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Abstract— Developments in computer vision, such as structure
from motion and multiview stereo reconstruction, have enabled
a range of photogrammetric applications using unmanned aerial
vehicles (UAV)-based imagery. However, some specific cases
still present reconstruction challenges, including survey areas
composed of steep, overhanging, or vertical rock formations.
Here, the suitability and geometric accuracy of four UAV-based
image acquisition and data processing scenarios for topographic
surveying applications in complex terrain are assessed and
compared. The specific cases include the use of: 1) nadir imagery;
2) nadir and oblique imagery; 3) nadir and façade imagery;
and 4) nadir, oblique, and façade imagery to reconstruct a
topographically complex natural surface. Results illustrate that
including oblique and façade imagery to supplement the more
traditional nadir collections significantly improves the geometric
accuracy of point cloud data reconstruction by approximately
35% when assessed against terrestrial laser scanning data of
near-vertical rock walls. Most points (99.41%) had distance
errors of less than 50 cm between the point clouds derived
from the nadir imagery and nadir–oblique–façade imagery. Apart
from delivering enhanced spatial resolution in façade details,
the geometric accuracy improvements achieved from integrating
nadir, oblique, and façade imagery provide value for a range of
applications, including geotechnical and geohazard investigations.
Such gains are particularly relevant for studies assessing rock
integrity and stability, and engineering design, planning, and
construction, where information on the position of rock cracks,
joints, faults, shears, and bedding planes may be required.

Index Terms— Computer vision, photogrammetry, structure
from motion (SfM), topographic survey, unmanned aerial vehicles
(UAV).

I. INTRODUCTION

TOPOGRAPHIC surveys are essential elements in sup-
porting a range of civil engineering and geomorpho-

logical applications, including studies of erosion deposition
and transport, structural stability and movement, and geo-
hazard investigations [1]–[3]. Two decades ago, topographic
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data were predominantly collected using ground-based point
sampling methods from differential global navigation satellite
systems (GNSS) and total stations [4]. Since the introduction
of laser scanning technologies, light detection and ranging
(LiDAR) systems have become widely used to acquire topo-
graphic data [5]. However, both terrestrial and airborne LiDAR
systems are expensive for repeated survey tasks, which are
often required for applications where temporal dynamics are
of interest. Furthermore, while terrestrial laser scanning (TLS)
can provide very high spatial resolution surface models of high
accuracy, the spatial coverage can be limited and also restricted
by line-of-sight viewing requirements [6], [7]. Area accessi-
bility can also pose a key constraint, particularly in hazardous
or complex terrains. Traditional airborne laser scanning (ALS)
can cover large areas within a relatively short time, with data
acquisition specifications suited for detailed terrain analysis.
On the other hand, ALS systems need significant expertise
to overcome the complexity of the operation and still require
line-of-sight viewing, and the cost of operation and equipment
is usually much higher than for TLS operations for local-scale
surveying tasks [6], [8].

Digital photogrammetry using optical remote sensing
presents as a relatively cost-effective alternative to acquire
topographic data. Using well-established techniques of mul-
tiview stereopsis (MVS), the elevation of the Earth’s surface
can be estimated [9]. Factors such as image spatial resolution,
sampling density, interpolation methods, and optical sensor
models can significantly affect the accuracy of the produced
topographic data [9]–[11]. Therefore, high-quality image cap-
ture, rigorous analysis, and user-expertise are all required
in the production of accurate topographic data, which have
limited data provision to specialized consulting services in
the past [8], [12]. In recent years, there has been dramatic
growth in the use of low-altitude remote sensing platforms,
particularly through the application of unmanned aerial vehi-
cles (UAV) [13]. The installation of commercial-off-the-shelf
sensors on these low-altitude aerial platforms enables users to
acquire ultrahigh (sub–cm) spatial resolution imagery of the
Earth’s surface without the need for sophisticated instruments.
They also overcome some of the challenges that can affect
the remote collection of optical imagery, including variable
atmospheric conditions (e.g., rainfall and cloud cover), via
their capacity for rapid deployment [14].
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The use of ultrahigh spatial resolution UAV-based imagery
has seen increased uptake in many photogrammetric applica-
tions due to the development of computer vision techniques,
such as structure from motion (SfM) and MVS reconstruction
[15], [16]. The combination of MVS photogrammetry and
SfM methods provides the opportunity to utilize optical UAV
imagery for 3-D reconstruction, as it increases the sampling
density of photogrammetry with higher spatial resolution
imagery. The SfM–MVS 3-D reconstruction can now be
achieved irrespective of the predefined position, orientation,
and optical model information of the on-board cameras, and
as a result, generally increases the accuracy of subsequent
products [10], [17]. Such techniques have seen application in
numerous studies but are, perhaps, most commonly employed
in providing highly accurate digital surface models (DSM)
for topographic surveys via the implementation of proper
camera calibration and ground control points (GCP) [3],
[18]–[21]. Conventionally, the imagery used for DSM recon-
struction is acquired at nadir, which is similar to traditional
aerial photogrammetry. James and Robson [19] suggested that,
by collecting oblique images (around 20◦ off-nadir) in addition
to nadir imagery, the accuracy of UAV-derived topographic
data can be improved. However, in many natural landscapes,
the survey area of interest may contain steep, overhanging,
or vertical rock formations, which are unsuited for 3-D recon-
struction from either traditional surveying or conventional
UAV-based nadir and oblique sensor-viewing geometry.

The use of horizontal-viewing (façade) photographs in
3-D reconstruction is ubiquitous for disciplines, such as cul-
tural heritage preservation and civil engineering [22]–[24].
Koutsoudis et al. [25] suggested that accurate 3-D modeling of
artificial objects reconstructed from ultrahigh spatial resolution
façade imagery can achieve similar levels of detail as other
sensing methods, such as laser scanning. Man-made structures
and objects are usually easier to reconstruct than natural
landscapes since a range of discernible features improves the
operation of computer vision algorithms [26]. In a recent
application, Jalandoni et al. [27] used ground-collected façade
photographs to successfully reconstruct ancient artwork on
a vertical rock surface. The use of façade photographs has
also proven useful for natural surface reconstruction although
natural surfaces sometimes lack the distinct features required
to take advantage of photograph-matching algorithms [28],
[29]. James and Robson [12] used on-ground near-parallel
façade photographs to reconstruct a coastal cliff section.
The on-ground method was time-consuming and precluded
the coverage of large areas. Therefore, acquiring façade
photographs from a UAV offers an appealing alternative to
increase efficiency and reduce potential data gaps [4].

The acquisition of façade or oblique UAV photographs is
suitable for covering vertical walls, which are not accessible by
survey personnel. Berquist et al. [30] used oblique and façade
UAV imagery to build a 3-D model of an inaccessible rock cliff
section, using ancient artwork on the cliff as reference points.
Barlow et al. [31] acquired parallel façade photographs from
a UAV to reconstruct a sea cliff to analyze rock structural
discontinuities. Jaud et al. [32] assessed the impact of camera
viewing angles on the reconstruction accuracy of a cliff and
did not find significant differences between data sets acquired

at 20◦ and 40◦ off-nadir. In their analysis, the completeness
of data reconstruction between the data sets was similar,
except for areas with extruding or overhanging cliff surfaces.
However, in [19], the lack of other convergent images of
a coastal cliff resulted in errors related to systematic radial
distortion. Such errors were likely caused by the dome effect,
which often appears in SfM-produced topographic data using
nadir UAV image due to the nature of bundle adjustment
[18]. Circular scanning of sites, with the normal vectors of
camera positions converging to a pseudopoint, is a common
strategy for UAV-based collection of oblique images from
near-vertical objects [33]. Martínez-Carricondo et al. [34] used
the combination of nadir and oblique images to improve the
accuracy of topographic data from a vertical wall in the con-
dition of inadequate GCP distribution. Such findings indicate
the potential to improve the topographic accuracy and data
completeness through combining UAV imagery acquired from
various viewing perspectives, especially in complex terrain
containing vertical surfaces.

Here, we explore the combination of UAV-derived nadir,
oblique, and façade photography to assess potential advantages
for 3-D reconstruction and modeling of complex mountainous
terrain with vertical rock formations. While the above studies
indicate the potential benefits of façade photography [23]–[25],
[31], we were unable to identify published work demonstrating
UAV-based data collection procedures and processing results
for integrating nadir, oblique, and façade photographs in the
complex terrain. As such, the overall objective of this study
was to comprehensively assess and intercompare the suitability
and geometric accuracy of UAV-based image acquisition and
data processing scenarios for topographic survey applications
of rock formations using: 1) nadir imagery; 2) nadir and
oblique imagery; 3) nadir and façade imagery; and 4) nadir,
oblique, and façade imagery. The outcome of this work has
implications for civil engineering, geomorphological studies,
and other disciplines requiring accurate topographic surveying,
especially in complex terrains where conventional approaches
are restricted due to accessibility and safety concerns. The
research also provides information on the benefits of integrat-
ing off-nadir and façade photographs for 3-D modeling and
visualization of vertical rock surfaces, which may be required
for the assessment of geological structures to evaluate rock
integrity and stability in the vicinity of infrastructure.

II. MATERIALS AND METHODS

A. Study Site

The study site is located in the southwest of Saudi Arabia
within the mountainous region of Aseer, covering an area of
approximately 2.7 hectares. The orthometric elevation within
the study area ranges from 1693–1823 m above mean sea level
(see Fig. 1). The site contains many steep and vertical rock
surfaces, with slopes varying from 0◦ to 90◦. Thus, there is
a requirement for repeated topographic surveys in order to
estimate rock structural stability and identify potential safety
issues to existing road infrastructure.

B. Data Collection and Processing

The project comprised three major data collection exercises,
including the acquisition of GNSS survey data of GCPs, TLS
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Fig. 1. Elevation contours derived for the study site in southern Saudi Arabia.
The contour line elevation interval is 10 m. The base map is derived from a
2-cm resolution orthomosaic.

Fig. 2. Conceptual workflow of the data processing chain.

Fig. 3. (a) GNSS survey locations of GCPs used for the TLS (yellow)
and UAV (red) data georeferencing, showing terrain elevation as a backdrop.
(b) Example of a GCP within the study area. (c) Corresponding UAV image.

surveys of vertical rock walls, and UAV-based red–green–blue
(RGB) imagery. Fig. 2 presents the workflow of the subse-
quent data processing, with further details of the individual
processing steps provided in Section II-B.

1) GCP Deployment, Surveying, and Processing: A total
of 30 GCPs were deployed for georeferencing, with 21 GCPs
applied for the TLS data, and nine used for the UAV data [see
Fig. 3(a)]. Portable aluminum trays marked with a black cross
were used as GCPs [see Fig. 3(b) and (c)]. A Leica AS10
multi-GNSS antenna (Leica Geosystems, Heerbrugg, Switzer-
land) was installed as a temporary base station at a nearby high
point [see Fig. 3(a)]. Static observations were collected for
60 min before starting the real-time kinematic (RTK) survey
of GCPs. A pole fixed at a height of 1.8 m and integrated
with a bipod was used to minimize potential misleveling of
the Leica GS15 antenna rover. The raw GNSS files were down-
loaded and imported into the Leica Geo Office 8.4 software

(Leica Geosystems). Reference data from continuously oper-
ating reference stations (CORS) were used to accurately estab-
lish the position of the base station. The calculated position
and ellipsoidal elevation of the base station were then used to
postprocess the RTK data. The EGM96 geoid model was used
to determine the geoid separation and applied to the ellipsoid
heights for orthometric elevation determination. Results were
tabulated using WGS84 as the reference datum.

2) TLS Data Acquisition and Processing: Seven TLS scans
were performed using a FARO Focus X330 laser scanner (Faro
Technologies, Warwickshire, U.K.) deployed on a 1.03-m
tripod. Triplets of GCPs were located on the ground within
5 m of each scan location to facilitate accurate georeferencing
[see Fig. 3(a)]. Each scan was performed at a distance of
approximately 25 m from the rock façade. The scan resolution
was 0.03◦ with a scan rate of 112 kpt/s. The angular area of
each scan was 90◦ to −90◦ horizontally and 90◦ to −62.6◦
vertically. A photograph was taken at the end of each scan
to enable rendering of the point cloud during postprocessing.
The postprocessing of the TLS scans was undertaken within
the Faro SCENE 5.3 software. Each scan was imported
into SCENE and processed separately to generate multiple
grey-scale point clouds and subsequently converted into col-
ored point clouds based on the RGB photographs collected at
the end of each scanning process. The GCPs were manually
marked on each colored point cloud for georeferencing. Cloud-
to-cloud registration was applied to stitch the seven separate
point cloud chunks into one integrated point cloud as a
reference to the rock façade. The result was exported for
comparison against the UAV-derived SfM–MVS point clouds.

3) Flight Planning and UAV Image Acquisition: The UAV
imaging system consisted of a gimbal-stabilized 20MP Has-
selblad L1D-20c camera (Victor Hasselblad AB, Gothenburg,
Sweden) and two DJI MAVIC 2 Pro quadcopters (SZ DJI
Technology Co., Ltd, Shenzhen, China). The flight planning
and ground controls were carried out using the universal
ground control station (UgCS) application (SPH Engineering,
SIA, Riga, Latvia). The flight campaign consisted of three
nadir-, three oblique-, and six façade-viewing flights. While all
nadir-viewing flights and five façade scans were preplanned
for autonomous flight missions, one façade scan and three
oblique scans of the rock wall were flown manually due to
safety and potential collision concerns. We collected oblique
and façade scan images in the mornings and afternoons from
sunlit rock walls to reduce shadowing effects, whereas nadir-
viewing images were collected within two hours of solar
noon. Table I shows the parameters of the different flight
configurations. The distance between the sensor and the terrain
surface was not consistent due to the extreme terrain variation.
The three nadir-viewing flights were flown at various heights
(1850, 1860, and 1910 m) above mean sea level to ensure safe
clearance of the terrain. It should be noted that the camera
viewing elevation of façade flights was set to 4◦ to avoid the
influence of the propellers.

4) UAV Image Processing: The collected UAV images were
organized into four data sets: 1) nadir imagery (1287 pho-
tographs); 2) nadir and oblique imagery (1932 photographs);
3) nadir and façade imagery (3297 photographs); and 4) nadir,
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TABLE I

FLIGHT PARAMETERS OF THE UAV CAMPAIGNS FOR NADIR, FAÇADE,
AND OBLIQUE PHOTOGRAPHY

oblique, and façade imagery (3942 photographs). The four
data sets were imported into Agisoft Metashape Pro 1.6.2
(Agisoft LLC, Saint Petersburg, Russia) for processing. The
image processing workflow was the same for the four data
sets. The processing workflow references the USGS guidelines
[35]: particularly, the error reduction methods to ensure data
accuracy. The coordinates of the photographs were converted
from a WGS84 geographic coordinate system to a UTM pro-
jected coordinate system. The predefined camera model was
checked before the initial photograph alignment. Photograph
alignment was performed at the original scale, with a tie point
limit of 4000 and a key point limit of 40 000 points. Once
the photograph-alignment was completed, error reduction was
performed based on reconstruction uncertainty and projection
accuracy to remove those tie points with an accuracy below
the USGS-suggested thresholds without omitting any aligned
photographs. Values of ten for reconstruction uncertainty and
two for projection accuracy were defined as the thresholds for
error reduction at the initial phase.

The GNSS-derived GCP coordinates were subsequently
imported and manually registered to the GCPs visible in
the UAV images, followed by another error reduction based
on the reprojection error. The remaining tie points with an
accuracy below the USGS-suggested threshold of 0.3 pixels
were removed without omitting aligned photographs. This
enabled the completion of the SfM-derived sparse point cloud.
The root-mean-square errors (RMSEs) for data sets 1 (nadir), 2
(nadir and oblique), 3 (nadir and façade), and 4 (nadir, oblique,
and façade) based on the GCPs were 1.55, 0.89, 1.84, and
1.37 cm, and the projection errors were 0.4, 0.49, 0.56, and
0.6 pixel, respectively. MVS dense clouds were then generated
using the original scale (ultrahigh-resolution) and aggressive
filtering for all data sets. Any visually identified noise in
the dense point clouds was subsequently removed. Finally,
the results were exported for comparison with the TLS-derived
point cloud data. The point density of the data sets 1, 2, 3,
and 4 was 0.13 points/cm2, 0.16, 0.19, and 0.2 points/cm2,
respectively. The produced SfM–MVS point cloud of each
data set was then used to generate a DSM with a Poisson
surface reconstruction method [36], followed by the generation

of an orthomosaic based on the DSM and the mosaic blending
mode.

5) Accuracy Assessment: The accuracy of the UAV-derived
point clouds was evaluated against the georeferenced
TLS-derived point cloud for the rock façade using the Cloud-
Compare 2.12 alpha version [37]. The first step was to crop the
data with the polygon of the study site to ensure consistent data
volumes. Because the seven TLS scans were merged as one
integrated cloud, geometric errors within each point cloud may
be propagated during the process [38]. Therefore, the iterative
closest point (ICP) fine registration algorithm [39] was used to
calculate the rigid body transformation matrix to fit the TLS
data to the UAV data sets (1). ICP fine registration assumes that
the two comparing point clouds are roughly aligned and the
shapes in the overlapping area are the same and only transform
points at a fine scale. The rigid body transformation matrix
has the same unit as the multiplying coordinate vectors. The
multiplication of such a matrix and the multiplying coordinate
vectors (easting, northing, height, and scale in a single column)
results in the transformed coordinate vectors, which maintains
the original unit (m). The transformation matrix was eventually
applied to the TLS data before the comparison with each
UAV-derived point cloud to minimize the geometric error
between the TLS data and each UAV data set.

Each finely registered TLS data set was then compared with
the corresponding UAV-derived point cloud data. Because the
TLS data had smaller data coverage than the UAV-derived
point cloud data, it was set as the comparing data rather
than the reference data in CloudCompare due to the restric-
tion of the comparison algorithm employed by the software.
Nevertheless, the magnitude of the resulting cloud-to-cloud
alignment errors was the same regardless of which data set
was assigned as comparing and reference data, and hence,
the results provided an indication of the errors of the UAV data
sets when evaluated against the TLS data. For every comparing
point from the TLS data, a local surface model was calculated
using a least-squares method with the nearest six points from
the corresponding UAV-derived point cloud data. The absolute
Euclidean distance between each point from the TLS point
clouds and the corresponding local least-squares plane was
calculated to determine the geometric accuracy of the rock
façade within the four UAV-derived point clouds based on the
nadir; nadir and oblique; nadir and façade; and nadir, oblique,
and façade imagery, respectively.

Subsequently, the UAV-derived point cloud, which had
the lowest geometric error, was selected as the reference
point cloud for relative comparison with the three remaining
UAV-derived point clouds. Such comparisons further assessed
the point cloud accuracy for those parts of the study site
that was not covered in the TLS-based point clouds. The
comparison method for the UAV-derived data was the same
as that used for the TLS data, except no ICP fine registration
was applied before the comparison. The absence of ICP
on UAV-derived data is because all the UAV-derived data
were georeferenced based on the same GCPs, and no further
geometric manipulation of the UAV-derived point clouds was
applied after GCP registration. In addition, the raster DSM
data of each UAV data set were used to subtract the DSM
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Fig. 4. Data coverage of (a) TLS point cloud and (b) point cloud derived
from nadir UAV images. The point cloud colors default to the 8-bit intensity
ranged from 0 to 255 and represent the reflected energy strength of the TLS
data and the grey scale of point colors of the UAV-derived data, respectively.
The three regions outlined in (b) represent: 1) east-facing façade; 2) south-
facing façade; and 3) top of the rock formation.

of the selected UAV reference data set to more intuitively
demonstrate the elevation differences, a process that was
performed using QGIS [40]. Finally, the orthomosaic of each
UAV data set was visually compared with the orthomosaic
of the same UAV reference data set to check for significant
spatial offsets.

III. RESULTS

A. Point Cloud Comparison Between the TLS and
UAV-Derived Data

The collection of TLS data enabled the coverage of the
lower sections of the rock formation up to a height of
approximately 70 m [see Fig. 4(a)]. The scanned area was
roughly divided into three parts, as shown in Fig. 4(b), with
areas representing the east-facing façade, south-facing façade,
and top of the rock formation. These defined regions are
used to inform the analysis presented in Sections III and IV.
The coverage of the TLS data was concentrated on the east-
and south-facing façade sections due to the reduced line of
sight. This is particularly obvious in the central area (where
sections i and ii join) and at the top of the rock formation
(section iii) due to the near-vertical rock wall obstructing the
view of the area above. In the lower sections, some spots
were also omitted in the TLS point cloud due to obstructing
rocks and the fact that only seven scans (i.e., points of
viewing) were used to create the point cloud. In contrast,
the UAV imagery consists of thousands of viewing points,
providing a more complete point cloud of the area of interest
[see Fig. 4(b)].

The rigid body transformation matrices, which were applied
to the TLS data before each comparison, are presented

in the following. Transformations were necessary to minimize
the influence of the geometric propagation errors caused by
the merging of multiple TLS scans. They also ensure that the
derived cloud-to-cloud errors between the TLS data and UAV
point clouds could be meaningfully interpreted. The meaning
of each element in the matrix can be found in (1), as shown
at the bottom of the page.

The rigid body transformation matrix to fit the TLS point
cloud to UAV data set 1 (nadir images) was

⎛
⎜⎜⎝

1 0 0.001 −1.549
0 1 0.003 −4.674

−0.001 −0.003 1 −0.076
0 0 0 1

⎞
⎟⎟⎠.

The transformation matrix to fit the TLS point cloud to UAV
data set 2 (nadir and oblique images) was

⎛
⎜⎜⎝

1 0.001 −0.002 3.521
−0.001 1 0.009 −15.011
0.002 −0.009 1 −0.409

0 0 0 1

⎞
⎟⎟⎠.

The transformation matrix to fit the TLS point cloud to UAV
data set 3 (nadir and façade images) was

⎛
⎜⎜⎝

1 0.001 −0.002 2.761
−0.001 1 0 −0.718
0.002 0 1 −0.101

0 0 0 1

⎞
⎟⎟⎠.

Finally, the transformation matrix to fit the TLS point cloud
to UAV data set 4 (all images) was

⎛
⎜⎜⎝

1 −0.001 −0.002 2.62
0.001 1 0.003 −5.54
0.002 −0.003 1 0.048

0 0 0 1

⎞
⎟⎟⎠.

The matrices show that the horizontal offsets (the combina-
tion of the X shift along the x-axis and the Y shift along the
y-axis) were two orders larger than the vertical offsets (the Z
shift along the z-axis) in UAV data sets 1 and 4 and at least one
order larger in UAV data sets 2 and 3. This may be due to the
TLS data being concentrated on the façade parts of the rock
formation and hence causing a lack of discernible features on
the horizontal plane. The lack of horizontal features increased
the geometric propagation errors in the horizontal directions
during the cloud-to-cloud alignment process when merging
the TLS scans. Both the Y shift along the y-axis (-15.011 m)
and the Z shift along the z-axis (-0.409 m) were an order
larger in the transformation matrix (which fits the TLS data to
UAV data set 2) than the other transformation matrices. This
indicates that a larger transformation was applied to the TLS

⎛
⎜⎜⎝

cosϕ cosψ + sin ϕ sin θ sinψ sin ϕ cosψ − cosϕ sin θ sinψ cos θ sinψ X
− sin ϕ cos θ cosϕ cos θ sin θ Y

sin ϕ sin θ cosψ − cosϕ sinψ − cosϕ sin θ cosψ − sin ϕ sinψ cos θ cosψ Z
0 0 0 1

⎞
⎟⎟⎠ (1)

where θ , ψ , and ϕ are the rotations around the x-, y-, and z-axes, and X , Y , and Z are the shifts along the x-, y-, and z-axes,
respectively.
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data to reduce the Euclidean distances to the point cloud of
UAV data set 2. The larger transformation also means that
larger relative errors in position exist between the TLS data
and the point cloud of UAV data set 2. Therefore, we can
expect that UAV data set 2 would have a larger difference in
point locations compared with other UAV-derived data with
lower transformation coefficients.

The mean absolute point distance (point number
≈ 81.54 million) between the rigid-body-transformed
TLS data and UAV data set 1 was 5.67 cm, with an 8.86-cm
standard deviation. The mean absolute distance against UAV
data set 2 was 5.74 cm, with a standard deviation of 6.80 cm.
Although the mean absolute point distance of these two data
sets was similar, UAV data set 2 was still considered to
have a poorer geometric accuracy because the magnitude of
the shift distance (the fourth column) in the transformation
matrix was an order larger than the shift distance of UAV
data set 1. The mean absolute distance against the point cloud
of UAV data set 3 was the largest among the four data sets,
with a mean absolute distance of 9.46 cm and a 10.48-cm
standard deviation. Meanwhile, the difference between the
rigid-body-transformed TLS data and UAV data set 4 was
the smallest, with a mean absolute distance of 3.71 cm
and a 5.43-cm standard deviation. Since the transformation
matrices to fit the TLS data to UAV data sets 1, 3, and 4 were
of similar magnitude for the data transformation, we can
conclude that the transformed TLS data had the smallest
geometric errors against UAV data set 4, which also means
that the geometric errors between UAV data set 4 and the
TLS data were the smallest among the four UAV data sets.
The improvement in geometric accuracy of UAV data set
4 was found to be 34.57% compared with UAV data set 1.

The percentage of points that had a distance error of less
than 50 cm was 99.56% (data set 1), 99.92% (data set 2),
99.47% (data set 3), and 99.96% (data set 4) for the respective
point clouds. From Fig. 5, it can be seen that not only did data
set 4 have the smallest distance error but it also had the most
homogeneous error distribution within the area covered by the
data [see Fig. 5(d)], indicating the similarity between the TLS
and data set 4 point clouds. Among data sets 1, 2, and 3,
data set 1 had smaller distance errors (blue) distributed more
homogeneously than the other data sets, except for areas where
protruding rocks appeared within the near-vertical façades.
This emphasizes that the nadir-viewing imagery precluded
accurate reconstruction of vertical objects. On the other hand,
larger errors (green and red) were distributed more evenly
on the south-facing façade [see Fig. 5(b)] in both data sets
2 and 3, whereas the errors with the same magnitude in data
set 3 were mostly distributed at the bottom of the south-facing
façade [see Fig. 5(c)]. While some of the TLS data reached
the top of the rock formation, UAV data set 4 still maintained
lower errors than the other three data sets [see Fig. 5(d)].
Specifically, for vertical and overhanging rock sections, UAV
data set 4 performed the best, which is illustrated in Fig. 6,
where the point distance between the TLS point cloud and the
point cloud of UAV data set 4 was visibly lower (<20 cm) than
the point distance between the TLS and UAV data set 1 point
clouds (up to 50 cm for overhanging rocks). Based on these

Fig. 5. Point distances between the rigid-body-transformed TLS data and
(a) UAV data sets 1 (nadir), (b) data set 2 (nadir and oblique), (c) data set 3
(nadir and façade), and (d) data set 4 (nadir, oblique, and façade). The color
ramp from blue to red represents the cloud-to-cloud absolute distance.

Fig. 6. Zoomed-in view of a small section of the south-facing façade
with an overhanging rock surface (black circles), showing point distances
between (a) TLS data and UAV data set 1 (nadir) and (b) TLS data and UAV
data set 4 (nadir, oblique, and façade). (c) Specific overhanging rock surface
from the raw façade image (scale bar not applicable). White areas in (a) and
(b) represent data gaps due to the TLS line-of-sight viewing limitation.

observations, it can be concluded that UAV data set 4, which
comprised the nadir, oblique, and façade imagery, had the
lowest errors when evaluated against the TLS data. As such,
it was selected for use as reference data against which the
accuracy of the other UAV data sets could be assessed.

B. Point Cloud Comparison Between the UAV Data Sets

Unlike the comparison between the TLS data and UAV data
sets, no rigid body transformation was required for comparing
the UAV-derived point clouds. Therefore, it was expected that
the resulting distance errors between the UAV data sets would
be larger than the errors observed in the previous section.
The mean absolute distance between data sets 1 and 4 [see
Fig. 7(a)] was 5.69 cm, with a standard deviation of 8.8 cm
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Fig. 7. Point distances between (a) UAV data sets 1 (nadir) and 4 (nadir,
oblique, and façade), (b) data sets 2 (nadir and oblique) and 4, and (c) data
set 3 (nadir and façade) and 4, with data set 4 used as the reference data
set. The color ramp from blue to red represents the cloud-to-cloud absolute
distance.

TABLE II

STATISTICS OF THE POINT-TO-POINT DISTANCES BETWEEN UAV DATA

SET 4 AND THE OTHER THREE UAV DATA SETS, INCLUDING MEAN
ABSOLUTE DISTANCE (μ), STANDARD DEVIATION (σ), AND THE

PERCENTAGE OF DISTANCE ERRORS <50 cm

(point number = 169 244 054 points). Comparing data sets
2 and 4 [see Fig. 7(b)], the mean absolute distance increased
to 18.05 cm, while the standard deviation was 30.75 cm (point
number = 517 919 500 points). The errors between data sets
3 and 4 [see Fig. 7(c)] were the highest among the three
comparisons, with a mean absolute distance of 36.75 cm
and a standard deviation of 72.32 cm (point number =
588 152 698 points). A total of 99.41% of points in data
set 1 had errors < 50 cm, while only 90.38% and 80.19%
of points in data sets 2 and 3 achieved the same accuracy
threshold, respectively (see Table II). If the absolute distance
was interpreted into absolute horizontal and vertical distances,
UAV data set 1 had a smaller horizontal mean distance of
3.47 cm with a standard deviation of 4.46 cm compared with
the vertical mean distance of 3.65 cm with a standard deviation
of 7.27 cm. UAV data sets 2 and 3 both had larger absolute
point distances in horizontal directions of 10.60 and 24.19 cm
and vertical directions of 8.02 and 17.82 cm, respectively (see
Table II).

From Fig. 7, we can tell that the absolute mean distance
between data sets 1 and 4 was generally less than 10 cm, while
the geometric alignment errors were much larger between
data sets 2 and 4, as well as 3 and 4. The comparison

Fig. 8. Zoomed-in view of the east-facing façade of the point distances
between (a) UAV data sets 1 (nadir) and 4 (nadir, oblique, and façade), (b) data
sets 2 (nadir and oblique) and 4, and (c) data set 3 (nadir and façade) and 4,
with data set 4 used as the reference data set. A raw image from one of the
façade flights (d) covering the approximate area is also presented to assist in
visualizing the morphology of the terrain.

between data sets 2 and 4 exhibited the largest point distances
along both the east- and south-facing façade sections but
with smaller geometric offsets occurring in the top sections
of the rock formation [see Fig. 7(b)]. The comparison of
data sets 3 and 4 showed the largest point distances along
the south-facing façade and the top of the rock formation,
whereas the east-facing section of the façade only displayed
minor offsets between points generally of less than 10 cm [see
Fig. 7(c)]. This phenomenon may be caused by differences
in the rock surface-to-camera viewing angle between the two
façade sections. The east-facing façade had steeper terrain
than the south-facing façade (see Fig. 1), causing the south-
facing façade to have a larger angle between the viewing
direction of the façade photographs and the normal vector of
the façade surface. Smaller viewing-surface geometry causes
smaller ground sampling distance (GSD) variation, which
provides higher topographic survey quality [29].

Fig. 8 shows a zoomed-in area of the point distances focused
on the east-facing façade, where the steepest slopes were
located (see Fig. 1). As shown in Fig. 8(a), there were gaps
in data set 1 (i.e., comprised of only nadir images), indicating
a limitation in reconstructing the terrain in areas with large
terrain fluctuations, or where overhanging rocks were present.
Although adding either oblique images [see Fig. 8(b)] or
façade images [see Fig. 8(c)] achieved near-perfect data com-
pleteness, the accuracy was less than satisfactory compared
with the reference data, which integrated the nadir, oblique,
and façade imagery.

To further explore the data, we calculated the least-squares
linear regression between the absolute point distance and the
terrain slope. The least-squares residual of each comparison
was 9 cm between UAV data sets 1 and 4, 22 cm between
data sets 2 and 4, and 32 cm between data sets 3 and 4.
Overall, there was no linear relationship established between
point distance and terrain slope identified for any of the data
set comparisons. Extreme point distance values (mean value
plus twice the standard deviation) occurred more frequently
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Fig. 9. Histograms of point distances within different ranges of terrain slopes
of (a) UAV data set 1, (b) data set 2, and (c) data set 3. The y-axis represents
the frequency of points is displayed on a logarithm scale.

Fig. 10. DSM elevation differences when subtracting the reference UAV
data set 4 (nadir, oblique, and façade) from UAV data sets (a) 1 (nadir), (b) 2
(nadir and oblique), and (c) 3 (nadir and façade).

(10.06% for data set 1, 10.60% for data set 2, and 9.68%
for data set 3) when the slope was between 85◦ and 90◦.
Fig. 9 shows the histograms of point distance in various ranges
of terrain slope. The extreme point distances occurred more
frequently on steep slopes, especially for the comparison of
UAV data sets 2 and 4, where the maximum values of the
extreme point distance increased up to 14 m [see Fig. 9(b)].
The occurrence frequency of points with large distances rela-
tive to those in data set 4 seems to increase significantly for
data set 1 when the slope was higher than 75◦ [see Fig. 9(a)].
However, the frequency of points with large distances relative
to those in data set 4 for data sets 2 and 3 was not much
different irrespective of terrain slope [see Fig. 9(b) and (c)].

C. DSM and Orthomosaic Comparisons Between UAV Data
Sets

The DSMs produced from the point cloud of UAV data
sets 1, 2, and 3 were also compared with the DSM produced
from data set 4 by subtracting the DSM raster images from
one another (see Fig. 10). Similar DSM elevation differences
of more than −50 cm (blue) occurred at the top of the rock

Fig. 11. DSM elevation difference between UAV data sets 1 and 2.

formation (above the 1730-m contour line on the east part of
the east-facing façade) across the three comparisons. The same
response was observed above the 1760-m contour line at the
south-facing façade in the comparisons of data sets 1 and 2 to
data set 4 [see Fig. 10(a) and (b)]. Such consistent differences
across all comparisons indicated that the DSM errors on the
top of the rock formation may be due to the reference DSM
of UAV data set 4 itself.

Fig. 11 shows the DSM difference between UAV data sets
1 and 2 and indicates that the elevation differences on the top
of the rock formation were significantly smaller, particularly
compared with the DSM difference between either UAV data
sets 1 and 4 or between UAV data sets 2 and 4 (see Fig. 10).
As UAV data set 1 only comprised the nadir imagery and
had the smallest projection error (0.4 pixels), the geometric
accuracy of surfaces where the nadir imagery could easily
observe should be higher, considering that the RMSE of tie
points on GCPs was similar between UAV data sets 1 and 4.
Hence, it may indicate that UAV data set 4 did not produce
an accurate DSM for the top section of the rock formation,
regardless of the smaller errors observed in the point cloud
data of the façade sections [see Fig. 5(d)]. Overall, the DSM of
UAV data set 1 was most similar to the reference DSM of UAV
data set 4. Surprisingly, the DSM difference between UAV
data sets 1 and 4 on the top section of the rock formation was
higher (>50 cm) than the point distances shown in Fig. 7(a),
which were around 30 cm, with only 0.59% of points in data
set 1, exhibiting a distance of >50 cm compared with UAV
data set 4. This may be because the surface reconstruction
algorithm used by the software was affected by the small
percentage of highly offset points, thus accumulated errors
when producing the DSM.

All orthomosaics displayed a systematic issue of duplicating
objects, as well as some minor offsets between data sets.
Fig. 12 demonstrates a systematic issue causing duplication
of objects at the lower part of the south-facing façade and
on adjacent flat ground. This issue appeared in the same
area in all the UAV data sets and required manual seamline
correction.

Fig. 13 shows minor offsets (range from 5 cm to 1 m)
of specific objects between UAV data set 4 and the other
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Fig. 12. Duplicated object effect caused during the generation of the
orthomosaics within the area of the red rectangle. The ball caps at the
ends of each yellow line indicate some rocks and small bushes appearing
twice.

UAV data sets. From the analysis in Section III-B, the hor-
izontal distance between UAV data sets 1 and 4 was found
to be smaller than the vertical distance. Yet, the opposite
was observed between UAV data sets 2 and 4 and between
UAV data sets 3 and 4. Only small horizontal distances were
observed between the orthomosaics in the areas around the
GCPs, exhibiting offsets of 5 cm [see Fig. 13(a) and (e)] to
10 cm [see Fig. 13(c)]. However, larger offsets were found
in areas without GCPs [e.g., 20 cm in Fig. 13(b) and 50 cm
in Fig. 13(d) and (f)]. The horizontal offsets found in the ortho-
mosaics were larger than the horizontal distance in the point
cloud alignment analysis, where the mean horizontal distance
was 3.47 and 10.60 cm for UAV data sets 1 and 2, respectively.
This may be due to the potential error accumulation during the
production of DSMs, as the orthomosaic image products were
built based on the DSMs rather than rasterizing the point cloud
on a projected coordinate plane directly. Besides, a traditional
mosaicking algorithm is likely to be more suitable for near-
parallel image data. It is possible that the issues observed
in the orthomosaics were due to stitching problems, where
inappropriate perspectives of the images were chosen by the
stitching algorithm (which can be fixed by manual seamline
editing).

IV. DISCUSSION

A. Influence of Photograph Composition on SfM in Complex
Terrains

The inclusion of both oblique and façade photographs,
in addition to traditional nadir images, generally improved
the geometric accuracy of the point cloud data retrieved from
complex terrain in the surveyed rock formation. Although
the point positions between data set 1 (produced from only
nadir images) and data set 4 (produced from the combination
of nadir, oblique, and façade images) were similar for the
façade sections (i.e., an overall least-squares residual of 9 cm),
the additional oblique and façade photographs improved the
geometric accuracy when evaluated against the TLS data,
especially in areas with large terrain fluctuations and where
overhanging rocks were presented [see Figs. 6 and 8(a)].
However, when adding either the oblique or façade images

Fig. 13. Swipe comparisons between each UAV data set (1, 2, and 3) and
UAV data set 4 of selected locations. The images at the left-hand side of the
swipe lines show a part of specific objects in the mosaicked product of UAV
data set 4, while the image at the right-hand side of the swipe lines represent
the other part of the same objects from UAV data sets 1, 2, and 3. (a), (c), and
(e) offset of the same GCP. (b), (d), and (f) Offset of the same rock between
UAV data set 4 and the respective data sets.

to the nadir photographs (data sets 2 and 3), the geometric
accuracy worsened, especially in the south-facing façade area.
Such a decrease in accuracy might be due to systematic
radial topographic distortion caused by the bundle adjustment
method used by the processing software. James and Robson
[19] demonstrated that the bundle adjustment method can
overestimate the surface terrain at the center of the site while
underestimating the surface terrain at the site perimeters. Such
radial distortion can be reduced by deploying GCPs at suitable
locations [10]. However, there were no GCPs on the slope
and façade to constrain the locations during the process of
bundle adjustment, which was likely the main reason behind
such high errors on the sloping and façade areas in data sets
2 and 3. To prevent such distortions with limited use of GCPs,
previous studies suggested using predefined camera models
and an accurate onboard GNSS system to reduce the errors in
topographic data [10], [41]. The lack of transitioning images in
data set 3 (i.e., images collected at a viewing angle in between
the nadir and façade viewing angles) was likely making the
geometric accuracy worse. The bundle adjustment method was
designed to be more suitable for matching convergent images
that have transitioning viewing angle differences [33]. A dis-
tinct change of the camera viewing angle of UAV photographs
may affect the accuracy of the generated topographic data.
Based on the results presented here, it is advised to use the
combination of nadir, oblique, and façade images to prevent
high topographic errors—-especially when façade information
is needed, e.g., for producing high-quality texture layers for
the rendering of 3-D models suited for visual assessment
or classification of features on steep or vertical rock walls,
or if the geometric accuracy of façades is important, e.g.,
for slope stability assessment. Similar findings were also
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suggested in the survey of a dam when GCP distribution was
inadequate [34].

B. Potential Influence of Surface-Viewing Geometry

The large angle between the viewing direction of pho-
tographs and the normal vectors of the terrain surface,
especially the viewing directions of the façade photographs
against the top section of the rock formation (approximately
70◦), maybe another reason for the large geometric errors
in the top section of the rock formation in UAV data set
4 (see Fig. 10). Furthermore, the distance of the UAV to
the top section when collecting the façade photographs was
>200 m. The large distance and surface-viewing geometry
increase the GSD variation of the photographs and result in
the poor-quality photograph, which decreases the geometric
accuracy of SfM–MVS produced topographic data [29]. The
large difference in point distances between UAV data sets
3 and 4 on the two different façade sections may also be
due to the large viewing-surface geometry. The east-facing
façade had a steeper terrain than the south-facing façade,
with smaller surface-viewing geometric variation between the
façade photographs and the terrain surface occurring at the
east-facing façade, and thus, smaller point distances were
observed compared with the point distances of the south-facing
façade [see Figs. 7(c) and 10]. Two potential solutions exist.
The first solution is to iteratively execute the error reduction
steps until reaching the accuracy criterion, which might result
in the omission of some photographs during the process.
While omitting photographs during the error reduction steps
could have significantly reduced errors and DSM elevation
differences at the top section of the rock formation, removing
too many photographs would introduce gaps in the produced
topographic data because of insufficient image overlap. Hence,
users must test how many iterations of error reduction are
needed before compromising the accuracy at the expense
of data completeness. The second solution is to restrict the
façade photograph acquisition to capture only the façade parts
of the terrain, as suggested in [32]. In this case, the 3-D
reconstruction at the top of the rock formation would only
consider nadir and oblique images. The smaller the GSD
variation in the photographs, the higher the quality of the
topographic data achieved by the MVS method [42].

C. Influence of Redundant Information From Input
Photographs

When processing the UAV-derived point clouds, visible
noise was removed to improve the quality of the data. In this
study, one of the most significant noise contributors was intro-
duced by the additional façade photographs and their inclusion
of sky color. From this perspective, capturing only the façade
parts of the terrain can prevent not only those errors caused
by the large angle between photograph-viewing direction and
the normal vector of the terrain surface but also the potential
influence of sky color from façade photographs. Although
most of the sky-introduced noise can be removed during
the error reduction phases and the point cloud densification
step (with the aggressive filter applied), the color of the sky
was still rendered on the MVS dense cloud result, which

requires manual removal. If the sky above the horizon of
the upper sections of façade scans is included in the pho-
tographs, it is suggested to mask out unnecessary information
(i.e., the section of the sky above the horizon) in the images
before the photograph-alignment step in Metashape Pro [43].
Such a process could be semiautomated by applying a color
filter to mask the sky in a large number of photographs [44].
Also, the difference in illumination conditions between the
different flights and shadows may also affect the accuracy of
SfM–MVS–generated point clouds [45].

D. Impact of Photograph Input Amount on Processing
Efficiency

The ability to collect façade photographs to produce topo-
graphic data is mostly limited to local-scale analysis. Despite
the potential accuracy improvements from the inclusion of
oblique and façade photographs, the most significant drawback
is the additional processing time due to the increased number
of photographs. The machine that ran the image processing
comprised of 56 virtual central processing units in 2.4-GHz
Broadwell Intel Cores, four NVIDIA Tesla M10 graphics
processing units, and 480-GB random access memory on
an Ubuntu 16.04 system. It took 80 h (data set 1; 1287
photographs), 101 h (data set 2; 1932 photographs), 199 h
(data set 3; 3297 photographs), and 290 h (data set 4;
3942 photographs) to complete the photograph matching,
photograph alignment, depth map, and dense cloud gen-
eration. The processing time versus the input photograph
number grew exponentially, similar to the findings of [46].
To compensate for this issue, the alternative is to process
the MVS point cloud densification in multiple smaller chunks
separately after the initial SfM tie points are created and
the georeferencing and error reduction steps are completed.
By splitting the original data into 3 × 3 chunks, the processing
time of data set 4 was reduced by approximately two-thirds
in the experiment. Despite these constraints, the incorpo-
ration of façade photographs can provide significant extra
value to topographic data to accommodate various UAV
applications [47].

E. Impacts of Photograph Inputs on Derived Raster Products

A factor that requires further research is the influence
of the subsequent survey products, especially the produc-
tion of the orthomosaic. In previous studies where façade
photographs were included, the final products were usually
either a point cloud, 3-D model, or an orthomosaic in a local
planar coordinate system, rather than a real-world projected
coordinate system [32], [47], [48]. Conventionally, the ortho-
mosaic produced for topographic survey applications would
be composed mainly of nadir aerial images with the normal
vectors approximately perpendicular to the ground surface
[43], [49]. Henriques et al. [50] suggested that factors such as
the lack of features, the small coverage of each photograph,
and areas full of similar elements can significantly reduce the
accuracy of both the produced DSM and orthomosaic. In our
case, each photograph covered a relatively small area due to
the close range of the UAV to the rock surfaces and had
similar repeating elements (e.g., rocks) appearing frequently
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within the study site. Therefore, it is likely that besides the
accumulated errors found in the DSMs, the characteristic
of repeating elements, as well as small spatial coverage of
each photograph, caused difficulties for the image stitching
algorithm to select the optimal orthorectified images from
appropriate perspectives to generate an accurate orthomosaic.
Tu et al. [51] suggested that flying at a higher altitude with
a higher resolution camera to acquire a larger image cover
area (as well as smaller GSD) could potentially increase the
topographic data quality. However, photographs with ultrahigh
spatial resolution collected at a higher altitude may cause
higher GSD variation within scenes in such a scenario, as they
may capture both local minimum and maximum elevations
in a scene with fluctuating terrain. High variation in GSD
could introduce propagation errors caused by reconstruction
uncertainty [42]. Therefore, it is not clear if this principle is
applicable in complex terrain. Further research is required to
identify the causality between flight parameters and effects
on derived UAV-based products (i.e., point cloud, DSM, and
orthomosaic) in a common processing workflow to develop
guidelines on the collection and processing of UAV pho-
tographs for topographic survey purposes in complex terrain.

V. CONCLUSION

An assessment of the impact on geometric accuracy of UAV
data collected in the form of nadir, oblique, and horizontally
viewing imageries in a complex mountainous terrain was
undertaken. The inclusion of oblique and façade imagery,
in addition to nadir photographs, improved the geometric
accuracy of SfM–MVS point cloud data when assessed against
TLS data of near-vertical rock façades. The nadir viewing UAV
photographs produced the second-highest geometric accuracy,
while the lowest geometric accuracies were obtained when
processing nadir and façade photographs together in the same
assessment against the TLS data. The poor geometric accuracy
when combining nadir and façade photographs was related to
the lack of transitioning images and the large angle between
the photograph-viewing direction and the normal vector of the
terrain surface. Users should avoid acquiring images with a
large angle between the viewing direction of the photograph
and the corresponding normal vector of the terrain surface
and a distinct change of camera viewing direction, which may
reduce the accuracy of the produced topographic data. Despite
issues such as increased processing time and potentially more
noise caused by unwanted information, such as sky color in
the point cloud data (which can be addressed with alternative
workflows), the accuracy improvement when integrating nadir,
oblique, and façade photographs and the higher resolution
façade details may provide additional benefits and application
value to the produced topographic data. Applications that may
benefit from the additional spatial resolution of rock walls and
higher geometric accuracy include geohazard investigation,
studies assessing rock integrity and stability, and engineering
and construction designs relying on detailed information of
geological structures, such as rock cracks, joints, faults, shears,
and bedding planes. Future studies should focus on estab-
lishing an optimal protocol for the acquisition and process-
ing of UAV imagery of complex terrain, particularly those

comprising steep or near-vertical terrain elements, so that
produced products can meet the requirements of topographic
survey applications.
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