Supplementary Document

"A Comparative study of meta-heuristics for local path planning of mobile robot"

- Input: Objective function *f*, constraints, and the dimensions of the problem.
 \\ Initialization
 Assign parameter values to *PopSize*, *KELossRate*, *Stepsize*, *buffer*,*InitialKE*, *γ*, *InterRate*, *w*, *c*1, *c*2.
 Let Pop be the set of molecules (particle) 1, 2..., *Popsize* **for** each of molecules (particles) **do** Assign random solution to the molecular structure (particle position) *w*
- 7: Calculate the fitness by f(w)
- 8: Set PSOCoe=0
- 9: end for
- 10: \\Iterations
- 11: while (the stopping criteria not met) do
- 12: Select a molecule M_w from Pop randomly
- 13: **If** $PSOCoe_{Mw} > \gamma$ **then**
- 14: $PSOUpdate(M_w)$
- 15: $PSOCoe_{Mw}=0$
- 16: **else**
- 17: Generate $r \in [0, 1]$
- 18: **If** *r*>*InterRate* **then**
- 19: Randomly select molecule M_{w1}
- 20: IntermolecularIneffectiveCollision(M_{w}, M_{w1})
- 21: $PSOCoe_{Mw} = PSOCoe_{Mw} + 1$
- 22: $PSOCoe_{Mwl} = PSOCoe_{Mw} + 1$
- 23: else

```
24: OnwallIneffectiveCollision(M<sub>w</sub>)
```

```
25: PSOCoe_{Mw1} = PSOCoe_{Mw} + 1
```

```
26: end if
```

```
27: end if
```

- 28: Check for any new minimum solution
- 29: end while
- 30: $\$ The final stage
- 31: Output the best solution found and its objective function value

Figure S1:Pseudo code for HPCRO(Nguyen et al. 2014)

Figure S2: Implementation of the HPCRO algorithm