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ABSTRACT The applications of super-resolution (SR) technology in the field of image completion are
successful. Nevertheless, industry applications demand not only image completion but also the topology
and time-series completion. In this paper, the SR technology on a topology graph is studied in the
scenario of recovering measurements in power distribution systems for cost saving and security & stability
improvement. The power flow and voltage magnitude measurements on feeders are reported at different
frequencies. In this paper, a new data completion method considering distribution system topology is
proposed. Firstly, the graph convolutional neural network (GCN) is used for spatial-temporal convolution on
a graph, and then the power system state estimation (SE) is used introducing the physical constraints. This
method realizes the super-resolution of distribution system measurements, improves the state awareness
of distribution systems. Hence, it helps to improve the efficiency of distribution network operation and to
reduce equipment failures.

INDEX TERMS Super resolution; graph convolution; power distribution network; state estimation.

I. INTRODUCTION

The super-resolution (SR) has satisfying applications in the
field of image completion. Moreover, the emerging deep
learning methods are capable of recovering the high resolu-
tion (HR) images from the low resolution (LR) ones to an
impressive extent [1], [2]. Medical imaging super-resolution
also draws a lot of attention [3]. However, the researchers
focus more on images. This paper tries to perform temporal
SR on power distribution system measurements. The power
distribution system [4] is an important part of the power
system. It takes electricity from power transmission systems
and distributes it to end-users (factories, dwellings). Because
of historical reasons, its measurement quality is significantly
lower than that of transmission systems [5]. However, due
to the demand of power supply quality, development of
electrical vehicles, and penetration of renewable energy, the
state awareness of the power distribution systems becomes
increasingly important [6]. Hence, this paper tries to perform
graph temporal SR, in order to recover the high temporal res-

olution (HTR) measurements from its current low temporal
resolution (LTR) measurements. It will help to improve the
efficiency of distribution network operation and to reduce
equipment failures.

The super-resolution, that is, obtaining HR data from LR
observations, is an attractive field of research. The field of
image SR is especially attractive. The image super-resolution
has many applications, such as medical image processing
[7], [8], facial image improvement [9], [10], enhancement
of compressed images/videos [11], [12], and thermal image
enhancement [13]. Nevertheless, the SR is a broader concept.
To some extent, the power system state estimation (SE)
[14]–[16] is also a kind of SR. The SE takes the redundant
amount of low accuracy measurements and generates more
precise system states. As for methods of the SR, they range
from Fourier frequency domain methods [17], [18], wavelet
methods [19], [20], to deep learning methods [1], [21]–[25].
The first attempt of applying deep learning on SR is SRCNN
[24]. A very simple three-layer convolutional neural network
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(CNN) reports impressive performance. SRCNN [24] divides
SR into three steps: Patch extraction and representation, non-
linear mapping, and reconstruction. Then, the mean square
error (MSE) is selected as the loss function. This paper still
follows some basic ideas of SRCNN [24]. Later, more deep
learning structures are applied on SR, e.g., SR with very deep
residual channel attention networks [26] and SRGAN [1].
SRGAN stands out for its novel structure and novel assess-
ment of loss function. Generative adversarial network (GAN)
is used for generating HR images while the loss function
is not MSE or other analytical functions, but another CNN.
The works mentioned above in this paragraph all focus on
image SR. However, industrial applications demand more
than this. SR on industrial sensors are also valuable and in
need. There are an enormous amount of sensors installed,
including thermal sensors, voltage sensors, current sensors,
power sensors, vibration sensors, and so on. These sensors
create time series data at different frequencies, from different
installed locations. Chen et al. [27] performs temporal super-
resolution on smart meters. It uses GAN with 1-D convolu-
tion layers and reports impressive results. However, it deals
with only one smart meter, neglecting the correlations. As far
as we know, there are no published works on temporal SR on
multi-sensors on a graph.

On the power system measurement completion problem,
researchers also proposed methods based on the matrix
completion [28] and tensor completion [29], [30]. These
methods generally perform the tensor/matrix decomposition
followed by tensor/matrix reconstruction, exploiting the low-
rank property of measurements. They perform well on PMU
missing data completion and power distribution network
measurement recovering and enhancing. These tensor/matrix
completion methods generally do not require topology pa-
rameters.

This work tries to implement temporal SR on a graph with
graph neural networks and SE. Deep learning on a graph
is also an attractive research topic. There are applications
ranging from rational reasoning [31], modeling molecular
fingerprints [32], to image recognition [33]. The initial of
learning on a graph can be dated back before the emergence
of deep learning [34], [35]. Frequency domain methods are
used in these researches. The graph convolutional network
(GCN) follows the basic idea of CNN: sharing weights and
extracting structural features. The graph convolution layer
evolves from the intuitive spectral way [36], to Chebyshev
polynomials [37] then to first-order approximation [38].
There are node level learning and graph-level learning in
works about GCN. In the node level learning, the GCN treats
one node as a sample, e.g., classifying whether a person is
emotional in a social network, and classifying whether an
article is valuable in a citation network. The graph level GCN,
i.e., treating one graph as a sample, is less common. For
example, classifying whether a social network is healthy, and
generating a fake citation network. The graph level GCN is
helpful for SR in power distribution systems.

Contributions: This paper presents a temporal graph

super-resolution method for measurement completion in
power distribution systems. As far as we know, there are no
existing works about graph level temporal SR on industrial
sensors. It will help to improve power distribution network
security and stability, and to reduce monitoring costs.

1) This paper presents a framework about applying SR on
power distribution systems, including feature transfor-
mation, graph level GCN, and state estimation.

2) This paper solves the problem that mixed node features
and edge features are hard to train. This is accom-
plished by transforming edge features to node features
using properties of the power distribution system.

3) This paper modifies the first-order Chebyshev polyno-
mials GCN for graph level regression.

4) This paper considers physical constraints (results of
GCN is tuned by an SE)

Tests show the superiority of the proposed SR method over
different interpolation methods for more than 20% (overall
MSE). Moreover, it can also perform spatial-temporal SR
when data of some nodes are completely missing.

II. PROBLEM DESCRIPTION
A. INTRODUCTION OF POWER DISTRIBUTION
SYSTEMS
Power distribution systems along with power transmission
systems are significant parts of the power system. The power
transmission system transmits electricity for long distances
and acts as the bone of power systems, while the power
distribution system takes power from the transmission system
and distributes the electricity to end-users. For brevity, the
power distribution system and power transmission system are
called distribution system and transmission system for short.

Usually, in a distribution system, there is only one node
connecting to the transmission system. That node is called the
parent node. The parent node is equipped with supervisory
control and data acquisition (SCADA) devices or even phasor
measurement units (PMU), it has reliable and HTR measure-
ments. Several feeders connect loads or distributed energy
resources to the parent node. To measure the states of the
distributed system, measuring devices are installed along the
feeders. However, the measurement quality is significantly
lower than that of transmission systems, this is because of
considerations of costs. Although the scale (number of nodes)
of a distribution system is small, there are too many distri-
bution systems in one power system. The low measurement
quality reflects in two folds:

1) Temporal resolution of measurements in distribution
systems are low and uneven. The parent node is
equipped with SCADA devices and therefore is HTR
and reliable. The measurements of other nodes or lines
are LTR. The temporal resolution of measurements
along different feeders are also different.

2) There are also fewer types of measurements in distribu-
tion systems. Typical available types of measurements
are Plf (active power flow of lines) and Vm (voltage
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magnitude of nodes). Usually, there are no reactive
power measurements.

An illustration of the IEEE 33-node distribution system
is shown in Fig. 1. There are 4 feeders in this system. The
number #1-#33 represent for the nodes. These nodes have
loads, distributed energy resources, or both. Node 1 is the
parent node that connects with the transmission system. Each
node is equipped with devices measuring voltage magnitude
Vm as shown in Fig. 1. The power flow on the feeder is
measured at different positions, denoted as Plf. In normal
operation, the topology of distribution systems are radial, that
is, it is an acycline graph.

B. SUPER RESOLUTION OF TEMPORAL
MEASUREMENTS
Due to considerations of costs, most measurements of the
distribution system are LTR, resulting in low state awareness.
However, with more penetration of distributed (renewable)
energy resources and rapid development of the electricity
market, state awareness becomes important. Limited by the
cost of communication bandwidth, the capacity of the data
center and measuring devices, measurement quality is less
likely to upgrade in a short time. Therefore, a new demand
rises in the power industry: Using LTR equipment to accom-
plish HTR measuring and enhance state awareness.

The temporal resolution, that is, the data reporting fre-
quency, follows Fig. 2. The parent node (node 1 in Fig. 2) has
the highest temporal resolution, while the temporal resolution
of other nodes varies. Usually, the temporal resolutions along
a feeder are the same. Denote the frequency of parent node
reporting data as fp. As shown in Fig. 2, node 2 (on feeder 1)
reports data at frequency fp/2, while node 23 (on feeder 4)
reports data at frequency fp/4.

For illustration, suppose the HTR of measurement of node
1, 2, 23 are as follows:

Node 1 : y1 = y2 + y23 = sin(
2π

16
t) + sin(

2π

8
t)

Node 2 : y2 = sin(
2π

8
t)

Node 23 : y23 = sin(
2π

16
t)

(1)

The original HTR measurements are the right three subfig-
ures (d)-(f) in Fig. 3, while the left three subfigures (a)-
(c) report the LTR measurements. It can be observed that
LTR causes distortion. This paper tries to restore the HTR
measurements from the LTR ones. By doing so, the state
awareness of distribution systems will be enhanced.

There are several obstacles for this task:

1) The measurements are on a graph, not the 2-D im-
age. Topological connection of the distribution system
holds important information, and should not be aban-
doned.

2) We have to perform learning on graph level, yet re-
searchers focus more on node level graph learning.

Resulted by graph level learning and considering time-
series data, the scale of the input data is relatively high.

3) Both node features, e.g., voltage magnitude Vm and
edge features, e.g., power flow on the feeder Plf are
involved.

4) How to take advantage of the physical constraints.

If we can overcome these obstacles, the benefits will be
promising: 1) Cost saving: The power system consists of
transmission networks and distribution networks. The state
monitoring techniques and devices, e.g., SCADA, SE, and
PMU, are well developed and installed in transmission net-
works. However, state monitoring in the distribution sys-
tem is rather primitive. The most important reason is the
quantity and therefore the price: Usually, every node in the
transmission network branches out a distribution network.
The PJM transmission network in the U.S. has thousands
of nodes. That is, a single transmission network branches
out thousands of distribution networks, and therefore make it
almost impossible to install the same monitoring devices like
those in transmission networks. Nonetheless, power grids in
both China and the U.S. are trying to develop smart distribu-
tion networks, which requires sophisticated monitoring. This
paper tries to solve this problem. The low frequency and low
precision monitoring devices are much cheaper than high
frequency and high precision ones, not to mention the cost
of network bandwidth and storage. The method proposed in
this paper restores the high temporal resolution (HTR) data
from the low temporal resolution (LTR) ones. And uses the
distribution network state estimation to increase precision.
The proposed method managed to acquire acceptable mon-
itoring results with much cheaper devices. 2) Power system
security and stability: More importantly than all of that,
power system failures are vital for modern societies. Apart
from reducing costs, this method can obtain HTR data from
LTR observations, which will contribute to making power
systems more secure, stable, and economical.

III. TEMPORAL SUPER RESOLUTION ON A GRAPH

This paper solves the distribution system super-resolution
problem with methods involving GCN and SE. Firstly, we
perform the data preprocessing. The edge features are con-
verted to node features according to properties of the radial
graph. Later, the features and labels are normalized to the
interval [0, 1] to meet the sigmoid output functions. Secondly,
the features and labels are sent to train a graph-level GCN.
Finally, the trained data are recovered from normalization
and tuned by the SE.

A. NORMALIZATION AND TRANSFORMATION

The raw data are preprocessed to meet the demand for
training. Firstly, we define the data format. The raw data are
voltage magnitude Vm for all nodes and power flow on the
feeder Plf at all edges. At the time t, the measurement vectors
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FIGURE 1. IEEE 33-node distribution system. Line measurements Plf (active power flow on the transmission line) and node measurements Vm (voltage magnitude
of the node) of the feeder 3 are labeled, measurements of other feeders are omitted in the figure.

FIGURE 2. Temporal resolution of measurements associated with different nodes.

FIGURE 3. Illustration of LTR and HTR measurements of node 1,2, and 23 in a distribution system. The left three subfigures (a)-(c) give the LTR measurements,
while the right three subfigures (d)-(f) report the HTR measurements.

are denoted as:

V (t)
m =


V

(t)
m,1

V
(t)

m,2
...

V
(t)

m,nN

 ∈ RnN×1, P
(t)
lf =


P

(t)
lf,1

P
(t)
lf,2
...

P
(t)
lf,nE

 ∈ RnE×1,

(2)

where nN represents for the number of nodes in the distribu-
tion system, while nE represents for the number of edges.

Unfortunately, V (t)
m is a node feature but P (t)

lf is an edge
feature. To make the proposed SR method capable of dealing
with both node features and edge features, we firstly perform
a transformation. This transformation is available because
of properties of the distribution system. The key idea is
to transform line power flows to node power injections.
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FIGURE 4. Sturcture of the GCN.

The transformation is carried out using incidence matrix
(node-edge matrix), which stores the association information
between nodes and edges [39]. Associated with a direct
graph G = G(V,E), the incidence matrix is defined as
A = A(G) ∈ RnN×nE , where V = {v1, v2, · · · , vm} is
the node set and E = {e1, e2, · · · , en} ∈ V × V is the edge
set:

aij =


1, Edge ej starts from node vi
0, Edge ej is not directly connected to node vi
−1, Edge ej ends to node vi

.

(3)

The distribution system is a radial graph, i.e., there are
no circles in the graph. This property enables an invertible
transformation:

P
(t)
i = AP

(t)
lf , P

(t)
i ∈ RnN×1, (4)

where the P
(t)
i is called the pseudo-injection, and it is

associated with nodes rather than edges. It should be noted
that such transformation is not available in transmission
systems because they have loops and may have power flow
circulations.

After transformation, V (t)
m and P

(t)
i are linearly normal-

ized to the interval [0, 1] to meet the demand of GCN training.
Then, time series of V (t)

m and P
(t)
i are grouped as training

samples: Denote the length of the sample as ls. Every con-
tinuous ls features are grouped as a sample S = (F,L), F
represents for features for the GCN, and L represents for
labels for the GCN.

Lv =
[
V

(1)
m V

(2)
m · · · V

(ls)
m

]

=


V

(1)
m,1 V

(2)
m,1 · · · V

(ls)
m,1

V
(1)

m,2 V
(2)

m,2 · · · V
(ls)

m,2
...

...
...

...
V

(1)
m,nN V

(2)
m,nN · · · V

(ls)
m,nN

 ∈ RnN×ls , (5)

Lp =
[
P

(1)
i P

(2)
i · · · P

(ls)
i

]

=


P

(1)
i,1 P

(2)
i,1 · · · P

(ls)
i,1

P
(1)
i,2 P

(2)
i,2 · · · P

(ls)
i,2

...
...

...
...

P
(1)
i,nN

P
(2)
i,nN

· · · P
(ls)
i,nN

 ∈ RnN×ls .
(6)

Lv and Lp are all HTR. By element-wise multiplying a mask
M with the HTR labels, we have the LTR features.

Fv = Lv �M, Fp = Lp �M (7)

where � represent for element-wise product, and the mask
M is defined as:

mi,j =

{
1, if there are data reporting from node i at timej
0, otherwise

.

(8)
So far we have transformed edge features to node features,
constructed LTR features Fv,Fv and HTR labels Lv,Lp

B. THE GRAPH CONVOLUTIONAL NETWORK
The graph convolutional network (GCN) acts as the bone
of the proposed SR method. The GCN deals with data on
a graph. Its typical application includes node-level classifi-
cation, graph-level classification, node-level regression, and
graph-level regression [40]. In this paper, we use the GCN for
graph level regression. The GCN used in this paper is inspired
by Kipf. et al. [38]. The original model is developed for node-
level semi-supervised classification. This paper modified the
model for graph-level regression.

We take the re-normalized linearized convolution layer. It
is defined as below:

Z = D̃
− 1

2 ÃD̃
− 1

2XΘ (9)

where the symbols are defined as below:
1) X ∈ RnN×nin is the input of this layer.
2) Z ∈ RnN×nout is the output of this layer.
3) Ã ∈ RnN×nN is the re-normalized adjacent matrix.

Ã = A + I, where A is the adjacent matrix of the
graph, and I is the unit matrix.

4) D̃ ∈ RnN×nN is the re-normalized degree matrix.
defined as: D̃i,i =

∑
j Ãi,j
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FIGURE 5. Performance of the proposed SR method on different nodes/edges: SR results, HTR labels and LTR inputs.

5) Θ ∈ Rnin×nout is the a matrix of trainable filter param-
eters.

Equation (9) is derived from gθ ? x
.
= θ(I +

D−1/2AD−1/2)x, the spectral graph convolution equa-
tion approximated with Chebyshev polynomials [37].
Rewrite the equation above from element-wise presenta-
tion to matrix presentation with a re-normalization trick:
D̃
−1/2

ÃD̃
−1/2

= I + D−1/2AD−1/2, we will get (9).
In this paper, we perform the training of Sv = (Fv,Lv)

(voltage) and Sp = (Fp,Lp) (active power flow) sepa-
rately. In power systems, the voltage and active power are
weakly correlated. In high-voltage power systems, the volt-
age magnitude Vm and reactive power Q are in a strongly
correlated group. The angle of voltage θ and active power
P are strongly correlated. However, the correlation between
these two groups is weak. This is called the PQ decoupled
property. Because of such property, we can separate them to
reduce unnecessary trainable parameters. In this paper, the
V-network and the P-network are of the same structure. As
shown in Fig. 4, the GCN has 6 layers. The number of input
filters increases from 64 to 512 and then decreases back to
64. Detailed input and output filters are illustrated in Fig. 4.
The first 5 layers all use rectified linear unit (ReLU) as the
activation function, while the last layer uses the sigmoid
activation function. Batch normalization is inserted before
layer 4 to accelerate the training. The GCN is trained with
minibatch (batch size = 32), by Adam optimizer (with de-
creasing learning rate) for 200 epochs (approximately 800
batches for an epoch). It takes approximately 40 s for training
one epoch on a server with one NVIDIA Tesla P100 GPU.

The number of trainable parameters for one graph con-

volution layer is approximately ninnout + nNnout. The float
point operations (FLOPs) for one graph convolution layer
is approximately n2Nnin + nNninnout, where nin is the layer
input dimension, nout is the layer output dimension, and nN
is the number of nodes in the graph. There are six layers in
the GCN, the number of nodes of the graph is nN = 33 and
is the same for each layer. The nin and nout can be found in
the network structure in Fig. 4. The total number of trainable
parameters is:

6∑
i=1

nin,inout,i + nN,inout,i
.
= 3.88× 105 = 0.388 M (10)

The FLOPs:
6∑
i=1

n2N,inin,i + nN,inin,inout,i
.
= 1.2× 108 = 0.12 G (11)

C. THE STATE ESTIMATION
The power system state estimation (SE) tunes the outputs of
the GCN with physical constrains of the distribution system.
The output data are firstly restored from normalization and
transformation. The SE takes redundant measurements to
estimate the truth value of the power system. In this process
the constrain of power flow equation is embedded:

∆Pi = PSPi − Vi
∑
j∈i Vj (Gij cos θij +Bij sin θij)

with i = 1, 2, · · · , nN

∆Qi = QSPi − Vi
∑
j∈i Vj (Gij sin θij −Bij cos θij)

with i = 1, 2, · · · , nN − r
(12)
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FIGURE 6. Workflow of the proposed SR method.

where, PSPi and QSPi represents for node active and reactive
power injections; Vi represents for the voltage magnitude of
node i; θij = θi − θj , θi represents for the voltage phase
of node i; Gij and Bij are the real part and image part of
the admittance matrix. For brevity, the detailed information
of SE is omitted here, and can be found in [41]–[43].

D. SUPER RESOLUTION ALGORITHM
The workflow of the proposed SR method is reported in
Fig. 6, while Algorithm 1 is a more detailed version.
The workflow can be divided into four parts: 1) Process
data for GCN representation; 2) GCN inference; 3) Re-
store data from GCN representation; 4) State estimation.
The code of the proposed SR algorithm is available at
https://github.com/DelbertWang2/TemporalGraphSR.

IV. EXPERIMENTAL EVALUATION
In this part, the proposed SR method is applied to IEEE
33-node distribution system with distributed solar generation
considered, whose topology is already shown in Fig. 1. Solar
generators are installed on nodes 7, 8, 24, 25, 30, 32. Datasets
are generated through simulation. Day-level load curve, hour-
level load curve, and solar generation curve are used to adjust
the load and generation level. The noises and detail patterns
are also added. The real load curve and solar generation
curve are not perfectly smooth. Therefore a small amount of
noise (0.5 %, normal distribution) is added when generating
samples. Then the system is simulated by solving power
flow equations. For brevity, the detailed process of dataset
generation is omitted here. It can be found in the attached
code 1. This paper uses the power flow and SE module in
a popular MATLAB toolbox MATPOWER. The GCN is
implemented via PyTorch 2. In all cases below, node 1 is

1Data: / MatScripts / gen_data /; Generated dataset: / Data / raw-
data.mat

2ATTACHMENT / PythonScripts /

Algorithm 1 Super Resolution Algorithm.

Require: LTR measurements: voltage magnitude V
(t)

m, LTR,
power flow P

(t)
lf, LTR, Adjacent matrix of the graph A;

Ensure: HTR measurements: voltage magnitude V
(t)

m, HTR,
power flow P

(t)
lf, HTR

Process data for GCN representation
1: Normalize data to [-1, 1].
2: Convert power flow P

(t)
lf, LTR (edge feature) to pseudo-

injection P
(t)
i, LTR

3: Combine the sequence of LTR measurements.

LTRv =
[
V

(1)
m, LTR V

(2)
m, LTR · · · V

(ls)
m, LTR

]

LTRp =
[
P

(1)
i, LTR P

(2)
i, LTR · · · P

(ls)
i, LTR

] (13)

GCN inference
4: Pass LTRv to the trained GCN for voltage magnitude

with graph parameters A, and get the corresponding
output matrix HTRv.

5: Pass LTRp to the trained GCN for pseudo-injection with
graph parameters A, and get the corresponding output
matrix HTRp.

Restore data from GCN representation
6: De-normalize data from [-1, 1].
7: Split the output matrix to sequence of measurements.
8: Convert from pseudo-injection representation back to

power flow representation. So far we get the HTR mea-
surements V̂

(t)

m, HTR, P̂
(t)

lf, HTR

State estimation
9: Pass the HTR measurements through SE, and get the

final results V (t)
m, HTR, P (t)

lf, HTR

the parent node equipped with a SCADA device. Its data
reporting frequency is fp = 1/300 Hz, that is, reporting data
every 5 minutes. Node 2-18, which are the node along the
feeder 1, report data at frequency 1/2fp. The other nodes
(node 19-33) report data at frequency 1/4fp. All test samples
are not involved in training.

A. BASE CASE
In the base case, we report the performance of the proposed
SR method in an intuitive way. In one test sample, the result
of SR, the HTR labels, and the LTR inputs for two nodes
and two edges are reported in Fig. 5. Fig. 5(a) reports the
completion of measurement Vm on node 10. Measuring de-
vice on that node reports data at 1/2fp. As can be observed,
the SR result recovers many details from the LTR inputs
and approximates the HTR labels (the ideal measurements).
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FIGURE 7. Performance of the proposed SR method on all nodes (Measurement type Vm): SR results, compared with linear interpolation, spline interpolation, and
tensor completion.

TABLE 1. MSE in tests with SR, linear interpolation, spline interpolation, and tensor completion

Methods MSE for completion of
measurements Vm

MSE for completion of
measurements Plf

Overall MSE

SR 0.0313 0.0078 0.0196
Linear interpolation 0.0427 0.0102 0.0264
Spline interpolation 0.1029 0.0266 0.0647
Tensor completion 0.0385 0.0134 0.0259

Fig. 5(b) reports the completion of measurement Vm on node
30. Measuring device on that node report data at 1/4fp.
Fig. 5(c) reports the completion of measurement Plf on edge
10 with data reporting frequency 1/2fp. Finally, Fig. 5(d)
reports the completion of measurement Plf on edge 30 with
data reporting frequency 1/4fp. As observed in Fig. 5, the
proposed SR method can recover details from the LTR mea-
surements. The performance is impressive on nodes/edges
with low data reporting frequency (1/4fp).

Then, in Fig. 7, we report the completion of measurement
Vm of all nodes. Fig. 7 (b) reports the HTR labels (the ideal
measurements), Fig. 7 (c) gives the LTR inputs. It is padded
with zeros to match the dimension of HTR labels. Compared
with the results of the linear interpolation (Fig. 7 (d)) and the
spline interpolation (Fig. 7 (e)), the SR results are less smooth
but recover more detailed patterns, especially for nodes with
low data reporting frequency (1/4fp). However, we must
report that on node 32 and 33, the SR results have slight
deviation from the HTR labels, and perform less satisfying.

B. STATISTICAL RESULTS
In this subsection, we performed 1000 tests, and evaluate the
proposed SR methods with normalized mean square errors
(MSE),

MSE =

∑
i,j(X̂i,j −HTRi,j)

2∑
i,j(HTRi,j)2

, (14)

where X̂i,j represents for the data recovered or completed
with SR, linear interpolation or spline interpolation; HTRi,j

represents for the HTR labels, i.e., the ideal measurements.
There are several popular SR metrics, e.g., PSNR. However,
these metrics are suitable only for images. Nevertheless,
the data in distribution network SR are not 2d images, but
multiple 1d time series on a topological graph. Therefore,
these metrics are not appropriate. Therefore, we choose the
primitive and intuitive metric: normalized MSE. The MSE
in tests with all three methods are reported in Table 1.
The SR method out performs linear interpolation and spline
interpolation in all three statistic criteria for more than 20%.
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FIGURE 8. Performance of the proposed SR method on temporal-spatial completion when some nodes’ data are completely missing (Measurement type Vm).

C. SR COMPARED WITH TENSOR COMPLETION
On the power system measurement completion problem,
researchers also proposed methods based on the matrix com-
pletion [28] and tensor completion [29], [30]. These two
methods both consider the low-rank property of measure-
ments. In this subsection, the tensor completion method in
[29] is implemented and compared with the SR method
proposed in this paper. The measurements are combined
and converted to tensor representation. The weighted miss-
ing data polyadic decomposition [44] is performed on the
data, i.e., the assembled tensors are decomposed into factor
matrices. Finally, new tensors are restored from the factor
matrices. So far, the missing data have been recovered in
these new tensors.

The result of tensor completion is reported in Fig. 7(f),
together with linear interpolation and spline interpolation.
The tensor completion method indeed restored more details
than linear or spline interpolation, because it exploits the low-
rank property of power system measurements. The statistical
results of tensor completion are also reported in TABLE 1.
For the completion of Vm, the tensor completion method per-
forms better than the interpolation methods. The SR method
out performs the tensor completion method in all three statis-
tic criteria for more than 10%. The proposed SR method
considers both topology information in GCN and physical
constrains in SE. Therefore, it performs better than the tensor
completion methods in terms of accuracy. Nonetheless, the
tensor completion and matrix completion methods are also
highly valuable because of their high flexibility.

D. EXPERIMENT ON TEMPORAL-SPATIAL
COMPLETION
Compared to the power transmission network, the distribu-
tion network has much more edges and branches. Therefore,
it would be expensive to equip each node with highly reliable
sensors. The scenario emerges where some nodes are not
equipped with sensors or some sensors failed to report data.

In this subsection, we discuss this scenario with the tempo-
ral and spatial SR. The previous chapters discuss generating
HTR results from LTR inputs, that is, to generate high-quality

measurements (in terms of temporal resolution) from low-
quality ones. In this subsection, the authors try to generate
HTR results from LTR inputs even if there are no sensors at
several nodes. The dataset is similar to that in the previous
section. Nonetheless, data of several nodes are missing in the
training features (inputs), while the training labels remain the
same.

The results are reported in Fig. 8. In this case, data from
nodes 11, 12, and 21 are set to be unavailable (see Fig. 8(c)).
The SR results are reported in Fig. 8(a). As for statistical
data in 1000 tests, the MSE for Vm is 0.0340, MSE for Plf
is 0.0099 and the overall MSE is 0.0219. It can be seen that
with missing data the SR still functions well.

V. CONCLUSIONS
This paper proposes a new temporal data completion method
considering distribution system topology, including feature
transformation, graph level GCN, and state estimation. 1)
This paper solves the problem that mixed node features and
edge features are hard to train, which is accomplished by
transforming edge features to node features using properties
of the power distribution system. 2) The authors modify
the first-order Chebyshev polynomials GCN for graph level
regression. 3) The method considers physical constraints
(results of GCN is tuned by an SE)

Tests show its superiority over different interpolation
methods for more than 20% (overall MSE). The proposed
method also slightly surpluses the tensor completion method.
Moreover, it can also perform spatial-temporal SR when data
of some nodes are completely missing. This method will help
to improve the state awareness of distribution networks. We
are also working on further researches about topology-robust
graph SR.
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