OF SOLVED SYTEM OF

Figure 2. The seven steps in the general case of SEsM. For a more detailed description, see the text.

             

General form of

Form of F

used by

Functions f i :

the function F

reduction to functions

of single variable

(more than 1)

equations

Balance

equation(s)

F=(f   , f   , ... , f1    2

                     u=T(F)

Particular form of the 

u=F

single variable

equation

One function f of

one simplest

System of

nonlinear algebraic

Particular case of transformationTransformation of solution

SEsM for solving 1 NPDE by  use of m simplest equations

Hirota (1974) 

Modified Method of Simplest Equation

function F used in MMSE(power series)

Exact solutions of the nonlinear PDE A(u,...)=0

Simple equations

         )    m

Figure 3. The steps for the particular case of SEsM for solving one differential equation by means of m simple equations.
On the right-hand side of the figure one sees the particular case of the methodology called the Modified Method of Simplest
Equation.
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3. Hirota Method and SEsM
3.1. Hirota Method

Hirota method is a very popular method for obtaining soliton solutions of integrable
nonlinear partial differential equations. One of the first applications of the method was in
the famous article of Hirota [51] and detailed description of the method and its applications
can be found in the book of Hirota [52]. Here, we present a very brief summary of this
method which is as follows. At Step 1 of the method, one makes a transformation of the
solved nonlinear partial differential equation. Hirota often used the transformation

u(x, t) = 2
∂2

∂x2 f (x, t) = 2

 f ∂2 f
∂x2 −

(
∂ f
∂x

)2

f 2

. (8)

The function f is called sometimes the τ-function. At Step 2 of the method, one
searches for a solution of the obtained after the transformation equation in the form

f = α + ε f1 + ε2 f2 + ε3 f3 + . . . (9)

where α and ε are parameters. At Step 3 of the method, (9) is substituted in the solved
nonlinear partial differential equation. At Step 4 of the method, the obtained equations for
the orders ε, ε2, ε3, . . . are solved. In Step 5 of the method, the exact solution is constructed
on the basis of the solutions for ε, ε2, ε3, . . . .

In order to deal with Step 4 of his method, Hirota introduced the famous bilinear
operators,

Dn
t (a.b) =

(
∂
∂t −

∂
∂t′

)n
a(x, t)b(x′, t′) at t′ = t,

Dm
x (a.b) =

(
∂

∂x −
∂

∂x′

)m
a(x, t)b(x′, t′) at x′ = x,

Dm
x Dn

t (a.b) =
(

∂
∂x −

∂
∂x′

)m(
∂
∂t −

∂
∂t′

)n
a(x, t)b(x′, t′) at t′ = t; x′ = x,

(10)

which can be written also as follows [99]

Dm
x (a.b) =

m

∑
j=0

(−1)(m−j)m!
j!(m− j)!

∂ja
∂xj

∂m−jb
∂xm−j ,

Dm
x Dn

t (a.b) =
m

∑
j=0

n

∑
i=0

(−1)(m+n−j−i)m!
j!(m− j)!

n!
i!(n− i)!

∂i+ja
∂ti∂xj

∂m+n−i−jb
∂tn−i∂xm−j . (11)

The bilinear operators have useful properties such as

Dm
x (a.1) =

∂ma
∂xm (12)

Dm
x (a.b) = (−1)mDm

x (b.a) (13)

Dm
x (a.a) = 0 for m odd (14)

Dm
x Dn

t (exp[k1x−ω1t]. exp[k2x−ω2t]) = (k1 − k2)
m(ω2 −ω1)

n exp[(k1 + k2)x− (ω1 + ω2)t]. (15)

By means of the bilinear operators in many cases, one can find a solution of the
sequence of equations for the orders ε, ε2, ε3, . . . without much effort.
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3.2. Hirota Method and SEsM

Assumption 1. The method of Hirota is connected to a particular case of SEsM when the trans-
formation in step 1 of SEsM is the same as the transformation used in Hirota’s method, the
representation of function f by means of f1, f2, . . . from Step 2 of SEsM is (9), the differential
equations for f1, f2, . . . from Step 3 of SEsM are the chain of equations obtained for the orders ε, ε2,
. . . within the scope of Hirota’s method and the simple equations which are used in the construction
of the solutions for f1, f2, . . . are differential equations for exponential functions.

We consider SEsM and impose restrictions on its steps in order to reduce this method
to a particular case connected to the Hirota method. We proceed as follows. First, we
consider the particular case of SEsM where, in Step 1, the transformation (8) is used or
any other transformation used within the scope of Hirota’s method. We note that these
transformations are a small part of the possible transformations which can be used in SEsM.
At Step 2 of SEsM we consider again a particular case: we use the relationship (9) in order
to represent the function f by means of the functions f1, f2, . . . . This is a particular case
from the point of view of SEsM as many other kinds of representations of f by f1, f2, . . .
are possible in SEsM. At Step 3 of SEsM, we use one more particular case by considering
differential equations for f1, f2, . . . to be exactly the equations that are obtained within the
scope of application of Hirota’s method. This is a particular case as many other kinds of
differential equations can be used in SEsM. At Step 4 of SEsM we consider the relationships
between fi and the more simple functions to be exactly these ones which arise when
Hirota’s method is used. From the point of view of SEsM this is a particular case as much
more kinds of relationships can be used in SEsM and one example for this is a relationship
of the kind (4). At Step 5 of SEsM we have to determine the simple equations for the
functions which participate in the construction of function fi. We take the particular case
when these functions are solutions of very simple equations namely differential equations
for exponential functions. We note that much more complicated functions can be used
in SEsM at this step such as Jacobi elliptic functions, for example. At Step 6 of SEsM we
substitute the relationships for fi in the corresponding differential equations and perform a
balance procedure if needed. This will lead to a system of nonlinear algebraic equations.
We note that in the case of Korteweg-de Vries equation such balance procedure is not
needed. Finally, at Step 7 of SEsM one solves the system of nonlinear algebraic equations
and obtains the solution of the corresponding nonlinear PDE.

Thus, by means of particular cases of procedures of SEsM we have reduced SEsM to a
particular case connected to the Hirota’s method.

Now on the basis of the above, we shall show that SEsM can lead to soliton and
multisoliton solutions of several famous equations.

3.3. Example 1: The Three-Soliton Solution of the Korteweg-de Vries Equation

We consider the Korteweg-de Vries equation

∂u
∂t

+ 6u
∂u
∂x

+
∂3u
∂x3 = 0. (16)

At Step 1 of SEsM we transform the nonlinearity in (16). This is made by the transfor-
mation (8). The result is

f
∂2 f
∂x∂t

+
∂ f
∂x

∂ f
∂t

+ f
∂4 f
∂x4 − 4

∂ f
∂x

∂3 f
∂x3 + 3

(
∂2 f
∂x2

)2

= 0, (17)

and this can be written by means of the bilinear operators of Hirota as

(DxDt + D4
x)( f · f ) = 0 (18)
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At Step 2 of SEsM we represent the function f by means of functions f1, f2, . . . which
will be constructed by means of solutions of the simple equations. This representation is
(9). At Step 3, of SEsM we substitute (9) in (17) and obtain the sequence of differential
equations for f1, f2, . . . as follows

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
f1 = 0. (19)

Note that this is a linear equation. The equations for f2 and f3 are

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
f2 = −Dx(Dt + D3

x)( f1 · f1), (20)

2
∂

∂x

(
∂

∂t
+

∂3

∂x3

)
f3 = −Dx(Dt + D3

x)( f1 · f2 + f2 · f1). (21)

The equations for f4, f5, . . . are obtained in a similar way. At steps 4 and 5 of SEsM
we have to represent the functions fi, i = 1, 2, . . . by means of other functions which are
solutions of our simple equations. The form of the corresponding relationships depends on
the particular solution of (19) we start with. In order to obtain the single-soliton solution
of the Korteweg-de Vries equation, we are starting with a solution for f1 constructed by
just one function which is solution of a very simple differential equation: the differential
equation for exponential function

dg1

dη1
= g1; g1 = exp(η1), (22)

where η1 = λ1x + ω1t + σ1 and λ1, ω1 and σ1 are parameters. We choose f1 just as

f1 = exp(η1) (23)

The substitution of (23) in (19) leads to the algebraic equation (the dispersion relation)

ω1 + λ3
1 = 0. (24)

We note that no balance procedure is required here (i.e., Step 6 of SEsM can be skipped).
The substitution of f1 in (20) leads to 0 in the right-hand side of this equation. Then f2 can
be taken to be 0. The same is the situation with f3, f4, . . . . Thus we obtain the following
solution for f

f = 1 + ε f1. (25)

The parameter ε can be absorbed in σ1 and the solution for f leads to the one-soliton
solution for u by use of (8).

In order to obtain the two-soliton solution of the Korteweg-de Vries equation, we take
the solution of (19) constructed by solutions of two simple equations

dg1

dη1
= g1; g1 = exp(η1);

dg2

dη2
= g2; g2 = exp(η2), (26)

where ηi = λix + ωit + σi and λi, ωi and σi, i = 1, 2 are parameters. Now we construct f1
as the sum of the solutions of the two simple equations

f1 = exp(η1) + exp(η2). (27)

The substitution of (27) in (19) leads to a system of two algebraic equations, namely

ωi + λ3
i = 0, i = 1, 2 (28)
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The substitution of (27) in (20) leads to a nonlinear equation for f2. The solution of
this equation is

f2 = a12 exp(η1 + η2), (29)

where a12 = (λ1−λ2)
2

(λ1+λ2)2 . The substitution of f2 in (21) leads to 0 in the right-hand side of
this equation. Thus we can choose f3 = 0 and then f4 = f5 = · · · = 0. The solution for
f becomes

f = 1 + ε[exp(η1) + exp(η2)] + ε2a12 exp(η1 + η2). (30)

Again the ε and ε2 can be absorbed by σ1,2 and a1,2 and the application of (8) leads to
the two-soliton solution of the Korteweg-de Vries equation.

In order to obtain the three-soliton solution of the Korteweg-de Vries equation, we start
with the solution for f1 constructed by means of solutions of three simple equations for
exponential functions,

dgi
dηi

= gi; gi = exp(ηi); i = 1, 2, 3, (31)

where ηi = λix + ωit + σi and λi, ωi and σi, i = 1, 2, 3 are parameters.Then we present f1
as the sum of the solutions of the three simple equations

f1 = exp(η1) + exp(η2) + exp(η3). (32)

The substitution of (32) in (19) leads to the algebraic relationships (dispersion relations)

ωi + λ3
i = 0, i = 1, 2, 3, (33)

and the substitution of (32) in (20) leads to the following relationship for f2

f2 = a12 exp(η1 + η2) + a13 exp(η1 + η3) + a23 exp(η2 + η3), (34)

where

aij =
(λi − λj)

2

(λi + λj)2 , i, j = 1, 2, 3, i < j.

The substitution of the obtained solutions for f1 and f2 in (21) leads to the following
solution for f3

f3 = b123 exp(η1 + η2 + η3), b123 = a12a13a23 (35)

f3 is a single exponential function again and then the right-hand side of the equation for f4
is 0 and we can take f4 = 0. Then we can continue with f5 = f6 = · · · = 0 and the obtained
solution for f is

f = 1 + ε[exp(η1) + exp(η2) + exp(η3)] + ε2[a12 exp(η1 + η2) +

a13 exp(η1 + η3) + a23 exp(η2 + η3] + ε3b123 exp(η1 + η2 + η3) (36)

and after the absorption of epsilons and application of (8) we obtain the three-soliton
solution of the Korteweg-de Vries equation.

The procedure can be easily continued and the N-soliton solution of the Korteweg-de
Vries equation can be obtained by means of a particular case of the SEsM methodology.
We use N simple equations for exponential functions and begin by solution f1 which is a
sum of the solutions of these simple equations. Then step by step we obtain fi up to i = N
and for i > N we can set fi = 0 and then we can construct the N-soliton solution of the
Korteweg-de Vries equation.

3.4. Example 2: The Two-Soliton Solution of the Nonlinear Schrödinger Equation

Now we show how SEsM leads to the two-soliton solution of the nonlinear Schrödinger
equation. Here the transformation at Step 1 of SEsM leads to equations for two functions F
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and G. The connection of SEsM with the Hirota’s method makes this task of obtaining the
two-soliton solution quite easy. The nonlinear Schrödinger equation is

i
∂ψ

∂t
+

∂2ψ

∂x2 + q | ψ |2 ψ = 0, (37)

where q is a parameter. We consider the case q < 0 (and we shall set below q = −2 for
convenience) with boundary conditions | ψ |2= ρ2

0 at x → ±∞. At Step 1 of SEsM we
transform the nonlinearity in (37) by the transformation

ψ =
G
F

. (38)

Note that the transformation (38) is different in comparison to the transformation in
the case of the Korteweg-de Vries equation. This is an illustration of the feature of SEsM to
allow for different kinds of transformations at Step 1 of application of the methodology.

The substitution of (38) to (37) leads to (* means complex conjugated quantity and Dx
and Dt are the operators of Hirota, described above in the text)

i
DtG · F

F2 +
D2

xG · F
F2 − G

F
D2

xF · F
F2 − 2

G
F

GG∗

F2 = 0. (39)

This can be written as

{i[Dt + D2
x]G · F}F2 − GF[D2

xF · F− 2GG∗] = 0. (40)

Introducing the constant λ we can write two coupled equations of the basis of (39)

[iDt + D2
x]G · F = λGF (41)

D2
x + 2GG∗ = λF2 (42)

λ is a constant which will be determined below. At Step 2 of SEsM we represent F and G
by functions which will be then constructed by solutions of simple equations (differential
equations for exponential functions in the case discussed here). These representations are
made by the following expansions

F = 1 + ε f1 + ε2 f2 + . . . , (43)

G = g0(1 + εg1 + ε2g2 + . . . ) (44)

f1, f2, . . . , g1, g2, . . . have to go to 0 at x → −∞. Then at x → −∞ gog∗0 = ρ2
0 and from (43)

and (44) at x → −∞
[iDt + D2

x − λ]g0 · 1 = 0, (45)

[D2
x − λ]1 · 1 = −2g0g∗0 , (46)

one obtains
λ = 2ρ2

0; g0 = ρ0 exp(iη); θ = kx−ωt; ω = k2 + 2ρ2
0. (47)

Above, k is a real constant. The substitution of (43) and (44) in (41) and (42) leads to
relationships for the different powers of ε as follows. For the terms of order of ε

[i(Dt + 2kDx) + D2
x](g1 · 1 + 1 · f1) = 0 (48)

[D2
x − 2ρ2

0]( f1 · 1 + 1 · f1) = −2ρ2
0(g1 + g∗1). (49)

For the terms of order of ε2

[i(Dt + 2kDx) + D2
x](g2 · 1 + g1 · f1 + 1 · f2) = 0 (50)
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[D2
x − 2ρ2

0]( f2 · 1 + f1 · f1 + 1 · f2) = −2ρ2
0(g2 + g1 + g∗1 + g∗2). (51)

For the terms of order of ε3

[i(Dt + 2kDx) + D2
x](g3 · 1 + g2 · f1 + g1 · f2 + 1 · f3) = 0 (52)

[D2
x − 2ρ2

0]( f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3) = −2ρ2
0(g3 + g2 + g∗1 + g1g∗2 + g∗3). (53)

Next we write relationships if the functions f1, . . . , g1, . . . by means of functions which
are solutions of simple equations. (48) and (49) have many possible solutions. The most
simple ones are constructed by means of a simple function which is a solution of a very
simple differential equation: the differential equation for exponential function (Steps 3–5 of
SEsM). These solutions are

f1 = exp(η); g1 = b exp(η), (54)

where η = qx − ωt and for the satisfaction of (48) and (49) the following relationships
must hold (there is no need of balance procedure—Step 6. of SEsM and the relationships
follows from the system of algebraic equations obtained from the substitution of (53) in
(48) and (49)—Step 7 of SEsM)

ω = q
(

2k−
√

4ρ2
0 − q2

)
; b = − q2 + i(ω− 2kq)

q2 − i(ω− 2kq)
. (55)

This choice of f1 and g1 leads to f2 = f3 = . . . 0 and g2 = g3 = · · · = 0 and the
solution of the nonlinear Schrödinger equation is

ψ = ρ0 exp(iθ)
1 + b exp(η)
1 + exp(η)

. (56)

In order to obtain the two-soliton solution of the nonlinear Schrödinger equation, we
start with solutions of (48) and (49) which depend on solutions of two simple equations for
exponential functions

f1 = exp(η1) + exp(η2); g1 = b1 exp(η1) + b2 exp(η2), (57)

where ηi = qix−ωit + σi, i = 1, 2. The substitution of (57) in (48) and (49) (Steps 6 and 7 of
SEsM) leads to a system of algebraic equations which solution is

ωi = qi

(
2k−

√
4ρ2

0 − q2
i ; bi = exp(2iφi)

)
; φi = tan−1−

(
qi

ωi − 2kqi

)
,

i = 1, 2. (58)

The substitution of (57), (58) in (50) and (51) leads to solutions containing single
exponential function

f2 = a12 exp(η1 + η2); g2 = b12 exp(η1 + η2), (59)

where

a12 =

(
sin[ 1

2 (φ1 − φ2)]

sin[ 1
2 (φ1 + φ2)]

)2

; b12 = b1b2a12, qi = 2ρ0 sin(φi), i = 1, 2.

The relationships for f2 and g2 leads to f3 = f4 = · · · = 0; g3 = g4 = · · · = 0 and the
two-soliton solution of the nonlinear Schrödinger equation becomes

ψ = ρ0 exp(iθ)
1 + exp(η1 + 2iφ1) + exp(η2 + 2iφ2) + a12 exp(η1 + η2 + 2iφi + 2iφ2)

1 + exp(η1) + exp(η2) + a12 exp(η1 + η2)
.

(60)
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More complicated soliton solutions of the nonlinear Schrödinger equation can be
obtained too. One has just to start by solution constructed by 3,4,. . . solutions of simple
differential equations for the exponential function.

3.5. Example 3: The Soliton Solution of the Ishimori Equation

The last example is connected to the area of solid state physics: dynamics of spin
chains. The Ishimori equation [100] is (2+1)-dimensional generalization of the Heisenberg
ferromagnetic spin equation and it was introduced in order to explain the dynamics of a
classical spin system on a plane. The Ishimori equation is

∂~S
∂t

= ~S ∧
(

∂2~S
∂x2 + σ2 ∂2~S

∂y2

)
+

∂φ

∂y
∂~S
∂x

+
∂φ

∂x
∂~S
∂y

, (61)

where
∂2φ

∂x2 − σ2 ∂2φ

∂y2 = −2σ2~S · ∂~S
∂x
∧ ∂~S

∂y
, (62)

~S(x, y, t) = (S1, S2, S3) is the tree-dimensional spin unit vector, φ(x, y, t) is a scalar field,
σ2 = ±1 and ∧means exterior (wedge) product of corresponding vectors. Step 1 of SEsM
is connected with the transformation of the nonlinearity of the studied equation [101,102].
Before Step 1 we introduce the stereographic projection of the spin of the unit sphere on a
complex plane, the spin components can be written in terms of the stereographic variable
ω ( ω(~r, t) = S1+iS2

1+S3
) as follows

S+ = S1 + iS2 =
2ω

1+ | ω | , S3 =
1− | ω |2
1+ | ω |2 . (63)

The Ishimori equation becomes

i
∂ω

∂t
+

∂2ω

∂x2 + σ2 ∂2ω

∂y2 − 2
ω∗

1+ | ω |2

[(
∂ω

∂x

)2
+ σ2

(
∂ω

∂y

)2
]
− i

∂φ

∂y
∂ω

∂x
− i

∂φ

∂x
∂ω

∂y
= 0, (64)

where
∂2φ

∂x2 − σ2 ∂2φ

∂y2 =
4iσ2

(1+ | ω |2)2

(
∂ω∗

∂x
∂ω

∂y
− ∂ω

∂x
∂ω∗

∂y

)
. (65)

At Step 1 of SEsM, we perform the transformation

ω =
g(x, y, t)
f (x, y, t)

, (66)

where f and g are complex functions. This allows us to write the Ishimori equation in the
bilinear form by means of the Hirota operators

(iDt − D2
x − σ2D2

y)( f ∗ · g) = 0

(iDt − D2
x − σ2D2

y)( f ∗ · f − g∗ · g) = 0

Dx[Dx( f ∗ f + g∗g) · ( f ∗ f + g∗g)] = −σ2Dy[Dy( f ∗ f + g∗g)] · ( f ∗ f + g∗g)

∂φ

∂x
= −2iσ2 Dy( f ∗ · f + g∗ · g)

f ∗ · f + g∗ · g
∂φ

∂y
= −2iσ2 Dx( f ∗ · f + g∗ · g)

f ∗ · f + g∗ · g (67)

At Step 2 of SEsM, we use two expansions: one expansion for for f and one expansion
for g:
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f = 1 +
∞

∑
n=1

ε2n f2n; g =
∞

∑
n=0

ε2n+1g2n+1. (68)

After substitution of (68) in (67) we arrive at a system of differential equations for the
functions fi and gi and we have to solve these systems in a way analogous to the previous
examples. In order to obtain the N-soliton solution we start by solution constructed by
solutions of simple equations for exponential functions as follows

g1 =
N

∑
j=1

exp(ξ j), ξ j = ljx + mjy + njt, (69)

where lj, mj, nj are complex constants. We shall write some details about the single soliton
solution of the Ishimori equation. We start from

g1 = M exp(ξ1); f2 = exp[2(ξ1R + ψ)], (70)

where M is an arbitrary complex constant, ξ1 = l1x + m1y + n1t, n1 = i(l2
1 + σ2m2

1); ξ1 has

real and imaginary part: ξ1 = ξ1R + ξ1I and exp(2ψ =
σ2m2

1−l2
1

(l1+l∗1 )
2−σ2(m1+m∗1)

2 ). Let us consider

further the case σ2 = 1. Then we have to solve the system of equations arising by setting to
0 the relationships obtained for the different powers of ε. The solution is obtained as in the
case of the previous two examples and the obtained results is

S+ = 2E
(l2

1Rm1R + m2
1R l1I + L) exp(iξ1I)sech(ξ1R)

A + 2B tanh(ξ1R) + C tanh2(ξ1R)
; S3 = 1−

2(l2
1R −m2

1R)
3sech2(ξ1R)

A + 2B tanh(ξ1R + C tanh2(ξ1R))
, (71)

where

A = 2l6
1R − 2m2

1R(l
4
1R + l3

1Rm1I) + m4
1Rl2

1I + 2l2
1Rl1Im3

1R + m2
1Im

4
1R + 3l2

1Rm4
1R −m6

1R,

B = l2
1Rm2

1R(m
2
1R + l2

1I + m2
1I + l2

1R) + l3
1Rl1Im1R + l1I(m5

1R − l5
1R)− l1Rm1Im4

1R,

C = 2m6
1R + 2l1I l2

1Rm3
1R + l4

1Rl2
1I + m2

1I l
4
1R + 3m2

1Rl4
1R − 2l2

1Rm4
1R − 2m1I l3

1Rm2
1R − l6

1R,

E =
l1R + im1R

l2
1R −m2

1R
,

L = i(n1Im2
1R − l3

1R) + [m3
1R + l1I l2

1R + i(miI l2
1R − l1Rm2

1R)]. (72)

In a similar way we can obtain two-soliton solution, three-soliton solution, etc. of the
Ishimori equation.

4. SEsM and Its Connection with the Inverse Scattering Transform Method
4.1. The Inverse Scattering Transform Method

Below we shall discuss the connection between SEsM and IST method for the case of
Korteweg-de Vries equation. First of all we briefly remember application of the IST for the
case of the KdV equation:

∂u
∂t
− 6u

∂u
∂x

+
∂3u
∂x3 = 0. (73)

Researchers tried to solve this equation by means of some transformation. Almost
50 years ago Gardner, Greene, Kruskal, and Miura [48] tried the transformation

u =
1
ψ

∂2ψ

∂x2 + λ. (74)

This can be written as
∂2ψ

∂x2 + (λ− u)ψ = 0, (75)
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which is the Schrödinger equation where u depends on x and t. However, t can be treated
as a parameter and then (75) will be considered as a problem for the scattering of a particle
in a potential u(x, t) associated with the Korteweg-de Vries equation and described by the
linear Schrödinger equation. If the time is a parameter, then for any value of t, there will be
a separate scattering problem.

The substitution of (75) in (73) leads to

ψ2 dλ

dt
+

∂

∂x

(
ψ

∂P
∂x
− ∂ψ

∂t
P
)
= 0, (76)

where

P =
∂ψ

∂t
+

∂3ψ

∂x3 − 3(λ + u)
∂ψ

∂x
. (77)

We shall search for solutions of the Korteweg-de Vries equations that decay fast to
0 at | x |→ ∞. The associated scattering problem described by (75) has two kinds of
eigenvalues for λ: (i) For λ < 0 the values of λ are discrete. We shall write for these
eigenvalues λn = −κ2

n and for the corresponding eigenfunctions ψn we have | ψn |→ 0

at | x |→ 0 and 0 <
∞∫
−∞

dxψ2
n < ∞. The integration of (76) from −∞ to ∞ leads to the

conclusion that λn do not depend on t; (ii) For λ > 0 the number of possible values of λ
(the spectrum of λ) is continuous and we shall assume that the values from this spectrum
do not depend on t. Then dλ

dt = 0 and from (76) and (77) we obtain

P =
∂ψ

∂t
+

∂3ψ

∂x3 − 3(λ + u)
∂ψ

∂x
= Cψ, (78)

where C does not depend on x. Then, (78) describes the evolution of ψ for a fixed value of
the parameter λ in the case of continuous spectrum of values λ as well as for the case of
discrete spectrum of values of λ.

Next we have to determine C which is done by considering (75) and setting λ = µ2.
We consider functions which are proportional to exp(iµx), Imµ ≥ 0 at x → +∞ and
assume that the function of this kind is an asymptotic solution of (78) for any t. This leads
to C = −4iµ3 and the system of equations becomes

∂2ψ

∂x2 + (µ2 − u)ψ = 0, (79)

∂ψ

∂t
+

∂3ψ

∂x3 − 3(µ2 + u)
∂ψ

∂x
+ 4iµ3ψ = 0. (80)

The methodology which is used for calculation of u(x, t) comes from the inverse
scattering problem from physics: the scattering potential u can be reconstructed on the
basis of the knowledge of the scattering coefficient for the waves arriving from x = +∞ and
on the basis of knowledge about the spectrum. This methodology has four steps. At step 1,
we know u(x, 0) and use this information to solve (79). This leads to discrete eigenvalues
µ = iκn which correspond to the eigenfunctions ψn and the scattering coefficient β of the
incoming waves. The eigenfunctions are chosen as

ψn(x) = χ(iκn, x). (81)

χ have to satisfy the condition described above, namely, one works with functions that are
proportional to exp(iµx), Imµ ≥ 0 at x → +∞. In addition normalization coefficients

γn =
1

+∞∫
−∞

dxψ2
n

, (82)
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are introduced. At Step 2 one constructs the solution containing scattering part charac-
terized by the scattering coefficient β. We assume that the solution ψ(k, x) of (79) has the
following asymptotic behavior

ψ(k, x) ∼ exp(−ikx) + β(k) exp(ikx), x → +∞,

ψ(k, x) ∼ α(k) exp(−ikx), x → −∞. (83)

k is a positive number, α is the transmission coefficient and β is the reflection coefficient.
These coefficients are determined by substitution of the solution (83) in the (79). Thus, one
can solve the scattering problem: finding κn, γn and βk when the potential u(x, 0) is known.
At step 3 one has to determine the time behavior of the scattering parameters. It follows
from (79) and (80) (remember that κn do not change)

d
dt

+∞∫
−∞

dxχ2 =

[
−2χ

∂2χ

∂x2 + 4
(

∂χ

∂x

)2
+ 6µ2χ2

]+∞

−∞

− 8iµ3
+∞∫
−∞

dxχ2. (84)

At x → ±∞ one has µ = iκn and ψn(x, t) = χ(x, t, iκn) → 0. The normalization
coefficient is

cn(t) = γn exp(8κ3
nt). (85)

The solution of the scattering problem at x → ∞ has the behavior

ψ(k, x, t) ∼ f (k, t) exp(−ikx) + g(k, t) exp(ikx). (86)

(86) must be an asymptotic solution of (80) when µ = k. This condition leads to the
relationships f (k, t) = exp(−8ik3t); g(k, t) = β and the reflection coefficient is

b(k, t) =
g(k, t)
f (k, t)

= β(k) exp(8ik3t). (87)

Finally, at step 4, one has to solve the inverse scattering problem. One has to find
u(x, t) on the basis of known scattering data κn, cn(t) and b(u, t). This happens on the basis
of the relationship

u(x, t) = −2
d

dx
K(x, x, t), (88)

where K(x, y, t) is the solution of a linear integral equation known as the equation of
Gelfand–Levitan–Marchenko

K(x, y, t) + B(x + y, t) +
∞∫

x

dzK(x, z, t)B(z + y, t) = 0, (89)

where

B(x + y, t) = ∑ cn(t) exp[−κn(x + y)] + 1
2π

+∞∫
−∞

dk b(k, t) exp[ik(x + y)] =

∑ γn exp[−κn(x + y) + 8κ3
nt] + 1

2π

+∞∫
−∞

dk β(k) exp[ik(x + y) + 8ik3t].
(90)

We note that the parameters κn, γn and β(k) are determined on the basis of the
knowledge of u(x, 0) from step 1 of the schema.

4.2. Connection between SEsM and the Inverse Scattering Transform Method

We shall discuss below the connection between SEsM and IST for the case of Korteweg-
de Vries equation. The main points are as follows. We skip Step 1 of SEsM and consider
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the particular case where no transformation of the solved equation is performed. Then we
represent the searched solution as

u(x, t) =
∞

∑
n=1

εnun(x, t). (91)

This is Step 2 of SEsM. One initially treats ε as a small parameter, obtains a solution
for u and the powers of ε are absorbed in the corresponding parameters of the obtained
solution. The introduction of (91) in the solved equation leads to a system of equations for
un—Step 3 of SEsM. The obtained system of equations is solved on the basis of solutions
constructed from solutions of simple equations for exponential functions (represented by a
Fourier series constructed on the basis of these exponential functions. Note that Fourier
series method for obtaining solutions of partial differential equations is a particular case of
SEsM [74]). Then by means of the appropriate transformation the obtained solution for the
case of small values of ε is transformed into a solution for finite values of ε.

Rosales [103] used the Fourier series in order to obtain the IST methodology for many
equations. Below we shall use this excellent work in order to demonstrate the connection
between SEsM and IST. We shall use the simple case of Burgers equation and then we
shall discuss the methodology for the Korteweg-de Vries equation and in this case we shall
arrive at the Gelfand–Levitan–Marchenko equation.

4.3. Example 1: The Burgers Equation

The Burgers equation is
∂u
∂t

+ u
∂u
∂x
− ∂2u

∂x2 = 0. (92)

We skip Step 1 of SEsM : the transformation of nonlinearity and at Step 2 of SEsM
we write the function u(x, t) by functions un(x, t) as in (91). For now we shall treat ε as
a “small” parameter. Our strategy is as follows: First we search for a solution for which
un → 0 when x → ∞ and ε is small. Then we rewrite this solution to have a solution valid
for all x and we shall no longer require ε to be small.

The equations for un(x, t) can be obtained by substitution of (91) in (92) and collection
of the terms containing equal powers of ε. We obtain

∂un

∂t
− ∂2un

∂x2 = −
n−1

∑
j=1

un−j
∂uj

∂x
, n = 2, 3, . . . (93)

Now step by step we can solve the Equation (93) and we can obtain un. For n = 1 we
have

∂u1

∂t
− ∂2u1

∂x2 = 0. (94)

At Steps 3–5 of SEsM, we are going to represent un by solutions of more simple
equations. As in the case of the method of Hirota above, we shall use as simple equations
the equations for exponential functions and we construct u1 by solutions of these simple
equations in the form of a Fourier transform

u1 =
∫
C

dλ(k) (2ik) exp[ikx− k2t], (95)

where dλ(k) is an appropriate measure in the complex plane C and the factor 2ik is intro-
duced for convenience. The reason for the possibility of representation (95) is that (94) is a
linear equation. We note that we can choose the measure above in such a way that u1 is a
superposition of a Fourier transform plus real exponentials
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u1 = ∑
m

αm exp[−κmx + κ2
m] +

∞∫
−∞

dk β(k)(2ik) exp[ikx− k2t], (96)

where αm are parameters and β(k) is a function.
The choice of solution for u1 as (95) influences the equations for u2, u3, . . . . The

equation for u2 becomes

∂u2

∂t
− ∂2u2

∂x2 = −u1
∂u1

∂x
=
∫
C2

dλ(k1)dλ(k2) (4ik2
1k2) exp[i(k1 + k2)x− (k2

1 + k2
2)t], (97)

and the equation for u3 becomes

∂u3
∂t
− ∂2u3

∂x2 = −u2
∂u1
∂x
− u1

∂u2
∂x

=∫
C3

dλ(k1)dλ(k2)dλ(k3) 4i[k2
1k2 + k1k3(k1 + k2)] exp{i[(k1 + k2 + k3)x + i(k2

1 + k2
2 + k2

3)t]}. (98)

We search for solution of (97) as

u2(x, t) =
∫
C2

dλ(k1)dλ(k2) Φ2(k1, k2) exp[i(k1 + k2)x− (k2
1 + k2

2)t], (99)

and for solution for u3 we assume

u3(x, t) =
∫
C3

dλ(k1)dλ(k2)dλ(k3) Φ3(k1, k2, k3) exp{i[(k1 + k2 + k3)x + i(k2
1 + k2

2 + k2
3)t]}. (100)

The substitution of (99) in (97) and of (100) in (98) leads to following relationships for
Φ2 and Φ3

Φ2(k1, k2) = 2ik1; Φ3(k1, k2, k3) = 2ik1. (101)

Next we assume the general form of the solution of the equations for un to be:

un(x, t) =
∫
Cn

[dλ(k)]nΦn exp{iΩn}, (102)

where [dλ(k)]n = dλ(k1) . . . dλ(kn); Φn = Φn(k1, . . . , kn) and Ωn = (k1 + · · · + kn)x +
i(k2

1 + · · ·+ k2
n)t. Because we have Φ2 = Φ3 = 2ik1 we assume further that

Φn(k1, . . . , kn) = 2ik1, (103)

and this is true indeed as it can be seen by direct substitution of (102) in (93). Then we
write the solution of Burgers equation at x → ∞ and small values of ε

u =
∞

∑
n=1

εn
∫
Cn

[dλ(k)]n(2ik1) exp{iΩn}. (104)

By means of the notation

ζ = ε
∫
C

dλ(k) exp{ikx− k2t}, (105)
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we can write u as

u =
∞

∑
n=1

εn
∫
Cn

[dλ(k)]n(2ik1) exp{iΩn} =
∞

∑
n=1

2ζn−1 ∂ζ

∂x
. (106)

We use the formula for summation of the power series

1 + q + q2 + qk−1 + · · · = 1
1− q

, | q |< 1,

and apply it to (106) with q = ζ. The result is

u = 2
∂ζ

∂x
1

1− ζ
= −2

∂

∂x
ln(1− ζ). (107)

We remember that ζ and thus 1− ζ where ε is a parameter, is the general solution of
the heat equation. In addition (107) is exactly the Hopf-Cole transformation [46,47] which
linearizes the Burgers equation and reduces it to the heat equation. Thus the obtained
solution (106) is a solution of the Burgers equation not only for small ε and for x → ∞ but
also for large ε and for arbitrary x.

Let us now consider a more complicated equation: the Korteweg-de Vries equation.

4.4. Example 2: The Korteweg-de Vries Equation

We consider the Korteweg-de Vries equation

∂u
∂t

+ 6u
∂u
∂x

+
∂3u
∂x3 = 0. (108)

We skip Step 1 of SEsM (the transformation of the nonlinearity in (108)). At Step 2
of SEsM, we represent u(x, t) by means of other functions u1, u2, . . . which then will be
connected to the solutions of the simple equations. We use the relationship (91) where ε
is considered initially to be a small parameter. The substitution of (91) in (108) leads to
equations for u1, u2, . . . as follows

∂un

∂t
+

∂3un

∂x3 = −6
∂

∂x

n−1

∑
j=1

ujun−j, n = 2, 3, . . . (109)

and the equation for u1 is
∂u1

∂t
+

∂3u1

∂x3 = 0 (110)

At Step 3 of SEsM, we shall use solutions of the obtained equations for u1, u2, . . . which
are connected through Fourier series to the solution of a simple equation for exponential
functions (Steps 4 and 5 of SEsM). The solution for u1 is

u1 =
∫
C

dλ(k) (−k) exp[ikx + k3t], (111)

where dλ(k) is an appropriate measure in the complex plane C and the term (−k) is
introduced for convenience. This choice of u1 influences the form of equations for u2, u3,
. . . . For an example the equations for u2 and u3 are

∂u2

∂t
+

∂3u2

∂x3 = −6i
∫
C2

dλ(k1)dλ(k2) k1k2(k1 + k2) exp{i[(k1 + k2)x + (k3
1 + k3

2)t]}, (112)
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∂u3

∂t
+

∂3u3

∂x3 = −6
∂

∂x
(u1u2 + u2u3) =

= −6i
∫
C3

dλ(k1)dλ(k2)dλ(k3) (k1 + k2)(k1 + k2 + k3) exp{i[(k1 + k2 + k3)x + (k3
1 + k3

2 + k3
3)t]}. (113)

The solutions for u2, u3, . . . are searched again in the form

un(x, t) =
∫
Cn

[dλ(k)]nΦn(k1, . . . , kn) exp{iΩn}, (114)

and by substitution of this relationship in equations for u2, u3, . . . we will determine Φn
and Ωn (Steps 6. and 7. of SEsM).

The substitution of (114) in (112) leads to

Φ2(k1, k2) = 1; Ω2 = (k1 + k2)x + (k3
1 + k3

2)t. (115)

The substitution of (114) in (113) leads to

Φ3(K1, k2, k3) = −
k1 + k2 + k3

(k1 + k2)(k2 + k3)
; Ω3 = (k1 + k2 + k3)x + (k2

1 + k2
2 + k2

3)t. (116)

In addition we can obtain for the parameters of the solution u4

Φ4 =
k1 + k2 + k3 + k4

(k1 + k2)(k2 + k3)(k3 + k4)
; Ω4 = (k1 + k2 + k3 + k4)x+(k2

1 + k2
2 + k2

3 + k2
4)t. (117)

The continuation of the calculations leads us to

un = (−1)n+1i
∂

∂x

∫
Cn

[dλ(k)]n
exp(iΩn)

n−1
∏
j=1

(k j + k j+1)

. (118)

The solution of the Korteweg-de Vries equation becomes

u = i
∂

∂x

 ∞

∑
n=1

(−ε)n
∫
Cn

[dλ(k)]n
exp(iΩn)

n−1
∏
j=1

(k j + k j+1)

. (119)

The straight summation of the infinite series in the sum in (119) is impossible because
the different harmonics are coupled by the factors (k j + k j+1)

−1 but the summation still
can be done as follows. We write (119) as

u(x, t) =
∂

∂x

n

∑
n=1

(−ε)n
∫
Cn

d[λ(k)]n p̂(k1)P̂(k1, k2)P̂(k2, k3), . . . P̂(kn−1, kn) p̂(kn), (120)

where

p̂k = exp
{

i
2
[kx−ω(k)t]

}
; P̂(k, q) = i

p̂(k) p̂(q)
k + q

, (121)

and ω(k) = −k3. Now there are two possibilities for the measure dλ(k): to be discrete or
to be continuous.
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We consider first the case of discrete dλ(k). The integral from (120) can be replaced by
a sum as follows ∫

C

dλ(k) f (k) = ∑
m

a2
m f (ikm). (122)

Then

u =
∂

∂x

∞

∑
n=1

(−ε)n ∑
mj

pm1 Pm1,m2 Pm2,m3 . . . Pmn−1,mn pmn , (123)

where

Pmq =
pm pq

km + kq
; pm = am p̂(ikm) = am exp

{
1
2
(−kmx + k3

mt)
}

, (124)

(123) is a matrix product and if p is the column vector of all pm and P is the square matrix
of all Pmq we can write pT is the transpose of p

u = −ε
∂

∂x

[
pT(I + εP)−1 p

]
. (125)

For km > 0 and real am the matrix P is real symmetric and positive definite. Then
u from (125) is nonsingular for ε > 0 and ε can be absorbed in the coefficients am. This
means that the solution (125) is no longer limited to small values of ε and we can set ε = 1
(absorbing other values of ε in coefficients am).

We can write (125) in much more known form. In order to do this we observe that
∂P
∂x = − 1

2 ppT and then

u = 2
∂

∂x
Tr[(I + P)−1 ∂P

∂x
] = 2

∂2

∂x2 Tr[ln(I + P)] = 2
∂2

∂x2 ln det(I + P). (126)

Thus we arrive at

u = 2
∂2

∂x2 ln det(I + P),

which is the relationship for the multisoliton solution of the Korteweg-de Vries equation.
Up to now we have considered the case of discrete measure. In the case of continuous

measure dλ(k) we arrive at the Gelfand–Levitan–Marchenko equation from the methodol-
ogy of the IST as follows. We have to treat P as more general operator as square matrix.
We write

(P f )(k) =
∫
C

dλ(l)P̂(k, l) f (l), (127)

and the solution of KdV equation becomes

u = −ε
∂

∂x

∫
C

dλ(k)
[

p̂(k)[(I + εP)−1 p
]
(k). (128)

We can write the solution as

u = 2
∂

∂x
K(x, x), (129)

where
K(x, y) = − ε

2
pT(x)[I + εP(x)]−1 p(y). (130)

After some calculation we obtain

K(x, y) = − ε

2
pT(x)p(y)− ε

2

∞∫
x

dzK(x, z)pT(z)p(y) (131)
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which is the GLM equation with

B(x + y) =
ε

2
pT(x)p(y) =

ε

2

∫
dλ(k) exp

[
i
(

k
2
(x + y) + k3t

)]
. (132)

Thus we have shown that SEsM is connected to the inverse scattering transform
method for the Korteweg-de Vries equation. A similar connection can be proved also for
other equations.

5. Several Particular Cases of SEsM and Their Connections with Other Methods

Below we show that many famous methods for obtaining particular exact solutions of
nonlinear partial differential equations are connected to particular cases of SEsM. This is
important to know in order to avoid errors when applying methods for obtaining exact
solutions of nonlinear partial differential equations (for discussion see, e.g., [104,105]).

5.1. Homogeneous Balance Method and SEsM

The homogeneous balance method was discussed by Wang and et al. [106–108]. The
method is as follows [107]. We consider the partial differential equation

P(u, ux, ut, uxx, uxt, utt, . . . ) = 0, (133)

where P is in general a polynomial function of its arguments, u = u(x, t), and the sub-
scripts denote the partial derivatives. A function w = w(x, t) is called a quasisolution of
Equation (133), if there exists a function f = f (w) of a single variable so that a suitable
linear combination of the following functions

f (w), [ f (w)]x, [ f (w)]t, [ f (w)]xx, [ f (w)]xt, [ f (w)]tt, . . . (134)

is actually a solution of Equation (133). Four steps are needed to find f (w). At step 1,
one chooses a suitable linear combination of the functions from (134). The coefficients
in this linear combination must be determined, so that the highest nonlinear terms and
the highest order partial derivative terms in the given equation are both transformed into
the polynomials with a highest equality degree in partial derivatives of w(x, t) in spite
of f (w) and its various derivatives. These equal highest degrees determine the form of
the linear combination. At step 2, after a substitution of the linear combination chosen
in the first step into Equation (133), followed by a collection of all terms with the highest
degree of derivatives of w(x,t) and setting its coefficient to zero, one obtains an ordinary
differential equation for f (w) and then one solves it. At step 3, starting from the ODE
and its solution obtained above, the nonlinear terms of various derivatives of f (w) in the
relationship obtained in the second step can be replaced by the corresponding higher order
derivatives of f (w). Then by a collection of all terms with the same order derivatives of
f (w) and by setting the coefficient of each order derivative of f (w) to zero respectively, one
obtains a set of equations for w(x, t). The left hand sides of these equations are the k degree
homogeneous functions in various derivatives of w(x, t) , where k is the order of f (k).
In view of the homogeneous property of these equations one can expect that w(x, t) is an
exponential function with some constants to be determined. Substituting the exponential
function assumed into each k degree homogeneous equation in partial derivatives of w(x, t),
one obtains a set of nonlinear algebraic equations for some constants to be determined.
If there exists a solution for these nonlinear algebraic equations, then w(x, t) and the
coefficients of the linear combination chosen in the first step can be determined. At step 4,
by substitution of f (w), w(x, t), and some constants obtained in the second and third steps
into the combination chosen in the first step, and after doing some calculations, one obtains
an exact solution of Equation (133).

Now we show that the homogeneous balance method is connected to a particular case
of SEsM.
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Assumption 2. The homogeneous balance method is connected to the particular case of SEsM
where there is no transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped) and
the function f (w) is the solution of a single simple equation (i.e., we have just one function f (w)
at Step 2 of SEsM and the form of the function F at Step 2 of SEsM is a linear combination of the
functions from (134)). The used simple equation is the equation for the function f (w) at Steps 3, 4,
and 5 of SEsM. The balance in the homogeneous balance method is a particular case of the balance
procedure from Step 6 of SEsM and the algebraic system is the same as the algebraic system from
Step 7 of SEsM.

We start from SEsM and then impose restrictions in order to come to the particular
case connected to the homogeneous balance method. Let us consider the partial differential
equation (133). We skip Step 1 of SEsM (no transformation of the nonlinearity of the equa-
tion (133)) and come to the particular class of SEsM methodology without transformation
of the nonlinearity of the solved equation. At Step 2 of SEsM, we take the particular case of
a single function F which has particular form to be a linear combination of the functions
from (134). Note that the functions from (134) depend on a single function w. This is
another restriction on the function F from Step 2 of SEsM. At Step 3 of SEsM we make
traveling-wave ansatz and thus we consider the particular case of SEsM when the solutions
are travelling waves. We skip Step 4 of SEsM. The simple equation from Step 5 of SEsM
is a particular case: this equation is chosen to be the differential equation for f (w) from
the homogeneous balance method. The balance in the homogeneous balance method is
a particular case of the balance procedure at Step 6 of SEsM for the case of balance of the
highest powers in relationship containing monomials which are made of functions of a
single variable. The algebraic system of the homogeneous balance method is the algebraic
system from Step 7 of SEsM. Thus we have started from the general SEsM and by applying
restrictions on it, we arrived at one particular case of SEsM connected to the homogeneous
balance method.

Now let consider the homogeneous balance method in the version of Fan and Zhang [109].
They consider the equation (133) and search for a traveling wave solutions u(x, t) = u(ξ) =
u(x− λt) of this equation. The solution is searched in the form

u(ξ) =
m

∑
i=0

aivi(ξ), (135)

where
dv
dξ

= k(1− v2), (136)

and k and λ are parameters. The solution of (136) is

v = tanh(kξ); v = coth(kξ). (137)

Now let us show that this version of the homogeneous balance method is connected
to a particular case of SEsM.

Assumption 3. The homogeneous balance method in the version of Fan and Zhang is connected to
a particular case of SEsM where, there is no transformation of the nonlinearity of the equation (Step
1 of SEsM is skipped), just one function u is used and the particular form (135) is used to relate the
function u to the solution of the simple equation for the function v-Equation (136).

We start from SEsM and impose restrictions on it in order to reduce SEsM to the
particular case connected to the homogeneous balance method in the version of Fan and
Zhang. First, we consider the particular case of SEsM where no transformation of the
nonlinearity of the solved equation is made. At Step 2 of SEsM, we consider again a
particular case where a single function u is used. At Step 3 of SEsM we consider the
particular case where we search for a traveling wave solution of the solved equation.
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At Step 4 of SEsM we assume a particular case of the relationship between the functions u
and v, namely (135). At Step 5 of SEsM we again consider the particular case where the
simple equation for v is (136). Steps 6 and 7 of SEsM follow and we may obtain an exact
traveling wave solution of the solved equation. Thus we have started from SEsM and by
considering particular cases of this methodology we have reduced it to a particular case
connected to the homogeneous balance method in the version of Fan and Zhang.

5.2. Extended Homogeneous Balance Method and SEsM

The extended homogeneous balance method [110] extends the Fan and Zhang version
of the homogeneous balance method by use of two simple equations of the same kind and
of two traveling wave variables. Below we consider an assumption for this version of the
homogeneous balance method and then we consider a version of the homogeneous balance
method, which is based on an arbitrary number of simple equations and for any of these
equations there is a separate traveling wave coordinate.

Assumption 4. The extended homogeneous balance method in the version of El-Wakil et al. [110] is
connected to particular case of SEsM for the case when there is no transformation of the nonlinearity
of the equation (Step 1 of SEsM is skipped), two functions u and v is used and for these functions
particular form (135) is used to relate them to the solution of two simple equations of the same kind

dφ

dξ1,2
= a1,2φ2 + c1,2 (138)

where a1,2 and c1,2 are parameters and ξ1,2 = α1,2x + β1,2t are two traveling wave coordinates.

We consider SEsM and impose restrictions on it in order to reduce SEsM to the
particular case connected to the homogeneous balance method in the version of El-Wakil et
al. We consider the particular case of SEsM where no transformation of the nonlinearity
of the solved equation is made. At Step 2 of SEsM, we consider another particular case
where two functions u and v will be used. At Step 3 of SEsM we consider the particular
case where we search for a traveling wave solution of the solved equation. At Step 4 of
SEsM we assume a particular case of the relationship between the functions u, v and φ,
namely (135). At Step 5 of SEsM we again consider the particular case where the simple
equations for φ are of the kind (138). Steps 6 and 7 of SEsM follow and we may obtain an
exact traveling wave solution of the solved equation. Thus we have started from SEsM
and by means of considering particular cases of this methodology we have reduced it to a
particular case connected to the Extended homogeneous balance method in the version of
El Wakil et al.

Now we are going to consider the much more extended homogeneous balance method
(MMEHBM) and to show that this method is connected to a particular case of SEsM. In the
MMEHBM we do not use the transformation of the nonlinearity of the solved equation.
We use arbitrary number of functions u1, u2, . . . . Any of these functions is represented by
a power series of a function of corresponding traveling wave coordinate ξ1, ξ2, . . . and
for the last function there is a separate simple equation (all of these simple equations can
be different).

Assumption 5. The MMEHBM is connected to a particular case of SEsM where there is no
transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped), arbitrary number of
functions u1, u2, . . . are used, any of these functions is represented by a power series of a function
of corresponding traveling wave coordinate ξ1, ξ2, . . . and for the last function there is a separate
simple equation (all of these simple equations can be different).

In general, MMEHBM will be used for obtaining exact traveling wave solutions
of systems of nonlinear partial differential equations. We consider SEsM and impose
restrictions on it in order to reduce SEsM to the particular case connected to MMEHBM.
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First, we consider the particular case of SEsM where no transformation of the nonlinearity
of the solved equation is made at Step 1 of SEsM. At Step 2 of SEsM, we consider again
a particular case where we use one function ui, (i = 1, 2, . . . ) for any of the i-th solved
equations. At Step 3 of SEsM, we consider the particular case where we search for a
traveling wave solution of the solved equation and the traveling waves associated with the
different functions ui can have different traveling wave coordinates. At Step 4 of SEsM,
we assume a particular case of the relationship between the functions ui and φi, which
is of the kind (135). We note that this is a large restriction on SEsM. At Step 5 of SEsM,
we again consider separate simple equation for φi(ξi) which is of the kind (138). Steps 6
and 7 of SEsM follow and we may obtain an exact traveling wave solution of the solved
equation. Thus we have started from SEsM and by means of considering particular cases
of this methodology we have reduced it to the particular case connected to MMEHBM.

5.3. Auxiliary Equation Method and SEsM

The summary of the auxiliary equation method is as follows [111]. One considers
nonlinear partial differential equation for u(x, t) in the form

H(u, ux, ut, uxx, uxt, utt, . . . ) = 0. (139)

Then traveling wave variable ξ = x−ωt is introduced and Equation (139) becomes

G(u, uξ , uξξ , . . . ) = 0. (140)

The solution of (140) is searched as

u(ξ) =
n

∑
i=0

aizi(ξ), (141)

where ai are parameters and z(ξ) is the solution of the auxiliary equation(
dz
dξ

)2
= az(ξ)2 + bz(ξ)3 + cz(ξ)4. (142)

Equations (141) and (142) are introduced in Equation (140) and then for the obtained
relationship, one equates to 0 coefficients of the powers of z(ξ). The solution of the obtained
system of algebraic equations leads to solution of solved equation (139).

Now we show that the auxiliary equation method is connected to a particular case
of SEsM.

Assumption 6. The auxiliary equation method is connected to a particular case of SEsM where
there is no transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped); Function
F at Step 2 of SEsM has particular form—(141)); just one simple equation is used that this simple
equation has the form (142) which is a particular case of the form which can be used in SEsM.

We start from SEsM, impose restrictions on it and reduce SEsM to the particular case
connected to the auxiliary equation method. At Step 1 of SEsM we do not transform the
nonlinearity of the solved equation (we skip this step). At Step 2 of SEsM we use one of the
possible forms of the function F—(141). We skip Steps 3 and 4 of SEsM as the function z(ξ)
in the auxiliary equation method is directly connected to the solution of the used simple
equation. Then we consider the particular case of SEsM when only 1 simple equation is
used and we restrict further SEsM by the assumption that the simple equation is of the
form (142). In such a way we reduce SEsM to a particular case connected to the auxiliary
equation method.

Now let us show that a generalized version of the auxiliary equation method is
connected to a particular case of SEsM. The generalization is in two directions. First, we can
use many relationships for F instead of (141) and second we can use many relationships
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for the simple equations instead of (142). We call this generalized version of the auxiliary
equation method GAEM—general auxiliary equation method. GAEM is formulated as
follows. One considers nonlinear partial differential equation for u(x, t) in the form

H(u, ux, ut, uxx, uxt, utt, . . . ) = 0. (143)

Then, traveling wave variable ξ = x−ωt is introduced and Equation (139) becomes

G(u, uξ , uξξ , . . . ) = 0. (144)

The solution of (140) is searched in any form and not only in the form (141). Equation (141)
is just a particular case of the possible forms that can be used in GAEM. z(ξ) can be solution
of an arbitrary auxiliary equation. (142) is just one possibility for an auxiliary equation
which can be used in GAEM. The introduction of the assumed form of the solution and of
the assumed form of the auxiliary equation in (143) leads to a relationship consisting of
coefficients multiplied by functions. We set to zero these coefficients and obtain a system
of nonlinear algebraic equations. Any nontrivial solution of this system leads to an exact
solution of (143).

Now we show that GAEM is connected to a particular case of SEsM.

Assumption 7. The general auxiliary equation method (GAEM) is connected to a particular case
of SEsM where there is no transformation of the nonlinearity of the equation (Step 1 of SEsM is
skipped); Function F at Step 2 of SEsM has particular form and this is the corresponding form used
by GAEM; just one simple equation is used that this simple equation has the particular form which
is the corresponding form used by GAEM.

We start from SEsM, impose restrictions on it and reduce SEsM to a particular case
connected to GAEM. At Step 1 of SEsM we do not transform the nonlinearity of the solved
equation (we skip this step). At Step 2 of SEsM we use a possible form of the function
F—the corresponding form used when GAEM is applied. This possible form is just one of
the many forms that can be used in SEsM. We skip Steps 3 and 4 of SEsM as the function
z(ξ) in the auxiliary equation method is directly connected to the solution of the used
simple equation. Further, we consider the particular case of SEsM when only 1 simple
equation is used and we restrict further SEsM by the assumption that this simple equation
is of the form used by GAEM. In such a way we reduce SEsM to a particular case connected
to the general auxiliary equation method.

An illustration of a particular case of GAEM can be seen in [112].

5.4. Jacobi Elliptic Function Expansion Method, F-Expansion Method and SESM

We show first that the Jacobi elliptic function expansion method (JEFEM) is connected
to a particular case of SEsM. Then we describe general Jacobi elliptic function expansion
method (GJEFEM) and show that it is connected to a particular case of SEsM. Finally, we
list several methods used in the literature which are particular cases of GJEFEM.

The classic form of JEFEM is as given by [113]. One considers the following nonlinear
partial differential equation for u(x, t)

N(u, ux, ut, uxx, uxt, utt, . . . ) = 0, (145)

and searches for traveling wave solutions in the form

u = u(ξ) : ξ = k(x− ct), (146)

where k and c are parameters. u(ξ) is searched in the form of power series of the Jacobi
elliptic function sn(ξ, m) where m is the modulus of the function sn,
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u(ξ) =
n

∑
j=0

ajsn(j, m)j. (147)

This is a generalization of the tanh-method because for m = 1 sn(ξ, 1) = tanh(ξ). The
substitution of (146) and (147) in (145) can lead to a system of nonlinear algebraic equations
and any nontrivial solution of this system leads to an exact traveling wave solution of the
solved Equation (145).

Assumption 8. The Jacobi elliptic function expansion method (JEFEM) is connected to a particular
case of SEsM where there is no transformation of the nonlinearity of the equation (Step 1 of SEsM
is skipped); Function F at Step 2 of SEsM has particular form—(147)); just one simple equation is
used that this simple equation is the differential equation for the elliptic function sn.

We start from SEsM, impose restrictions on it and reduce SEsM to the particular case
connected to JEFEM. At Step 1 of SEsM we do not transform the nonlinearity of the solved
equation (we skip this step). Additional restriction is that we search for a traveling wave
solution of the solved equation (145). At Step 2 of SEsM we use a possible form of the
function F—(147). This form is just one of the many forms that can be used in SEsM. We
skip Steps 3 and 4 of SEsM as the function from (147) in the JEFEM is directly connected
to the solution of the used simple equation which is the equation for the Jacobi elliptic
function sn. The use of only one simple equation is a further restriction on SEsM. By means
of all restrictions above, we reduce SEsM to the particular case connected to JEFEM.

Next we formulate general Jacobi elliptic function expansion method (GJEFEM).
By this method we solve in general a system of N nonlinear partial differential equations
and search for traveling wave solutions based on different coordinates ξi = αix − βit,
i = 1, 2, . . . , N. The solution is searched as function

ui(ξ1, . . . , ξn) = Ui[h1(ξ1), . . . , hN(ξN)] (148)

of the functions f1, . . . , fN and each of these functions is a solution of a differential equation
for the Jacobi elliptic functions (

d fi
dξi

)2
= ai f 4

i + bi f 2
i + ci. (149)

We show below that the GJEFEM is connected to a particular case of SEsM.

Assumption 9. The general Jacobi elliptic function expansion method is connected to a particular
case of SEsM where, there is no transformation of the nonlinearity of the equation (Step 1 of SEsM
is skipped); Functions ui at Step 2 of SEsM have particular form—(148)); and the simple equations
are of the kind of the differential equation for the Jacobi elliptic functions (149).

We start from SEsM, impose restrictions on it and reduce SEsM to JEFEM. At Step 1. of SEsM
we do not transform the nonlinearity of the solved equation (we skip this step). An additional
restriction is that we search for a traveling wave solution of the solved Equation (145). At Step 2
of SEsM we use a possible form of the functions ui—(148). We skip Steps 3 and 4 of SEsM
as the functions from (148) in the JEFEM are directly connected to the solution of the used
simple equations which are of the kind of the differential equation for the Jacobi elliptic
functions (149). This is an additional restriction on SEsM. By means of all restrictions above,
we reduce SEsM to a particular case connected to GJEFEM.

Below, we list several particular cases of GJEFEM.

1. JEFEM is a particular case of GJEFEM for the case of just one solved nonlinear partial
differential equation and when the simple equation is the equation for the Jacobi
elliptic function sn and in addition the function U is a power series of the function sn.
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2. Parks et al. [114] and Fu et al. [115] use expansions based on the elliptic functions cn,
dn and cs. This is a particular case of GJEFEM when one simple equation is used and
this simple equation is of the kind of (149).

3. Fan and Zhang [116] present an interesting application which is an extension of
JEFEM for the case of two functions u1,2 and single simple equation and by means of
this extension they obtain solutions of the coupled Schrödinger-KdV system and of
two-dimensional Davey–Stewartson equation. This extension of JEFEM is a particular
case of GJEFEM when two functions u1,2 are used with the same argument and when
the simple equation is the differential equation for the elliptic function sn.

4. Another particular case of GJEFEM is applied by Yan [117] who treated a (2 + 1)-
dimensional integrable Davey–Stewartson-type equation for the case of 2 spatial
coordinates and travelling wave solutions. We note that SEsM allows treating equa-
tions with more that one spatial coordinate and the travelling waves can travel with
different velocities which is a more general case than the case discussed by Yan where
we have a single traveling wave despite the two spatial coordinates presented. Yan
uses the following form of the function ui, i = 1, 2, 3

ui(ξ) = ai0 +
n

∑
j=1

f j−1
k (ξ)[aij fk(ξ) + bijgk(ξ)], (150)

where fk and gk, k = 1, . . . , 12 are Jacobi elliptic functions (i.e., are functions which
satisfy the simple equation of the kind (149)). (150) is a particular form of the function
Ui from GJEFEM and the simple equations are equations for Jacobi elliptic functions
as in GJEFEM.

5. Another particular case of GJEFEM is used in [118]. The simple equations used there
are for Jacobi elliptic functions and the particular case of the used single function U is

U = a0 +
N

∑
i=1

sn−1(ξ, m)[aisn(ξ, m) + bicn(ξ, m)]. (151)

6. Liu and Fan [119] apply particular case of GJEFEM for the case of two spatial coordi-
nates and time. These three variables are combined to produce a single traveling wave
coordinate which allows the use of single variable simple equations. Wang et al. [120]
use also a particular case of GJEFEM for the case of two spatial variables and time
and combine all these variables in a single traveling wave variable. The new point in
this article is the particular form of the functions Ui

Ui = ai0 +
m1

∑
j=1

[
aij

snj(ξ, m)

(µsn(ξ, m) + 1)j + bij
snj−1(ξ, m)cn(ξ, m)

(µsn(ξ, m) + 1)j

]
. (152)

7. Ye at al. [121] extend (152) and use the following particular case for the functions Ui

Ui = ai0 +
m1

∑
j=1

[
ai,2j−1snj(ξ, m)

(µsn(ξ, m) + µ2cn(ξ, m) + 1)j +
ai,2jsnj−1(ξ, m)cn(ξ, m)

(µsn(ξ, m) + µ2cn(ξ, m) + 1)j

]
. (153)

Other variants for Ui are proposed by Wang et al. [122], Chen and Wang [123],
Lü [124], Abdou and Elhanbaly [125], El-Sabbagh and Ali [126,127].

8. Another particular case of GJEFEM is the F-expansion method which have the same
ideology as JEFEM but only the form of the simple equations for the Jacobi elliptic
functions are not specified. In the different variants of the F- expansion method one
uses different particular cases for the functions Ui from GJEFEM [128–131].
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5.5. Modified Simple Equation Method and SEsM

According to [132] the modified simple equation method is as follows. One considers
the nonlinear partial differential equation which can be reduced to an ordinary partial
differential equation for the function u(z)

P(u, uz, uzz, uzzz, . . . ) = 0 (154)

(154) is solved by means of the ansatz

u(z) =
N

∑
k=0

Ak

(
ψz

ψ

)k
. (155)

Above Ak are constants and AN 6= 0. The function ψ is a solution of some ordinary
differential equation of a lesser order than (154) (called simplest equation) and solutions of
these simplest equations are known. One uses the finite series (155) in order to represent
the solution u through the solution of the simplest equation. In doing this, one has to
determine the value of N by means of the balance of power of the leading terms of the
relationship which is obtained after the substitution of (155) in (154). This relationship is
polynomial of ψz

ψ and by setting to 0 of the coefficients to the powers of ψz
ψ one obtains a

system of nonlinear algebraic equations which solution leads to an exact solution of (154).
Now we show that the modified simple equation method is connected to a particular

case of SEsM.

Assumption 10. The modified simple equation method is connected to a particular case of SEsM
where there is no transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped);
Function F at Step 2 of SEsM has particular form—(155)) and just one simple equation is used.

We start from SEsM, impose restrictions on it and reduce SEsM to a particular case
connected to the Modified Method of Simple Equation. At Step 1 of SEsM we do not
transform the nonlinearity of the solved equation (we skip this step). An additional
restriction is that we search for solution of the solved equation which depends on a single
coordinate z—(154). At Step 2 of SEsM we use the form (155) of the function F— this form
is just one of the many forms that can be used in SEsM. We skip Steps 3 and 4 of SEsM
as the function from (155) in the JEFEM is directly connected to the solution of the used
simple equation which in this case is called the simplest equation. The use of only one
simple equation is a further restriction on SEsM. By means of all restrictions above, we
reduce SEsM to a particular case connected to the Modified Method of Simple Equation.

5.6. Trial Function Method and SEsM

The trial function method is described in [133,134] and it is as follows. We consider a
nonlinear partial differential equation

N(u, ux, ut, uxx, uxt, utt, . . . ) = 0, (156)

and take a trial function y(x, t) in order to construct a solution u(y) of (156). The we
substitute u(y) in (156) and determine the parameters of the solution.

Assumption 11. The trial function method is connected to a particular case of SEsM where there
is no transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped); Function F at
Step 2 of SEsM has particular form—u(y), where y (the trial function) is the solution of a single
simple equation.

We start from SEsM, impose restrictions on it and reduce SEsM to a particular case
connected to the trial function method. At Step 1 of SEsM we do not transform the
nonlinearity of the solved equation (we skip this step). An additional restriction is that we
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search for a solution of the solved equation which depends on a single coordinate which
can be a traveling wave coordinate or another kind of coordinate. At Step 2 of SEsM we
use a particular form of the function F which is constructed by means of trial function.
In most cases, F is presented by a finite power series of the trial function. The trial function
is a solution to one simple equation. Thus, by means of the restrictions above, we reduce
SEsM to a particular case connected to the trial function method.

5.7. First Integral Method and SEsM

The first integral method for obtaining exact solutions of nonlinear partial differential
equations is as follows [135]. One wants to obtain exact solutions of the nonlinear partial
differential equation

P(u, ux, ut, uxx, uxt, utt, . . . ) = 0. (157)

In order to do this one converts (157) to an ordinary differential equation by the
traveling wave ansatz u(x, t) = U(z) = u(kx − ωt). Then one introduces X = U and
Y = Uz and writes (157) as system of equations

Y = Xz (158)

Yz = F(X, Y). (159)

The solution is obtained by the assumption that the derivative of the relationship

Q(X, Y) =
m
∑

i=0
ai(X)Yi can be represented as

dQ
dz

= [g(X) + h(X)Y]
m

∑
i=0

ai(X)Yi (160)

which together with (159) allows computation of the solution.

Assumption 12. The first integral method is connected to a particular case of SEsM for the case
when equations of the kind

Xzz = F(X, Xz) (161)

are considered, there is no transformation of the nonlinearity of the equation (Step 1 of SEsM is skipped);
one simplest equation is used and this simplest equation is determined by the condition (160).

We stress that the first integral method can be applied to the restricted class of equa-
tions (161). This restricted class is obtained from (159) by substitution of (158) there.
We start from SEsM, impose restrictions on it and reduce SEsM to the trial function method.
At Step 1 of SEsM we do not transform the nonlinearity of the solved equation (we skip this
step). An additional restriction is that we search for a solution of the solved equation that
depends on a single coordinate which can be a traveling wave coordinate or another kind of
coordinate. (160) imposes a further restriction on X and plays the role of the implicit simple
equation which together with (161) determine the solution of (157). In this process one has
to use a polynomial form of ai(X) and to determine the coefficients of these polynomials
similar to Steps 6 and 7 of SEsM. Thus first integral method is connected to a particular
case of SEsM for obtaining solutions for the limited class of equations (159) under the
assumption that (160) holds.

6. Concluding Remarks

In this text, we present the Simple Equations Method (SEsM) for obtaining exact solu-
tions of nonlinear differential equations and discuss its connections with other methods
for obtaining exact solutions of nonlinear differential equations. Special importance is
given to the connection to two of the most famous method for obtaining exact solutions
of integrable nonlinear partial differential equations - method of Hirota and the inverse
scattering transform method. We show that one particular case of SEsM is connected to the
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Hirota method. This means that the SEsM is a useful tool for obtaining exact solutions of
nonlinear integrable differential equations and can lead to multisoliton solutions of such
equations. Then we show that SEsM can be connected to the famous inverse scattering
transform method. This is done in the case of the Korteweg-de Vries equation and much
more research on this connection will be presented in the future. In addition to solutions of
integrable nonlinear differential equations SEsM can lead also to exact particular solutions
of nonintegrable nonlinear differential equations. Actually, the simplest version of SEsM
(called Modified Method of Simplest Equation and based on representation of the searched
solution as power series of the solution of single simple equation [85,86]) was intended
exactly to solve the problem of obtaining particular exact solutions of nonintegrable non-
linear differential equations. Finally, we show that many other methods for obtaining
particular exact solutions of nonlinear nonintegrable differential equations are connected
to particular cases of SEsM. Many of these particular cases are discussed above in the text.
Some more cases are listed in [74]. We note that additional discussion of other particular
cases of the SEsM will be presented elsewhere and this is connected to many important
questions about the methodology for obtaining exact solutions of nonlinear differential
equations raised in [104,105].

We believe that the SEsM algorithm is useful one and it presents a fruitful way for
obtaining solutions of nonlinear differential equations. The development of SEsM is far
from finished. More research on the possible classes of transformations can be done as
well as additional simple equations can be used. We are sure that over the course of the
years this algorithm will be further refined. Our intention to go in this direction and we are
going to extend and to apply SEsM for obtaining solutions of many nonlinear differential
equations of practical significance for natural and social sciences.
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