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Rapid and correct estimation of driver lane change intention plays an important role in the advanced driver assistance system
(ADAS), which could make the driver improve the reliability of the ADAS system and help to decrease driver workload. In this
study, a method based on the long short-term memory network (LSTM) and Dempster–Shafer evidence theory is proposed. -e
model consists of a preliminary decision-making label and a final decision-making label. Driver visual information, head
orientation, and vehicle dynamics are collected by preliminary decision-making label. -en, LSTM is used to calculate the initial
probability of the driver lane change (left, right, and lane keeping) maneuver intention. -e outputs of LSTM are normalized and
assigned a basic probability by the Dempster–Shafer evidence theory. -e final decision-making label analyzes the information
and outputs the probability of each lane change intention and the decision is to identify the driver’s current intention. -e
experimental results show that the accuracy of the model is 90.7% for the intention of changing left and 89.1% for the intention of
changing right. -e outcome of this work is an essential component for all levels of road vehicle automation.

1. Introduction

Traffic crashes and collisions worldwide become increasingly
complicated in terms of safety with the number of vehicles
increasing. Most of them should be attributed to drivers,
such as operation errors, judgment mistakes, and cognitive
overload [1–3]. Drivers have an essential impact on the road
environment and traffic context by performing vehicles
according to local traffic laws and their driving willingness. It
is a dynamic system consisting of traffic, driver, and vehicle
because they influence and interact with each other dy-
namically [4]. Since drivers are one of the parts of the loop, a
thorough understanding of driver behaviors, especially lane
changing maneuver intention, would help effectively im-
prove driving safety and reduce traffic accidents [5, 6].
Advanced driver assistance systems (ADAS) are intended to
enhance driver performance and improve transportation
safety. Nowadays, many ADAS products, such as adaptive
cruise control [7], side warning assistance system [8], and
lane departure warning system [9] serve to provide traffic
context for drivers. All the products interact with human

drivers passively because they fail to understand driving
performance rapidly. Hence, the next generation of ADAS
products are expected for dynamic interaction and mutual
understanding between intelligent units and drivers’ be-
havior [10, 11].

-is paper aims to propose a framework to estimate
drivers’ lane change maneuver intention based on natu-
ralistic driving data. Understanding and inferring drivers’
intention has a positive effect on the development of ADAS
[12].-emethod can improve the active safety of drivers and
provide surrendering traffic context information for drivers.
Estimating driver intention can infer their behaviors at an
early stage or before maneuvers happens after maneuvers are
initiated. ADAS can generate appropriate notification and
assistance to drivers with the identification of drivers’ in-
tention accurately [13] or warn of the possible dangers based
on drivers’ interested regions and future trajectories [14].
Berndt [15] showed that only 64% of drivers turn on the
signal when changing lanes, and only 50% of them turn on
the signal before starting to change lanes. A report by the
national highway traffic safety administration (NHTSA) also
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pointed out that by counting 667 lane changes, the turn-on
rate of the signal for left and right lane changes was 48% and
35%, respectively [16]. -e low turn-on rate of the signal and
the untimely turn-on phenomenon will cause this type of
system to fail to identify the driver’s intention in a timely and
effective manner. -erefore, it is necessary to recognize the
driver’s intention through other characteristics. Studies have
shown that compared to lane keeping, drivers will show
unique eye movements before changing lanes, and vehicle
operating state parameters will also show obvious differences
[17]. As the most unstable main factor in the human-vehicle-
road closed-loop system, drivers often exhibit different
driving characteristics during driving. For example, drivers
will adopt different processing methods in the choice of lane
changing timing and the search of surrounding traffic
context information with regard to lane changing behavior.

Intelligent vehicles are expected to understand drivers’
intention mechanisms and predict possible dangers and
regions of interest, which also could be used to design
human-like decision-making and behavior algorithms [18].
Although human drivers are not one of the components of
completely autonomous vehicles, this does not mean the
vehicle is not necessary to perceive the surrendering in-
formation, make a decision, and act like human drivers. It is
a long-term task for intelligent vehicles since the rule-based
methods can not adequately meet the requirements of the
various and uncertain situations in the real world to learn
how and why human drivers generate intention and make
decisions. In the future, vehicle automation is expected to be
more efficient based on data-driven intention and decision-
making models [19].

It is well known that inferring driver lane change ma-
neuver intention is considered a promising technology. But a
few commercial products have been applied in automobile
manufacturers because the development of estimating driver
intention is still challenging, and the accuracy and robust-
ness need further analysis and improvement. -is paper
proposes a double layer framework, consisting of a pre-
liminary decision-making label and final decision-making
label, to improve the accuracy of lane change maneuver
intention identification. LSTM is utilized in the preliminary
label to deal with time-series driving sequence and the
Dempster–Shafer evidence theory is used in the final label to
manage the uncertain lane change maneuver intention.
LSTM is a popular model and has achieved a large amount of
regression, classification, and prediction [20, 21]. -e
Dempster–Shafer evidence theory is an uncertain reasoning
method, which satisfies weaker conditions than the Bayesian
probability theory and has the ability to directly express the
uncertain and unknown [22, 23]. -e reasons for adopting
the LSTM and Dempster–Shafer evidence theory to estimate
drivers’ intention are multiple. Firstly, a great majority of the
existing lane change maneuver intention detection algo-
rithms based on machine learning are easily affected by
training data. When the training data changes, different
weight sets and parameter sets can be generated. LSTM
improves the robustness and accuracy of the model by in-
troducing different networks [24]. Secondly, the Demp-
ster–Shafer evidence theory needs weaker conditions than

the Bayesian theory of probability, so it is often regarded as
an extension of the Bayesian theory.-e probability assigned
to each subset is limited by a lower bound and an upper
bound, which, respectively, measure the total belief and the
total plausibility for the objects in the subset. Furthermore,
the Dempster–Shafer evidence theory has the ability to
combine pairs of evidence or belief functions to derive new
evidence or belief function. Due to its ability to handle the
uncertainty or imprecision in the evidence, the Demp-
ster–Shafer theory has been widely applied in recent years
[25, 26].

Driver intention has been widely studied in the past two
decades. Previous studies related to driver lane change in-
tention have focused on ramp [27, 28], intersection [29, 30],
and highway [31, 32] and many methodologies have been
proposed. For merging different categories of behavior, a
classification regression tree was created and trained [27].
For the ramp entrance of the freeway, the Bayesian theorem
to obtain the probability of driving intention was applied
[28]. -e hidden Markov model is trained for individual
driving behavior [29], which is used to predict future driving
behavior, while the support vector machine is proposed [30].
For the prediction of highway lane change behavior, the
situation and motion based on features are implemented to
calculate the individual probability of lane change behavior
and combine them as the final prediction [31]. Support
vector machine and Bayesian filter are used to identify lane
change intention [32]. A method for predicting lane change
of freeway is proposed by combining support vector ma-
chine with artificial neural network classifier [33]. Instead of
detecting maneuver patterns of driving behaviors, the de-
termination and classification of driving style have been
investigated [34].

Nowadays, it is widely recognized that an accurate es-
timation of the lane change maneuver intention system
should rely on a holistic method, which needs to fuse the
multimodal data in the traffic-driver-vehicle loop [35].
Hence, more signals in the loop should be collected to
recognize the driver intention. In terms of traffic, the most
widely used features are lane signs, location of surrounding
vehicles, global positioning system, and digital maps
[36–38]. Major driver behavioral features include head
orientation and motion, eye information, and body gestures
[39, 40]. Vehicle status signals can be collected from can bus/
Ethernet in the vehicle, including vehicle speed, acceleration,
steering wheel angle, steering signal, brake, and pedal
[12, 41].

In spite of previous studies that achieved some successful
cases in the estimation of lane change maneuver intention,
few works have been devoted to taking both sequential lane
change maneuver behavior and uncertain intention recog-
nition into consideration. -is paper proposes a system
framework for the identification and prediction of drivers’
lane change maneuver intention on the highway. -e
method is developed to efficiently estimate driver and ve-
hicle characteristic parameters by modeling the eye infor-
mation, head orientation, and vehicle dynamics. A neural
network with LSTM layer is trained to handle sequential lane
change behavior and the Dempster–Shafer evidence theory
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is adopted to deal with uncertain intention recognition with
the parameterized driving characteristics for predicting
driver behavior transitions. -e designed system has been
tested and verified by real-world traffic data and the results
indicate the accuracy of estimating lane change maneuver
intention is high. Overall, the proposed system is useful for
assisting an intelligent vehicle’s decision-making process in
naturalistic driving with its high-quality predictions.

2. Preliminary Study

Initialization lane change intention, preparation lane change,
and action lane change behavior make up a complete lane
change maneuver process, and the estimation and prediction
of the driver intention primarily focus on the first part [42].
Initial lane change intention is the result of drivers’ perception
and evaluation of the surrounding environment and traffic
context conditions. Drivers will produce the intention if the
external conditions satisfy both available target lane and
driving requirements. Before performing lane change ma-
neuver, there is a corresponding change in the driver eye
information and head motion [43], and vehicle dynamics and
position in the lane will also change when the driver starts the
operation of lane changemaneuver [44]. Hence, characteristic
parameters come into being during producing and per-
forming lane change maneuver behavior which can be de-
tected and will change in a specific way.

2.1. Analysis of Drivers’ Behavior. Driving intention is a kind
of cogitation and inner state that the driver receives external
information and decides what driving behavior to perform
[12, 20]. -e executive process of driving behavior is
completed by the driver’s sense, perception, and other or-
gans according to a certain time series [45]. Drivers will first
perceive and make decisions on the current road traffic
context information to form a certain driving intention
during driving. After intention is generated, the driver needs
to comprehensively consider his own subjective desire such
as destination, driving experience, and operating habits to
further guide the formation of driving intention [46].

-e ultimate purpose of driving intention is to provide
guidance for the driver to carry out subsequent driving
behavior so that the vehicle can drive safely according to
their own wishes. At the same time, the change in the vehicle
state also reflects the driver’s intention. -e driver can
change the vehicle state through different operation com-
binations, which means the driving behavior of the vehicle is
diversified under the guidance of the same driving intention.
-e specific operation combination is determined by the
current actual road traffic elements and the driver’s driving
habits. Drivers will evaluate the present traffic context in-
formation before initialization lane change intention.
Drivers will generate lane change intention if the target lane
is available and the current lane is in a traffic jam.

2.2. Analysis of Driver Eye Information. It is necessary to
analyze drivers’ eye characteristic parameters because most
information is obtained by eyes during driving [43]. -e

driver’s eye movement data is collected from 5 s before lane
change maneuver. Figure 1 shows the curve of the driver’s
eye scanning angle in horizontal direction changing with the
time under the condition of lane change left (LCL), lane
change right (LCR), and lane keeping (LK). It can be seen
that the driver’s scanning angle fluctuates obviously when
changing lanes, and there are obvious differences in scan-
ning angles under different states. -erefore, the scanning
angle can be used as one of the parameters to identify the
driver lane change intention.

Figure 2 shows the boxplot of the saccadic velocity at
different stages. It can be observed that the saccadic velocity
of drivers is the LCR> LCL> LK, corresponding to different
intentions of lane changing. When the significance level
shown in Table 1 is α� 0.05, there is no abnormality in the t-
test results of the driver’s saccade velocity. Because there is a
great difference between the saccade velocity when changing
lane left and right, this paper takes the saccade velocity as
one of the parameters to identify the driver’s lane change
intention.

Drivers need to turn their heads to get more information
during driving because of limited visual angle. Research
shows that the head movement often precedes the eye
movement in the process of getting more vision [13].
-erefore, head movement is also an essential factor in the
visual analysis of drivers. Because there are many position
parameters about head movement, this paper selects hori-
zontal and vertical rotation parameters for analysis. Figure 3
is the statistical chart of the head horizontal corner box
corresponding to different driving behaviors. It can be
observed that the horizontal corner of drivers is the
LCR> LCL> LK.When the data shown in Table 2 is α� 0.05,
it is the t-test result of data of the driver head motion, among
which the upper triangle is the t-test result of the vertical
corner of the driver’s head, and the lower triangle is the t-test
result of the horizontal corner of the driver’s head.

-e results indicate that there is a significant difference
in the horizontal corner of the driver’s head in each lane
change intention, and the t-test result of the vertical corner
of the driver’s head is abnormal. -ere is no significant
difference in the vertical corner of the driver’s head under
the three states of intentions of lane changing.-erefore, this
paper only selects the horizontal corner of the driver’s head
as the parameter to judge the intention of lane changing of
the driver (∗ indicates that the test is abnormal).

2.3. Analysis of Vehicle Dynamics. -e model will achieve a
highly accurate estimation when the steering wheel angle
and the vehicle longitudinal acceleration are used as the
characteristic parameters [47]. -e longitudinal acceleration
is the description of the driver’s expected speed, and the
steering wheel angle directly reflects the operation of the
driver lane change behavior.

-e driver can change lanes by turning the steering
wheel continuously and greatly during driving. Steering
wheel angle is a common feature parameter in lane change
intention recognition [28]. Berndt et al. [15] showed that
only 64% of drivers turn on the signal when changing lanes,
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and only 50% of them turn on the signal before starting to
change lanes. -e efficiency of lane change intention rec-
ognition is easily affected by turning on the signal rate low or
not turning on in time. Hence, the turn signal is used as one
of the parameters to identify lane changing intention in this
study. Input signal 0 indicates that the turn signal is off, and
1 indicates that the turn signal is on. -e deviation between
vehicle and lane centerline reflects the lateral displacement
of the vehicle during lane changing behavior, which can be
used as the characteristic index of the road environment. As
shown in Figure 4, it is the statistical chart of self-vehicle and
lane centerline.

3. Model Building

3.1. RecurrentNeuralNetwork. Recognization lane changing
of driver intention is a continuous process with dynamic
behavior fluctuations over time. Most of the classification
algorithms adopted in previous studies focused on the
characteristic variables reflecting the whole sequence, but it
was difficult to capture the change of the process of driver
behavior. Considering the time dependence of lane
changing, the driver status can be identified by using the
complete time-series information. In recent years, deep
learning has shown great potential in dealing with multi-
variate time-series classification. -e recurrent neural net-
work is a kind of artificial neural network in which nodes are
connected in a ring directionally. -e internal state of this
network can show the dynamic behavior. Different from the
feedforward neural network, the recurrent neural network
can use internal memory to process sequence data, which
makes it often utilized to deal with some complex deep
learning problems. However, due to the gradient vanishing
effect, the simple recurrent neural network cannot deal with
the long sequence dependence well. In order to overcome
this limitation, Hochreiter and Schmidhuber proposed a
long short-term memory network (LSTM), as shown in
Figure 5 [48]. Each hidden unit in LSTM contains one or
more memory cells. -e operation of these memory cells is
controlled by the internal input gate it, the forgetting gate ft,
and the output gate ot. -e input gate determines which part
of the input value can be used to update the memory state,
the forgetting gate determines the information to be retained
or removed in the memory unit, and the output gate de-
termines the output content. -e expression of the three
gates at time t can be expressed by the following formula:

Input gate:

it � σ Wi xt + ht−1 + Ct−1( 􏼁 + bi􏼂 􏼃. (1)
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Figure 1: Driver scanning angle under different driving intentions.
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Figure 2: -e boxplot of saccadic velocity under different driving
intentions.

Table 1: t-test results of driver scanning speed.

Intention LK LCL LCR
LK — — —
LCL 0.01 — —
LCR 0.015 0.03 —
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Figure 3: -e boxplot of the horizontal corner of the driver’s head
under different driving intentions.

Table 2: t-test results of the horizontal and vertical angle of the
driver’s head.

Intention LK LCL LCR
LK — 0.034 0.022
LCL 0.017 — 0.068∗
LCR 0.013 0.007 —
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Forget gate:

ft � σ Wf xt + ht−1 + Ct−1( 􏼁 + bf􏽨 􏽩, (2)

Ct � tanh Wc xt + ht−1( 􏼁 + bc􏼂 􏼃. (3)

Memory cell unit:

Ct � ft × Ct−1 + it × Ct. (4)

Output gate:

ot � σ Wo xt + ht−1 + Ct−1( 􏼁 + bo􏼂 􏼃, (5)

ht � ot × tanh Ct( 􏼁, (6)

where it, ft, and ot are the score of the input gate, forgetting
gate, and output gate passing through activation function at
time t.Wi,Wf,Wc,Wo,Wf and bi, bf, bc, bo, bf are weight and
deviation. Ct is an alternative value of memory cell state Ct at
time t. xt and ht are the input of memory cell and the final
category output. At each time step, the LSTM can read,
write, or reset the memory unit through these three gates.
-e strategy allows LSTM to memorize and access the in-
formation before the multistep. -e input gate, output gate,
and forget gate correspond to the operation of writing,

reading, and updating the historical state of the driver’s lane
changing intention characteristic parameter sequence.

3.2. LSTM Realizes the Dempster–Shafer Evidence 7eory
Basic Probability Assignment. LSTM is mainly used to
process and predict sequence data, and its source is to
describe the relationship between the current output of a
sequence and the previous information. From the network
structure, LSTM will memorize the previous information
and combine with the present input; it can output the
probability values of various intentions at the next time
through a softmax classifier. To predict the output at time t,
the memory of time t is obtained by using the memory of
time t− 1 and the input of time t, and then the probabilities
of various intentions are output by the softmax classifier:

P yt( 􏼁 �
e

Zj

􏽐
k
1 e

Zk
, (k � 3), (7)

Z � X
T
Wj, (8)

where X is the sample matrix and j (j� 1, 2, 3) is the number
of driving intentions.
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Figure 4: Standard deviation of the distance between the vehicle and lane centerline.

tanh

tanh

Memory cell:

Hidden state:

Input:

Forget gate: Input gate: Output gate:
Candidate 

memory cells:

Ct–1

Ht–1

Ft

Xt

Ht

It Ct

Ct

Otσ σ σ

Figure 5: Structure of long short-term memory.

Journal of Advanced Transportation 5



-e recurrent neural network is adopted to solve the
basic probability assignment problem of evidence theory.
-e designed structure of LSTM is as follows: seven char-
acteristic parameters are selected, which are driver’s scan-
ning angle, scanning velocity, head horizontal angle, vehicle
longitudinal acceleration, steering wheel angle, turn signal,
and standard deviation of lane position. -e input number
of nodes of the neural network is 7, and the hidden layer
nodes number is set to be adjustable. -e number of lane
changing intention to be identified is 3, so the number of
output layer nodes is 3. Lane change left corresponds to the
output is [1, 0, 0], lane change right corresponds to the
output is [0, 1, 0], and lane change keeping corresponds to
the output is [0, 0, 1].

In order to reduce the mistakes on the basis of keeping
the relationship existing in the original data, this study
adopts the deviation standardization method to normalize
the original data, and the conversion formula is

X
∗

�
X − Xmin

Xmax − Xmin
, (9)

where X∗ is the data after normalization, X is the original
data, Xmin is the minimum value of data in the initial sample,
Xmax is the maximum value of data in the initial sample.

3.3. Recognition Algorithm. -e output of LSTM after
training is normalized as the basic probability distribution of
each focal element. Figure 6 is the framework of lane change
intention based on LSTM and evidence theory. -e char-
acteristic parameter matrix, which represents different lane
change intention, is input into the trained recurrent neural
network, and the probability distribution of each intention is
initially output through the softmax layer. In order to get a
piece of evidence within a certain time threshold, the
normalized output of LSTM is taken as the basic probability
allocation of evidence theory. First, the appropriate conflict
coefficient threshold is set according to the specific using
environment.-en, the evidence conflict processing method
based on the evidence distance is utilized to deal with the
evidence conflict within the time threshold, and the conflict
probability of the focus element with high priority is
assigned, so as to improve the reliability and accuracy of the
final fusion results. Finally, the basic probability distribution
function is used as the decision, and the Dempster synthesis
rule is adopted to fuse the evidence within the time threshold
to output the probability of each lane changing intention.

4. Experimental Analysis

4.1. Experimental Environment and Data. Simulation ex-
periments about lane change left, lane change right, and lane
keeping have been carried to verify the validity and reliability
of the proposed framework. RNN-LSTM is built up by
TensorFlow and some concrete parameters are as follows:
the experimental platform is based on the upper framework
Keras of TensorFlow version_1.1, and the experimental
programming language is Python 3.7. -e original data of
eye information and vehicle dynamics are separately

collected by smart eye protracker and six-degree of freedom
from Jiangsu University. -e experimental scene is designed
as a two-way six-lane expressway with a length of 100m and
a width of 3.5m. -e host controller unit of the driving
simulator is used to synchronously collect the longitudinal
acceleration, steering wheel angle, and the distance between
the vehicle and the centerline of the lane. Meanwhile, the
system of smart eyes racker is used to collect the data of
driver eye movement and headmotion, as shown in Figure 7.

4.2. Estimation Model. Figure 8 is the flow chart of model
simulation. First, the training data is normalized by the
deviation, and different hidden layer neuron nodes are set.
-en, the continuous lane change behavior data of 10 s are
taken as the input of the network, and the driving behavior
data of the next moment predicted by LSTM is taken as the
output of the initial decision. -e output of the Demp-
ster–Shafer decision layer is regarded as the final decision
output. In the experiment, by comparing the mean square
error different hidden layer, the mean square error diagram
of the neural network under different numbers of hidden
layer neuron nodes in the experiment process is shown in
Figure 9. When the number of neuron nodes in the LSTM
layer is 11, the mean square error of the neural network is the
smallest. -erefore, the number of neuron nodes in the
LSTM layer is set as 11.

4.3. Comparison between Models. In this paper, the back-
propagation and Dempster–Shafer (BP–DS) algorithm is
used as a controlled experiment. -e concrete parameters
are as follows: the number of backpropagation (BP) neural
network layers is designed as 3, and the number of input
nodes is set as 7. -e number of hidden layer nodes is set as
adjustable, and the hidden activation function layer is set as a
hyperbolic tangent function. -e target error is set to 10-6,
the learning rate is 0.05, the maximum training times is 3000,
and the number of nodes in the output layer is 3. Lane
change left corresponding to the output is [1, 0, 0], lane
change right corresponding to the output is [0, 1, 0], and lane
change keeping corresponding to the output is [0, 0, 1].

In the LSTM-DS model, the input layer of the LSTM
network model is selected as 3, which means that the data
input scale for training and testing is a matrix of 3× 7,
corresponding to the first three measured driving opera-
tions. -e number of nodes in the LSTM layer is 11, and the
output through the softmax layer is the probability corre-
sponding to various intentions. Set the target error as 10-6,
the learning rate as 0.05, and the maximum training times as
3000. After LSTM-DS and BP-DS training, the same tested
samples of lane change maneuver behavior in three times,
the prediction results of five consecutive times are selected to
compare the mean square error of the two models as shown
in Figure 10. It can be seen from Figure 10 that the mean
square error of BP-DS is always greater than that of LSTM-
DS, and the growth rate of the mean square error of BP-DS is
much faster than LSTM-DS. It can be concluded that the
recognition accuracy of LSTM-DS is higher than that of BP-
DS.
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Figure 7: Driving simulator and eye tracker system.
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4.4. Model Prediction. In the experiment, 200 groups of data
are selected as the original data (185 groups as the training data
and the other 15 groups as the test data) and the training
samples are input into the neural network to train the recurrent
neural network by the backpropagation algorithm. After 2921
training times, the number of hidden layer nodes of the re-
current neural network is 11, and the output target error is 10-
6. -en, input the test sample data to the trained LSTM and
take the normalized output of LSTM as the basic probability
distribution of evidence theory.-e recognition accuracy of the
model for real-time collected data is shown in Table 3.

By calculating the accuracy of model recognition (the
proportion of correctly identified samples to the total
number of test samples), the recognition of lane change left
intention is 90.7%, the recognition of lane change right
intention is 89.1%, and the recognition of lane keeping

intention is 85.63%. -e accuracy of lane keeping is lower
than the left and right lane change, which is caused by the
large vibration of some data such as steering wheel angle.

-e recognition result of the driver’s intention to change
lanes will have a direct impact on the efficiency of subse-
quent trajectory prediction. -erefore, this paper selects
precision, recall, F1-score, and accuracy as the evaluation
indicators. -e definitions of each indicator are as follows:
precision refers to recognition of the number of correct
positive samples accounting for the proportion of the
number of positive samples judged by the model. -e recall
rate refers to the proportion of the correct positive sample
format to the actual number of positive samples. F1-score is
the harmonic average of the precision rate and the recall rate.
-e accuracy rate is the ratio of the number of correct
identifications to the total number of samples. Table 4 shows
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the results of testing the intention recognition model with
the data in the test set.

5. Conclusion

-is paper proposes a system framework for the estimation
and prediction of lane change maneuver intention on the
highway. A method with LSTM and evidence theory tech-
nique is developed to efficiently identify characteristic pa-
rameters by modeling the drivers’ eye information, head
motion, and vehicle dynamics; a neural network with LSTM
layer is trained to utilize the parameterized driving char-
acteristics for time-series sequence by training sets data.
Evidence theory is used to deal with evidence conflicts and
output the final drivers’ intention. Validation results by the
test sets data prove that the designed framework is capable of
recognizing and inferring lane change maneuver intention

with high accuracy. Due to the recognition framework
trained based on the data collected by the driving simulator,
the actual traffic scene will be more complex, so the model
will be limited in the application scene.

-is paper reveals the changing laws of vehicle dynamic
parameters and drivers’ visual characteristics in typical
highway driving behaviors, and enrich relevant theoretical
studies on driving behaviors such as lane changing and lane
keeping. At the same time, it provides a certain theoretical
basis for the recognition of driver intention in other road
scenes. By realizing the early recognition of the driver’s
intention to change lanes, it serves the active safety warning
system. By predicting behaviors such as lane changing and
following, it further improves the system services such as
lane changing assistance and lane keeping assistance for
drivers, reducing the burden on the driver and also allowing
driving intervention in emergency situations and avoiding
accidents.

In summary, the in-depth study of methods and theories
for the recognition of highway drivers’ lane change ma-
neuver intentions can provide theoretical and technical
support for the research and application of ADAS and re-
lated intelligent vehicles, thereby improving the safety and
comfort of drivers and improve the traffic environment. -e
next step is to improve the accuracy of the model to identify
and further improve the application of the model on urban
roads.
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