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Learning a deep structure representation for complex information networks is a vital research area, and assessing the quality of
stereoscopic images or videos is challenging due to complex 3D quality factors. In this paper, we explore how to extract effective
features to enhance the prediction accuracy of perceptual quality assessment. Inspired by the structure representation of the
human visual system and the machine learning technique, we propose a no-reference quality assessment scheme for stereoscopic
images. More specifically, the statistical features of the gradient magnitude and Laplacian of Gaussian responses are extracted to
form binocular quality-predictive features. After feature extraction, these features of distorted stereoscopic image and its human
perceptual score are used to construct a statistical regression model with the machine learning technique. Experimental results on
the benchmark databases show that the proposed model generates image quality prediction well correlated with the human visual
perception and delivers highly competitive performance with the typical and representative methods.+e proposed scheme can be
further applied to the real-world applications on video broadcasting and 3D multimedia industry.

1. Introduction

During the past few decades, there has been an exponential
increase of stereoscopic images and videos in 3D display
market [1]. However, due to various 3D quality factors [2, 3]
including binocular rivalry, visual comfort, and depth
perception, the visual quality assessment of stereoscopic
images is much more complex and relatively less researched
than the traditional 2D image quality evaluation. To address
these challenges, we require a deeper understanding of
binocular visionmechanisms and interactions for the quality
prediction of distorted stereoscopic images.

+ere are mainly two groups of methods on 3D image
quality assessment (IQA): subjective quality evaluation by
human observer [4] and objective quality evaluation by
devised metric used to simulate human perceptual judge-
ments [5]. Since the human eyes are the final receiver of
visual information, the subjective evaluation can directly
reflect the human visual perception and is accurate and
effective to evaluate the visual quality. However, the

subjective evaluation involves many participants in the
course of experiments, which is time-consuming and costly.
+erefore, it is unrealistic to implement it in many scenarios
like real-time evaluation [6]. As a result, it is in urgent
demand to propose objective methods that can effectively
evaluate the human perceptual quality of stereoscopic
images.

Based on the volume of accessible information in the
images, existing objective quality assessment metrics can be
generally divided into three categories: full-reference (FR)
[7, 8], reduced-reference (RR) [9], and no-reference/blind
(NR) methods [10, 11]. When the reference contents are
accessible, the FR method can offer more accurate quality
assessment. Early approaches for FR 3D-IQA directly
stemmed from 2D quality metrics [12]. Conventionally, a
straightforward way is to apply the 2D-IQA metrics to both
views of a 3D image independently and then integrate the
two 2D quality scores into a final 3D quality score. Several
3D-IQA methods [13, 14] were proposed by introducing the
associated disparity or depth map into the 3D image quality
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model. +ese research findings indicated that a satisfactory
result can be obtained if the disparity images and reference
images are combined appropriately. Afterwards, more so-
phisticated algorithms were developed based on the bin-
ocular vision properties. For example, Lin and Wu [15]
revisited the physiological discoveries of binocular vision
and incorporated the binocular integration into the existing
2D quality metrics for measuring the quality of stereoscopic
images. Shao et al. [16] classified the stereoscopic images into
noncorresponding, binocular fusion, and binocular sup-
pression regions. Each region was evaluated individually
according to its binocular perception property. In our
previous work [17], we proposed a full-reference quality
evaluator by considering the local and global qualities of 3D
images. +e experimental results showed its good perfor-
mance in terms of stereoscopic image quality assessment.

Since pristine reference images are rarely available in
practical applications [18, 19], the NR algorithms are po-
tentially much more feasible solutions. +ey can give quality
evaluation without any information extracted from the
corresponding pristine image. +e NR 3D-IQA is still
preliminary, and a limited number of blind 3D-IQA algo-
rithms have been developed. Inspired by the human visual
system, Chen et al. [20] proposed a no-reference binocular
image quality assessment method for natural stereopairs.
+e proposed method extracted both 2D and 3D natural
statistical features from a stereopair and utilized these sta-
tistical features and the binocular rivalry for 3D image
quality prediction. Ryu and Sohn [21] investigated the re-
lationship between visual information and binocular quality
perception and developed an NR quality evaluation algo-
rithm for 3D images.+e scores of perceptual blockiness and
blurriness were combined into an overall quality index based
on the binocular perception models. Shen et al. [22] devised
a no-reference quality scheme for stereoscopic images based
on the visual perceptual characteristics. +ree types of
features relating to image distortion, depth perception, and
binocular disparity were used to map the human opinion
scores. Other relevant works can be found in references
[23–25].

Recently, machine learning techniques have achieved
great success and been widely applied to various research
fields [26–28]. One of the advantages of applying machine
learning to quality evaluation is that it can directly take
original image data as input and then combine feature
learning with quality regression in the training procedure
[29, 30]. Kang et al. [31] applied convolution neural network
(CNN) to image quality assessment. +ey devised a shallow
network which extracts quality-predictive features from
image patches. Several NR algorithms for 3D-IQA using
deep learning have been developed. Oh et al. [32] reported a
novel deep learningmethod for NR 3D-IQA in terms of local
to global feature aggregation. Zhou et al. [33] proposed a
dual-stream interactive network for stereoscopic image
quality assessment. In our previous work [34], we developed
a no-reference quality prediction scheme for 3D images
based on binocular features and support vector regression
(SVR). +e scheme showed its effectiveness, but the per-
formance in terms of prediction accuracy and time

complexity needs to be further improved. More efficient
methods for stereoscopic image quality assessment should
be explored to address these limitations.

It is challenging for the NR algorithms to have the as-
sessment accuracy as good as can be obtained with the FR
quality evaluation methods. Moreover, 3D image quality
databases generally lack large-scale training images with
subjective quality scores, which limit the performance of
these algorithms using deep neural networks. Other tech-
niques should be explored and worthy of further research.
We are motivated to tackle these limitations for 3D image
quality assessment. In this paper, inspired by the research
findings on the human binocular visual system, we try to
simulate the perceptual mechanism of binocular vision. We
primarily work on extracting certain types of binocular
features from distorted stereoscopic image and constructing
a statistical regression model to map these quality-aware
features to the human perceptual judgements. +e main
contributions of this work are as follows:

(1) Different from other related studies [33, 35], the
novelty of our work lies in that we propose to adopt
the effective binocular statistical features from the
fusion and difference maps of a stereopair for ste-
reoscopic image quality prediction.

(2) We have demonstrated that appropriate combina-
tion of binocular features and binocular energy can
greatly promote the performance of 3D image
quality evaluation.

(3) Compared with other typical and representative
methods, the proposed scheme achieves higher
consistent alignment with human subjective as-
sessment and has lower time complexity. +e ex-
perimental results show that our scheme can
accurately estimate the perceptual quality of dis-
torted stereoscopic images and has promising gen-
eralization ability.

+e remainder of this paper is organized as follows.
Section 2 introduces some fundamental knowledge about
binocular visual perception. Section 3 presents the proposed
quality assessment scheme for stereoscopic images in detail.
Section 4 gives the experimental results and performance
analysis of the proposed scheme and the comparison with
other related algorithms. Finally, Section 5 concludes the
paper with possible ideas for future work.

2. Foundation for Binocular Visual Perception

It has been known that the binocular vision is a complex
visual process that requires the brain and both eyes working
together to produce clear vision. Figure 1 describes a sim-
plified framework of two important visual neural pathways
for the binocular visual system. +e ventral stream starts
from the primary visual cortex V1 and goes through V2 and
V3 to V4 area. +e functions of ventral stream are about the
recognition and perception behaviors. +e dorsal stream
begins from the V1 area, goes through V2 and V3 to V5 area.
+e visual information-guided interactions occur in dorsal
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stream [15]. Regarding the detailed functions of each visual
area, please refer to the binocular visual perception book
[36] for further information.

+e visual cortex plays an important role in our bin-
ocular visual perception, and it has been demonstrated that
the primary visual cortex (V1) is mainly responsible for the
human visual system (HVS) [37]. In the V1, simple and
complex receptive fields are usually characterized to un-
derstand the behavior of visual perception. According to
visual psychophysical study, two visual phenomena usually
occur in the process of binocular visual response: binocular
rivalry and binocular fusion. When the two eyes view
mismatched images at the same retinal location, one ex-
periences binocular rivalry. As a result of competition be-
tween the eyes, binocular rivalry involves reciprocal
inhibition between the monocular channels. When two
slightly different retinal signals can be perceived by two eyes,
one experiences binocular fusion. During fusion, two retinal
points are integrated into one single perception, super-
imposing and combining similar contents from the two
views. +erefore, the binocular vision can be generally
considered as a combination of binocular rivalry and bin-
ocular fusion.

As a significant content of primitives in V1, image
structural information is closely related to image visual
quality. And the degradation of perceptual quality can be
reflected via the change of image structural information.
Previous studies [29, 38] highlighted the significance of
image structural information for image quality assessment.
+e gradient magnitude (GM) and Laplacian of Gaussian
(LOG) are basic elements that are commonly used to rep-
resent image semantic structures [39]. More importantly,
during 3D visual stimuli processing, binocular fusion and
disparity responses are primitively formed in the V1 cortical
area. +e visual signals from the binocular summation and
subtraction channels are multiplexed, and then each neuron
in V1 receives a weighted sum of the visual stimuli from
these two channels [40]. Motivated by these research results,
in this paper, we extract the GM and LOG features from a
stereopair and its fusion and difference maps as binocular
features. In the following section, we will describe our
proposed quality prediction model for distorted stereoscopic
images in detail.

3. The Proposed No-Reference Quality
Assessment Scheme

Figure 2 illustrates the architecture of the proposed scheme
for stereoscopic image quality prediction. Given an original
stereopair, we first generate the fusion map and difference
map and extract the binocular statistical features from them
as basic feature vectors. +en, we calculate the binocular
energy responses from the local amplitude and local phase of
the stereopair as quality-aware features. Finally, we employ
an extreme learning machine method to map these features
of distorted stereopair to its human perceptual quality score.

3.1. Binocular Feature Extraction. As can be seen from
Figure 3, the fusion maps and difference maps of the left-
and right-view images with different distortion types are
discriminative, which can be utilized for extracting effective
quality features. Specifically, the fusion map reflects the
fusion ability of the left and right stereo-halves, while the
difference map reveals the disparity information of a
stereopair.

As discussed in Section 2, the gradient magnitude (GM)
and Laplacian of Gaussian (LOG) features can be adopted to
build the basic elements of image semantic structures, and
they are hence closely related to the perceptual quality of
natural images.+e Gaussian derivative functions canmodel
the receptive field responses of neurons along the visual
pathway [41]. +erefore, we compute the GM and LOG
maps using the first- and second-order derivatives of a
circularly symmetric 2D Gaussian function G defined as
follows:

G(x, y, σ) �
1
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where x and y represent the horizontal and vertical di-
rections, respectively. +e parameter σ is the standard de-
viation. +en, we calculate the first-order partial derivative
of G(x, y, σ) with respect to x or y by
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Figure 1: A simplified illustration of visual cortex with ventral stream and dorsal stream.
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where d ∈ x, y􏼈 􏼉 is the Gaussian partial derivative filter
applied along the horizontal x or vertical y direction. An
image is denoted by I; thus, the GM map of the image I can
be obtained by

GMv �

��������������������

Iv ⊗
zG

zx
􏼠 􏼡

2

+ Iv ⊗
zG

zy
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􏽶
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Figure 2: +e architecture of our proposed quality assessment scheme for stereoscopic images.

Figure 3: Examples of distorted stereoscopic images with different distortion types and the corresponding fusion and difference maps: the
original stereoscopic image (left), distorted stereoscopic image with Gaussian blur (middle), and distorted stereoscopic image with white
Gaussian noise (right).+e first to the last rows show the left-view images, right-view images, fusionmaps, and differencemaps, respectively.
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where the symbol ⊗ represents the convolution operation.
v ∈ l, r{ }, where l and r refer to the left and right views of a
stereopair, respectively. Similarly, the LOG filter, corre-
sponding to the second-order Gaussian partial derivative, is
defined as follows:

hLOG(x, y, σ) �
z
2
G(x, y, σ)

z
2
x

+
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2
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2σ2
􏼠 􏼡.

(4)

Accordingly, we estimate the LOG map of the left and
right views by

LOGv � Iv ⊗ hLOG. (5)

Subsequently, a joint adaptive normalization procedure
[39] is employed to normalize the GM and LOG coefficients
for stable statistical image representations. Previous works
[42, 43] have revealed that the overall quality of a distorted
stereopair cannot be accurately calculated by directly av-
eraging the qualities of the left- and right-view images,
especially for an asymmetrically distorted 3D image. In
practical application, to simulate the binocular rivalry (BR)
phenomenon, the basis of weighting factors for the quality-
predictive feature vectors of a stereopair can be defined as
follows:

wl �
el( 􏼁

α

el( 􏼁
α

+ er( 􏼁
α

􏼂 􏼃
,

wr �
er( 􏼁

α

el( 􏼁
α

+ er( 􏼁
α

􏼂 􏼃
,

(6)

where wl and wr denote the weights for the distorted left and
right views, which can reflect the binocular contrast com-
bination to a certain extent. el and er represent the local
energy variances of the left and right images for a stereopair,
respectively. +e intensity adjusting parameter α is empir-
ically set to 3 in the experiment. +erefore, the basic feature
vectors of the gradient magnitude and Laplacian of Gaussian
responses for a stereoscopic image can be calculated by

SGM � 􏽘
x,y

wlGMl(x, y) + 􏽘
x,y

wrGMr(x, y),

SLOG � 􏽘
x,y

wlLOGl(x, y) + 􏽘
x,y

wrLOGr(x, y),
(7)

where GMl/r(x, y) and LOGl/r(x, y) denote the gradient
magnitude and Laplacian of Gaussian for the left and right
image, respectively. +e features of GM and LOG responses
are utilized to represent the visual semantic structures of the
first-order and second-order binocular combination.

Finally, combined with the GM and LOG features of the
fusion and difference maps, the binocular feature vectors
used for further data training can be expressed by

V � SGM, SLOG, FGM, FLOG, DGM, DLOG􏼂 􏼃, (8)

where FGM/LOG and DGM/LOG are the GM/LOG features of
the fusion and difference maps, respectively.

3.2. Binocular Energy Response. +e above extracted features
are mainly utilized to indicate the visual sensitivity of
binocular rivalry. Neurological research has reported that
the human binocular vision phenomenon is a complicated
process with combination of binocular rivalry, binocular
fusion, and other factors [44]. +e binocular fusion also
contributes significantly to human visual perception besides
the binocular rivalry. Previous research findings [45] indi-
cated that the binocular energy responses play critical roles
in representing binocular visual perception, especially for
binocular fusion. In this paper, the binocular energy re-
sponses are obtained from the local magnitude and local
phase of a stereopair.

In the proposed scheme, the left and right images of a
stereopair are first processed using the log-Gabor filter.
Here, we define αs,o to represent the responses on different
scales, where s is the spatial scale index. And we let βs,o

denote the responses along different orientations, where o is
the orientation scale index. +e detailed description of this
log-Gabor filter can be referred to the work in [46].
According to the given scale and orientation, the local
amplitude at location x on scale s and along orientation o

can be defined as

LAs,o(x) �

�������������

α2s,o(x) + β2s,o(x)

􏽱

. (9)

With the sum of the local amplitudes on all the scales
along the orientation om [46], the local amplitude can be
calculated by

LA(x) � 􏽘
s

LAs,om
(x), (10)

where om is a parameter used to indicate the orientation with
the maximum phase congruency value. Similar to the local
amplitude, the local phase can be obtained by the angle along
the orientation [46]:

LP(x) � arctan
􏽐sβs,om

(x)

􏽐sαs,om
(x)

􏼠 􏼡. (11)

Based on previous works on binocular vision energy
[16, 34], the left-view response and right-view response of a
stereopair can be defined as follows:

Cl(x) � LAl(x) · exp LPl(x)( 􏼁,

Cr(x) � LAr(x) · exp LPr(x)( 􏼁.
(12)

+e right-view response Cr(x) usually can be taken as a
shifted transformation of the left-view response Cl(x). +e
disparity d is defined as the difference between the locations
of associated points in the left- and right-view responses. By
considering a simple binocular cell with the left and right
receptive fields, the binocular energy response E for a ste-
reoscopic image pair can be calculated by
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E � 􏽘
x

Cl(x) + Cr(x + d)
����

����
2
. (13)

Finally, combined with the binocular statistical features,
the overall quality-predictive features are F � [V, E], which
are fed into the following quality prediction for model
learning. +e weights among them are determined in the
learning process.

3.3. Quality Prediction Model Learning. A number of
training methods can be utilized to map the quality-pre-
dictive features of a stereopair to its corresponding sub-
jective quality score, such as support vector regression (SVR)
[47] and neural networks (NNs) [48]. SVR requires complex
training algorithms and involves a quadratic programming
problem. Neural networks have the difficulties of local
minima, learning epochs, and slow convergence. An im-
portant question is that neural networks or training-based
methods usually need large quantities of labeled training
samples, while 3D image quality databases generally lack
large-scale training images with subjective quality scores,
which limits the performance of the methods using deep
neural networks. In recent years, the extreme learning
machine (ELM) [49] has attracted considerable attention
and has been demonstrated as an effective and efficient
technique in many applications, such as pattern recognition
[50] and quality evaluation [51]. +e ELM has advantages of
faster learning speed, higher learning accuracy, and im-
proved generalization. +e weights between the input and
hidden layers can be selected randomly and independent of
the training data, and layer-by-layer back propagated tuning
is not required [35]. Motivated by these unique properties,
we try to employ the ELM for feature mapping and re-
gression model learning in 3D image quality prediction.

For a given set of N arbitrary training samples (Fi, yi),
where Fi represents the quality-predictive features of the ith
pair of original/distorted images and yi is the corresponding
subjective quality score, our goal is to find a function which
minimizes the deviation from the subjective quality score for
all the training data.+e function f(Fi) with L hidden nodes
can be mathematically modeled and expressed by

f Fi( 􏼁 � 􏽘
L

j�1
βj · gj Fi( 􏼁 � g Fi( 􏼁 · β, i � 1, . . . , N, (14)

where g(Fi) � [g1(Fi), . . . , gL(Fi)] is the output vector of
the hidden neuron and β � [β1, . . . , βL]T denotes the output
weighting vector between the output node and the hidden
layer of L nodes. +e activation function g(Fi) can ap-
proximate N training samples by minimizing the training
error and can be formulated as

gj Fi( 􏼁 � g wj · Fi + bj􏼐 􏼑, (15)

where wj is the weighing vector which connects the input
layer and the jth hidden node and bj denotes the corre-
sponding threshold of the hidden node. In equation (14), β is
the only parameter to be determined, which leads to fast
learning for ELM [49]. For N training samples (Fi, yi), the

mathematical model for ELM (equation (14)) can be de-
scribed as follows:

YHβ � Y, (16)

where Y represents the target vector and YH is called the
hidden layer output matrix, which can be defined as

YH �

g w1 · F1 + b1( 􏼁 . . . g wL · F1 + bL( 􏼁

⋮ ⋮ ⋮

g w1 · FN + b1( 􏼁 . . . g wL · FN + bL( 􏼁

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

β �

β1
⋮

βL

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

Y �

y1

⋮

yN

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(17)

+eminimal norm least-squares method is used in ELM
tominimize the norm of the output weights.+en, the vector
of the output weights β can be predicted analytically and
expressed by

β � YY†
H, (18)

where Y†
H denotes the Moore–Penrose (MP) generalized

pseudoinverse of the hidden layer output matrix YH. In
practice, the orthogonal projection method [49] can be
efficiently employed to calculate theMoore–Penrose inverse:

Y†
H �

Y
T
HYH􏼐 􏼑

− 1
Y

T
H, if Y

T
HYH is nonsingular,

Y
T
H Y

T
HYH􏼐 􏼑

− 1
, if YHY

T
H is nonsingular.

⎧⎪⎨

⎪⎩
(19)

Based on the ridge regression theory, a positive value 1/λ
is added to the diagonal of YT

HYH or YHYT
H, which makes the

solution more stable. +erefore, with this positive value 1/λ,
we can obtain

β �

YT
H

I

λ
+ YHY

T
H􏼒 􏼓

− 1
Y, if N≤L,

I

λ + YHYT
H( 􏼁

􏼠 􏼡

− 1

Y
T
HY, if N>L,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

where N represents the number of training samples and L

denotes the number of hidden nodes. In this paper, the
number of nodes L is selected to be equal to the number of
training samples N. As a result, the output weight vector β is
determined as YT

H((I/λ) + YHYT
H)− 1Y in the experiments.

More details on the ELM can be found in [49].

4. Experimental Results and Analysis

In the experiments, we first describe the databases and
criteria used for quality assessment. +en, we give the
performance comparison with other related algorithms in
terms of predicting the quality of distorted stereoscopic
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images. Moreover, we show the evaluation results on in-
dividual distortion type. In addition, we investigate the effect
of each component in the proposed metric. Finally, we
perform the cross-database evaluation and analyze the time
complexity in our experiments.

4.1. ExperimentalDatabases and Protocols. In order to verify
and compare the performance of our proposed quality as-
sessment metric, three public and subject-rated benchmark
3D image databases were used as standards: LIVE 3D IQA
database Phase I [52], LIVE 3D IQA database Phase II [20],
and MCL-3D database [53].

(1) LIVE 3D IQA database Phase I [52]: phase I contains
20 reference stereopairs and 365 symmetrically
distorted stereopairs corresponding to five distortion
types: JPEG compression, JPEG2000 (JP2K) com-
pression, additive white noise (WN), Gaussian blur
(GB), and a simulated fast-fading (FF) model. Each
distorted stimulus has been evaluated by human
observers and assigned a difference mean opinion
score (DMOS) value. +e lower DMOS values rep-
resent higher visual quality.

(2) LIVE 3D IQA database Phase II [20]: phase II has 120
symmetrically distorted stimuli and 240 asymmet-
rically distorted stimuli generated from 8 pristine
stereopairs. Each of the five distortion types (JPEG,
JP2K, WN, GB, and FF) is symmetrically and
asymmetrically applied to the pristine stereopairs at
various degradation levels. +e corresponding
DMOS values are also given for the distorted
stereopairs.

(3) +e MCL-3D database [53]: this database consists of
684 stereoscopic image pairs. Nine image-plus-depth
sources are selected, and then a depth-image-based
rendering technique is used to render 3D images.
Four levels of distortions are applied to either the
depth map or texture stereoscopic image prior to 3D
image rendering. +e distortion types are JPEG,
JP2K, WN, Gaussian blur (GBLUR), downsampling
blur (SBLUR), and transmission error (TERROR).
Each distorted stimulus has been scored by human
observers, and a pairwise comparison is used to
obtain reliable mean opinion score (MOS) values.

To benchmark the performance of quality assessment
metrics, three general performance indicators were
employed to provide quantitative performance evaluations:
(1) Pearson’s linear correlation coefficient (PLCC), which
measures the linear dependence between the predicted
quality scores and the ground truth targets, (2) Spearman’s
rank-order correlation coefficient (SRCC), which serves as a
measure of prediction monotonicity, and (3) Kendall’s rank-
order correlation coefficient (KRCC), which is a nonpara-
metric rank-order-based correlation metric. Higher values
of PLCC, SRCC, and KRCC represent good consistency with
human perceptual quality ratings. For the nonlinear re-
gression, a five-parameter logistic function [54] was applied

to fit the predicted quality scores and provided quality
scores.

In the experiments, we randomly split each database into
two nonoverlapping subsets: a training subset and a test
subset. A training process was required to calibrate the
quality prediction model. In each train-test procedure, 80%
of the database content was selected for training and the
remaining 20% for test. After learning the statistical re-
gression model using the training set, the quality prediction
performance was evaluated using the test set. In specific, to
avoid potential performance bias of the proposed scheme,
the train-test iteration was repeated 1000 times, and the
median values of PLCC, SRCC, and KRCC were chosen as
the final validation results for performance evaluation. In the
implementation, a unipolar sigmoidal function
(1/(1 + e− λu)) with λ � 0.1 was used as the ELM nonlinear
activation function.

4.2. Overall Performance Comparison. To comprehensively
investigate the effectiveness and robustness of the proposed
scheme, we have conducted several different experiments to
compare our scheme with the typical and representative
methods. +ese mainly include two 2D-IQA methods
(PSNR and multiscale structural similarity (MS-SSIM) [55]),
two FR 3D-IQA methods (Benoit et al.’s method [13] and
Chen et al.’s method [8]), and three NR 3D-IQA methods
(Zhou and Yu’s method [56], Fan et al.’s method [41], and
Shen et al.’s method [22]). For the previous two 2D-IQA
approaches, the predicted quality score of a stereoscopic
image was obtained by averaging the left and right image
qualities. For Benoit et al.’s approach [13], the disparity
distortion was the global correlation between the original
and distorted disparity maps. For Chen et al.’s approach [8],
we adopted the cyclopeanmetric in terms of multiscale SSIM
described in their paper.

Figure 4 provides the scatter plots of predicted quality
scores against subjective DMOS values for the proposed
scheme and other compared methods on the LIVE 3D IQA
database Phase I. In these figures, the horizontal axis rep-
resents the predicted quality scores and the vertical axis
denotes the subjective DMOS values of the perceived dis-
tortions. Considering performance comparison, a straight-
lined distribution of scatter points is better than other ar-
bitrary shapes. For the PSNR andMS-SSIM [55] approaches,
the performance is worse than most of other methods in
general. +e reason can be attributed to that these methods
treat the left- and right-view images independently and
binocular visual characteristics are not taken into account.
For Benoit et al.’s approach [13], the quality evaluation
accuracy is even lower than the 2D-IQA approaches under
some distortions. One possible explanation is that the 2D
image quality metric for disparity maps does not coincide
with the human perception of disparity. Overall, the pro-
posed scheme has better consistent alignment with human
subjective judgements for stereoscopic 3D images on the
database.

In order to further evaluate the performance comparison
of quality assessment accuracy on the three databases, we
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Figure 4: Continued.
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have given the values of PLCC, SRCC, and KRCC between
the provided and predicted quality scores for the proposed
scheme and the compared methods. Table 1 presents the
performance comparison results in terms of PLCC, SRCC,
and KRCC on the three databases. In each case, the results of
the best-performance metric are marked in bold. According
to the experimental results in this table, Shen et al.’s method
[22] performs best on asymmetrically distorted stereoscopic
images in the LIVE 3D IQA database Phase II, and our
proposed scheme achieves higher consistency with human
opinion scores on the other two databases. Moreover, the
PLCC and SRCC values for our scheme are above 0.912 and
0.907, respectively, on all databases, which demonstrate that
the proposed scheme exhibits a good stability to quantify
and predict the perceptual distortions of 3D images. On the
whole, the proposed scheme has competitive performance
and shows statistically superiority over other typical and
representative methods for 3D image quality prediction.

4.3. Distortion-Specific Performance Evaluation. In this
section, we have investigated the distortion-specific per-
formance of the proposed scheme and other compared
methods for each individual distortion type on the hybrid
distortion databases. +e PLCC, SRCC, and KRCC com-
parison results are summarized in Tables 2–4, respectively.
For reasons of space and for brevity, M[n] is used to rep-
resent the corresponding compared method proposed in
paper [n]. +e top two quality assessment metrics for each
index (PLCC, SRCC, or KRCC) have been highlighted in
bold. From these tables, we can find that our proposed
metric achieves the highest hit-count for each index and is
statistically superior to the compared methods. Some
metrics may have high assessment accuracies for specific
distortion types: Chen et al.’s method [8] shows strong

competitiveness on Gaussian blur, and Shen et al.’s method
[22] has outstanding performance on JPEG compression .
But our method is comparable to the best-performing
metrics for these kinds of distortions. +e proposed scheme
generally outperforms the vast majority of compared
methods by a certain margin for distortion-specific per-
formance evaluation. From these experimental results, it is
worth noting that the quality prediction of our scheme is
basically independent of different sorts of distortions.

4.4. Contribution of Each Component in the Proposed Scheme.
In this section, to understand the respective contributions of
each component to the overall quality score in the proposed
metric, we have devised three different schemes for com-
parison, denoted by scheme A, scheme B, and scheme C,
respectively. For scheme A, the binocular features of GM
response and the binocular energy were used to measure
visual quality. For scheme B, the binocular features of LOG
response and the binocular energy were adopted for quality
prediction. For scheme C, the binocular energy was not
included, and the binocular features of GM and LOG re-
sponses were considered for quality evaluation. +e PLCC,
SRCC, and KRCC results are reported in Table 5. As can be
observed from this table, the binocular features of LOG
response have the most important impact on quality pre-
diction under distortions. It can be inferred that the bin-
ocular features of GM and LOG responses and the binocular
energy are complementary, and only adopting one aspect of
these features cannot obtain the best performance. In ad-
dition, according to the results in the table, scheme B has
higher assessment accuracies than scheme A, which implies
that the LOG features contain more useful visual infor-
mation and contribute more to 3D quality prediction than
the GM features. +e experimental results have also
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Figure 4: Scatter plots of the predicted quality scores against the subjective DMOS values for the eight methods. (a) PSNR. (b) MS-SSIM
[55]. (c) Benoit et al.’s method [13]. (d) Chen et al.’s method [8]. (e) Zhou and Yu’s method [56]. (f ) Fan et al.’s method [41]. (g) Shen et al.’s
method [22]. (h) Proposed scheme.
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demonstrated that the quality assessment performance can
be promoted by appropriate combination of binocular
features and binocular energy.

4.5. Cross-Database Performance Evaluation. In the above
experiments, the training and test subset have the same
distortions selected from the databases. Since the proposed
scheme is based on a learning framework, it is necessary to
ascertain whether the performance is bound to a special
training database on which it is trained. To verify the
generalization ability and stability of our scheme, we have
carried out cross-database experiments for performance
evaluation. In the experiment, we examined whether sat-
isfactory results could be obtained by applying the regression
model trained on one database to the testing set from an-
other database. For brevity, the SRCC results of cross-da-
tabase performance evaluation are given in Table 6. It can be
observed that the proposed metric has comparatively weak
performance in comparison with the evaluation results in
Table 3. +e reason can be mainly attributed to that the
training and test subsets have different types of distortions.

For instance, the LIVE Phase I database only has sym-
metrically distorted images, while the LIVE Phase II data-
base contains both symmetric and asymmetric distortions.
However, the values of corresponding indicators are still
relatively high, which show that our framework can
maintain a satisfying predictive capacity under different
circumstances. Based on the above experimental results, it
can be concluded that a larger training database with more
comprehensive distortion types could probably promote the
prediction accuracy of our scheme.

In this section, we have also compared the cross-database
evaluation of the proposed scheme with other related
methods. +e SRCC results are provided in Table 7, where
the top two metrics have been marked in bold. According to
the experimental results in the table, no matter which
training database is used, the cross-database evaluation of
our scheme is usually stable, and it offers statistically better
quality prediction in line with human perception than the
compared methods on different databases. +ese facts
demonstrate the generalization ability and effectiveness of
the proposed scheme for stereoscopic image quality
assessment.

Table 1: Performance of the proposed scheme and other methods in terms of PLCC, SRCC, and KRCC, using the three databases.

IQA model
LIVE-I LIVE-II MCL-3D

PL SR KR PL SR KR PL SR KR
PSNR 0.852 0.846 0.752 0.809 0.790 0.685 0.837 0.816 0.741
MS-SSIM [55] 0.876 0.872 0.815 0.831 0.839 0.727 0.886 0.891 0.759
Benoit [13] 0.883 0.855 0.776 0.835 0.794 0.715 0.843 0.819 0.746
Chen [8] 0.917 0.916 0.737 0.900 0.889 0.730 0.881 0.884 0.717
Chen [17] 0.939 0.923 0.830 0.865 0.859 0.806 0.903 0.892 0.839
Zhou [56] 0.910 0.901 0.711 0.771 0.770 0.550 0.833 0.831 0.612
Fan [41] 0.928 0.887 0.724 0.861 0.823 0.627 0.865 0.830 0.751
Chen [34] 0.937 0.920 0.826 0.870 0.852 0.729 0.907 0.893 0.765
Shen [22] 0.932 0.925 0.839 0.928 0.920 0.856 0.930 0.922 0.835
Proposed 0.941 0.927 0.861 0.912 0.907 0.858 0.937 0.926 0.852
PL: PLCC, SR: SRCC, KR: KRCC. +e results of the best-performance metric are marked in bold.

Table 2: PLCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.521 0.735 0.633 0.837 0.715 0.825 0.840 0.865
JP2K 0.826 0.917 0.930 0.916 0.893 0.909 0.912 0.873
WN 0.895 0.923 0.919 0.943 0.916 0.947 0.935 0.952

GBLUR 0.913 0.936 0.924 0.951 0.912 0.950 0.942 0.958
FF 0.740 0.861 0.893 0.915 0.878 0.882 0.918 0.916

LIVE-II

JPEG 0.726 0.865 0.694 0.820 0.770 0.692 0.871 0.863
JP2K 0.783 0.868 0.826 0.872 0.611 0.735 0.904 0.855
WN 0.905 0.940 0.743 0.902 0.796 0.904 0.920 0.927

GBLUR 0.817 0.793 0.896 0.965 0.872 0.913 0.943 0.946
FF 0.802 0.816 0.851 0.909 0.904 0.851 0.929 0.932

MCL-3D

JPEG 0.651 0.870 0.674 0.861 0.805 0.856 0.859 0.864
JP2K 0.782 0.879 0.906 0.913 0.872 0.910 0.909 0.885
WN 0.886 0.955 0.792 0.892 0.856 0.866 0.935 0.939

GBLUR 0.867 0.914 0.839 0.867 0.757 0.915 0.951 0.954
SBLUR 0.829 0.892 0.815 0.907 0.819 0.924 0.926 0.920
TERROR 0.813 0.867 0.790 0.905 0.743 0.769 0.893 0.927

+e top two quality assessment metrics have been highlighted in bold.
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4.6. Time Complexity Analysis. Time complexity is a sig-
nificant indicator in evaluating the performance of the
proposed scheme, to facilitate its use in real-time applica-
tions such as monitoring and adjustment. We have com-
pared the computational complexity of our proposed
scheme with other related methods. +e experiment was
performed in MATLAB R2014a on a Windows 10 PC with a

2.5GHz Intel Core i7 processor and 8GB RAM. +e results
of time consumption are given in Table 8, which presents the
running time comparison on the LIVE Phase I database with
365 stereopairs. As can be seen from this table, the total
processing time of the proposed scheme is 127 seconds,
which indicates that it takes less than 0.35 seconds to predict
a distorted stereopair. Although it is not the most efficient

Table 3: SRCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.507 0.725 0.652 0.816 0.569 0.614 0.845 0.842
JP2K 0.818 0.906 0.897 0.877 0.812 0.824 0.909 0.853
WN 0.902 0.925 0.912 0.895 0.940 0.915 0.937 0.942

GBLUR 0.895 0.933 0.874 0.953 0.860 0.916 0.938 0.963
FF 0.754 0.856 0.860 0.912 0.784 0.867 0.910 0.924

LIVE-II

JPEG 0.696 0.852 0.704 0.822 0.769 0.593 0.843 0.847
JP2K 0.785 0.847 0.819 0.863 0.593 0.717 0.886 0.829
WN 0.873 0.934 0.738 0.889 0.846 0.891 0.936 0.939

GBLUR 0.809 0.803 0.904 0.956 0.862 0.903 0.951 0.932
FF 0.806 0.821 0.836 0.895 0.935 0.891 0.901 0.909

MCL-3D

JPEG 0.645 0.861 0.719 0.857 0.781 0.848 0.863 0.868
JP2K 0.809 0.873 0.843 0.902 0.875 0.927 0.908 0.897
WN 0.891 0.942 0.758 0.899 0.823 0.861 0.912 0.932

GBLUR 0.864 0.906 0.827 0.893 0.705 0.910 0.926 0.945
SBLUR 0.832 0.880 0.796 0.920 0.818 0.951 0.933 0.904
TERROR 0.815 0.852 0.807 0.903 0.609 0.676 0.895 0.907

+e top two quality assessment metrics have been highlighted in bold.

Table 4: KRCC comparison for each type of distortion.

Database Distortion PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I

JPEG 0.434 0.692 0.558 0.736 0.535 0.601 0.757 0.826
JP2K 0.685 0.826 0.804 0.727 0.793 0.706 0.859 0.803
WN 0.823 0.829 0.811 0.736 0.912 0.835 0.820 0.915

GBLUR 0.806 0.850 0.786 0.863 0.839 0.827 0.858 0.931
FF 0.638 0.729 0.752 0.856 0.706 0.772 0.863 0.882

LIVE-II

JPEG 0.567 0.735 0.591 0.727 0.522 0.571 0.749 0.736
JP2K 0.632 0.783 0.754 0.726 0.537 0.765 0.736 0.725
WN 0.729 0.821 0.695 0.715 0.696 0.619 0.833 0.839

GBLUR 0.656 0.806 0.827 0.862 0.729 0.820 0.881 0.894
FF 0.694 0.715 0.709 0.739 0.853 0.783 0.872 0.851

MCL-3D

JPEG 0.656 0.719 0.682 0.709 0.607 0.552 0.753 0.772
JP2K 0.727 0.753 0.817 0.763 0.715 0.863 0.827 0.846
WN 0.825 0.851 0.786 0.685 0.616 0.639 0.849 0.895

GBLUR 0.796 0.764 0.624 0.690 0.596 0.797 0.886 0.904
SBLUR 0.809 0.766 0.732 0.817 0.775 0.812 0.825 0.813
TERROR 0.751 0.705 0.724 0.761 0.579 0.537 0.758 0.819

+e top two quality assessment metrics have been highlighted in bold.

Table 5: Performance of each component in the proposed scheme.

LIVE-I LIVE-II MCL-3D
PL SR KR PL SR KR PL SR KR

Scheme A 0.832 0.754 0.681 0.724 0.658 0.593 0.761 0.696 0.605
Scheme B 0.879 0.826 0.735 0.803 0.717 0.642 0.829 0.740 0.652
Scheme C 0.851 0.797 0.714 0.750 0.664 0.607 0.785 0.728 0.637
Proposed 0.941 0.927 0.861 0.912 0.907 0.858 0.937 0.926 0.852
PL: PLCC, SR: SRCC, KR: KRCC.
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method, it has the best comprehensive performance in
achieving the balance between accuracy and timeliness. +e
simulation results demonstrate that our proposed scheme
has relatively lower computing complexity than the com-
pared methods.

5. Conclusions

In this paper, we have presented a novel no-reference quality
prediction method for stereoscopic images based on bin-
ocular statistical features and machine learning. +e
framework of the proposed scheme includes a feature ex-
traction stage and a feature mapping stage. +e gradient
magnitude and Laplacian of Gaussian responses from a
stereopair and its fusion and difference maps are utilized as
quality-predictive features. With the extreme learning ma-
chine, a statistical regression model is established to map
these binocular features of a stereopair to its corresponding
perceptual quality score. +e visual quality predictions by
the proposed metric are highly correlated with subjective
quality judgements for distorted image pairs of various
distortion types. More importantly, our method achieves
excellent performance and has a promising generalization
ability. +e proposed scheme can be applied to video
broadcasting and 3Dmultimedia industry for its practicality.

For future work, how to explore deeper structure rep-
resentation for a human visual system and how to design
more efficient machine learning methods for visual quality
prediction should be researched. In addition, more effective
quality features can be considered to simulate the human
perceptual vision. Other 3D quality factors such as depth
perception and visual comfort still deserve further study.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

+is work was supported in part by the Key Research and
Development Program of China under Grant no.
2018YFC0831000, the National Natural Science Foundation
of China under Grant no. 62001267, the Natural Science
Foundation of Shandong Province under Grant no.
ZR2020QF013, the Shandong Provincial Key Research and
Development Program (Major Scientific and Technological
Innovation Project) under Grant no. 2019JZZY010119, and
the Fundamental Research Funds of Shandong University
under no. 2020HW017.

References

[1] L. Chen and J. Zhao, “Quality assessment of stereoscopic 3D
images based on local and global visual characteristics,” in
Proceedings of the IEEE International Conference on Multi-
media & Expo Workshops (ICMEW), pp. 61–66, Hong Kong,
China, July 2017.

[2] W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono,
“Stereoscopic 3D-TV: visual comfort,” IEEE Transactions on
Broadcasting, vol. 57, no. 2, pp. 335–346, 2011.

Table 6: Cross-database performance evaluation in terms of SRCC.

Testing database Training database JPEG JP2K WN GBLUR FF All

LIVE-I LIVE-II 0.834 0.833 0.896 0.925 0.908 0.904
MCL-3D 0.821 0.839 0.908 0.885 — 0.890

LIVE-II LIVE-I 0.815 0.801 0.892 0.907 0.903 0.840
MCL-3D 0.833 0.754 0.898 0.902 — 0.879

MCL-3D LIVE-I 0.819 0.868 0.917 0.902 — 0.875
LIVE-II 0.861 0.870 0.906 0.922 — 0.905

Table 7: SRCC comparison with other related methods for cross-database performance evaluation.

Testing Training PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed

LIVE-I LIVE-II 0.792 0.839 0.817 0.896 0.871 0.866 0.901 0.904
MCL-3D 0.808 0.865 0.853 0.913 0.897 0.885 0.895 0.890

LIVE-II LIVE-I 0.729 0.835 0.762 0.861 0.765 0.816 0.857 0.840
MCL-3D 0.746 0.811 0.783 0.877 0.752 0.820 0.883 0.879

MCL-3D LIVE-I 0.747 0.861 0.710 0.853 0.812 0.825 0.859 0.875
LIVE-II 0.803 0.823 0.815 0.817 0.819 0.828 0.868 0.905

+e top two metrics have been marked in bold.

Table 8: Performance comparison of time complexity on the LIVE Phase I database.

Metrics PSNR M [55] M [13] M [8] M [56] M [41] M [22] Proposed
Run time (s) 7105 9520 6814 5143 37 453 396 127

12 Complexity



[3] S. Khan and S. S. Channappayya, “Estimating depth-salient
edges and its application to stereoscopic image quality as-
sessment,” IEEE Transactions on Image Processing, vol. 27,
no. 12, pp. 5892–5903, 2018.

[4] B. Appina, S. V. R. Dendi, K. Manasa, S. S. Channappayya,
and A. C. Bovik, “Study of subjective quality and objective
blind quality prediction of stereoscopic videos,” IEEE
Transactions on Image Processing, vol. 28, no. 10, pp. 5027–
5040, 2019.

[5] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam,
“Objective video quality assessment methods: a classification,
review, and performance comparison,” IEEE Transactions on
Broadcasting, vol. 57, no. 2, pp. 165–182, 2011.

[6] X. Ben, C. Gong, P. Zhang, X. Jia, Q. Wu, and W. Meng,
“Coupled patch alignment for matching cross-view gaits,”
IEEE Transactions on Image Processing, vol. 28, no. 6,
pp. 3142–3157, 2019.

[7] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical
evaluation of recent full reference image quality assessment
algorithms,” IEEE Transactions on Image Processing, vol. 15,
no. 11, pp. 3440–3451, 2006.

[8] M.-J. Chen, C.-C. Su, D.-K. Kwon, L. K. Cormack, and
A. C. Bovik, “Full-reference quality assessment of stereopairs
accounting for rivalry,” Signal Processing: Image Communi-
cation, vol. 28, no. 9, pp. 1143–1155, 2013.

[9] J. Wu, W. Lin, G. Shi, and A. Liu, “Reduced-reference image
quality assessment with visual information fidelity,” IEEE
Transactions on Multimedia, vol. 15, no. 7, pp. 1700–1705,
2013.

[10] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind image quality
assessment: a natural scene statistics approach in the DCT
domain,” IEEE Transactions on Image Processing, vol. 21,
no. 8, pp. 3339–3352, 2012.

[11] Q. Jiang, F. Shao, W. Gao, Z. Chen, G. Jiang, and Y.-S. Ho,
“Unified no-reference quality assessment of singly and
multiply distorted stereoscopic images,” IEEE Transactions on
Image Processing, vol. 28, no. 4, pp. 1866–1881, 2019.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, 2004.

[13] A. Benoit, P. L. Callet, P. Campisi, and R. Cousseau, “Using
disparity for quality assessment of stereoscopic images,” in
Proceedings of the 15th IEEE International Conference on
Image Processing, pp. 389–392, San Diego, CA, USA, October
2008.

[14] J. You, L. Xing, A. Perkis, and X. Wang, “Perceptual quality
assessment for stereoscopic images based on 2D image quality
metrics and disparity analysis,” in Proceedings of the Fifth
International Workshop on Video Processing and Quality
Metrics for Consumer Electronics (VPQM2010), pp. 61–66,
Scottsdale, AZ, USA, November 2010.

[15] Y.-H. Lin and J.-L. Wu, “Quality assessment of stereoscopic
3D image compression by binocular integration behaviors,”
IEEE Transactions on Image Processing, vol. 23, no. 4,
pp. 1527–1542, 2014.

[16] F. Shao, W. Lin, S. Gu, G. Jiang, and T. Srikanthan, “Per-
ceptual full-reference quality assessment of stereoscopic im-
ages by considering binocular visual characteristics,” IEEE
Transactions on Image Processing, vol. 22, no. 5, pp. 1940–
1953, 2013.

[17] L. Chen and J. Zhao, “Perceptual quality assessment of ste-
reoscopic images based on local and global visual

characteristics,” Multimedia Tools and Applications, vol. 78,
no. 9, pp. 12139–12156, 2019.

[18] X. Ben, P. Zhang, Z. Lai, R. Yan, X. Zhai, and W. Meng, “A
general tensor representation framework for cross-view gait
recognition,” Pattern Recognition, vol. 90, pp. 87–98, 2019.

[19] X. Ben, C. Gong, P. Zhang, R. Yan, Q. Wu, and W. Meng,
“Coupled bilinear discriminant projection for cross-view gait
recognition,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 3, pp. 734–747, 2020.

[20] M.-J. Chen, L. K. Cormack, and A. C. Bovik, “No-reference
quality assessment of natural stereopairs,” IEEE Transactions
on Image Processing, vol. 22, no. 9, pp. 3379–3391, 2013.

[21] S. Ryu and K. Sohn, “No-reference quality assessment for
stereoscopic images based on binocular quality perception,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 24, no. 4, pp. 591–602, 2014.

[22] L. Shen, R. Fang, Y. Yao, X. Geng, and D. Wu, “No-reference
stereoscopic image quality assessment based on image dis-
tortion and stereo perceptual information,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 3, no. 1,
pp. 59–72, 2019.

[23] L. Chen and J. Zhao, “No-reference quality assessment for
stereoscopic 3D images based on binocular visual perception,”
in Proceedings of the IEEE International Symposium on
Haptic, Audio and Visual Environments and Games, pp. 1–5,
Dalian, China, September 2018.

[24] J. Yang, C. Ji, B. Jiang, W. Lu, and Q. Meng, “No reference
quality assessment of stereo video based on saliency and
sparsity,” IEEE Transactions on Broadcasting, vol. 64, no. 2,
pp. 341–353, 2018.

[25] Z. Chen, J. Xu, C. Lin, and W. Zhou, “Stereoscopic omni-
directional image quality assessment based on predictive
coding theory,” IEEE Journal of Selected Topics in Signal
Processing, vol. 14, no. 1, pp. 103–117, 2020.

[26] J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Bag constrained
structure pattern mining for multi-graph classification,” IEEE
Transactions on Knowledge and Data Engineering, vol. 26,
no. 10, pp. 2382–2396, 2014.

[27] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph
classification,” IEEE Transactions on Cybernetics, vol. 45,
no. 3, pp. 416–429, 2015.

[28] F. Liu, S. Xue, J. Wu et al., “Deep learning for community
detection: progress, challenges and opportunities,” in Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, Yokohama, Japan, August 2020.

[29] W. Zhou, W. Qiu, and M.-W. Wu, “Utilizing dictionary
learning and machine learning for blind quality assessment of
3-D images,” IEEE Transactions on Broadcasting, vol. 63,
no. 2, pp. 404–415, 2017.

[30] S. Li, X. Han, and Y. Chang, “Adaptive cyclopean image-based
stereoscopic image-quality assessment using ensemble
learning,” IEEE Transactions on Multimedia, vol. 21, no. 10,
pp. 2616–2624, 2019.

[31] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional
neural networks for no-reference image quality assessment,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1733–1740, Columbus, OH, USA,
June 2014.

[32] H. Oh, S. Ahn, J. Kim, and S. Lee, “Blind deep S3D image
quality evaluation via local to global feature aggregation,”
IEEE Transactions on Image Processing, vol. 26, no. 10,
pp. 4923–4936, 2017.

[33] W. Zhou, Z. Chen, and W. Li, “Dual-stream interactive
networks for no-reference stereoscopic image quality

Complexity 13



assessment,” IEEE Transactions on Image Processing, vol. 28,
no. 8, pp. 3946–3958, 2019.

[34] L. Chen and J. Zhao, “No-reference perceptual quality as-
sessment of stereoscopic images based on binocular visual
characteristics,” Signal Processing: Image Communication,
vol. 76, pp. 1–10, 2019.

[35] W. Zhou, L. Yu, Y. Zhou, W. Qiu, M.-W. Wu, and T. Luo,
“Blind quality estimator for 3D images based on binocular
combination and extreme learning machine,” Pattern Rec-
ognition, vol. 71, pp. 207–217, 2017.

[36] D. Stidwill and R. Fletcher, Normal Binocular Vision: Eeory,
Investigation and Partical Aspects, Wiley, New York, NY,
USA.

[37] N. Kruger, P. Janssen, S. Kalkan et al., “Deep hierarchies in the
primate visual cortex: what can we learn for computer vision?”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 8, pp. 1847–1871, 2013.

[38] J. Wu, W. Lin, and G. Shi, “Image quality assessment with
degradation on spatial structure,” IEEE Signal Processing
Letters, vol. 21, no. 4, pp. 437–440, 2014.

[39] W. Xue, X. Mou, L. Zhang, A. C. Bovik, and X. Feng, “Blind
image quality assessment using joint statistics of gradient
magnitude and Laplacian features,” IEEE Transactions on
Image Processing, vol. 23, no. 11, pp. 4850–4862, 2014.

[40] K. A. May and L. Zhaoping, “Efficient coding theory predicts a
tilt aftereffect from viewing untilted patterns,” Current Bi-
ology, vol. 26, no. 12, pp. 1571–1576, 2016.

[41] Y. Fan, M. C. Larabi, F. A. Cheikh, and C. F. Maloigne, “No-
reference quality assessment of stereoscopic images based on
binocular combination of local features statistics,” in Pro-
ceedings of the IEEE International Conference on Image
Processing (ICIP), pp. 3538–3542, Athens, Greece, October
2018.

[42] P. Seuntiens, L. Meesters, and W. Ijsselsteijn, “Perceived
quality of compressed stereoscopic images,” ACM Transac-
tions on Applied Perception, vol. 3, no. 2, pp. 95–109, 2006.

[43] J. Wang, A. Rehman, K. Zeng, S. Wang, and Z. Wang,
“Quality prediction of asymmetrically distorted stereoscopic
3D images,” IEEE Transactions on Image Processing, vol. 24,
no. 11, pp. 3400–3414, 2015.

[44] K. Lee and S. Lee, “3D perception based quality pooling:
stereopsis, binocular rivalry, and binocular suppression,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9,
no. 3, pp. 533–545, 2015.

[45] Q. Peng and B. E. Shi, “+e changing disparity energy model,”
Vision Research, vol. 50, no. 2, pp. 181–192, 2010.

[46] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature
similarity index for image quality assessment,” IEEE Trans-
actions on Image Processing: A Publication of the IEEE Signal
Processing Society, vol. 20, no. 8, pp. 2378–2386, 2011.

[47] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3,
pp. 199–222, 2004.

[48] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[49] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70,
no. 1–3, pp. 489–501, 2006.

[50] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme
learning machine for regression and multiclass classification,”
IEEE Transactions on Systems, Man, and Cybernetics. Part B,
Cybernetics: A Publication of the IEEE Systems, Man, and
Cybernetics Society, vol. 42, no. 2, pp. 513–529, 2012.

[51] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “NMF-based
image quality assessment using extreme learning machine,”
IEEE Transactions on Cybernetics, vol. 47, pp. 232–243, 2017.

[52] A. K. Moorthy, C.-C. Su, A. Mittal, and A. C. Bovik, “Sub-
jective evaluation of stereoscopic image quality,” Signal
Process: Image Communication, vol. 28, no. 8, pp. 870–883,
2012.

[53] R. Song, H. Ko, and C. C. J. Kuo, “MCL-3D: a database for
stereoscopic image quality assessment using 2D-image-plus-
depth source,” Journal of Information Science and Engineer-
ing, vol. 31, no. 5, pp. 1593–1611, 2015.

[54] P. G. Gottschalk and J. R. Dunn, “+e five-parameter logistic:
a characterization and comparison with the four-parameter
logistic,” Analytical Biochemistry, vol. 343, no. 1, pp. 54–65,
2005.

[55] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale
structural similarity for image quality assessment,” in Pro-
ceedings of the IEEE Ee Erity-Seventh Asilomar Conference
on Signals, Systems & Computers, pp. 1398–1402, Pacific
Grove, CA, USA, November 2003.

[56] W. Zhou and L. Yu, “Binocular responses for no-reference 3D
image quality assessment,” IEEE Transactions on Multimedia,
vol. 18, no. 6, pp. 1077–1084, 2016.

14 Complexity


