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In this paper, we are concerned with a class of quaternion-valued stochastic neural networks with time-varying delays. Firstly, we
cannot explicitly decompose the quaternion-valued stochastic systems into equivalent real-valued stochastic systems; by using the
Banach fixed point theorem and stochastic analysis techniques, we obtain some suflicient conditions for the existence of square-
mean pseudo almost periodic solutions for this class of neural networks. Then, by constructing an appropriate Lyapunov
functional and stochastic analysis techniques, we can also obtain sufficient conditions for square-mean exponential stability of the
considered neural networks. All of these results are new. Finally, two examples are given to illustrate the effectiveness and

feasibility of our main results.

1. Introduction

It is well known that the dynamic research on neural net-
work models has achieved fruitful results, and it has been
widely used in the fields of pattern recognition, automatic
control, signal processing, and artificial intelligence. How-
ever, most neural network models proposed and discussed in
the literature are deterministic. It has the characteristics of
simple and easy to analyze. In fact, for any actual system,
there is always a variety of random factors. As we know, in
real nervous systems and in the implementation of artificial
neural networks, noise is unavoidable [1, 2] and should be
taken into consideration in modelling. Stochastic neural
network is an artificial neural network and is used as a tool of
artificial intelligence. Therefore, it is of practical importance
to study the stochastic neural networks. In 1996, Liao and
Mao [3] studied stochastic effects to the stability property of
a neural network. Subsequently, some scholars carried out a
lot of research work and made some progress [4-7]. Due to
the finite switching speed of neurons and amplifiers, time

delays inevitably exist in biological and artificial neural
network models. In recent years, the research on the stability
of delay stochastic neural networks has become a hot spot in
many scholars [8-11].

On the one hand, the quaternion-valued neural network
has been one of the most popular research hot spots, due to
the storage capacity advantage compared to real-valued
neural networks and complex-valued neural networks. It can
be applied to the fields of robotics, attitude control of sat-
ellites, computer graphics, ensemble control, color night
vision, and image impression [12, 13]. Because all of these
applications rely heavily on their dynamics, the study of
various dynamical behaviors for quaternion-valued neural
networks has received much attention of many scholars, and
some results have been obtained for the stability [14-16],
dissipativity [17], and pseudo almost periodicity [18, 19] of
quaternion-valued neural networks. In recent years, authors
of [20, 21] considered the existence and global exponential
stability of pseudo almost periodic solutions and pseudo
almost automorphic solutions for quaternion-valued neural
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networks by direct method. It should be noted that most
studies on quaternion-valued neural network dynamic be-
haviors are concerned with the quaternion-valued deter-
ministic neural networks, and so far, only a few results
consider the stochastic quaternion-valued neural networks
via a decomposing method [22, 23]. For example, Sriraman
et al. [22] considered the square-mean asymptotic stability
for the discrete-time stochastic quaternion-valued neural
networks; in [23], authors studied the square-mean expo-
nential input-to-state stability for the continuous-time
stochastic memristive quaternion-valued neural networks.

On the other hand, pseudo almost periodicity is a natural
generalization of almost periodicity. Therefore, for nonau-
tonomous neural networks, pseudo almost periodic oscil-
lation is a very important dynamic phenomenon. In the past
few decades, many researchers have investigated various
dynamical behaviors of stochastic differential equations such
as the existence and stability of almost periodic solutions
[24], almost automorphic solutions [25, 26], and pseudo
almost periodic solutions [27, 28]. Besides, as we all know,
there have been only few results about the dynamic
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behaviors of nonautonomous stochastic neural networks.
Subsequently, some scholars have studied the existence and
stability of periodic solutions and almost periodic solutions
for stochastic neural networks [29-31], for example, Lu and
Ma [29] dealt with the stability analysis and the existence of
periodic solution problems for the stochastic neural net-
works; Huang and Yang [31] investigated the problems of
existence of quadratic mean almost periodic and global
exponential stability for stochastic cellular neural networks
with delays. Compared with the previous results, rare results
are available for pseudo almost periodic solutions of sto-
chastic neural networks in the mean square sense.

However, to the best of our knowledge, up to now, there
is no paper published on the existence and square-mean
exponential stability for square-mean pseudo almost peri-
odic solutions of quaternion-valued stochastic neural net-
works. So, it is a challenging and important problem in
theories and applications.

Motivated by the above, in this paper, we consider the
following quaternion-valued stochastic neural network:

du; (t) =|:—ocl(t)ul(t)+ Y by () i (e (1)) + chk(t)gk(uk(t—vlk(t))+Jl(t)]dt
k=1

k=1

+Z(Slk(uk(t_nlk(t)))dwk(t):
Pt

where [ € {1,2,...,n}=9; n is the number of neurons in
layers; u; (t) € Q is the state of the [-th neuron at time ;
a; (t) > 0 is the self-feedback connection weight; by, (t) and
¢y (t) € Q are, respectively, the connection weight and the
delay connection weight from neuron k to neuron I; vy (t)
and 7y (t) are the transmission delays; f;, g, @ — Qare
the activation functions; .#;(t) € Qis an external input on
the I-th unit at time t; W (£) = (W, (£), W, (), ..., W, (t))"
is an n-dimensional Brownian motion defined on a
complete probability space; &j: Q — Q is a Borel
measurable function; A = (0y.),, is the diffusion coeffi-
cient matrix.
The skew field of quaternion by

nxn

Q= {q = qR + in + jq] + qu}, (2)

where g%, g', ¢/, and gX are real numbers; the three
imaginary units i, j, and k obey the Hamilton’s multipli-
cation rules:

ij=—ji=k
jk=-kj=1i,

. (3)
ki = —ik = j,

i’=j =k =ijk=-1

For every u € Q, the conjugate transpose of u is defined
asu* = ul —iul — ju/ — kuX, and the norm of u is defined as

(1)

Il = Vo™ = () + (') +() +(5) @

For every u= (upuy...,u,) €Q", we define
lullgr = mangy{”ul"@}-

Let (W, F,{F,},.0» P) be a complete probability space
with a natural filtration {#,},.,, satisfying the usual con-
ditions (i.e., it is right continuous, and &%, contains all
P-null sets). Denote by BCz ([-,0], Q") the family of all
bounded, & ,-measurable, C([-7,0],Q")-valued random
variables ¢. Denote by 3%]0 ([-7,0],Q") the family of all
F,-measurable, C([-v,0], Q")-valued random variables ¢,
satisfying supse[,,,)O]Ekb(s)l2 <00, where E denotes the
expectation of stochastic process.

For the convenience, we will adopt the following

notation:
o = inf (1),
b;( = Sup "blk (t)"@’
teR
Cjp = sup "Czk (t)“Q,
teR
(5

v = max{sup Vg (t)},
keT [ terR

Lke



Mathematical Problems in Engineering

The initial conditions of system (1) are of the form
ul (S) = (pl (S)) RIS [—'V, 0]) (6)
where ¢, € BCy ([-7,0],Q), 1€ .

Remark 1. Quaternion-valued stochastic system (1) includes
real-valued stochastic systems and complex-valued sto-
chastic systems as its special cases. In fact, in system (1),

(i) If all the coefficients and delays are functions from R
to R, and all the activation functions are functions
from R to R, then the state u; () = uf (t) € R; in this
case, system (1) is a real-valued stochastic system;

(ii) If the coefficients are functions from R to C, and all
the activation functions are functions from C to C,
then the state u; (t) = uf (t) + iul] (t) € C;in this case,
system (1) is a complex-valued stochastic system.

With the inspiration from the previous research, in order
to fill the gap in the research field of quaternion-valued
stochastic neural networks, the work of this article comes
from two main motivations. (1) In practical applications,
pseudo almost periodic motion is an interesting and sig-
nificant dynamical property for stochastic differential
equations. In the past decade, many authors studied square-
mean almost periodic oscillations and square-mean almost
automorphic oscillations of stochastic differential equations
[24-26]. Yet, few literatures considered square-mean pseudo
almost periodic oscillation of stochastic differential equa-
tions [27, 28]. (2) Recently, a few literatures [22, 23] had
studied the square-mean stability of quaternion-valued
stochastic neural networks via a decomposing method. It is
noteworthy that the scholars have not begun to consider the
square-mean pseudo almost periodic oscillation for qua-
ternion-valued stochastic neural networks; thus, it is worth
studying square-mean pseudo almost periodic motion of
quaternion-valued stochastic neural network models by
direct method.

Compared with the previous literatures, the distinct
characteristics and main contributions of this article are
narrated as follows:

(1) Firstly, to the best of our knowledge, this is the first
time to investigate the existence and square-mean
exponential stability of square-mean pseudo almost
periodic solutions for quaternion-valued stochastic
delayed neural networks.

(2) Secondly, the method that we use to quaternion-
valued stochastic neural networks is different from
that used in [22, 23], and we improve the norm.

(3) Thirdly, the techniques of this paper can be applied
to study the square-mean pseudo almost periodic
solutions for other types of quaternion-valued sto-
chastic neural networks.

(4) Finally, examples and numerical simulations are
given to verify the effectiveness of the conclusion.

This paper is organized as follows: In Section 2, we
introduce some definitions and some preliminary results. In
Section 3, we establish some sufficient conditions for the
existence of square-mean pseudo almost periodic solutions
of system (1). In Section 4, we obtain the square-mean
exponential stability of system (1). In Section 5, we give two
examples to demonstrate the feasibility of our results. Fi-
nally, we draw a conclusion in Section 6.

2. Preliminaries and Basic Knowledge

Assume that H is a real separable Hilbert space, and L? (P, H)
stands for the space of all H-valued random variables X such
that E (| X]*) = IQ||X||2dP< co. Then, L? (P, H) is a Banach
space with the norm [ X[, = ([ I X|*dP)™?.

Similar to the definition in [27], we give the following
definitions.

Definition 1. A stochastic process X: R — L?(P,Q") is
said to be L*-continuous if

lim E|IX (1) - X(9)lg = 0. (7)
It is L2-bounded if sup, .z E[| X (£)[|3 < 0.

Definition 2. An  L*-continuous stochastic ~process
X: R — L*(P,Q") is said to be square-mean almost pe-
riodic, if for any € > 0, there exists L = L(¢) > 0, such that for
any a € R, there exists 7 € [a,a + L] with

sup E|X (t + 1) - X(t)”%Qn <e. (8)
teR

We denote by SAP (R, L* (P, Q")) the set of all square-
mean almost periodic functions from R to L? (P, Q"), and let
BC(R,L*(P,Q")) be the set of all bounded continuous
stochastic processes from R to L? (P, Q").

Let

1

T
SPAP,(R,L* (P, Q")) = {X € BC(R,L* (P, @n))|T£mm o J TEllX(t)Ilandt = 0}. 9)

We give the following definition for quaternion.



Definition 3. An  L*-continuous stochastic ~ process
X: R — L*(P,Q") is said to be square-mean pseudo al-
most periodic, if it can be decomposed as X =Y + Z, where

Y € SAP(R, L (P,Q")),

(10)
Z € SPAP(R,L* (P,Q")).

We denote by SPAP (R, L? (P, Q")) the set of all square-
mean pseudo almost periodic functions from R to
L2 (P,Q").

Similar to the lemma in [27], one can easily show as
follows.

Lemma 1. If f,g € SPAP(R,L*(P,Q)), then f +g, fg €
SPAP(R,L*(P,Q)).

0 € SAP(R,
o' (t))>0, then

Lemma 2. If ¢ e SPAP(R,L?(P,Q)),
(P,R)NCHR,R) with 9:=inf, (1
¢(-—0(-) € SPAP(R, L*(P,Q)).

Throughout the rest of the paper, we assume that

(Hl)(xl € SAP (R, R+), Uirs Nike € SAP (R, IR+) n Cl

(R,R) with y = sup,.g {vg ()}, B = sup,er {1 (D},
and blk’clk’ jl € SPAP(R, @), where l,k €g.

(H2) There exist positive constants L{ , LZ , and Lfk such
that for any x, y € Q,

1) = feW] oS LLlx = Yl
Ik (%) = g (D]l < Lillx = yllgs (11)
18 () = 8 (|| < Liklx = yllgs

and f;(0) = g4 (0) = 6, (0) =0, where ,k € T
(H3)maxleg{3Yl/(0€; )2}:/) <1, where

w (t) = J: e_I (00 [Z by (8) f1c (g (5)) +

t - (6)do »
+ J_OO e J K Z S (i (s = 11 (9))) AW (),

where [ € 7, then u is also a solution of system (1).
We define a mapping ®: & — X by setting

(¢1,¢2,...,¢n)—>(u(f,ug),...,uﬁ). (15)

We shall show that ® has a unique fixed point in ™. For
¢ € X", we have

Igllo <[|¢°]5 +]& - ¢l < 2. (16)
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i . . . (12)

(H4) Forle T
such that

, there exist positive constants A and &,

n

2800 >AE + 28+ Z &k (bZz)Z(L£)2 + Z &

k=1 k=1

(cn)(L7)

Av* n At

i
_y+k;5k( u) .

(13)

3. Square-Mean Pseudo Almost
Periodic Solutions

In this section, we will study the existence of square-mean
pseudo almost periodic solutions of system (1).

Let £ ={¢l¢p e SPAP(R L?>(P,Q")) with the norm
ol = supteR(EH(p(t)IIQn Y2 and then & is a Banach
space.

Set ¢ = (@1, ¢35, .- (/5 >
tooc{ J a’(e)dgf (s)ds, te [Rn andl ¢ T
stant satisfying # > [|¢°] 4.

where (p? (t) =
, and «x is a con-

Theorem 1. Let (H,)-(H;) hold. Then, system (1) has a
unique square-mean pseudo almost periodic solution in the

region X* = {$lp € Lllp — ¢°ll < x}.

Proof. Firstly, it is easy to see that if wu(t) = {(u, (1),
u, (t),...,u, )’ }er 1S @ solution of the following sto-
chastic integral equation

Z ik ()i (i (s — v (9))) + 74 (s) |ds

k=1
(14)

For any ¢ € 2", from (14), we consider the following
stochastic integral equation:

t t t
TN P R TR
(17)

Y G ()dW, (s), leT,

k=1
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where From Lemmas 1 and 2, we have F;,Gy € SPAP (R, L?
(P,Q)), Lke T, that is, F;,Gy can be rewritten as

Fi(s) = ) by () fi($(9) + X cu(9ge ($i (s —vua(8))  Fr=Fy +F), Gy =Gy +Gy, where F},Gj € SAP(R,L?
k=1 k=1 (P,Q)), F),G). € SPAP;(R,L?*(P,Q)). Hence,

+7(s),

Gy (s) = Oy (bx (s = 1 (9)))-
(18)

t t t
ufo=| & JLa®d0p (s + | ) “fwd"zle(s)dwk(snj e S ®0p0 (q

—00 k=1 —00
t (19)
¢ | e
" j e Y Gl (AW, (=) (1) + #(1), L T,
0 k=1
E"F1 (s+1)-F (5)”2 <e,
First, we will prove that %, € SAP(R, L*(P,Q)),l € 7. ! ! Q (20)
For any &>0, since o € SAP(T,R*), F},Gj, € SAP E"Gzlk(s +17) -Gy, (s)”2 <e.
(R,L?(P,Q)), it is possible to find a real number @
L = L(¢) > 0; for any interval with length L (¢), there exists a For I € 7, then we consider
number 7=17(¢) in this interval such that El;(s+ 1)
—a;(s)|* <& and
t 2
- 0)do
J e Lal( ) [Fll(s+r)—F11(s)]ds
t t
t - 0 de - 0)do
+.[ (e Lal( o —-e Lal() )F}(S+T)ds
E| i ¢ + 7 - 7] (0]} = E :
o [ a0 1
+J e [Gh (s +7) - Gl (9)]dW,. ()
- k=1
t
t - 0 do - 0)do
+J ¢ L'xl( R J“’() 3 G (s + AW, (5
- k=1 o
t 2
t - 0)do
<4E j e Lal( ) [Fll(s+r)—Fll(s)]ds (21)
Q
t t 2
: J o (0 +7)d0 J w(0)d0
+4[EJ e Js —e Js F, (s + 1)ds
Q
2
[ 0)do »
+4E J e Ldl( ) [Gllk(s"'T)—Gllk(S)]de(S)
k=1 o
t 2
t - 0 do - 6)do
+4[EJ (e L“l( rode J“’() )Zle(s+r)de(s)
- k=1
Q

M=

(Clk )2

M=

s (S Ea

k=1 k=

(@) +(o) ?li(L?k)2+4>s,

k k

1l
—_

1



Thus, we proved that %, is square-mean almost peri-

odic, 1 € 7.
the other hand, we that

On prove
H° e SPAP, (R, L? (P, Q)). Hence, we only need to show

will

J: B} 0lfpd = o JTT E Jtm ¢ J t O 0 s |

1
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T
lim —J Bl# 0dt=0, 1eg.  (22)
— i

100 2T

Thus, we obtain

t ;f%®

—00

2

ZG,k(s)de(s) dt
k=1 o
2

2T
t 2
R O TG e _Ja,(e)
Sf J_TE J_we s F?(s)ds dt+f J_TE J_we ;le(s)dwk(s) dt= @, +@,
Q Q
(23)
It follows from the Cauchy-Schwarz inequality that
t 2
e J & (6)d0
0 = JiTE L}Oe : F(s)ds| dt
Q
t t
L[ e e [ aede (24)
S JiT Jiw Jiooe s E||F, (s)||st dt
t
1 T t —J (Xl(e)de 0 2 1 T -T _J (xl( ) 0 2
STial_ J‘ J‘ Te s E”Fl (S)"@dsdt +T7‘Xl_ J_T J._ooe s E“Fl (S)"@dsdt::QI + QZ
thus Q, — 0 as

Set { =t — s, and using Fubini’s theorem, we obtain that

JTTJ ’J o (6)do E||F (S)"%stdt

1
t T T
“Ta; JJ e 9% || ()|, dsdt
zjl JTTJ e E|F (1 - )| dddr
3, J, e [TTN TCans JT:(E“F?(G)"gdG]d(
2l ] Rl

(25)

since  F) € SPAP, (R, L*(P,Q)),
T — +00. Since F? is bounded, as T — +00, we have

t
| (T (T —Ja(@)d@
0= [ [ e B e o asa
<L JT J e % B||F0 (¢ - O, dcdt
" Tay Jor S : @
(26)
S;supEnF?(t)Hz JT J et ddt
T(oc,_)3 teR Q)1 )
o™ B 0, — o
T() et 0

Hence, for [ € 7, we have that @] — 0as T — +co0.
By the Itd isometry, one has
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2

Zle(s)de(s) dt
k=1
Q

1 (T t - J o (6)do
f .[—T E J—oo ¢

|| e BlGy 9 dsar
JT jfT 24 9| G ()|, dsdt
P Ik Q
E”le(s)"st]

sup i E”le(t)”é — 0, asT — +o00.

LER f=1

T( 0)’
(27)

Bj(@¢)(0)- ¢ (1)} = %%X{E

<3 max{ E
leT

+3max4 E
leT

[ (6)do
| e JL DABTACKENLE

Jz e’I o (6)df o

k=1

+3max1q E
leT

k=1

5 [ - [ wao 2 ]
‘FF{TE[LOJ ’ (Z||b1k<s>||@L’||¢k<s>||@)

[7 : “1<9>d9LZblk(s>fk B (5)) + Zc,k<s>gk ¢k<s—vk1<s>>)}ds+[ e LS (B (s = ()W ()

)

chk(s i (i (5= v (5)))ds

t- (6)do
[ e fL ¥ 81 (5= ()W (5)

7
Therefore, we have verified
im [ HmoRa-0 teg. 9
T—s+00 2T -T ! Q

Therefore, we have u;b € SPAP(R, L? (P, Q)).

Next, we show that @ is a self-mapping from 2™ to 2.
For ¢ € 2, by the Cauchy-Schwarz inequality and It6
isometry, we have

A

—_—

¢ | ae)do :
+%?<‘%E[Jme Ial <Z”CU<(S)”QLg"¢k(S Ukl(s))”0> }}

M:

+3 max‘ E
leT P

(o (0le)” ¥ (1)

k=

3 il 01 5 (1)

k=1

(L)’ }Ellqﬁ(t)llén

< m{ o [i((ublkunm)z§(L£)2+i(llqk<t>||@)z

k=1 k=1 k=1

Elp ()G

t
t 2| a(0)do
(Jme J-S 1 ||51k(¢k(5_Wlk(s)))”:)ds)}

”Euwwnan
2] }Ellsb( )12,

3 (L) + Y (k)

k=1 k=1

i
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It follows from (29) and (Hj;) that

|06 - ¢°| = sup E|(@4) (1)~ * (1) ;

Q"

(30)

com| L[S wr Sy Far Sy S fae

k=1

which implies that [|®¢—¢°|, <x; hence, we have
D¢p € 2. Next, we show that @ is a contraction mapping in
Z*. For any ¢,y € 2, we have

El(@¢)(t) - (Dy) (D)

t | 0
J_Ooe J (0)d <Zblk(5 [fre(d(5)) = fre(wie( 5))]>

3 t - | o(6)do
_Izrslng +J_Ooe J l <chk $)[9k (i (s — v () - gk(‘!’k(s—vkz(s)))]>d5 [ (31)

t - toc(@)d@ n
+J J l Z O (br (s = 1 (5))) = O (Wi (s = 1 (5)))]dW e (s)
k=1

—0 o]
n N n 2 - n 2
< r};g}{ 7 LZ i)’ Z(Lf) PCADN A Z(Lfk) ]ncp(t)—w(t)uan.
o k=1 - = k=1
Thus, we have
3y, )
sup El(®¢) (t) = (D) (1) llgy < max{ } sup E[l¢ (£) — v (1)l g (32)
teR ((Xl ) teR
It follows from (32) that positive constants A > 0 and .Z > 0 such that for an arbitrary

. T . .
solution w = (wy,w,,...,w,) with  initial  value,

109 = Pyl < vPI$ =yl B3 = vy satisfies
In view of (H;), we see that @ is a contraction mapping. 5 Y 5
Therefore, ® has a unique fixed point in 2, that is, (1) has a Elw(t) —u(t)lgn < Ae " Ely - ¢ll;, t>0, (34)
unique square-mean pseudo almost periodic solution in 2.
The proof is finished. O  Where

4. Square-Mean Exponential Stability () = u®ller = %?“'u}l (1) = (O]}

(35)
In this section, we will consider the square-mean expo- B _
nential stability of system (1). Iy =9l = max{ svp ”%(S) o (S)”@}
Definition 4. Let u = (u;,u,,.. .,un)T be a solution of (1) Then, the solution u(t) is said to be square-mean ex-

with the initial value ¢ = (¢, ¢,,...,¢,)". If there exist  ponentially stable.
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Theorem 2. Suppose that the assumptions (H,)-(H,) are
satisfied, then for any initial value of dynamical system (1),
there exists a square-mean pseudo almost periodic solution
u(t), which is square-mean exponentially stable.

(wy,wy,...,w ) is an arbitrary solutlon of system (1) with
initial value v = (y1,v,,... ,wn) and z(t) = w(t) —u(t).
Let S(t) = (8lk (t))an, where 5”( (t) 81k (Zk (t — i (t))) We
consider the Lyapunov function as follows:

At *
Proof. From Theorem 1, we see that system (1) has a square- Vitz(1) = r};gx{e &z (D2 () + &I (1,2 (t))}’ (36)
mean pseudo almost periodic solution u = (u,u,, . . ., u,)"
with initial value ¢ = (¢, ¢,...,¢,) . Suppose that w =  Where
N g 2 * As SN . As
Ltze) =Y () (1)<— J 2t (97 ()¢ ds + Y (L) J 22 ()2, (s)eds. (37)
k=1 L=y Jtvy0 k=1 1- t=ry ()
Then, by Ité formula, we have the following stochastic where V,(t,z(t)) = (0V (t,z(t))/0z,,t...n,qoV (t,z(t))/

differential:
dV (t,z(t)) = LV (t,z(1))dt + V (¢, z(£))S (t)dW (¢),
(38)

k=1

k=1
ZV (t,z(t)) = max-
leT

2 (le)

k=1
k=1

k=1

(e (O [gr (Wi (t = vy (1)) —

VL)

+26"8z7 ()2, () + & z § Z

< max- p=l k=1

X(Lg)

Ar]*
—Mg, Z (le) . ﬁ -Pz (¢

k=1

k=1

A" Ez) (B)z) () + €V &z, (1) [—a,(t)z;‘ )+ Y GO fr(we () = fr (e (1))
+eME,Z,* (t) |:—0¢1 Oz, () + Z by (6 [ f i (wic (0) = frc (i ()]
k=1
n )L
6 (@) (1) A a0 - & Y (G ()

xzp (t = v ()2 (t = v (1))e Mo 0)gs +§ Z (le)

+e"'¢, Z (81 (wie (£ = g (£9)) = Sy (o (£ = g ()] ™ [Oix (wie (& = g (£))) = Sy (e (£ = g (9)))]
e (A& — 26101 (1)2] (8)z, (1) + €&, i (b O [ fre(wie (1)) = fic (e D))

X(bi O fr(we 1) = fr (e (D)]) + @Mfii (e () [gx (Wi (t = v (1)) = g (e (¢

I (e (t —va (D))])

A*

n
Nk (t— v (D)2, (t - v (D) ™+, Z (sz) =
=g () X 2 (¢ = e (B)e

+e"'g) Z (I‘fk)zzlt (t = 1 ()2 (t = 1 (1))

0z,), and & is the weak infinitesimal operator such that

+ Zn: (e O] gr (Wi (t = v (1)) = gie (e (£ = v (D))]) *]
bt

S XACIPAC RO EPR O ENO|

Avt

1-vg(t
y( v (1))

k=1

Ml*
zk )z (t)e

-B

()27 (£ = i ()2, (= i (t))e)‘(F e (8)

—ug(M))])”

7 (020 - M Z ()’

k=1

M
—2z ()z;. (1)

& F
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M (AE + 28 - 2807 )z] (D2, (1) + €& Y () (L] )Zz;; 1)z, (1)

k=1
< max
<7 TR ¢ * M N (702 & *
+e'§ Z (ci) (Lg) z; (D)z; (1) + €& Z (le) ——z; (H)z, () (39)
k=1 1-y k=1 1-8
+ )lr]
2e .
_ ?Jl {(Agl 26 =267 + 3 600 (1) + 36 () DUACHES /3> }zl 020 }
From (H,), we easily derive Now, similar to the previous literature, we define the
stopping time (or Markov time) oy := inf{s >0: |z (s)| > k},
LV (,2(1) =0, (40) and by the Dynkin formula, we have
A}
E[V (tAoy,z(tAa,))] = E[V(0,2(0)] +E“ LV (s,z(s))ds]|. (41)
0

Letting k — oo on both sides (41), from the monotone
convergence theorem, we can get

E[V(t,z(t))]<E[V(0,2(0)]

Avt 0
= Ilnax{ §Ez; (0)z,(0) + ¢ Z (ci) (Lg) 16 J EZZ (s)z; (s )t ds

k=1 =Y J-v(0
n At 0 (42)
2e . s
+£,Z (Lfk) J Ezk(s)zk(s)e)1 ds
k=1 1= J
+ )L ' 8\2 + e/ln* 2
< max fl+flz (b, (Lg) —+EZZ<LH) — |E sup lvi(s) =i ()| t-
k=1 1 1 ﬁ s€[-2,0]
On the other hand, it follows from the definition of Combining (42) and (43), the following holds:
V (t,z(t)) that _

Ellz ()3 <.tte ™ Ely - ¢, (44)

E[V (t,z ()] = Ee" max &z] (t)z; (1) > " min &E|lz (£)]3.
leT leT where

(43)

S

1 2 +e v M
M= rzrelinfl r};ixf { kZ:: (k) (Lg) Z; (Lkl) —ﬁ}’ (45)

which together with Definition 4 verifies that square-mean  Remark 2. From the proofs of Theorems 1 and 2, one can
pseudo almost periodic solution of system (1) which is  easily see that if all the coefficients of (1) are square-mean
square-mean exponentially stable. The proof is finished. O almost automorphic and square-mean almost periodic,
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respectively, then, similar to the proofs of Theorems 1 and 2
and under the same corresponding conditions, one can show
that the similar results of Theorems 1 and 2 are still valid for
both cases of the square-mean pseudo almost automorphy
and square-mean weighted pseudo almost periodicity.

2 2
dul(t):|:—ocl(t)ul(t)+Zblk(t)fk(uk(t))+chk(t)gk(uk(t—vlk(t))+Jl(t) dt
k=1 k=1

2
+ D S (e (£ = e (£)))dW, (£),

k=1

where [ = 1, 2; the coeflicients are as follows:

a; (t)=3+|cos( V2t)l,

a,(t)=6-2sin(V3t),

11

5. Illustrative Example

In this section, we give numerical examples to illustrate the
feasibility and effectiveness of our results obtained in Sec-
tions 3 and 4.

Example 1. Let n = 2. Consider the following quaternion-
valued stochastic neural network:

(46)
1 R 1 1 .1 . 1 1 . ] K
fk(uk):gk(uk):§tanhuk+1§'uk‘+]Zsmuk+k§sm(uk+uk )
1 . R I B S A 1 K
(Slk(uk)zﬁsm(uk+uk)+1§smuk+]§|uk|+kgtanhuk,
by (t) = 0.5sin ( \2t) +i0.5sint + 70.8cost + k0.4cos (2t ),
(47)

¢ (t) =0.8cost +il.2sin( 2t) + j1.5sint + k0.9cos ( \3t),

F,(t) =0.2sin ( V3t ) +i0.5c0s (2t ) + j0.3cos ( V2t ) + k0.3sin ( v/ (3)t),

7, (t) =0.3cos( V2t ) +i0.4sin (\/3t) + j0.5sint + k0.2cos ( V3t )),

1 .
vy (1) =5|s1nt|,

4

Through simple calculations, we have
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a =3, Take A = 0.1, & = 0.3, and &, = 0.4, then we have
2
_ - 2
a =4, 280y = 18> AE, +28, + Y & (b)) (L))
k=1
f_qo_1
Lk = Lk Y ) , , e’w ) . e’W
+
+Y &) (L)) ot Y &(Ly,) 5 = 0.9501,
- 1 k=1 Y A B
Ik 5’
2 .
o=l 26,05 =325 06, + 26, + ) & (b,) (L))
2 k=1
4
t_Z w2 At
n=o 2 2 2e 2
4 + g 3 ~
5 (48) +kzlfk(ck2) (L) 1_y+kzlfk(Lk2) e 1.5295.
. m -
=, 50
v=3 (50)
4 We can check that other conditions of Theorems 1 and 2
B=- are satisfied. So, we know that square-mean pseudo almost
> periodic solutions of system (46) are square-mean expo-
bt <1.1402 nentially stable. System (46) has the initial value u, (0) =
o= 0.3 - 0.5i + 0.6 + 0.25k and U, (0) = —0.2 + 0.4i —
¢ <2.2672, 0.4j — 0.35k. The results are verified by the numerical

simulations in Figures 1-4, which shows the time response
Y. ~ 1.6901 curve for the four parts between the variables u, (t) and u, ()
! ’ of system (46).

Y, = 1.7701.

Example 2. Let n = 3. Consider the following quaternion-

Then, we have valued stochastic neural network:

3y, 3Y,

max{ ——, "2 L ~ max{0.5634,0.3319} = 0.5634 = p< 1.
(067)" (a3)

(49)

3 3
du (t) = [—al (O (8) + Y by () fr (i () + Y ey () g (g (= v (1)) + 7, (8) |dit
k=1

k=1 (51)

3
+ Z Suic (e (£ = 1y (1)) AW (8),
p

where [ = 1,2, 3; the coeflicients are as follows:
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0.3 T T T T T T T T T

0.2 ]

uf (1)

0 5 10 15 20 25 30 35 40 45 50
— uf@®

-

FIGURE 1: The states response of uf (t) and uX ().

0.4 T T T T T T T T T

ul (f)

70_5 1 1 1 1 1 1 1 1 1

— ul®

0]

FIGURE 2: The states response of u! () and u! (t).

uj (t)

— 4 — uf(®)
10 -—- uk ()

FiGure 3: The states response of u{ (t) and u£ (1). FIGURE 4: The states response of uf (t) and uf (1).
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_1 .or 1L o1 I 7 kl . K
fk(uk)—ﬁsmuk+zﬁsmuk+]gsm(uk+uk)+ Esmuk,

IS T N SR S SN | ! kl s
gk(uk)—ﬁsm(uk +uk)+1%s1n(uk +uk)+]gtan u + Etan U,
Oy (u )=isinuR+iisinuI+ 'lsin(uR+u])+kitanhuK
1\ U 15 k710 k ]8 kT U 12 k>

ocl(t):2+|sin(\/§t)|,

ocz(t):S—Zcos(\/Et),

(x3(t)=7—3cos(\/§t),

by (t)=0.4cos(V3t)+i0.6sin( V3t)+ j0.7sint + k0.5 cos(2t),
Ik J

e (t)=12sint+i0.9cos(2t) + jsin( V2t) + k 1.5cos( V3t),

F,(t)=0.2sin(V3t)+i0.5cos(2t)+ j0.3cos( V2t)+ k0.3sin( V3t),

I, (t) = 0.3(sin( \/Et)+e‘f26°szt) +10.4sin(V3t)+ j0.5sint +k0.2cos( V3t)),
F,(t)=0.2sin(2t) +i0.3cos( V2t)+ j0.4cost +k0.3sin( V/5¢t)),
vkz(t)=%lc08(\/§t)l,

4 .
e () =§|Sln(2t)|,

Lk=1,2,3.

Through simple calculations, we have

(52)
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a =2, 03
a, =3,
a; =4,
1
=1f=—,
10
s 1
Ly = g
-0.2 .
. 1 0 5 10 15 20 25 30 35 40 45 50
v o=,
2 t
+_ f — uf(®
=% (53) ()
1 - uk (1)
Y= 2 FiGURE 5: The states response of uf (¢), uf (t), and uf ().
B= 4
5 0.4
.
e < 1.1225, 03}
+ 0.2},
Cpp $2.3452, I y i
o [ M I .|
_ his }h ”lv\ ’nl , \‘/;" ,.‘1 l”\ l| "h /\ | ’I‘lf" 1
Yl = 06553’ S-i 0 \L l‘v‘i iy ?\'U,‘." , 4‘1’ AL [} '|r \J J" ’» ] .v ’,A‘Y
= V.;v/ | % Il‘\\ll ’\'(1; W i Wy "' I I g
_ I i v
Y, ~ 0.6787, 01 oW
-0.2
Y; = 0.7021. 03
Then, we have -0.4

0 5 10 15 20 25 30 35 40 45 50

3y, 3Y, 3Y,
max ( ~ max{0.4915,0.2262,0.1316}

a)" (05)" (a5)

— w0
I |
= 04915 = p< 1. w0
- ()
(54)
FIGURE 6: The states response of u! (¢), ul (t), and ug (t).
Take A = 0.1, & = 0.3, &, = 0.4, and &; = 0.5, then we
have
- : N2 ez et S sa2em
26y = 12508 + 28+ ) & (b)) (L) + Y & () (L0) T+ D &lLin) -5 = 08704,
k=1 k=1 Y o B
_ 3 N2/ f vt 2 eM
26,05 = 24> 08, + 286, + ) & (by,) (Lk) Z & (ch) (Lg) Z Ek(Lkz) e 1.0804, (55)
k=1
3 5 vt /111*
26505 = 4> A8 +28 + ) & (b)) (L ) Z Ec(cs) (Lf’) o Z .fk(Lk3) e 1.2904.
k=1

We can check that other conditions of Theorems 1 and2  periodic solutions of system (51) are square-mean expo-
are satisfied. So, we know that square-mean pseudo almost ~ nentially stable. System (51) has the initial values
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0.5

ul (1)

-0.2

-03¢t -

-0.4

— uf(®
- uh()

o

FIGURE 7: The states response of u] (t), u} (t), and i}, ().

0.4

03} .
02} _
0.1}

= 0

T 0.1

-0.2 i
-03} i
-0.4 | i

-0.5

— Ui
10

- )

FIGURE 8: The states response of X (¢), uX (t), and uf (¥).

u, (0) = 0.3 - 0.3i + 0.5] — 0.3k, 1, (0) = 0.2 + 0.4i—
0.4j — 0.45k, and 15 (0) = 0.1 —0.1i + 0.2j + 0.35k. The re-
sults are verified by the numerical simulations in
Figures 5-8, which shows that the time response curve for
the four parts between the variables u, (t), u, (t), and u; (t) of
system (51).

6. Conclusion

In this paper, we consider the existence and square-mean
exponential stability of square-mean pseudo almost periodic
solutions of the quaternion-valued stochastic neural net-
works. By using the Banach fixed point theorem and sto-
chastic analysis techniques, we obtain some sufficient
conditions for the existence of square-mean pseudo almost
periodic solutions for the neural networks by direct method,
and we improve the norm. Then, by constructing an

Mathematical Problems in Engineering

appropriate Lyapunov functional, stochastic analysis theory
and It6 formula, a novel sufficient condition has been de-
rived to ensure the square-mean exponential stability for the
considered stochastic neural networks. In order to dem-
onstrate the usefulness of the presented results, some nu-
merical examples are given. The works of this paper improve
and extend the old results in literatures [22, 23] and propose
a good research thinking to study square-mean pseudo al-
most periodic solutions and square-mean exponential sta-
bility of quaternion-valued stochastic neural networks with
time-varying delays.
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