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In this paper, we are concerned with a class of quaternion-valued stochastic neural networks with time-varying delays. Firstly, we
cannot explicitly decompose the quaternion-valued stochastic systems into equivalent real-valued stochastic systems; by using the
Banach fixed point theorem and stochastic analysis techniques, we obtain some sufficient conditions for the existence of square-
mean pseudo almost periodic solutions for this class of neural networks. .en, by constructing an appropriate Lyapunov
functional and stochastic analysis techniques, we can also obtain sufficient conditions for square-mean exponential stability of the
considered neural networks. All of these results are new. Finally, two examples are given to illustrate the effectiveness and
feasibility of our main results.

1. Introduction

It is well known that the dynamic research on neural net-
work models has achieved fruitful results, and it has been
widely used in the fields of pattern recognition, automatic
control, signal processing, and artificial intelligence. How-
ever, most neural networkmodels proposed and discussed in
the literature are deterministic. It has the characteristics of
simple and easy to analyze. In fact, for any actual system,
there is always a variety of random factors. As we know, in
real nervous systems and in the implementation of artificial
neural networks, noise is unavoidable [1, 2] and should be
taken into consideration in modelling. Stochastic neural
network is an artificial neural network and is used as a tool of
artificial intelligence. .erefore, it is of practical importance
to study the stochastic neural networks. In 1996, Liao and
Mao [3] studied stochastic effects to the stability property of
a neural network. Subsequently, some scholars carried out a
lot of research work and made some progress [4–7]. Due to
the finite switching speed of neurons and amplifiers, time

delays inevitably exist in biological and artificial neural
network models. In recent years, the research on the stability
of delay stochastic neural networks has become a hot spot in
many scholars [8–11].

On the one hand, the quaternion-valued neural network
has been one of the most popular research hot spots, due to
the storage capacity advantage compared to real-valued
neural networks and complex-valued neural networks. It can
be applied to the fields of robotics, attitude control of sat-
ellites, computer graphics, ensemble control, color night
vision, and image impression [12, 13]. Because all of these
applications rely heavily on their dynamics, the study of
various dynamical behaviors for quaternion-valued neural
networks has received much attention of many scholars, and
some results have been obtained for the stability [14–16],
dissipativity [17], and pseudo almost periodicity [18, 19] of
quaternion-valued neural networks. In recent years, authors
of [20, 21] considered the existence and global exponential
stability of pseudo almost periodic solutions and pseudo
almost automorphic solutions for quaternion-valued neural
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networks by direct method. It should be noted that most
studies on quaternion-valued neural network dynamic be-
haviors are concerned with the quaternion-valued deter-
ministic neural networks, and so far, only a few results
consider the stochastic quaternion-valued neural networks
via a decomposing method [22, 23]. For example, Sriraman
et al. [22] considered the square-mean asymptotic stability
for the discrete-time stochastic quaternion-valued neural
networks; in [23], authors studied the square-mean expo-
nential input-to-state stability for the continuous-time
stochastic memristive quaternion-valued neural networks.

On the other hand, pseudo almost periodicity is a natural
generalization of almost periodicity. .erefore, for nonau-
tonomous neural networks, pseudo almost periodic oscil-
lation is a very important dynamic phenomenon. In the past
few decades, many researchers have investigated various
dynamical behaviors of stochastic differential equations such
as the existence and stability of almost periodic solutions
[24], almost automorphic solutions [25, 26], and pseudo
almost periodic solutions [27, 28]. Besides, as we all know,
there have been only few results about the dynamic

behaviors of nonautonomous stochastic neural networks.
Subsequently, some scholars have studied the existence and
stability of periodic solutions and almost periodic solutions
for stochastic neural networks [29–31], for example, Lu and
Ma [29] dealt with the stability analysis and the existence of
periodic solution problems for the stochastic neural net-
works; Huang and Yang [31] investigated the problems of
existence of quadratic mean almost periodic and global
exponential stability for stochastic cellular neural networks
with delays. Compared with the previous results, rare results
are available for pseudo almost periodic solutions of sto-
chastic neural networks in the mean square sense.

However, to the best of our knowledge, up to now, there
is no paper published on the existence and square-mean
exponential stability for square-mean pseudo almost peri-
odic solutions of quaternion-valued stochastic neural net-
works. So, it is a challenging and important problem in
theories and applications.

Motivated by the above, in this paper, we consider the
following quaternion-valued stochastic neural network:

dul( t ) � − αl( t )ul( t ) + 
n

k�1
blk( t )fk uk( t )(  + 

n

k�1
clk( t )gk( uk t − υlk( t )(  + Il( t )⎡⎣ ⎤⎦dt

+ 
n

k�1
δlk uk( t − ηlk( t ) )( dWk( t ),

(1)

where l ∈ 1, 2, . . . , n{ }≕T; n is the number of neurons in
layers; ul(t) ∈ Q is the state of the l-th neuron at time t;
αl(t)> 0 is the self-feedback connection weight; blk(t) and
clk(t) ∈ Q are, respectively, the connection weight and the
delay connection weight from neuron k to neuron l; υlk(t)

and ηlk(t) are the transmission delays; fk, gk: Q⟶ Q are
the activation functions;Il(t) ∈ Q is an external input on
the l-th unit at time t; W(t) � (W1(t), W2(t), . . . , Wn(t))T

is an n-dimensional Brownian motion defined on a
complete probability space; δlk: Q⟶ Q is a Borel
measurable function; A � (δlk)n×n is the diffusion coeffi-
cient matrix.

.e skew field of quaternion by

Q ≔ q � q
R

+ iq
I

+ jq
J

+ kq
K

 , (2)

where qR, qI, qJ, and qK are real numbers; the three
imaginary units i, j, and k obey the Hamilton’s multipli-
cation rules:

ij � − ji � k,

jk � − kj � i,

ki � − ik � j,

i
2

� j
2

� k
2

� ijk � − 1.

(3)

For every u ∈ Q, the conjugate transpose of u is defined
as u∗ � uR − iuI − juJ − kuK, and the norm of u is defined as

‖u‖Q �
����
uu
∗


�

������������������������

u
R

 
2

+ u
I

 
2

+ u
J

 
2

+ u
K

 
2



. (4)

For every u � (u1, u2, . . . , un)T ∈ Qn, we define
‖u‖Qn � maxl∈T ‖ul‖Q .

Let (W,F, Ft t≥0, P) be a complete probability space
with a natural filtration Ft t≥0, satisfying the usual con-
ditions (i.e., it is right continuous, and F0 contains all
P-null sets). Denote by BCF0

([− ], 0],Qn) the family of all
bounded, F0-measurable, C([− ], 0],Qn)-valued random
variables ϕ. Denote by L2

F0
([− ], 0],Qn) the family of all

F0-measurable, C([− ], 0],Qn)-valued random variables ϕ,
satisfying sups∈[− ],0]E|ϕ(s)|2 <∞, where E denotes the
expectation of stochastic process.

For the convenience, we will adopt the following
notation:

α−
l � inf

t∈R
αl(t),

b
+
lk � sup

t∈R
blk(t)

����
����Q,

c
+
lk � sup

t∈R
clk(t)

����
����Q,

υ+
� max

l.k∈T
sup
t∈R

υlk(t) ,

η+
� max

l,k∈T
sup
t∈R

ηlk(t) ,

] � max υ+
, η+

 .

(5)
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.e initial conditions of system (1) are of the form

ul(s) � ϕl(s), s ∈ [− ], 0], (6)

where ϕl ∈ BCF0
([− ], 0],Q), l ∈ T.

Remark 1. Quaternion-valued stochastic system (1) includes
real-valued stochastic systems and complex-valued sto-
chastic systems as its special cases. In fact, in system (1),

(i) If all the coefficients and delays are functions fromR

to R, and all the activation functions are functions
fromR toR, then the state ul(t) ≡ uR

l (t) ∈ R; in this
case, system (1) is a real-valued stochastic system;

(ii) If the coefficients are functions from R to C, and all
the activation functions are functions from C to C,
then the state ul(t) ≡ uR

l (t) + iuI
l (t) ∈ C; in this case,

system (1) is a complex-valued stochastic system.

With the inspiration from the previous research, in order
to fill the gap in the research field of quaternion-valued
stochastic neural networks, the work of this article comes
from two main motivations. (1) In practical applications,
pseudo almost periodic motion is an interesting and sig-
nificant dynamical property for stochastic differential
equations. In the past decade, many authors studied square-
mean almost periodic oscillations and square-mean almost
automorphic oscillations of stochastic differential equations
[24–26]. Yet, few literatures considered square-mean pseudo
almost periodic oscillation of stochastic differential equa-
tions [27, 28]. (2) Recently, a few literatures [22, 23] had
studied the square-mean stability of quaternion-valued
stochastic neural networks via a decomposing method. It is
noteworthy that the scholars have not begun to consider the
square-mean pseudo almost periodic oscillation for qua-
ternion-valued stochastic neural networks; thus, it is worth
studying square-mean pseudo almost periodic motion of
quaternion-valued stochastic neural network models by
direct method.

Compared with the previous literatures, the distinct
characteristics and main contributions of this article are
narrated as follows:

(1) Firstly, to the best of our knowledge, this is the first
time to investigate the existence and square-mean
exponential stability of square-mean pseudo almost
periodic solutions for quaternion-valued stochastic
delayed neural networks.

(2) Secondly, the method that we use to quaternion-
valued stochastic neural networks is different from
that used in [22, 23], and we improve the norm.

(3) .irdly, the techniques of this paper can be applied
to study the square-mean pseudo almost periodic
solutions for other types of quaternion-valued sto-
chastic neural networks.

(4) Finally, examples and numerical simulations are
given to verify the effectiveness of the conclusion.

.is paper is organized as follows: In Section 2, we
introduce some definitions and some preliminary results. In
Section 3, we establish some sufficient conditions for the
existence of square-mean pseudo almost periodic solutions
of system (1). In Section 4, we obtain the square-mean
exponential stability of system (1). In Section 5, we give two
examples to demonstrate the feasibility of our results. Fi-
nally, we draw a conclusion in Section 6.

2. Preliminaries and Basic Knowledge

Assume thatH is a real separable Hilbert space, and L2(P,H)

stands for the space of allH-valued random variables X such
that E(‖X‖2) � Ω‖X‖2dP<∞. .en, L2(P,H) is a Banach
space with the norm ‖X‖2 � (Ω‖X‖2dP)(1/2).

Similar to the definition in [27], we give the following
definitions.

Definition 1. A stochastic process X: R⟶ L2(P,Qn) is
said to be L2-continuous if

lim
t⟶s

E‖X(t) − X(s)‖
2
Qn � 0. (7)

It is L2-bounded if supt∈RE‖X(t)‖2Qn <∞.

Definition 2. An L2-continuous stochastic process
X: R⟶ L2(P,Qn) is said to be square-mean almost pe-
riodic, if for any ε> 0, there exists L � L(ε)> 0, such that for
any a ∈ R, there exists τ ∈ [a, a + L] with

sup
t∈R

E‖X(t + τ) − X(t)‖
2
Qn ≤ ε. (8)

We denote by SAP(R, L2(P,Qn)) the set of all square-
mean almost periodic functions fromR to L2(P,Qn), and let
BC(R, L2(P,Qn)) be the set of all bounded continuous
stochastic processes from R to L2(P,Qn).

Let

SPAP0 R, L
2

P,Q
n

(   � X ∈ BC R, L
2

P,Q
n

(  | lim
T⟶+∞

1
2T


T

− T
E‖X(t)‖

2
Qndt � 0 . (9)

We give the following definition for quaternion.
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Definition 3. An L2-continuous stochastic process
X: R⟶ L2(P,Qn) is said to be square-mean pseudo al-
most periodic, if it can be decomposed as X � Y + Z, where

Y ∈ SAP R, L
2

P,Q
n

(  ,

Z ∈ SPAP0 R, L
2

P,Q
n

(  .
(10)

We denote by SPAP(R, L2(P,Qn)) the set of all square-
mean pseudo almost periodic functions from R to
L2(P,Qn).

Similar to the lemma in [27], one can easily show as
follows.

Lemma 1. If f, g ∈ SPAP(R, L2(P,Q)), then f + g, fg ∈
SPAP(R, L2(P,Q)).

Lemma 2. If ϕ ∈ SPAP(R, L2(P,Q)), θ ∈ SAP(R, L2

(P,R))∩C1(R,R) with ϑ ≔ inf t∈R(1 − θ′(t))> 0, then
ϕ(· − θ(·)) ∈ SPAP(R, L2(P,Q)).

.roughout the rest of the paper, we assume that

(H1)αl ∈ SAP(R,R+), υkl, ηlk ∈ SAP(R,R+)∩C1

(R,R) with c � supt∈R υkl
′(t) , β � supt∈R ηlk

′(t) ,
and blk, clk,Il ∈ SPAP(R,Q), where l, k ∈ T.

(H2) .ere exist positive constants L
f

k , L
g

k , and Lδ
lk such

that for any x, y ∈ Q,

fk(x) − fk(y)
����

����Q≤ L
f

k ‖x − y‖Q,

gk(x) − gk(y)
����

����Q≤ L
g

k‖x − y‖Q,

δlk(x) − δlk(y)
����

����Q≤ L
δ
lk‖x − y‖Q,

(11)

and fk(0) � gk(0) � δlk(0) � 0, where l, k ∈ T.
(H3)maxl∈T 3Υl/(α−

l )2 ≕ρ< 1, where

Yl � 
n

k�1
b

+
lk( 

2


n

k�1
L

f

k 
2

+ 
n

k�1
c

+
lk( 

2


n

k�1
L

g

k 
2

+
α−

l

2


n

k�1
L
δ
lk 

2
.

(12)

(H4) For l ∈ T, there exist positive constants λ and ξk

such that

2ξlα
−
l > λξl + 2ξl + 

n

k�1
ξk b

+
kl( 

2
L

f

k 
2

+ 
n

k�1
ξk c

+
kl( 

2
L

g

k 
2

·
e
λυ+

1 − c
+ 

n

k�1
ξk L

δ
kl 

2 e
λη+

1 − β
.

(13)

3. Square-Mean Pseudo Almost
Periodic Solutions

In this section, we will study the existence of square-mean
pseudo almost periodic solutions of system (1).

Let X � ϕ|ϕ ∈ SPAP(R, L2( P,Qn )) with the norm
‖ϕ‖X � supt∈R(E‖ϕ( t )‖2Qn )(1/2), and then X is a Banach
space.

Set ϕ0 � (ϕ01, ϕ
0
2, . . . , ϕ0n)T, where ϕ0l (t) �


t

− ∞ e
− 

t

s
αl(θ)dθ

Il(s)ds, t ∈ R, and l ∈ T, and κ is a con-
stant satisfying κ≥ ‖ϕ0‖X.

Theorem 1. Let (H1)–(H3) hold. <en, system (1) has a
unique square-mean pseudo almost periodic solution in the
region X∗ � ϕ|ϕ ∈ X|‖ϕ − ϕ0‖X ≤ κ .

Proof. Firstly, it is easy to see that if u(t) � (u1(t),

u2(t), . . . , un(t))T}t∈R is a solution of the following sto-
chastic integral equation

ul(t) � 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
blk(s)fk uk(s)(  + 

n

k�1
clk(s)gk uk s − υkl(s)( (  + Il(s)⎡⎣ ⎤⎦ds

+ 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
δlk uk s − ηlk(s)( ( dWk(s),

(14)

where l ∈ T, then u is also a solution of system (1).
We define a mapping Φ: X⟶ X by setting

ϕ1,ϕ2, . . . ,ϕn( ⟶ u
ϕ
1 , u

ϕ
2 , . . . , u

ϕ
n . (15)

We shall show thatΦ has a unique fixed point inX∗. For
ϕ ∈ X∗, we have

‖ϕ‖X ≤ ϕ0
����

����X + ϕ − ϕ0
����

����X ≤ 2κ. (16)

For any ϕ ∈ X∗, from (14), we consider the following
stochastic integral equation:

u
ϕ
l (t)≕

t

− ∞
e

− 
t

s
αl(θ)dθ

Fl(s)ds + 
t

− ∞
e

− 
t

s
αl(θ)dθ

· 
n

k�1
Glk(s)dWk(s), l ∈ T,

(17)
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where

Fl(s) � 
n

k�1
blk(s)fk ϕk(s)(  + 

n

k�1
clk(s)gk ϕk s − υkl(s)( ( 

+ Il(s),

Glk(s) � δlk ϕk s − ηlk(s)( ( .

(18)

From Lemmas 1 and 2, we have Fl, Glk ∈ SPAP(R, L2

(P,Q)), l, k ∈ T, that is, Fl, Glk can be rewritten as
Fl � F1

l + F0
l , Glk � G1

lk + G0
lk, where F1

l , G1
lk ∈ SAP(R, L2

(P,Q)), F0
l , G0

lk ∈ SPAP0(R, L2(P,Q)). Hence,

u
ϕ
l (t) � 

t

− ∞
e

− 
t

s
αl(θ)dθ

F
1
l (s)ds + 

t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
1
lk(s)dWk(s) + 

t

− ∞
e

− 
t

s
αl(θ)dθ

F
0
l (s)ds

+ 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
0
lk(s)dWk(s)≕H1

l (t) + H
0
l (t), l ∈ T.

(19)

First, we will prove that H1
l ∈ SAP(R, L2(P,Q)), l ∈ T.

For any ε> 0, since αl ∈ SAP(T ,R+), F1
l , G1

lk ∈ SAP
(R, L2(P,Q)), it is possible to find a real number
L � L(ε)> 0; for any interval with length L(ε), there exists a
number τ � τ(ε) in this interval such that E‖αl(s + τ)

− αl(s)‖2 < ε and

E F
1
l (s + τ) − F

1
l (s)

����
����
2
Q
< ε,

E G
1
lk(s + τ) − G

1
lk(s)

����
����
2
Q
< ε.

(20)

For l ∈ T, then we consider

E H
1
l (t + τ) − H

1
l (t)

����
����
2
Q

� E


t

− ∞
e

− 
t

s
αl(θ)dθ

F
1
l (s + τ) − F

1
l (s) ds

+ 
t

− ∞
e

− 
t

s
αl(θ + τ)dθ

− e
− 

t

s
αl(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠F
1
l (s + τ)ds

+ 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
1
lk(s + τ) − G

1
lk(s) dWk(s)

+ 
t

− ∞
e

− 
t

s
αl(θ + τ)dθ

− e
− 

t

s
αl(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ 

n

k�1
G
1
lk(s + τ)dWk(s)

������������������������������������������������������

������������������������������������������������������

2

Q

≤ 4E 
t

− ∞
e

− 
t

s
αl(θ)dθ

F
1
l (s + τ) − F

1
l (s) ds

�������������

�������������

2

Q

+ 4E 
t

− ∞
e

− 
t

s
αl(θ + τ)dθ

− e
− 

t

s
αl(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠F
1
l (s + τ)ds

�������������

�������������

2

Q

+ 4E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
1
lk(s + τ) − G

1
lk(s) dWk(s)

�������������

�������������

2

Q

+ 4E 
t

− ∞
e

− 
t

s
αl(θ + τ)dθ

− e
− 

t

s
αl(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ 
n

k�1
G
1
lk(s + τ)dWk(s)

�������������

�������������

2

Q

≤
8
α−

l( 
2 

n

k�1
b
1+

lk 
2



n

k�1
L

f

l 
2

+ 
n

k�1
c
1+

lk 
2



n

k�1
L

g

l 
2

+ I
1+

l 
2

+
α−

l

2


n

k�1
L
δ
lk 

2
+ 4⎛⎝ ⎞⎠ε.

(21)
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.us, we proved that H1
l is square-mean almost peri-

odic, l ∈ T.
On the other hand, we will prove that

H0
l ∈ SPAP0(R, L2(P,Q)). Hence, we only need to show

lim
T⟶+∞

1
2T


T

− T
E H

0
l (t)

����
����
2
Q
dt � 0, l ∈ T. (22)

.us, we obtain

1
2T


T

− T
E H

0
l (t)

����
����
2
Q
dt �

1
2T


T

− T
E 

t

− ∞
e

− 
t

s
αl(θ)dθ

F
0
l (s)ds + 

t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
0
lk(s)dWk(s)

�������������

�������������

2

Q

dt

≤
1
T


T

− T
E 

t

− ∞
e

− 
t

s
αl(θ)dθ

F
0
l (s)ds

�������������

�������������

2

Q

dt +
1
T


T

− T
E 

t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
G
0
lk(s)dWk(s)

�������������

�������������

2

Q

dt≕Q1
l + Q

2
l .

(23)

It follows from the Cauchy–Schwarz inequality that

Q
1
l �

1
T


T

− T
E 

t

− ∞
e

− 
t

s
αl(θ)dθ

F
0
l (s)ds

�������������

�������������

2

Q

dt

≤
1
T


T

− T


t

− ∞
e

− 
t

s
αl(θ)dθ

ds
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
t

− ∞
e

− 
t

s
αl(θ)dθ

E F
0
l (s)

����
����
2
Q
ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt

≤
1

Tα−
l


T

− T


t

− T
e

− 
t

s
αl(θ)dθ

E F
0
l (s)

����
����
2
Q
dsdt +

1
Tα−

l


T

− T


− T

− ∞
e

− 
t

s
αl(θ)dθ

E F
0
l (s)

����
����
2
Q
dsdt≕Ω1 +Ω2.

(24)

Set ζ � t − s, and using Fubini’s theorem, we obtain that

Ω1 �
1

Tα−
l


T

− T


t

− T
e

− 
t

s
αl(θ)dθ

E F
0
l (s)

����
����
2
Q
dsdt

≤
1

Tα−
l


T

− T


t

− T
e

− (t− s)α−
l E F

0
l (s)

����
����
2
Q
dsdt

≤
1

Tα−
l


T

− T


+∞

0
e

− ζα−
l E F

0
l (t − ζ)

����
����
2
Q
dζdt

≤
2
α−

l


+∞

0
e

− ζα−
l

T + ζ
T

1
2(T + ζ)


T− ζ

− T− ζ
E F

0
l (θ)

����
����
2
Q
dθ dζ

≤
2
α−

l( 
2

1
2T


T

− T
E F

0
l (s)

����
����
2
Q
ds ,

(25)

since F0
l ∈ SPAP0(R, L2(P,Q)), thus Ω1⟶ 0 as

T⟶ +∞. Since F0
l is bounded, as T⟶ +∞, we have

Ω2 �
1

Tα−
l


T

− T


− T

− ∞
e

− 
t

s
αl(θ)dθ

E F
0
l (s)

����
����
2
Q
dsdt

≤
1

Tα−
l


T

− T


+∞

T+t
e

− ζα−
l E F

0
l (t − ζ)

����
����
2
Q
dζdt

≤
1

T α−
l( 

3 sup
t∈R

E F
0
l (t)

����
����
2
Q


T

− T


+∞

T+t
e

− ζα−
l dζdt

�
1 − e

− 2α−
l

T
 

T α−
l( 

3 sup
t∈R

E F
0
l (t)

����
����
2
Q
⟶ 0.

(26)

Hence, for l ∈ T, we have that Q1
l ⟶ 0 as T⟶ +∞.

By the Itô isometry, one has
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Q
2
l �

1
T


T

− T
E 

t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
Glk(s)dWk(s)

�������������

�������������

2

Q

dt

≤
1
T


n

k�1


T

− T


t

− T
e

− 2α−
l

(t− s)
E Glk(s)

����
����
2
Q
dsdt

+
1
T


n

k�1


T

− T


− T

− ∞
e

− 2α−
l

(t− s)
E Glk(s)

����
����
2
Q
dsdt

≤
1
α−

l



n

k�1

1
2T


T

− T
E Glk(s)

����
����
2
Q
ds 

+
1 − e

− 4α−
l

T
 

T α−
l( 

2 sup
t∈R



n

k�1
E Glk(t)

����
����
2
Q
⟶ 0, asT⟶ +∞.

(27)

.erefore, we have verified

lim
T⟶+∞

1
2T


T

− T
E H

0
l (t)

����
����
2
Q
dt � 0, l ∈ T. (28)

.erefore, we have u
ϕ
l ∈ SPAP(R, L2(P,Q)).

Next, we show that Φ is a self-mapping from X∗ to X∗.
For ϕ ∈ X∗, by the Cauchy–Schwarz inequality and Itô
isometry, we have

E Φϕ )( t ) − ϕ0( t 
�����

�����
2

Qn � max
l∈T

E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
blk( s )fk ϕk( s )(  + 

n

k�1
clk( s )gk ϕk( s − υkl( s ) )( ⎡⎣ ⎤⎦ds + 

t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
δlk ϕk( s − ηlk( s ) )( dWk( s )

���������

���������

2

Q

⎧⎨

⎩

⎫⎬

⎭

≤ 3max
l∈T

E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
blk( s )fk ϕk( s )( ds

�������������

�������������

2

Q

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

+ 3max
l∈T

E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
clk( s )gk ϕk( s − υkl( s ) )( ds

�������������

�������������

2

Q

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

+ 3max
l∈T

E 
t

− ∞
e

− 
t

s
αl(θ)dθ


n

k�1
δlk ϕk( s − ηlk( s ) )( dWk( s )

�������������

�������������

2

Q

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≤ max
l∈T

3
α−

l

E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
blk( s )

����
����QL

f

k ϕk( s )
����

����Q
⎛⎝ ⎞⎠

2

ds
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

+ max
l∈T

3
α−

l

E 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
clk( s )

����
����QL

g

k ϕk( s − υkl( s ) )
����

����Q
⎛⎝ ⎞⎠

2

ds
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

+ 3max
l∈T

E 
n

k�1


t

− ∞
e

− 2 
t

s
αl(θ)dθ

δlk ϕk( s − ηlk( s ) )( 
����

����
2
Q
ds

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≤ max
l∈T

3
α−

l( 
2 

n

k�1
blk( t )

����
����Q 

2

n

k�1
L

f

k 
2

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭E‖ϕ( t )‖
2
Qn

+ max
l∈T

3
α−

l( 
2 

n

k�1
K
∗
lk clk( t )

����
����Q 

2


n

k�1
L

g

k 
2⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭E‖ϕ( t )‖
2
Qn

+ max
l∈T

3
2α−

l


n

k�1
L
δ
lk 

2⎧⎨

⎩

⎫⎬

⎭E‖ϕ( t )‖
2
Qn

≤ max
l∈T

3
α−

l( 
2 

n

k�1
blk( t )

����
����Q 

2


n

k�1
L

f

k 
2

+ 
n

k�1
clk( t )

����
����Q 

2


n

k�1
L

g

k 
2

+
α−

l

2


n

k�1
L
δ
lk 

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

⎫⎬

⎭

E‖ϕ( t )‖
2
Qn .

(29)

Mathematical Problems in Engineering 7



It follows from (29) and (H3) that

Φϕ − ϕ0
����

����
2
X

� sup
t∈R

E (Φϕ)(t) − ϕ0(t)
����

����
2
Qn

≤ max
l∈T

3
α−

l( 
2 

n

k�1
b

+
lk( 

2


n

k�1
L

f

k 
2

+ 

n

k�1
c

+
lk( 

2


n

k�1
L

g

k 
2

+
α−

l

2


n

k�1
L
δ
lk 

2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭4κ2,

(30)

which implies that ‖Φϕ − ϕ0‖X ≤ κ; hence, we have
Φϕ ∈ X∗. Next, we show that Φ is a contraction mapping in
X∗. For any ϕ,ψ ∈ X∗, we have

E‖(Φϕ )( t ) − (Φψ )( t)‖
2
Qn

� max
l∈T

E


t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
blk( s ) fk ϕk( s )(  − fk ψk( s )(  ⎛⎝ ⎞⎠ds

+ 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
clk( s ) gk ϕk( s − υkl( s ) )(  − gk ψk( s − υkl( s ) )(  ⎛⎝ ⎞⎠ds

+ 
t

− ∞
e

− 
t

s
αl(θ)dθ



n

k�1
δlk ϕk( s − ηlk( s ) )(  − δlk ψk( s − ηlk( s ) )(  dWk( s )

������������������������������������������

������������������������������������������

2

Q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ max
l∈T

3
α−

l( 
2 

n

k�1
b

+
lk( 

2


n

k�1
L

f

k 
2

+ 
n

k�1
c

+
lk( 

2


n

k�1
L

g

k 
2

+
α−

l

2


n

k�1
L
δ
lk 

2
⎡⎣ ⎤⎦‖ϕ( t ) − ψ( t )‖

2
Qn .

⎧⎨

⎩

(31)

.us, we have

sup
t∈R

E‖(Φϕ)(t) − (Φψ)(t)‖
2
Qn ≤ max

l∈T

3Yl

α−
l( 

2

⎧⎨

⎩

⎫⎬

⎭ sup
t∈R

E‖ϕ(t) − ψ(t)‖
2
Qn . (32)

It follows from (32) that

‖Φϕ − Φψ‖X ≤
�
ρ

√
‖ϕ − ψ‖X. (33)

In view of (H3), we see that Φ is a contraction mapping.
.erefore,Φ has a unique fixed point inX∗, that is, (1) has a
unique square-mean pseudo almost periodic solution inX∗.
.e proof is finished. □

4. Square-Mean Exponential Stability

In this section, we will consider the square-mean expo-
nential stability of system (1).

Definition 4. Let u � (u1, u2, . . . , un)T be a solution of (1)
with the initial value ϕ � (ϕ1,ϕ2, . . . ,ϕn)T. If there exist

positive constants λ> 0 andM> 0 such that for an arbitrary
solution w � (w1, w2, . . . , wn)T with initial value,
ψ � (ψ1,ψ2, . . . ,ψn)T satisfies

E‖w(t) − u(t)‖
2
Qn ≤Me

− λt
E‖ψ − ϕ‖

2
1, t> 0, (34)

where

‖w(t) − u(t)‖Qn � max
l∈T

wl(t) − ul(t)
����

����Q ,

‖ψ − ϕ‖1 � max
l∈T

sup
s∈[− ],0]

ψl(s) − ϕl(s)
����

����Q .

(35)

.en, the solution u(t) is said to be square-mean ex-
ponentially stable.
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Theorem 2. Suppose that the assumptions (H1)–(H4) are
satisfied, then for any initial value of dynamical system (1),
there exists a square-mean pseudo almost periodic solution
u(t), which is square-mean exponentially stable.

Proof. From.eorem 1, we see that system (1) has a square-
mean pseudo almost periodic solution u � (u1, u2, . . . , un)T

with initial value ϕ � (ϕ1, ϕ2, . . . , ϕn)T. Suppose that w �

(w1, w2, . . . , wn)T is an arbitrary solution of system (1) with
initial value ψ � (ψ1,ψ2, . . . ,ψn)T and z(t) � w(t) − u(t).
Let δ(t) � (δlk(t))n×n, where δlk(t) � δlk(zk(t − ηlk(t))). We
consider the Lyapunov function as follows:

V(t, z(t)) � max
l∈T

e
λtξlz
∗
l (t)zl(t) + ξlΓl(t, z(t)) , (36)

where

Γl(t, z(t)) � 
n

k�1
c

+
lk( 

2
L

g

k 
2 e

λυ+

1 − c


t

t− υkl(t)
z
∗
k (s)zk(s)e

λsds + 
n

k�1
L
δ
lk 

2 e
λη+

1 − β


t

t− ηlk(t)
z
∗
k (s)zk(s)e

λsds. (37)

.en, by Itô formula, we have the following stochastic
differential:

dV(t, z(t)) � LV(t, z(t))dt + Vz(t, z(t))δ(t)dW(t),

(38)

where Vz(t, z(t)) � (zV(t, z(t))/zz1, t . . . n, qzV(t, z(t))/
zzn), and L is the weak infinitesimal operator such that

LV(t, z(t)) � max
l∈T

λe
λtξlz
∗
l (t)zl(t) + e

λtξlzl(t) − αl(t)z
∗
l (t) + 

n

k�1
blk(t) fk wk(t)(  − fk uk(t)(  ( 

∗
+ 

n

k�1
clk(t) gk wk t − υkl(t)( (  − gk uk t − υkl(t)( (  ( 

∗⎡⎣ ⎤⎦

+e
λtξlz
∗
l (t) − αl(t)zl(t) + 

n

k�1
blk(t) fk wk(t)(  − fk uk(t)(   + 

n

k�1
clk(t) gk wk t − υkl(t)( (  − gk uk t − υkl(t)( (  ⎡⎣ ⎤⎦

+ξl 

n

k�1
c

+
lk( 

2
L

g

k 
2 e

λυ+

1 − c
z
∗
k (t)zk(t)e

λt
− ξl 

n

k�1
c

+
lk( 

2
L

g

k 
2 e

λυ+

1 − c
1 − υkl
′(t)( 

×z
∗
k t − υkl(t)( zk t − υkl(t)( e

λ t− υkl(t)( )ds + ξl 

n

k�1
L
δ
lk 

2 e
λη+

1 − β
z
∗
k (t)zk(t)e

λt

− ξl 
n

k�1
L
δ
lk 

2 e
λη+

1 − β
1 − ηlk
′(t)( z

∗
k t − ηlk(t)( zk t − ηlk(t)( e

λ t− ηlk(t)( )

+e
λtξl 

n

k�1
δlk wk t − ηlk(t)( (  − δlk uk t − ηlk(t)( (  

∗ δlk wk t − ηlk(t)( (  − δlk uk t − ηlk(t)( (  

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ max
l∈T

e
λt λξl − 2ξlαl(t)( z

∗
l (t)zl(t) + e

λtξl 
n

k�1
blk(t) fk wk(t)(  − fk uk(t)(  ( 

∗

× blk(t) fk wk(t)(  − fk uk(t)(  (  + e
λtξl

n

k�1
clk(t) gk wk t − υkl(t)( (  − gk uk t − υkl(t)( (  ( 

∗

clk(t) gk wk t − υkl(t)( (  − gk uk t − υkl(t)( (  ( 

+2e
λtξlz
∗
l (t)zl(t) + e

λt

n

p�1
ξl 

n

k�1
c

+
lk( 

2
L

g

k 
2 e

λυ+

1 − c
z
∗
k (t)zk(t) − e

λtξl 
n

k�1
c

+
lk( 

2

× L
g

k 
2 e

λυ+

1 − c
(1 − c)z

∗
k t − υkl(t)( zk t − υkl(t)( e

− λυ+

+ e
λtξl 

n

k�1
L
δ
lk 

2 e
λη+

1 − β
z
∗
k (t)zk(t)

− e
λtξl 

n

k�1
L
δ
lk 

2 e
λη+

1 − β
(1 − β)z

∗
k t − ηlk(t)(  × zk t − ηlk(t)( e

− λη+

+e
λtξl 

n

k�1
L
δ
lk 

2
z
∗
k t − ηlk(t)( zk t − ηlk(t)( 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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≤ max
l∈T

e
λt λξl + 2ξl − 2ξlα

−
l( z
∗
l (t)zl(t) + e

λtξl 

n

k�1
b

+
lk( 

2
L

f

k 
2
z
∗
k (t)zk(t)

+e
λtξl 

n

k�1
c

+
lk( 

2
L

g

k 
2 e

λυ+

1 − c
z
∗
k (t)zk(t) + e

λtξl 

n

k�1
L
δ
lk 

2 e
λη+

1 − β
z
∗
k (t)zk(t)

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

� max
l∈T

e
λt λξl + 2ξl − 2ξlα

−
l + 

n

k�1
ξk b

+
kl( 

2
L

f

k 
2

+ 
n

k�1
ξk c

+
kl( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

n

k�1
ξk L

δ
kl 

2 e
λη+

1 − β
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭z
∗
l (t)zl(t)

⎧⎨

⎩

⎫⎬

⎭.

(39)

From (H4), we easily derive

LV(t, z(t))≤ 0. (40)

Now, similar to the previous literature, we define the
stopping time (or Markov time) σk ≔ inf s≥ 0: |z(s)|≥ k{ },
and by the Dynkin formula, we have

E V( t∧σk, z( t∧σk ) )  � E[V( 0, z( 0 )] + E 
t∧σk

0
LV( s, z( s ) )ds . (41)

Letting k⟶∞ on both sides (41), from the monotone
convergence theorem, we can get

E[V( t, z( t ) )]≤E[V( 0, z( 0 )]

� max
l∈T

ξlEz
∗
l ( 0 )zl( 0 ) + ξl 

n

k�1
c

+
lk( 

2
L

g

k 
2

×
e
λυ+

1 − c

0

− υkl(0)
Ez
∗
k ( s )zk( s )e

λsds
⎧⎨

⎩

+ ξl 

n

k�1
L
δ
lk 

2 e
λη+

1 − β

0

− ηlk(0)
Ez
∗
k ( s )zk( s )e

λsds
⎫⎬

⎭

≤ max
l∈T

ξl + ξl 

n

k�1
b

+
kl( 

2
L

g

k 
2
υ+ e

λυ+

1 − c
+ ξl 

n

k�1
L
δ
kl 

2
η+ e

λη+

1 − β
⎛⎝ ⎞⎠E sup

s∈[− ],0]

ψl( s ) − ϕl( s )
����

����
2
Q

⎧⎨

⎩

⎫⎬

⎭.

(42)

On the other hand, it follows from the definition of
V(t, z(t)) that

E[V(t, z(t))]≥Ee
λt max

l∈T
ξlz
∗
l (t)zl(t)≥ e

λt min
l∈T

ξlE‖z(t)‖
2
Qn .

(43)

Combining (42) and (43), the following holds:

E‖z(t)‖
2
Qn ≤Me

− λt
E‖ψ − ϕ‖

2
1, (44)

where

M �
1

min
l∈T

ξl

max
l∈T

ξl 1 + 

n

k�1
c

+
kl( 

2
L

g

k 
2
υ+ e

λυ+

1 − c
+ 

n

k�1
L
δ
kl 

2
η+ e

λη+

1 − β
⎧⎨

⎩

⎫⎬

⎭, (45)

which together with Definition 4 verifies that square-mean
pseudo almost periodic solution of system (1) which is
square-mean exponentially stable. .e proof is finished. □

Remark 2. From the proofs of .eorems 1 and 2, one can
easily see that if all the coefficients of (1) are square-mean
almost automorphic and square-mean almost periodic,
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respectively, then, similar to the proofs of .eorems 1 and 2
and under the same corresponding conditions, one can show
that the similar results of .eorems 1 and 2 are still valid for
both cases of the square-mean pseudo almost automorphy
and square-mean weighted pseudo almost periodicity.

5. Illustrative Example

In this section, we give numerical examples to illustrate the
feasibility and effectiveness of our results obtained in Sec-
tions 3 and 4.

Example 1. Let n � 2. Consider the following quaternion-
valued stochastic neural network:

dul( t ) � − αl( t )ul( t ) + 
2

k�1
blk( t )fk uk( t )(  + 

2

k�1
clk( t )gk( uk t − υlk( t )(  + Il( t )⎡⎣ ⎤⎦dt

+ 
2

k�1
δlk uk( t − ηlk( t ) )( dWk( t ),

(46)

where l � 1, 2; the coefficients are as follows:

fk( uk ) � gk( uk ) �
1
7
tan hu

R
k + i

1
5

u
I
k



 + j
1
4
sin u

I
k + k

1
9
sin( u

J
k + u

K
k ),

δlk( uk ) �
1
12

sin( u
R
k + u

I
k ) + i

1
8
sin u

I
k + j

1
9

u
J
k



 + k
1
5
tan hu

K
k ,

α1( t ) � 3 +|cos(
�
2

√
t )|,

α2( t ) � 6 − 2sin(
�
3

√
t ),

blk( t ) � 0.5sin(
�
2

√
t ) + i0.5sin t + j0.8cos t + k0.4cos( 2t ),

clk( t ) � 0.8cos t + i1.2sin( 2t ) + j1.5sin t + k0.9cos(
�
3

√
t ),

I1( t ) � 0.2sin(
�
3

√
t ) + i0.5cos( 2t ) + j0.3cos(

�
2

√
t ) + k0.3sin(

���
(3)


t ),

I2( t ) � 0.3cos(
�
2

√
t ) + i0.4sin(

�
3

√
t ) + j0.5sin t + k0.2cos(

�
3

√
t ) ),

υkl( t ) �
1
2

|sin t|,

ηlk( t ) �
4
5

|cos t|.

(47)

.rough simple calculations, we have
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α−
1 � 3,

α−
2 � 4,

L
f

k � L
g

k �
1
4
,

L
δ
lk �

1
5
,

υ+
�
1
2
,

η+
�
4
5
,

c �
1
2
,

β �
4
5
,

b
+
lk ≤ 1.1402,

c
+
lk ≤ 2.2672,

Y1 ≈ 1.6901,

Y2 ≈ 1.7701.

(48)

.en, we have

max
3Y1

α−
1( 

2,
3Y2

α−
2( 

2

⎧⎨

⎩

⎫⎬

⎭ ≈ max 0.5634, 0.3319{ } � 0.5634 � ρ< 1.

(49)

Take λ � 0.1, ξ1 � 0.3, and ξ2 � 0.4, then we have

2ξ1α
−
1 � 1.8> λξ1 + 2ξ1 + 

2

k�1
ξk b

+
k1( 

2
L

f

k 
2

+ 

2

k�1
ξk c

+
k1( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

2

k�1
ξk L

δ
k1 

2 e
λη+

1 − β
≈ 0.9501,

2ξ2α
−
2 � 3.2> λξ2 + 2ξ2 + 

2

k�1
ξk b

+
k2( 

2
L

f

k 
2

+ 
2

k�1
ξk c

+
k2( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

2

k�1
ξk L

δ
k2 

2 e
λη+

1 − β
≈ 1.5295.

(50)

We can check that other conditions of .eorems 1 and 2
are satisfied. So, we know that square-mean pseudo almost
periodic solutions of system (46) are square-mean expo-
nentially stable. System (46) has the initial value u1(0) �

0.3 − 0.5i + 0.6j + 0.25k and u2(0) � − 0.2 + 0.4i −

0.4j − 0.35k. .e results are verified by the numerical
simulations in Figures 1–4, which shows the time response
curve for the four parts between the variables u1(t) and u2(t)

of system (46).

Example 2. Let n � 3. Consider the following quaternion-
valued stochastic neural network:

dul(t) � − αl(t)ul(t) + 
3

k�1
blk(t)fk uk(t)(  + 

3

k�1
clk(t)gk uk t − υlk(t)( (  + Il(t)⎡⎣ ⎤⎦dt

+ 
3

k�1
δlk uk t − ηlk(t)( ( dWk(t),

(51)

where l � 1, 2, 3; the coefficients are as follows:
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Figure 1: .e states response of uR
1 (t) and uR

2 (t).
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fk( uk ) �
1
14

sin u
R
k + i

1
12

sin u
I
k + j

1
15

sin( u
I
k + u

J
k ) + k

1
10

sin u
K
k ,

gk( uk ) �
1
12

sin( u
R
k + u

J
k ) + i

1
20

sin( u
R
k + u

I
k ) + j

1
15

tan hu
J
k + k

1
10

tan hu
K
k ,

δlk( uk ) �
1
15

sin u
R
k + i

1
10

sin u
I
k + j

1
8
sin( u

R
k + u

J
k ) + k

1
12

tan hu
K
k ,

α1( t ) � 2 +|sin(
�
3

√
t )|,

α2( t ) � 5 − 2cos(
�
2

√
t ),

α3( t ) � 7 − 3cos(
�
5

√
t ),

blk( t ) � 0.4 cos(
�
3

√
t ) + i 0.6 sin(

�
3

√
t ) + j 0.7 sin t + k 0.5 cos( 2t ),

clk( t ) � 1.2 sin t + i 0.9 cos( 2t ) + j sin(
�
2

√
t ) + k 1.5 cos(

�
3

√
t ),

I1( t ) � 0.2 sin(
�
3

√
t ) + i 0.5 cos( 2t ) + j 0.3 cos(

�
2

√
t ) + k 0.3 sin(

�
3

√
t ),

I2( t ) � 0.3 sin(
�
2

√
t ) + e

− t2cos2t
  + i 0.4 sin(

�
3

√
t ) + j 0.5 sin t + k 0.2 cos(

�
3

√
t ) ),

I3( t ) � 0.2 sin( 2t ) + i 0.3 cos(
�
2

√
t ) + j 0.4 cos t + k 0.3 sin(

�
5

√
t ) ),

υkl( t ) �
1
2

|cos(
�
2

√
t )|,

ηlk( t ) �
4
5

| sin( 2t )|,

l, k � 1, 2, 3.

(52)

.rough simple calculations, we have
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α−
1 � 2,

α−
2 � 3,

α−
3 � 4,

L
f

k � L
g

k �
1
10

,

L
δ
lk �

1
8
,

υ+
�
1
2
,

η+
�
4
5
,

c �
1
2
,

β �
4
5
,

b
+
lk ≤ 1.1225,

c
+
lk ≤ 2.3452,

Y1 ≈ 0.6553,

Y2 ≈ 0.6787,

Y3 ≈ 0.7021.

(53)

.en, we have

max
3Y1

α−
1( 

2,
3Y2

α−
2( 

2,
3Y3

α−
3( 

2

⎧⎨

⎩

⎫⎬

⎭ ≈ max 0.4915, 0.2262, 0.1316{ }

� 0.4915 � ρ< 1.

(54)

Take λ � 0.1, ξ1 � 0.3, ξ2 � 0.4, and ξ3 � 0.5, then we
have

2ξ1α
−
1 � 1.2> λξ1 + 2ξ1 + 

3

k�1
ξk b

+
k1( 

2
L

f

k 
2

+ 
3

k�1
ξk c

+
k1( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

3

k�1
ξk L

δ
k1 

2 e
λη+

1 − β
≈ 0.8704,

2ξ2α
−
2 � 2.4> λξ2 + 2ξ2 + 

3

k�1
ξk b

+
k2( 

2
L

f

k 
2

+ 

3

k�1
ξk c

+
k2( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

3

k�1
ξk L

δ
k2 

2 e
λη+

1 − β
≈ 1.0804,

2ξ3α
−
3 � 4> λξ3 + 2ξ3 + 

3

k�1
ξk b

+
k3( 

2
L

f

k 
2

+ 
3

k�1
ξk c

+
k3( 

2
L

g

k 
2 e

λυ+

1 − c
+ 

3

k�1
ξk L

δ
k3 

2 e
λη+

1 − β
≈ 1.2904.

(55)

We can check that other conditions of .eorems 1 and 2
are satisfied. So, we know that square-mean pseudo almost

periodic solutions of system (51) are square-mean expo-
nentially stable. System (51) has the initial values
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Figure 5: .e states response of uR
1 (t), uR

2 (t), and uR
3 (t).
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u1(0) � 0.3 − 0.3i + 0.5j − 0.3k, u2(0) � − 0.2 + 0.4i−

0.4j − 0.45k, and u3(0) � 0.1 − 0.1i + 0.2j + 0.35k. .e re-
sults are verified by the numerical simulations in
Figures 5–8, which shows that the time response curve for
the four parts between the variables u1(t), u2(t), and u3(t) of
system (51).

6. Conclusion

In this paper, we consider the existence and square-mean
exponential stability of square-mean pseudo almost periodic
solutions of the quaternion-valued stochastic neural net-
works. By using the Banach fixed point theorem and sto-
chastic analysis techniques, we obtain some sufficient
conditions for the existence of square-mean pseudo almost
periodic solutions for the neural networks by direct method,
and we improve the norm. .en, by constructing an

appropriate Lyapunov functional, stochastic analysis theory
and Itô formula, a novel sufficient condition has been de-
rived to ensure the square-mean exponential stability for the
considered stochastic neural networks. In order to dem-
onstrate the usefulness of the presented results, some nu-
merical examples are given..e works of this paper improve
and extend the old results in literatures [22, 23] and propose
a good research thinking to study square-mean pseudo al-
most periodic solutions and square-mean exponential sta-
bility of quaternion-valued stochastic neural networks with
time-varying delays.
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