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ABSTRACT This article solves the finite-time bounded tracking control problem for fractional-order
systems. Firstly, by taking the fractional derivative on state equations and error signals, a fractional-order
error system is constructed, and the error signal is taken as the output vector of the error system. Secondly,
a state feedback controller is introduced into the error system, and the fractional derivative of disturbance
signals and desired tracking signals are combined as the disturbance signal of the error system. Thus,
the original problem is converted into the input-output finite time stability problem of the closed-loop error
systems. Thirdly, based on the linear matrix inequalities (LMIs), the sufficient conditions which ensure the
finite-time bounded tracking for the desired tracking signals are derived. Therefore, the finite-time bounded
tracking controller of the original system is obtained. Finally, simulation results elucidate the effectiveness
of the controller.

INDEX TERMS Finite-time bounded tracking, fractional-order systems, error systems, linear matrix
inequalities.

I. INTRODUCTION
The systems, represented by fractional calculus equations,
are called fractional-order systems. Many practical systems
are described by fractional differential equations, because
it can better represent the essential characteristics and
dynamic behaviors of practical systems [1]–[3]. For example,
by adopting the fractional-order, the memory phenomenon,
in the mechanical system with viscous damping structure,
is particularly easy to be showed [2]. The genetic char-
acteristics in microbial fermentation process can be better
depicted by employing fractional-order system [3]. In recent
years, the theory of fractional-order control systems has cap-
tured many scholars’ attention and achieved fruitful results
[4]–[6]. Sakthivel et al. solved the robust fault estimation-
based synchronization problem for a class of fractional-order
multi-weighted complex dynamic networks subject to exter-
nal disturbances [4]. Sakthivel et al. considered the output
tracking control problem and disturbance rejection perfor-
mance for a class of fractional-order T-S fuzzy systems with
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time-varying delay and external disturbances [5]. More inter-
esting results in this field can be found in [6]. It is well known
that stability is usually the first problem to be considered
and solved in the analysis and design of a system. There-
fore, many scholars have investigated the stability theory
of fractional-order systems. Li et al. researched the stabil-
ity for a type of fractional-order nonlinear systems based
on Lyapunov direct method [7]. N’Doye et al. discussed
the problem of robust stabilization for uncertain descrip-
tor fractional-order systems [8]. HosseinNia et al. explored
the stability of fractional-order switched systems [9].
Zhao et al. gave the stability criterion of fractional-order posi-
tive switched systems by using the fractional-order Lyapunov
function [10].

It is worth pointing out that most of the researches analyz-
ing the stability of fractional-order systems are mainly about
Lyapunov stability which exposes the behaviors of systems
in the infinite time interval. However, in some practical prob-
lems, engineers pour more attention to the dynamic behaviors
of systems in a fixed time interval.Meanwhile, excessive state
value is not allowed. For instance, the circuit would be dam-
aged, if the voltage is too high in a boost circuit system [11].
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Hence, Dorato et al. proposed the finite time stability (FTS) to
reflect the characteristic that the state of the system does not
exceed a given range in a finite time [12],[13]. Furthermore,
if there are external disturbances in the system, FTS can
be extended to finite-time bounded (FTB) [14]. In order to
discuss the input-output behavior of system over a finite
time interval, Amato et al. presented the input-output finite
time stability (IO-FTS) in 2010 [15]. Currently, the research
on FTS, FTB, and IO-FTS has been spread from ordinary
integer-order systems to fractional-order systems [16]–[19].
By utilizing the generalized Gronwall inequality, Lazarević
and Spasić investigated the FTS problem of fractional-order
delay systems, and gave the sufficient conditions for the
system to be FTS [16]. Ma et al. contributed the definition
of FTS and FTB for fractional-order linear systems [17].
The IO-FTS problems of normal and singular fractional-order
linear systems were solved, and the design methods of state
feedback controller were presented in [18]. Subsequently,
Liang et al. investigate the problem of IO-FTS for
fractional-order positive switched systems [19].

In practical engineering applications, there are plenty of
tracking problems. Consequently, tracking control is always
one of the research hotspots in the control field. At present,
there are numerous important research results in tracking
control, for example, optimal tracking control [20], [21],
adaptive tracking control [22], [23], tracking control based
on iterative learning [24], etc. In addition, Kohler et al.
proposed a nonlinear model predictive control scheme for
tracking of dynamic target signals by utilizing reference
generic offline computations [25]. In order to keep track
of a time-varying steady state target, an output feedback
model predictive control for fuzzy systems was presented
in [26]. Li et.al investigated event-triggered tracking con-
trol for a class of nonlinear systems with disturbances [27].
In some tracking problems, scholars sometimes desire that
the output of system can always remain within the speci-
fied neighborhood of the desired tracking signal in a finite
time. For instance, the robot is expected to move along the
planned path in a given period of time [28]. In view of this,
the concept of finite-time bounded tracking, which reflects
the characteristic that the output within a given threshold
of the desired tracking signal in a finite time, is proposed
in [28], [29]. However, to our knowledge, the research on
the finite-time bounded tracking still stays in the ordinary
integer-order system. None of the study, about the finite-time
bounded tracking of fractional-order system, has achieved
so far. The problem of the finite-time bounded tracking for
fractional-order systems is very challenging. One reason is
that fractional-order systems have more complex dynamic
behaviors than integral-order systems. The other reason is
that the existing methods and conclusions about finite-time
tracking of integer-order systems cannot be directly applied
to fractional-order systems. Therefore, this article proposes
and solves the finite-time bounded tracking problem for
a class of fractional-order systems. The contributions of
this research are summarized as follows: 1) The finite-time

bounded tracking control is extended to the fractional-order
systems for the first time; 2) a finite-time bounded tracking
controller is designed for a type of fractional-order systems;
3) the conception, method and conclusion of this article can
be applied to the integer-order systems, directly.
Notations: A ∈ Rm×n means that A is an m× n real matrix;

I denotes the identity matrix; Q < 0(Q > 0) represents that
Q is a negative (positive) definite matrix; Q ≤ 0 (Q ≥ 0)
represents that Q is a negative (positive) semidefinite matrix.

II. PRELIMINARIES
In this section, some basic notions and properties for
fractional calculus are reviewed. For further details, please
refer to [1].

The left-sided Riemann-Liouville fractional integral with
order α > 0 of the integrable function x(t) is defined as

t0 I
α
t x(t) =

1
0(α)

∫ t

t0
(t − τ )α−1x(τ )dτ ,

where α ∈ R, t0 I
α
t is the integral operator of order α on

[t0, t], 0(α) =
∫
∞

0
e−t tα−1dt [1], p.69.

Because the Caputo derivative is the most frequently used
in control engineering, this article adopts the Caputo frac-
tional derivative, which is defined as

C
t0D

α
t x(t) =

1
0(n− α)

∫ t

t0
(t − τ )n−α−1x(n)(τ )dτ ,

where n is a positive integer, x(t) is a differentiable function
with the order n, n− 1 < α < n [1], p. 92.
Property 1 ([4, Th. 3.16]): Caputo fractional derivative is

a linear operator, that is, for any constant λ1, λ2,
C
t0D

α
t [λ1x1(t)+ λ2x2(t)] = λ1

C
t0D

α
t x1(t)+ λ2

C
t0D

α
t x2(t).

Property 2 ([1, Lemma 2.22]): Letting α > 0, x(t) be an
order n differentiable function, the relationship

t0 I
α
t (

C
t0D

α
t x(t)) = x(t)−

n−1∑
k=0

(t − t0)k

k!
x(k)(t0)

is obtained, here x(0)(t) = x(t), n− 1 < α < n.
In addition, this article needs utilize the following lemmas.
Lemma 1 [30]: Let 0 < α < 1, x(t) ∈ Rn be a vector of

differentiable function. Then, when t ≥ t0, there is
C
t0D

α
t

[
xT (t)Px(t)

]
≤ xT (t)PCt0D

α
t x(t)+ (Ct0D

α
t x(t))

TPx(t),

where P ∈ Rn×n and P > 0.
Lemma 2 ([31, Lemma 2.8]): Consider the matrix

S =
[
S11 S12
ST12 S22

]
in which both S11 and S22 are invertible and symmetric matri-
ces. The following conditions are equivalent:

(i) S < 0;

(ii) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0;

(iii) S11 < 0, S22 − ST12S
−1
11 S12 < 0.

VOLUME 9, 2021 11015



H. Xie et al.: FTB Tracking Control for Fractional-Order Systems

III. PROBLEM DESCRIPTION AND ASSUMPTIONS
Consider a fractional-order system as follows:{

C
t0D

α
t x(t) = Ax(t)+ Ew(t), x(t0) = 0

y(t) = Cx(t),
(1)

where 0 < α < 1; x(t) ∈ Rn, y(t) ∈ Rp, and w(t) ∈ Rq denote
the state vector, the output vector, and the disturbance input,
respectively; moreover, A ∈ Rn×n, C ∈ Rp×n, and E ∈ Rn×q

are known constant matrices.
The definition of IO-FTS for system (1) is showed as

follows.
Definition 1: The three scalars c1 > 0, c2 > 0, T > t0, and

two matrices Q > 0,8 > 0 are given. Under the initial value
condition x(t0) = 0, system (1) is referred to as IO-FTS with
respect to (c1, c2,Q,8,T ), if

sup
t∈[t0,T ]

wT (t)Qw(t) ≤ c1 ⇒ yT (t)8y(t) < c2,∀t ∈ [t0,T ].

Remark 1: Definition 1 is slightly different from the one
in [18]. In fact, two definitions can be transformed with each
other if the appropriate parameters are selected.

Then, we extend Definition 1 to discuss the finite-time
bounded tracking of system (1). The finite-time bounded
tracking means that the output y(t) of (1) always remains in a
given neighborhood of the desired tracking signal yd (t) ∈ Rp

under certain conditions. The difference between the desired
tracking signal and the output signal is defined as the error
signal e(t), that is

e(t) = y(t)− yd (t). (2)

The strict definition of finite-time bounded tracking for
System (1) is as follows:
Definition 2: Given three scalars c1 > 0, c2 > 0, T > t0,

two matrices Q > 0, 8 > 0, and initial condition x(t0) =
0, the outputs of system (1) complete finite-time bounded
tracking for yd (t) with respect to (c1, c2,Q,8,T ), if

sup
t∈[t0,T ]

wT (t)Qw(t) ≤ c1 ⇒ eT (t)8e(t) < c2,∀t ∈ [t0,T ].

Remark 2: Particularly, yd (t) ≡ 0, the finite-time bounded
tracking degenerate to the IO-FTS.

Let us consider the fractional-order system{
C
t0D

α
t x(t) = Ax(t)+ Bu(t)+ Ew(t), x(t0) = 0

y(t) = Cx(t),
(3)

where 0 < α < 1; x(t) ∈ Rn denotes the state vector,
u(t) ∈ Rm is the control input vector, w(t) ∈ Rq represents
the disturbance vector, y(t) ∈ Rp means the output vector;
A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×q, and C ∈ Rp×n denote
known constant matrices.

The assumptions on the desired tracking signal yd (t) and
disturbance signalw(t) of system (3) are presented as follows.
Assumption 1: yd (t) is a piecewise continuous differen-

tiable function with yd (t0) = 0, and satisfies(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẏTd (t)Q1ẏd (t) ≤ c11,

where Q1 ∈ Rp×p and c11 are given positive matrix and
number, respectively.
Assumption 2: w(t) is a piecewise continuous differentiable

function and satisfies(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẇT (t)Q2ẇ(t) ≤ c22,

where Q2 ∈ Rq×q and c22 are given positive matrix and
number, respectively.
Remark 3:According toAssumption 1 and 2, it follows that

yd (t) and w(t) are not differentiable at some isolated points.
At this juncture, the one-sided derivative of yd (t) and w(t) are
taken.

The objective of this study is to design a controller for
system (3) so that the output y(t) of (3) completes finite-time
bounded tracking for yd (t) under certain conditions.

IV. DESIGN OF THE CONTROLLER
The method of the constructing error systems in [32], [33] is
implemented to solve the problem. Firstly, a fractional-order
error system is constructed so that the error signal is included
in the state vector.

Taking the order α Caputo derivative on both sides of the
state equation of (3), and utilizing Property 1, the following
will be obtained:
C
t0D

α
t (
C
t0D

α
t x(t)) = ACt0D

α
t x(t)+B

C
t0D

α
t u(t)+ E

C
t0D

α
t w(t).

(4)

By applying C
t0D

α
t to both sides of (2), it follows that

C
t0D

α
t e(t) =

C
t0D

α
t y(t)−

C
t0D

α
t yd (t) = CC

t0D
α
t x(t)−

C
t0D

α
t yd (t).

(5)

Upon combining (4) and (5), one can acquire
C
t0D

α
t z(t) = Āz(t)+ B̄Ct0D

α
t u(t)+Ē

C
t0D

α
t w(t)+ Ḡ

C
t0D

α
t yd (t),

(6)

where

z(t) =
[

e(t)
C
t0D

α
t x(t)

]
∈ Rp+n, Ā =

[
0 C
0 A

]
∈ R(p+n)×(p+n),

B̄ =
[
0
B

]
∈ R(p+n)×m, Ē =

[
0
E

]
∈ R(p+n)×q,

Ḡ =
[
−I
0

]
∈ R(p+n)×p.

Since the output y(t) and the desired tracking signal yd (t)
are known, e(t) can be taken as the output of (6), that is, the
following output equation can be introduced for (6).

e(t) = C̄z(t), (7)

where C̄ =
[
I 0

]
∈ Rp×(p+n).

Combining (6) and (7) yields
C
t0D

α
t z(t) = Āz(t)+ B̄Ct0D

α
t u(t)+ Ē

C
t0D

α
t w(t)

+ ḠCt0D
α
t yd (t)

e(t) = C̄z(t).

(8)

(8) is the error system of system (3).

11016 VOLUME 9, 2021



H. Xie et al.: FTB Tracking Control for Fractional-Order Systems

It is interesting to note that if a state feedback controller
C
t0D

α
t u(t) = Kz(t). (9)

can make the closed-loop system of (8) IO-FTS, then the out-
put of (3) completes finite-time bounded tracking for yd (t).
The gain matrix K of (9) will be given in the following.
Introducing (9) to (8) results{
C
t0D

α
t z(t) = (Ā+ B̄K )z(t)+ ĒCt0D

α
t w(t)+ Ḡ

C
t0D

α
t yd (t)

e(t) = C̄z(t),
(10)

which is the closed-loop system of (8). Note that compared
to system (1), there is one more term ḠCt0D

α
t yd (t). Let us

treat Ct0D
α
t yd (t) as a disturbance, and integrate C

t0D
α
t w(t) and

C
t0D

α
t yd (t) together to form a new disturbance vector

w̄(t) =
[ C
t0D

α
t yd (t)

C
t0D

α
t w(t)

]
.

In this case, (10) can be written as{
C
t0D

α
t z(t) = (Ā+ B̄K )z(t)+ Ẽw̄(t)

e(t) = C̄z(t),
(11)

where Ẽ =
[
Ḡ Ē

]
∈ R(p+n)×(q+p).

Remark 4: Treating C
t0D

α
t yd (t) as an external disturbance

leads to some conservatism in the result. From the point of
view of mathematics, this method is reasonable. The problem
of finite-time bounded tracking control for a part of desired
tracking signals can be solved by adopting this method.

(11) has the same form as (1). Thus, the theory and method
of the IO-FTS for fractional-order system can be adopted as
a reference. The first critical theorem of this research is given
as following.
Theorem 1: For ∀t ∈ [t0,T ], there is eT (t)8e(t) < c2, that

is, system (11) is input-output finite time stability with respect
to (c1, c2,Q,8,T ), if under Assumption 1 and 2, there exists
a matrix P > 0 such that[

PĀ+ ĀTP+ PB̄K + KT B̄TP PẼ
ẼTP −Q

]
< 0 (12)

and

C̄T8C̄ −
c20(α + 1)
c1(T − t0)α

P < 0, (13)

where

c1 ≥ c11 + c22,Q =
[
Q1 0
0 Q2

]
, and C

t0D
α
t u(t) = Kz(t).

Proof: The quadratic form V = zTPz is constructed
based on the positive definite matrix P satisfying (12) and
(13). Taking the fractional derivative of V with regard to time
t along the trajectory of (11) and considering Lemma 1, one
can obtain

C
t0D

α
t V

∣∣(11)
=

C
t0D

α
t (z

T (t)Pz(t))

≤ zT (t)PCt0D
α
t z(t)+ (Ct0D

α
t z(t))

TPz(t)

= zT (t)P
(
(Ā+ B̄K )z(t)+ Ẽw̄(t)

)
+

(
(Ā+ B̄K )z(t)+ Ẽw̄(t)

)T
Pz(t)

= zT (t)(PĀ+ ĀTP+ PB̄K + KT B̄TP)z(t)

+w̄T (t)ẼTPz(t)+ zT (t)PẼw̄(t)

=
[
zT (t) w̄T (t)

][
PĀ+ ĀTP+ PB̄K + KT B̄TP PẼ

ẼTP 0

] [
z(t)
w̄(t)

]
=
[
zT (t) w̄T (t)

][
PĀ+ ĀTP+ PB̄K + KT B̄TP PẼ

ẼTP −Q

]
[
z(t)
w̄(t)

]
+w̄T (t)Qw̄(t) (14)

By using (12), the following will be established

C
t0D

α
t V

∣∣(11) < w̄T (t)Qw̄(t). (15)

Based on the assumption of zero initial conditions, the fol-
lowing is obtained

V (z(t0)) = zT (t0)Pz(t0) = 0.

Integrating both sides of (15) with respect to order α from to
t0 and taking t Property 2 into account, it can be achieved that

V (z(t)) < t0 I
α
t (w̄

T (t)Qw̄(t))

=
1

0(α)

∫ t

t0
(t − τ )α−1w̄T (τ )Qw̄(τ )dτ. (16)

Now let us estimate the upper bound on the right side of (16).
Because of

w̄(t) =
[ C
t0D

α
t yd (t)

C
t0D

α
t w(t)

]
,

Q =
[
Q1 0
0 Q2

]
,

there is

w̄T (t)Qw̄(t) = (Ct0D
α
t yd (t))

TQ1
C
t0D

α
t yd (t)

+(Ct0D
α
t w(t))

TQ2
C
t0D

α
t w(t), ∀t ∈ [t0,T ]

(17)

Consider the two terms in the right of (17). For the first
term, it is known from Assumption 1 that ẏd (t) has only the
first kind of discontinuity at most. Thus, ẏd (t) is a bounded
function. Moreover, the relation (t − τ )−α of τ remains its
sign in [t0, t]. Therefore, according to the integral mean value
theorem in [34, p. 352], there exists a point ξ ∈ [t0, t] such
that ∫ t

t0
(t − τ )−α ẏd (τ )dτ =

[∫ t

t0
(t − τ )−αdτ

]
ẏd (ξ )

=
1

1− α
(t − t0)1−α ẏd (ξ ).
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Then

C
t0D

α
t yd (t) =

1
0(1− α)

∫ t

t0
(t − τ )−α ẏd (τ )dτ

=
1

(1− α)0(1− α)
(t − t0)1−α ẏd (ξ )

=
1

0(2− α)
(t − t0)1−α ẏd (ξ ).

Therefore,

(Ct0D
α
t yd (t))

TQ1
C
t0D

α
t yd (t)

=

(
1

0(2− α)
(t − t0)1−α ẏd (ξ )

)T
×Q1

(
1

0(2− α)
(t − t0)1−α ẏd (ξ )

)
≤

(
(t − t0)1−α

0(2− α)

)2

sup
ξ∈[t0,t]

ẏTd (ξ )Q1ẏd (ξ )

≤

(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẏTd (t)Q1ẏd (t).

Based on Assumption 1, we have

(Ct0D
α
t yd (t))

TQ1
C
t0D

α
t yd (t) ≤ c11. (18)

Similarly, if Assumption 2 holds, it is known that the second
term on the right side of (17) satisfies

(Ct0D
α
t w(t))

TQ2
C
t0D

α
t w(t) ≤ c22. (19)

Merging (17), (18), and (19), the following can be achieved

w̄T (t)Qw̄(t) ≤ c11 + c22 ≤ c1. (20)

By putting (20) into (16), one can obtain the upper bound
of (16) which is the upper bound of V (z(t)), as follows:

V (z(t)) <
1

0(α)

∫ t

t0
(t − τ )α−1w̄T (τ )Qw̄(τ )dτ

≤
c1
0(α)

∫ t

t0
(t − τ )α−1dτ =

c1(t − t0)α

0(α + 1)

≤
c1(T − t0)α

0(α + 1)
. (21)

Because of e(t) = C̄z(t), considering (13) and (21), when
t ∈ [t0,T ], one can get

eT (t)8e(t) = zT (t)C̄T8C̄z(t)

<
c20(α + 1)
c1(T − t0)α

zT (t)Pz(t) =
c20(α + 1)
c1(T − t0)α

V (z(t))

< c2.

The proof is completed.
Nevertheless, the inequality (12) of Theorem 1 is not LMI,

so (12) cannot be tackled by LMI toolbox in MATLAB.
By converting (12) into LMI, one acquires the second
theorem of this article.

Theorem 2: If under Assumption 1 and 2, there exists
matrices L > 0 and Y satisfying[

ĀL + LĀT + B̄Y + Y T B̄T Ẽ
ẼT −Q

]
< 0, (22)

and  − c20(α + 1)
c1(T − t0)α

L LC̄T

C̄L −8−1

 < 0, (23)

then system (3) achieves the finite-time bounded tracking
for yd (t) with respect to (c1, c2,Q,8,T ). Besides, the gain
matrix K = YL−1 and C

t0D
α
t u(t) = Kz(t).

Proof: we just need to prove that if the conditions of
this theorem are true, the conditions of Theorem 1 are also
true. The congruent transformation is implemented on the
matrix on the left of (12) by pre-multiplying an invertible
matrix diag(P−1, I ) and post-multiplying the transpose of
this matrix. Due to the fact that the congruent transforma-
tion remains the positive definiteness of a matrix, (12) is
equivalent to[

ĀP−1 + P−1ĀT + B̄KP−1 + P−1KT B̄T Ẽ
ẼT −Q

]
< 0.

(24)

Denoting L = P−1, K = YL−1, it can be seen that (24)
becomes (22), which implies that (12) is satisfied if and only
if (22) hold.

Pre- and post-multiply the left side of (13) by an invertible
matrix L and its transpose (namely, L), respectively.
Similarly, for the reason that congruent transformation
remains the positive definiteness of a matrix, (13) is
equivalent to

LC̄T8C̄L −
c20(α + 1)
c1(T − t0)α

LPL < 0.

Because of L = P−1, 8 > 0, the inequality above can be
rewritten as

−
c20(α + 1)
c1(T − t0)α

L − LC̄T (−8−1)−1C̄L < 0. (25)

In view of −8−1 < 0, according to Lemma 2, (25) and (23)
are equivalent. Consequently, (13) is true if and only if (23)
is established. Moreover, L > 0 if and only if P > 0. Thus,
Theorem 2 is proved.

Further, we consider the control input of (3). The third
crucial theorem of this article is as follows:
Theorem 3: If there exist matrices L > 0 and Y satisfying

(22) and (23), besides, Assumption 1 and 2 are true, i.e., the
conditions of Theorem 2 are satisfied, the control input of (3)
can be taken as

u(t) = Ket0 I
α
t e(t)+ Kxx(t)+ u(t0)

=
Ke
0(α)

∫ t

t0
(t − τ )α−1e(τ )dτ + Kxx(t)+ u(t0), (26)
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where K = YL−1, L and Y are determined by (22), (23) and
L > 0, K =

[
Ke Kx

]
. Under control law (26), the output

y(t) of (3) can achieves finite-time bounded tracking for yd (t)
with respect to (c1, c2,Q,8,T ).

Proof: If the conditions of Theorem 2 are true, the con-
troller of (8) is Ct0D

α
t u(t) = Kz(t), which is also a control input

of system (3). Divide K into
[
Ke Kx

]
, where Ke ∈ Rm×p,

Kx ∈ Rm×n. At this time, Ct0D
α
t u(t) = Kz(t) can be written

as
C
t0D

α
t u(t) = Kee(t)+ KxCt0D

α
t x(t).

Integrating both sides of the above equation with α from
t0 to t and employing Property 2, the following will be
established

u(t)− u(t0) = Ket0 I
α
t e(t)+ Kx(x(t)− x(t0)). (27)

Shifting u(t0) to the right side of the equal sign in (27) and
considering the initial condition x(t0) = 0, (26) can be
derived. This proof completes.
Remark 5: In (26), Ke

0(α)

∫ t
t0
(t − τ )α−1e(τ )dτ represents the

integrator which is fractional; Kxx(t) means a state feedback;
u(t0) is the initial value of the control input. The proper selec-
tion of u(t0) can accelerate the tracking speed of the output
signal to yd (t). Generally, u(t0) = 0.
Remark 6: In fact, all the concepts, methods and con-

clusions in this article can be directly applied to ordinary
integer-order systems. It is only necessary to rewrite sys-
tem (3) into ordinary integer-order system and take α =
1 in derivation and conclusion. Therefore, the ordinary
integer-order system can be treated as a special case of this
article.

V. NUMERICAL SIMULATION
In this section, two examples are presented to illustrate the
effectiveness of the proposed controller design.
Example 1: Consider the following numerical academic

example

C
0 D

α
t x(t) =

 −1 −1 0
1.5 0.3 0.6
0.5 1 −1


︸ ︷︷ ︸

A

x(t)+

−11.5
3


︸ ︷︷ ︸

B

u(t)

+

 0.5
3
−4


︸ ︷︷ ︸

E

w(t), x(0) = 0

y(t) =
[
4 0 0

]
︸ ︷︷ ︸

C

x(t)

(28)

Take α = 0.8, 8 = I , c1 = 1, c2 = 5, T = 10. The desired
tracking signal is taken as

yd (t) =


0, t < 2
0.5(t − 2), 2 ≤ t < 4
1, t ≥ 4

(29)

By letting the weight matrix Q1 = 0.3, simple calculation
gives that(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẏTd (t)Q1ẏd (t)

≈ 0.2235 < 0.65
def
= c11.

The disturbance signal is
w(t) = 0.1 cos(2t)+ 0.3. (30)

Assume that the weight matrix is Q2 = 1, then the following
can be obtained(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẇT (t)Q2ẇ(t)

≈ 0.1192 < 0.35
def
= c22.

At this time,

Q =
[
Q1 0
0 Q2

]
=

[
0.3 0
0 1

]
, c11 + c22 = 1 ≤ c1.

Considering Theorem 3 and employing the LMI toolbox in
MATLAB, the following will be established

L =

 0.6092 −0.9340 0.5863 1.0742
−0.9340 3.2686 −1.9925 −4.9718
0.5863 −1.9925 30.2468 11.7315
1.0742 −4.9718 11.7315 47.8437

 ,
Y =

[
7.2440 5.2602 −17.4902 8.1969

]
.

Furthermore,
K = YL−1 =

[
26.3911 9.8987 −0.7441 0.7899

]
,

Ke = 26.3911,

Kx =
[
9.8987 −0.7441 0.7899

]
.

Figures 1 and 2 depicts the output response and the tra-
jectory of eT (t)8e(t) of system (28), respectively. It can be
observed from Fig. 2 that in the time interval [0, 10], always
eT (t)8e(t) < 5, which illustrates that under the action of the
designed controller, system (28) realizes finite-time bounded
tracking for yd (t) with respect to (1, 5,Q, I , 10).
Furthermore, in order to compare the performance of the

designed controller on different order, we change the param-
eter α while keeping the other parameters. Take α = 0.6,
α = 0.75, α=1 (when α=1, (28) is an ordinary integer-order
system), then it can be verified that the above three values
satisfy the condition of Theorem 3. The output responses
of different order systems and the corresponding trajectory
eT (t)8e(t) are showed in Fig. 3 and 4 respectively.
It can be seen from Figures 3 and 4 that the closed-loop

system achieves finite-time bounded tracking for yd (t) with
respect to (1, 5,Q, I , 10) under different fractional orders.
Moreover, the tracking performance of the systemwith higher
order is better than that of low order.
Example 2: Let us consider the viscoelastic system, which

can be described by the following fractional differential
equations [35]{

mẍ(t)+ δCt0D
1/2
t x(t)+ γ x(t) = u(t)+ ηw(t)

x(0) = a1, ẋ(0) = a2
(31)
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FIGURE 1. The output response of (28) with disturbance signal (30).

FIGURE 2. The trajectory of eT (t)8e(t).

FIGURE 3. The output response with different orders.

where m, δ, γ , and η represent mass, damping coefficient,
elastic coefficient, and disturbance coefficient, respectively;
a1 and a2 are constants; x(t) is the displacement function; u(t)
denotes the control input; w(t) is the disturbance input.

Selecting a set of state variables

x1(t) = x(t), x2(t) = C
0 D

1/2
t x(t), x3(t) = ẋ(t),

x4(t) = C
0 D

3/2
t x(t),

FIGURE 4. The trajectory of eT (t)8e(t) with different orders.

one can get

C
0 D

1/2
t


x1(t)
x2(t)
x3(t)
x4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1

−
γ

m
−
δ

m
0 0



x1(t)
x2(t)
x3(t)
x4(t)

+


0
0
0
1
m



× u(t)+


0
0
0
η

m

w(t)
The output of system (31) is x(t). Lettingm = 0.25, γ = 0.5,
δ = 0.25, η = −2.5, a1 = a2 = 0, we have{

C
0 D

1/2
t x̃(t) = Ax̃(t)+ Bu(t)+ Ew(t)

y(t) = Cx̃(t),
(32)

where

x̃(t) =


x1(t)
x2(t)
x3(t)
x4(t)

 , A =


0 1 0 0
0 0 1 0
0 0 0 1
−2 −1 0 0

 , B =

0
0
0
4

 ,

E =


0
0
0
−10

 , C =
[
1 0 0 0

]
.

The initial state is x̃(0) =
[
0 0 0 0

]T .
Let 8 = I , c1 = 1, c2 = 1, T = 10. The desired tracking

signal is chosen as

yd (t) = 0.25 sin(t) (33)

Select the weight matrix Q1 = 1. We have(
(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẏTd (t)Q1ẏd (t)

≈ 0.7958 < 0.9
def
= c11

The disturbance signal is

w(t) = 0.15. (34)
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FIGURE 5. The output response of (32) with disturbance signal (34).

FIGURE 6. The trajectory of eT (t)8e(t).

Take the weight matrix Q2 = 1. By calculating, it follows
that(

(T − t0)1−α

0(2− α)

)2

sup
t∈[t0,T ]

ẇT (t)Q2ẇ(t) = 0 < 0.1
def
= c22

Note that Q =
[
Q1 0
0 Q2

]
=

[
1 0
0 1

]
, c11 + c22 = 1 = c1.

In light of Theorem 3, applying the LMI toolbox in
MATLAB, the matrices L and Y are obtained.

On this basis, the gain matrix K is calculated:
Figure 5 shows the closed-loop output curve of system

(32). Figure 6 is the trajectory of eT (t)8e(t).
As it can be seen from Figure 5, under the action of the

designed controller, the output signal of system (32) is always
within the neighborhood of the desired tracking signal in

FIGURE 7. The output obtained by the control method in this article.

FIGURE 8. The output obtained by the control method in [18].

a given time interval. Meanwhile, it can be observed from
Fig. 6, in the time interval [0, 10], eT (t)8e(t) remains in
the specific threshold. This indicates that system (32) real-
izes finite-time bounded tracking for yd (t) with respect to
(1, 1,Q, I , 10).

This article studies the finite-time bounded tracking of
fractional-order systems, while previous literature studied the
input-output finite time stability. In fact, if output of system
(3) tracks the zero vector, in other words, let yd (t) ≡ 0,
then result of this article is input-output finite time stability
of the fractional-order system. The coefficient matrix and
parameters in Example 2 are still adopted. The disturbance
signal is taken as w(t) = 0.2 sin(t). We compare the result of

L =


0.2705 −1.0472 −3.9490 25.3661 266.3576
−1.0472 24.3566 −224.8731 646.6073 3703.5708
−3.9490 −224.8731 4095.5383 −26707.7103 −46612.4840
25.3661 646.6073 −26707.7103 328081.8163 −903495.6571
266.3576 3703.5708 −46612.4840 −903495.6571 27377626.9659


Y =

[
−927.4067 11609.1630 226784.3353 −6850753.6251 −590813.1649

]
K =

[
−139556.0037 −30524.9445 −3661.1341 −275.0819 −9.8459

]
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this article with those in [18]. The output of the closed-loop
system in this article is denoted as y1(t) and the output of
the closed-loop system in [18] is denoted as y2(t). Figure 7 is
the output curve obtained by using the controller designed in
this article. Figure 8 shows the output response obtained by
utilizing the method in [18]. By comparing Figures 7 and 8,
it can be observed in the order of magnitude of the vertical
axis that the control effect of this article is better than that
of [18].

VI. CONCLUSION
This article designs a finite-time bounded tracking controller
for a type of fractional-order system. By means of the method
of constructing the error system in the preview control theory,
the original problem is transformed into an IO-FTS problem.
Then, the finite-time bounded tracking controller is acquired
by utilizing the LMI. Theoretical results and numerical simu-
lation demonstrate that under the action of the designed con-
troller, the output of the original system realizes finite-time
bounded tracking for desired tracking signal under certain
conditions. Due to the aging of components and the delay of
measurement, the system model often has the characteristics
of uncertainty and delay. Therefore, the proposed finite-time
bounded tracking control approach can be extended to other
models, such as uncertain systems and delay systems and so
on, which can be a good topic for further investigation.
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