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Abstract

Background: Microscopic imaging is a crucial technology for visualizing neural and
tissue structures. Large-area defects inevitably occur during the imaging process of
electron microscope (EM) serial slices, which lead to reduced registration and semantic
segmentation, and affect the accuracy of 3D reconstruction. The continuity of
biological tissue among serial EM images makes it possible to recover missing tissues
utilizing inter-slice interpolation. However, large deformation, noise, and blur among
EM images remain the task challenging. Existing flow-based and kernel-based methods
have to perform frame interpolation on images with little noise and low blur. They also
cannot effectively deal with large deformations on EM images.

Results: In this paper, we propose a sparse self-attention aggregation network to
synthesize pixels following the continuity of biological tissue. First, we develop an
attention-aware layer for consecutive EM images interpolation that implicitly adopts
global perceptual deformation. Second, we present an adaptive style-balance loss
taking the style differences of serial EM images such as blur and noise into
consideration. Guided by the attention-aware module, adaptively synthesizing each
pixel aggregated from the global domain further improves the performance of pixel
synthesis. Quantitative and qualitative experiments show that the proposed method is
superior to the state-of-the-art approaches.

Conclusions: The proposed method can be considered as an effective strategy to
model the relationship between each pixel and other pixels from the global domain.
This approach improves the algorithm’s robustness to noise and large deformation,
and can accurately predict the effective information of the missing region, which will
greatly promote the data analysis of neurobiological research.

Keywords: Slice interpolation, Biological tissue recovery, EM images, Sparse
self-attention network, Adaptive style-balance loss
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Background

Inter-slice interpolation is important in electron microscope (EM) image analysis. The
destruction of the biological tissues during sample preparation and EM imaging can cause
large-area defects in serial EM images. Recent methods based on context information are
effective for small area defects, but cannot handle large area. The continuity of the bio-
logical tissue of the serial slices contributes to predicting the missing information despite
the failure of using only the spatial information of a single EM image. To date, there
are only few reported works available in the field of sequence slice interpolation [1-3],
and the EM image restoration methods are not effective when dealing with large-area
defects. However, interpolation methods can accurately predict non-defective interme-
diate frames, which can replace original intermediate frames with large-area defects.
Besides, non-defective intermediate images contribute to improve registration with sud-
den and significant structural changes, improve semantic segmentation accuracy [4], and
ensure 3D reconstruction continuity [5].

For optical images, with the development of deep learning, frame interpolation has gone
through five stages: simple CNN-based methods [6], deep voxel flow-based methods [7],
kernel-based methods [8, 9], motion-based methods [10, 11] and depth-based methods
[12]. Long et al. [6] first adopted a generic CNN-based network synthesizing the inter-
mediate frame directly. However, the results suffer from severe blurriness since generic
CNN cannot obtain the multi-modal distribution of optical images and videos. Then, Liu
et al. [7] proposed the deep voxel flow to warp input frames based on a trilinear sampling.
Although the intermediate frames generated from voxel flow suffer low blurriness, the
procedure of flow estimation remains a challenge for large motion.

Instead of adopting optical flow to handle significant motion, Niklaus et al. [8, 9]
proposed a spatially-adaptive interpolation kernel to synthesize pixels from a large neigh-
borhood. However, these kernel-based methods only build dependencies from local areas
and typically require heavy computation cost when the size of kernel increases. Then, Bao
et al. [11] integrate kernel-based and flow-based approaches into an end-to-end network
to benefit from both sides. Recently, Bao et al. [12] further introduced depth estimation
to the previous work, which explicitly deals with occlusion. Existing flow-based methods
utilize kernel estimation to improve the precision and robustness of single-pixel synthe-
sis. However, pixels synthesized by kernel estimation only consider local neighborhood
information. In general, existing interpolation methods deal with occlusion, significant
motion, adopting depth maps [13—-15], optical flow, and local interpolation kernels. How-
ever, on EM images with large deformation, drift, and abundant noise, estimation of the
accurate optical flow field [16—18] suitable for sequence EM images remains a challenge.
Furthermore, the ultimate goal is to synthesize high-quality intermediate frames with-
out defect, and optical flow estimation is used only as an intermediate step. Kernel-based
methods [8, 9] behave well owing to combine flow estimation and pixel synthesis into
a single step. The kernel estimation synthesizes the intermediate frame pixels through
the spatial kernel based on the traditional convolution. However, it cannot establish
the dependence of the global domain, and when the spatial kernel is expanded to the
input image size, the computation and memory complexity is not lower than the original
self-attention mechanism.

Focusing on finding more accurate deformation fields on EM images, early researchers
also proposed a series of traditional slice interpolation methods, including shape-based
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methods [19], morphology-based methods [20], registration-based methods [21]. How-
ever, the implementation of these conventional methods was based on an essential
assumption that changes in the structure must be sufficiently small. This assumption
makes the methods mentioned above unsuitable for sparsely sampled slices. Recently,
with the development of deep learning [22—24], there are several CNN-based slice inter-
polation methods. [1] proposed a simple convolutional auto-encoder for binary image
interpolation. Then, Nguyen et al. [3] leveraged slice interpolation to improve registra-
tion. Slice interpolation was only an auxiliary part of registration. Wu et al. [2] proposed
an Intermediate slice synthesis model for boosting medical image segmentation accuracy.
The slice synthesis model was based on the kernel estimation method [9] and cannot
handle noise and blur differences, large deformation, and drift among EM images.

Recently, the self-attention mechanism has become an integral part of the entire
model, to establish global dependency for each position. Self-attention, also called intra-
attention, was originally proposed to calculate the response at a position in a sequence,
then it was first plugged into machine translation [25], achieving state-of-the-art results.
Parmar et al. [26] proposed an Image Transformer model adopting self-attention for
image generation. Wang et al. [27] proposed non-local operations to model the spatial-
temporal dependencies in various computer vision tasks, e.g. video classification, object
detection, and instance segmentation. Recently, some researchers [28—30] applied a
similar mechanism for semantic segmentation and achieved good performance.

Despite its progress, self-attention has not been applied in neural sequence slice inter-
polation. Inspired by the works above, we propose a simple and efficient multi-level sparse
strategy to decompose the original affinity matrix of the self-attention mechanism into the
product of two sparse affinity sub-matrices, and we apply the interlacing mechanism to
group the pixels with long spatial interval distances together for the long-range attention.
If the size of the sparse affinity sub-matrix is larger than the threshold, the sub-matrix
continues to decompose itself in the same way. Notably, the concurrent works, Sparse
Transformer [31] and Interlaced Sparse Self-Attention [30] also adopt similar factoriza-
tion scheme to improve the efficiency of self-attention on sequential tasks and semantic
segmentation while we focus on consecutive EM image interpolation. In contrast, we
implicitly detect global deformation and integrate pixels from global dependency by uti-
lizing the self-attention information in the attention-aware layer. Furthermore, We utilize
the multi-level sparse strategy further to improve the computational efficiency of the
self-attention mechanism. Moreover, we replace traditional kernel estimation with the
proposed attention-aware layer to synthesize pixels from global dependency.

To address the problems above, we introduce a simple and efficient solution named
attention-aware layer (AAL). The AAL perceives all positions in the input frames, and
then synthesize each pixel of the intermediate frame according to the attention maps.
In more detail, AAL learns to focus on global deformation without additional supervi-
sion, implicitly considering all positions in the input frames to generate each pixel in the
middle frame. In this way, the optical flow field extraction and kernel estimation can be
reasonably removed while maintaining the intermediate frame accuracy. Besides, a two-
level sparse self-attention mechanism in AAL decreases the computation and memory
complexity substantially. Considering the style differences in the degree of noise and blur
between the serial EM images, we also propose an adaptive style-balance loss, which
strengthens the supervision of input frames and ensure the natural transition of three con-
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secutive frames. As a result, our proposed approach performs better than other methods
on EM images.

In this paper, we propose a novel AAL that can perfectly replace the kernel estimation
layer and establish a global dependence for each pixel. Additionally, we explore the effects
of different loss functions on the EM image interpolation task. In particular, we propose
an adaptive style balance loss. The main contributions can be roughly grouped in three

different directions.

e We present an attention-aware layer to capture the dense long-range dependencies
for each pixel with lower memory and computation consumption. The proposed
module improves performance compared to kernel-based methods and flow-based
methods. Moreover, our approach combines flow estimation and kernel estimation
into a single step

e We propose the style balance loss to handle differences in style among three input
consecutive EM images. The proposed loss not only guides the style of generating
intermediate frames to be closer to the ground truth but also utilizes the styles of the
front and rear frames to strengthen the constraints on the intermediate frame style.
We show that using front and rear frame styles for supervision can better generate
intermediate frames with natural transition.

e Based on CREMI' dataset, provided by MICCAI 2016 Challenge as serial section
transmission electron microscopy (ssTEM) images, we generate a new dataset,
named cremi_triplet, for the task EM image interpolation. Besides, we also generate a
dataset named mouse_triplet for interpolation based on automatic tape-collecting
ultramicrotome (ATUM) mouse brain data. Experimental results demonstrate the
effectiveness of the attention aware layer on EM image interpolation, which is
superior to the kernel-based methods and flow-based methods.

Materials and methods

In this paper, we propose a sparse self-attention aggregation network (SSAN) for EM
image interpolation. An overview of the proposed attention-aware interpolation algo-
rithm is shown in Fig. 1, which is primarily based on the siamese residual dense network,
attention-aware layer, and hybrid network. Given two input frames I;_; and I, the goal
is to synthesize an intermediate frame I;. We first encode the feature maps, denoted by
F;_1-¢+1 and Fi4 1,41 , through siamese residual dense network. Then, the proposed
attention-aware layer synthesizes the warped frames warp, and warp; basedonF;_1_,41
and F;41_,;_;. After obtaining the warped frames, the proposed hybrid network generates
the interpolated frame I, by element-wise linearly fusing.

Dataset and preprocessing

Note that there is no public dataset for the EM image interpolation task, we generate
the ground truth of two major types of EM images: ssTEM images and ATUM images.
To be specific, we use the ssSTEM images from the CREMI dataset provided by MICCAI
2016 Challenge on https://cremi.org/, and the ATUM images generated from our home
grown mouse brain dataset. The CREMI dataset consists of three datasets, each consist-
ing of two 5um? volumes (training and testing, each 1250pixel x 1250pixel x 125pixel)

Uhttps://cremi.org/
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Fig. 1 Overview of the SSAN algorithm, which includes the siamese residual dense network, attention-aware
layers, and hybrid network. Given two input EM images, we first use the RDN module to calculate the forward
and reverse features and then use the proposed attention-aware layer to generate warped intermediate
frames. We then use a hybrid network adaptively fusing the warped intermediate frames to generate the final
intermediate frame

of serial section EM of the adult fly brain. Each volume has neuron and synapse labelings
and annotations for pre- and post-synaptic partners. Taking CREMI’s padder version A
dataset as an example, we first convert the hdf5 format A dataset into a png format to
obtain 200 images with a resolution of 3072 x 3072. After that, we utilize the template
matching algorithm to align the three consecutive images. Then we traverse from left to
right from top to bottom with the stride of 512 and crop the three consecutive images with
the resolution of 512 x 512 after alignment, and save as a sample. Finally, samples with
defects, weak continuity and substantial differences in blurring are all deleted. To reduce
the difference in brightness and contrast between three consecutive images in each sam-
ple, we perform histogram specification operations on both two datasets. The processed
CREMI dataset and mouse brain dataset are named as cremi_triplet and mouse_triplet,
respectively. Each dataset adopts a triplet as a sample for training, where each triplet con-
tains three consecutive EM images with a resolution of 512 x 512 pixels. There are 3,652
triplets, 2,631 triplets, 1,333 triplets and 2674 triplets in the cremi_triplet A, cremi_triplet
B, cremi_triplet C and mouse_triplet, respectively. Each dataset is divided into a training
set, validation set and test set ina ratioof 3:1: 1.

Siamese residual dense network
For feature extractor, the pooling process in the U-Net can damage context information,
making it difficult for intermediate frame synthesis. We utilize the residual dense network
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[32] as the basic feature extractor to preserve the structured information when gener-
ating the corresponding hierarchical features of the input frames. As shown in Fig. 1,
residual dense network (RDN) mainly consists of three parts: shallow feature extrac-
tion net (SFENet), residual dense blocks (RDBs), and finally dense feature fusion (DFF).
Besides, the frame interpolation task requires two consecutive frames as input to gener-
ate intermediate frames. Here, the siamese structure is adopted, as illustrated in Fig. 1,
which preserves the temporal information between consecutive frames during generating
hierarchical features and contributes to decreasing the computational consumption.

Attention-aware layer

After extracting hierarchical features through the siamese residual dense network, the
proposed AAL based on multi-level sparse self-attention replaces the kernel estimation.
The key of the proposed multi-level sparse self-attention lies in the multi-level decompo-
sition of the original dense affinity matrix A, each time decomposing the dense affinity
matrix A into the product of two sparse block affinity matrices A and AS. By combining
multi-level decomposition, long-range attention, and short-range attention, pixels of each
position can be synthesized from the information of all input positions. We demonstrate
how to estimate the long-range attention matrix A or the short-range attention matrix
AS and perform multi-level decomposition in Fig. 2.

Self-attention
The self-attention [33] scheme is described as below,

(1)

.
A = softmax ((‘"’fx)(ng)) ,

Vd

Z=W,[(W,X)A], (2)

In the above formulation, X € RE*N s the input feature map, A € RN>XN s the dense
affinity matrix, and Z € RN is the output feature map. W, Wg, Wy € REXC, and
W, € R¢* C are the learned weight matrices, which are implemented as 1 x 1convolutions.
This mechanism reduces the channel number of C to be C/k, where k = 1,2,4,8. The
scaling factor d is used to solve the small gradient problem of softmax function according
to [25] and d = %

Attention-Aware Layer
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g o ey ol (L | 2 O e
BE He per-p H Taon T
B0 25 22 B BE‘_’@_’E B
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Fig. 2 lllustration of Attention-Aware layer. L-RA and S-RA denote long-range attention and short-range
attention, respectively. In this figure, we only perform two-level decomposition
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In addition, the output of the attention layer is multiplied with a scale parameter and
add back the input feature map. Therefore, the final output is,

Y=yZ+X, (3)

where y is a learnable scalar and it is initialized as 0. Introducing the learnable y allows
the network to first rely on the cues in the local neighborhood-since this is easier-and
then gradually learn to assign more weight to the non-local evidence. As shown in Fig. 3,
we find that in the training phase, the critical parameter y slowly increases from the ini-
tial value zero with a small slope, then the increasing rate gradually becomes larger, and
finally, the curve becomes stable.

Long-range attention

Long-range attention applies the self-attention on the subsets of positions that satisfy long
spatial interval distances. As shown in Fig. 2, a permutation is first adopted on the input
feature map X to compute X! = Permute(X). Then, X* is divided into P parts and each
part contains Q adjacent positions(N = P x Q). Here,

xt = [x4,x5,.. X% ], (4)

(Wrx5) (Wexh)

AILj = softmax 7 , (5)
zL=w, [(thg) Aj] , 6)
7t =7},75,..,75], 7)

where p = 1,..., P, each Xﬁ € R*2 s a subset of X/, Aﬁ € R2*€ is the sparse affin-
ity matrix based on all the positions from input feature map Xﬁ and ZIL, e RC*Q is
the updated output feature map based on input feature map Xﬁ. All other parameters
including Wy, Wy, W, Wy, d are the same as “Self-attention” section. Finally, all the ZILj

0.200

—— gamma
0.175

0.150 1

0.125 1

0.100 A

value

0.075 1

0.050 1

0.025 1

0.000 A
0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

Fig. 3 lllustration of how the parameter y evolves during training
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is merged to acquire the output feature map Z’ in (7). From the equations above, we
demonstrate the actual affinity matrix of long-range attention as below,

Al = diag (A}, AL, .., AL), 8)

The equation shows that only the small affinity blocks in the diagonal are non-zero.

Short-range attention

Short-range attention applies the self-attention on the subsets of positions that satisfy
short spatial interval distances. The decomposition principle is similar to the long-range
attention mechanism.

Multi-level decomposition

The combination of long-range attention and short-range attention can effectively model
global dependence. However, the computation of the small affinity matrix Aﬁ from long-
range attention is still not very efficient. We continue to decompose the sub-feature map
X1L7. Here, we only perform two-level decomposition. As illustrated in Fig. 2, we first
adopt a permutation on the input feature map X to compute X’ and divide X* into P

parts. Second, we apply a permutation on the input sub-feature map XIL, to compute
/L LY _ /L /L

Xp = Permute (Xp) = [X P XPQ’ .

to long-range attention. Then, we repeat the previous long-range attention and short-

" XlzLﬂ?/] ,N' =P’ x Q'. Parameters here are similar

range attention steps in sequence, to calculate ZILgL and ZII;S. After acquiring the updated
output feature map based on the input sub-feature map Xﬁ, we merge all the ZiL,S to
acquire the output feature map Z’. Finally, the output feature map Z°5 can be obtained
through performing short-range attention on Z directly.

Complexity of attention-aware layer
Given the input feature map of size H x W x C, we analyze the computation cost of the
self-attention [33], interlaced sparse self-attention [30] and our proposed method.

The complexity of self-attention is

O (4AHWC? [k + 2(HW)*C/k), 9)
the complexity of interlaced sparse self-attention is
4HWC?  S3(HW)’C [ 1 1
o + 2 (W) < + ) , (10)
k k Phpw Qh QW
and the complexity of our proposed method is
o (12HWC2 N 2HW)*C ( 1 ( 1 N 1 ) N 1 )) 1)
k k Phpw P/hp/w Q/h Q/w Qh Qw

Where we divide the height dimension into P, parts and the width dimension into P,
parts in long-range attention and Qy and Q,, in short-range attention in the first level.
In the second level, we divide the height Q; and width Q,, again as the first level.
Here, H = PyQp, W = PuQu, Qn = P19y Quw = P'wQ'y. The complexity of
interlaced sparse self-attention [30] can be minimized to O(4HWC?/k + 3(H W)% C/k)
when PP, = (HW)%. And the complexity of our method can be minimized to
O(IZHWC2/1<+6(HW) 3 C/k) when P,/P, = (HW) % It can be seen that our method has
significantly lower computational complexity in processing high-resolution images than
the first method.
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Loss function

EM images are quite different from natural images. These images have the character-
istics of abundant noise and varying degrees of blur, which determine that general loss
functions are not suitable for consecutive EM image interpolation. The loss function for
training our network is a combination of style balance loss Ly, feature reconstruction
loss Ly, and pixel-wise loss L. In all our experiments, ¢ is the 16-layer VGG network
pretrained on ImageNet [34]. Specifically, we define the total loss as

Liotal = a1Lps + a2 Ly + 3Ly (12)

where the scalar o1, o, a3 are the trade off weight, and the constant o is 10°, the
constants oy = a3 = 1.

The proposed style balance loss aims at strengthening the supervision of the style of the
middle frame, adopting the style of the front and back frames. The style reconstruction
loss [35, 36] only ensures the style consistency between the generated intermediate frame
and ground truth, ignoring the difference in style of consecutive EM images. Affected
by the complex imaging environment of scanning electron microscopy, there are certain
differences in the style of three consecutive EM images, such as blur, noise, brightness,
and contrast. Considering that only frame ¢ — 1 and frame ¢ + 1 are input in the testing
phase, we hope that the intermediate frames ¢ generated by the model in the testing phase
can take the styles of frame £—1 and frame ¢+1 into account and generate the intermediate
frame ¢’ with natural style transitions. For this reason, we introduce style balance loss into
the training phase to achieve a better balance between style transition and the style of
ground truth. Here, we define the Gram matrix to be the C; x C; matrix and ¢;(x) is the
output of jth activation layer in vggl6 for the input x, the elements in Gram matrix are

given by
1 Hj W
& _ . .
G ®ee = crw, ;; Wg 7 () 0, B (X ' (13)

The style reconstruction loss is defined as below
Sy e
— I gt
'Cstyle = Z; H G]’ (It) - Gj (It )H2 ’ (14')
j=
The style balance loss is defined as
2
Lps = Z Bjsign (L"stylel/j - Estyley) Estylel/jr (15)
j=0

where scalar Sy, B1, B2 are the trade off weights and empirically set to 0.1,1,0.1 in turn.
While making the style of the generated intermediate frame close to the ground truth,
it also ensures the supervision of the frame 0 and frame 2 on the style of the gener-
ated intermediate frame 1'. ﬁszylel,]- denotes style reconstruction loss between intermediate
frame 1’ and input frame j, Lstyle,; denotes style reconstruction loss between ground
truth 1 and input frame j. If the frame 1 has a very different style from the frame 2,
the value of the Ly, is very large. When the style of frame 1’ tends to frame 1 and
sign ([,stylel,z - ﬁstylelz) = 1, the third term in balanced loss is large and positive, and the
network makes the style of frame 1’ approach frame 2 in a large slope; when the style of
frame 1’ tends to frame 1 and sign (,Csty;el,z — ﬁstyleu) = —1, the third term is very large
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in absolute value and negative, and the network makes the style of frame 1’ move away
from frame 2 in a large slope; If the frame 1 has a similar style to the frame 2, the value
of Lyyie,,, is very small. When the style of frame 1’ tends to frame 1, the third term in
balance loss is close to zero and can be ignored; So either frame 0.

Feature reconstruction loss aims at achieving more realistic results, we adopt the feature
reconstruction loss [35] to encourage the synthesized image I; and the ground-truth I‘ft to
have similar feature representations, defined as:

2
)’ (16)

4
G 3 g o0 ()

where C; x H; x Wj is the shape of output feature map ¢;(x).

Pixel-wise loss aims at reducing the pixel-wise divergence between intermediate frames
and ground truth. Here, we select Charbonnier loss [37] to resist outliers. The Charbon-
nier loss can be presented as:

L= p(lw-1w), (17)
X
where I;(x) is the synthesized frame, I‘ft (x) is the ground-truth frame, p(x) = vx2 + €2
is the Charbonnier penalty function, and the constant ¢ is 107°.

Parameters in SSAN
The proposed models are optimized using the Adam [38] with the 8; of 0.9 and B, of
0.999. We set the batch size to 3 with synchronized batch normalization. The initial learn-
ing rates of the proposed network are set to 10~2, We train the entire model for 30 epochs
and then reduce the learning rate by a factor of 0.1 and fine-tune the entire model for
another 20 epochs. Training requires approximately three days to converge on one Tesla
K80 GPU. The whole SSAN framework is implemented using PyTorch.

For data augmentation, we randomly flipped the cropped patches horizontally or ver-
tically and randomly swap their temporal order, for all datasets. All input images are

randomly cropped to 512 x 512.

Results

In this section, we first conduct an ablation study to analyze the contribution of the
proposed loss function, feature extractor, and attention-aware layer. Then, we analyze
the advantages of the proposed approach. Finally, we compare the proposed model with
state-of-the-art algorithms on different EM datasets. The average Interpolation Error
(IE), Peak Signal to Noise Ratio (PSNR), structural similarity (SSIM), graphics memory
(Memory), Floating point number Operations Per Second (FLOPs), Module parameters
(Params), run time (RunTime), Dice score (Dice) [39] and F1 score (F1) are computed for
comparisons. Lower IEs, Memory, FLOPs and RunTime indicate better performance.

Loss function analysis

As shown in Fig. 4, We find that the three sub-items of the balance loss all tend to grad-
ually approach zero from a larger value. The difference is that the first term and the
third term gradually decrease from a small positive value to approach zero, the second
term gradually decreases from a large positive value to approach zero, and the first and
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third terms are smaller than the second one and fluctuate around zero. The trend of the
sub-items reflects in the figure above matches the style balance loss we have proposed.

The proposed method incorporates three types of loss functions: pixel-wise loss Lj,
feature reconstruction loss £; and style reconstruction loss L;. To indicate their respec-
tive effects, three different loss functions are adopted to train the proposed network. The
first one only applies £; loss and represents this network as “L;” The second one applies
both £ loss and Ly loss in a linear combination and represents this network as “Ls”
The third one applies £y loss, Ly loss, and Ly loss in a linear combination and repre-
sents this network as “L;”. As shown in Fig. 5, the last “L;” leads to the best visual quality
and rich texture information. Results generated by “L,” are visually pleasing with more
high-frequency details. Despite slight deviation from the ground truth positions, results
generated by “L” are consistent with biological tissue continuity. Also, the style of the
images is almost the same as the ground truth. As a result, the proposed network adopts
this scheme as the loss function.

Model analysis
In this subsection, we analyze the contribution of the two key components in the pro-

posed model: the siamese residual dense network (SRDN) and the attention-aware layer
(AAL).

Siamese residual dense network

To validate the effectiveness of the SRDN, we compare it with other famous feature extrac-
tors, including the U-Net, the siamese U-Net (SU-Net), and the residual dense network
(RDN) on the cremi_triplet datasets and mouse_triplet dataset. As shown in Table 1, the
proposed SRDN feature extractor outperforms previous state-of-the-art feature extrac-
tors, achieving almost the best performance on PSNR, SSIM, and IE. Specifically, we
demonstrate that the siamese structure, especially the siamese structure of RDN, leads
to a substantial improvement on the cremi_triplet A and mouse_triplet in terms of PSNR

3.0

sign0

signl

sign2

25

sign loss

0 2000 4000 6000 8000 10000 12000 14000 16000
iterations

Fig. 4 lllustration of how the three terms in the style balanced loss evolves during training. Here,
sign0, sign1, sign2 denote sign (Lsry/eyo - L‘fsry/em) Lsiyle ., SIgn (Csry/ew - Lsry/em) Ly, and
sign (Lsyie,, — Lstylers) Lstyle, . respectively
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Ground Truth Ours — Ly Ours — Ls

Fig. 5 The results of the proposed model adopting different loss functions. From left to right: input frame 1,
Ground Truth, result of £+, result of Ly, result of L, input frame 2

and IE. We also find that RDN without siamese structure performs worse than U-Net, but
under the siamese structure, the performance of RDN is significantly improved, which is
better than U-net and SU-Net. We also notice the phenomenon that the Siamese struc-
ture does not help when applied to U-Net on the cremi_tripletC dataset. Compared
with cremi_tripletA and cremi_tripletB, the deformation between three consecutive slices
in the cremi_tripletC dataset is more complicated and changes drastically, which puts
higher requirements on the network depth. The depth of the U-Net backbone is relatively
shallow, and the Siamese structure would introduce bi-direction temporal information.
However, pooling operation in U-Net leads to more information loss on the bi-direction
deformation information than the single-direction, which accounts for the worse results
on cremi_tripletC when applied Siamese structure to U-Net.

Table 1 Analysis on hierarchical features

Extractor cremi_triplet A cremi_triplet B cremi_triplet C mouse_triplet

PSNR SSIM PSNR SSIM PSNR SSIM IE PSNR SSIM IE
U-Net [40] 1810 04295 16.75  0.3549 1626 03542 2882 1459 02219 3655
SU-Net 1812 04352 16.71 03417 16.18 03280 2971 1475 02089 3599

RDN [32] 1773 0.4448 16.59 03521 1644 03451 2875 1485 02195 3553
SRDN(ours) 18.26 04374 16.79 0.3712 16.46 0.3575 28.38 15.04 0.2156 34.81

We compared the actual effects of different feature extractors on the cremi_triplet datasets and mouse_triplet dataset. Lower IEs
indicates better performance
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Table 2 GPU memory/FLOPs/Params/RunTime comparison on kernel estimation layer (KEL),
self-attention (SA), interlaced sparse self-attention layer (SSA) and the proposed approach

Memory(GB) FLOPs(G) Params(M) RunTime(ms)
KEL [9] - 1384 - 6160
SA[27] 256.0 6599 0.0052
SSA [30] 9.775 81.24 0.0104 327
AAL(Ours) 2.331 10.42 0.0156 275

All the numbers are tested on a single P40 GPU with CUDA10.2 and an input feature map of 1 x 64 x 512 x 512 during inference
stage. Lower Memory, FLOPs and RunTime indicate better performance

Attention-aware layer

We demonstrate the superiority of the proposed AAL from two aspects: computational
complexity and model effects. For the complexity of the attention perception module,
all the numbers are tested on a single P40 GPU with cudal0.2, and the input fea-
ture map resolution is 1 x 64 x 512 x 512. As shown in Table 2, it can be seen that
the proposed AAL only uses 23.8% GPU memory and 12.8% FLOPs compared with
the SSA. Besides, the running time of our method is 275 ms, which is 52 ms faster
than SSA. The results sufficiently demonstrate that the computation and memory com-
plexity of proposed method are substantially lower than other self-attention methods.
To validate the effectiveness of the proposed attention-aware layer, the feature extrac-
tor adopts a siamese residual dense network. After the feature extractor, we append
the classic kernel estimation layer, the state-of-the-art interlaced sparse self-attention
layer, and the proposed attention-aware layer, respectively. For the implementation of the
self-attention, we directly utilize the open-source code [33]. As shown in Table 3, the
proposed AAL shows an improvement on the cremi_triplet and mouse_triplet datasets,
against both KEL and SSA. Especially on the mouse_triplet, AAL outperforms SSA with
a 0.18dB gain in terms of PSNR. Meanwhile, the interpolation error (IE) is 0.6 lower
than SSA.

Analysis of the proposed approach

As shown in Fig. 6, qualitative visualization results on cremi_triplet B can demonstrate
the superiority of the proposed method. The intermediate EM images generated by our
proposed method are almost the same as ground truth, in terms of image style, biolog-
ical tissue continuity, and content texture. The proposed attention perception layer can
synthesize each pixel of the intermediate frame from the global domain. Thus, the pro-
posed approach is robust against large deformations, drifts, and noise. We can observe
that in the case of many discontinuous pixels in the input frame and the ground truth, this
approach can produce ideal results.

Table 3 Effects on attention-aware layer (AAL)

Synthesis cremi_triplet A cremi_triplet B cremi_triplet C mouse_triplet

SNR  SSIM PSNR  SSIM PSNR  SSIM IE PSNR  SSIM IE
KEL [9] 1759 04354 1588 03415 1608 03506 3082 1346 01867 4262
SSA [30] 1812 04292 16.41 0.3425 1633 0.3357 2891 1486  0.2261 3541

AAL(Ours) 18.26 0.4374 16.79 0.3712 16.46 0.3575 28.38 15.04 02156 34.81

Compared with kernel estimation layer (KEL) and interlaced sparse self-attention layer (SSA), the proposed attention-aware layer
(AAL) presents a significant improvement on both the cremi_triplet and mouse_triplet datasets. Lower |Es indicates better
performance
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Frame 1 Ground Truth Ours Frame 3

Fig. 6 Results of our proposed method on cremi_triplet B dataset. From top to bottom: input frame 1,
ground truth, generated indemediate frame and input frame 3

Comparisons with state-of-the-arts

We conducted quantitative and qualitative experiments on the proposed approach and
the baseline to prove that the proposed method is superior to the baseline. For quan-
titative experiments, we adjust the loss function of both the proposed method and the
baseline to the style balance loss introduced in this paper and conduct quantitative exper-
iments under the same experimental environment. In Table 4, we provide quantitative
performances on the cremi_triplet A, cremi_triplet B, cremi_triplet C, and mouse_triplet
dataset. The proposed approach performs favorably against all the compared methods for
all the datasets, especially on the mouse_triplet dataset with a 2.48dB gain over SepConv-
L [9] in terms of PSNR. For qualitative experiments, all methods are conducted under the
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Table 4 Quantitative comparisons on cremi_triplet and mouse_triplet

Methods cremi_triplet A cremi_triplet B cremi_triplet C mouse_triplet

PSNR SSIM PSNR SSIM PSNR SSIM IE PSNR SSIM IE
SepConv-Ls [9] 1752 04095 1632 03522 1607 03454 2982 1256 0.1573 4803
DAIN-L [12] 16.78 04264 1567 03460 1524 03210 3359 1306 0.1973 4426

SSAN(Ours) 18.26 0.4374 16.79 0.3712 16.46 0.3575 28.38 15.04 0.2156 34.81
The proposed SSAN algorithm significantly surpasses other methods in terms of PSNR, SSIM and IE

same experimental environment and apply different loss functions to intuitively demon-
strate the effect of varying loss functions on EM images. We evaluate the proposed
SSAN against the following CNN-based frame interpolation methods: SepConv-L; [9],
SepConv-Ly [9], SepConv-Ls [9], DAIN-L; [12] and DAIN-Ls [12], in terms of PSNR,
SSIM and IE. As shown in Fig. 7, the DAIN-L; [12] and DAIN-L; [12] cannot handle the
large deformation well and thus produce ghosting and broken results. Moreover, we can
see the lack of some edges from the enlarged image. It confirms that flow-based methods
perform poorly on EM images. The SepConv-L; [9] and SepConv-Ly [9] methods gen-
erate blurred results on membrane structure and mitochondria. The result generated by
SepConv-L; [9] also lacks critical edge information, and there are black noise and white
areas inconsistent with the continuity of biological tissue, especially around mitochon-
dria. In contrast, the proposed method handles large deformation well and generates
clearer results with complete contour.

Segmentation performance comparisons with state-of-the-arts

Table 5 shows the segmentation accuracy attained by each method. In all cases, our pro-
posed SSAN algorithm performs best than the other two methods, both in Dice score and
F1 score. Because it uses not only the SRDN to avoid the information loss caused by the
pooling operation and retain the temporal information, but also the sparse self-attention
to synthesize each pixel considering the long-range dependence. Thus, the inter-slice gen-
erated by SSAN can produce clear and accurate membrane boundaries and fewer artifacts
despite large deformation, noise, and blur. From Fig. 8, we visualize the membrane seg-
mentation results of intermediate images generated by different methods using the same
L loss. It can be seen that the intermediate frame generated by the proposed method has

Frame 1 Ground-truth SepConv — Ly SepConv - Lg DAIN- Ly DAIN- L SSAN (Ours) Frame 3

Fig. 7 Visual comparisons on the cremi_triplet B. To demonstrate the superiority of the proposed method, we
visualize the results of the comparison methods using different loss functions. The proposed method not only
has almost the same style as the true value, but also obtains a clear outline and a more realistic content texture
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Table 5 Segmentation performance of different methods in terms of the Dice score and F1 score,
evaluated on cremi_triplet

Methods cremi_triplet A cremi_triplet B cremi_triplet C

Dice F1 Dice F1 Dice F1
SepConv-L; [9] 0.547 0.546 0425 0426 0458 0458
DAIN-L; [12] 0.560 0.563 0.340 0.342 0.384 0.388
SSAN(Ours) 0.602 0.602 0.435 0.435 0.465 0.467

We report the mean metrics of the membrane boundary on the ground truth and intermediate image synthesized by different
methods. The proposed SSAN algorithm significantly surpasses other methods in these evaluation metrics

fewer artifacts and the membrane boundary is more complete. The flow-based method is
unstable on the EM images, and even produces severe white spots.

Discussion

In this work, we consider the sparse self-attention mechanism and discuss how to intro-
duce this self-attention into consecutive EM image interpolation tasks. On EM images
with large deformation, drift, and abundant noise, each pixel of the intermediate frame
is aggregated from all positions in the input frame using a self-attention mechanism.
Specifically, we highlight three aspects: feature extraction module, attention perception
mechanism, and style balance strategy. We found that U-Net’s pooling can damage con-
tent information, and the residual dense blocks commonly adopted in super-resolution
preserve the integrity of content information. The Siamese structure in the feature extrac-
tor enables the network to extract the temporal information among the input frames. We
empirically observe that a two-level sparse strategy decreases the computation and mem-
ory complexity substantially while performing better in synthesizing pixels from the input
frames’ global domain. Given the input feature map of size H x W x C, the complexity of
interlaced sparse self-attention [30] can be minimized to O(4HWC?/k + 3(H W)%C /k),
and the complexity of the proposed method can be minimized to O(12HWC?/k +
6(HW) iC /k). Thus, our method has a significantly lower computational complexity than
the first one while entering high resolution feature maps. After obtaining warped frames,
we found that only simple averaging does not give good results. The sigmoid function
is a good alternative that generates a weight mask for element-wise linearly fusing two
warped frames to synthesize the interpolated frame. We observe that selecting a suitable
loss function for training models on EM images is much more complicated than natural
images, especially to be robust against large deformations, drifts, and noise. We con-
ducted a combined experiment on style loss, perceptual loss, and pixel loss, and found that
the ratio 10° : 1 : 1 produced the most realistic results. We further proposed an adaptive

style balance loss to ensure a natural transition of three consecutive frame styles. Finally,

Ground-truth SepCony- L DAIN- L, SSAN (Ours) Ground-truth SepConv- Ly DAIN- L, SSAN (Ours)

Fig. 8 Visual comparison of segmentation results on the cremi_triplet A. To demonstrate the superiority of
the proposed method, we visualize the segmentation performance of the comparison methods
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our proposed approach performs better than other methods on EM images, produced by
ssSTEM and ATUM.

In the future, one option is to sparse from the self-attention mechanism to reduce com-
putation and memory consumption further. Another option is to optimize the loss further
and propose a novel loss that is more suitable for the task of EM image interpolation. The
last improvement direction is to design a sparse global domain kernel estimation method.

Conclusion

In this paper, we propose a novel attention-aware consecutive EM image interpolation
algorithm that combines motion estimation and frame synthesis into a single process by
adopting the AAL. The proposed AAL implicitly detects the large deformations using the
self-attention information and synthesize each pixel by effectively establishing long-range
dependencies from input frames. The AAL entirely replaces the traditional kernel esti-
mation convolution method with low memory and computational consumption. We also
exploit the SRDN as the feature extractor to learn hierarchical features and reduce the
parameters. Furthermore, the proposed adaptive style balance loss takes the style infor-
mation of input EM images into consideration, generating more realistic results. Our
SSAN performs more favorably on EM images than flow-based methods due to inte-
grating flow estimation and pixel synthesis through the attention-aware mechanism. The
experiments on sSTEM and ATUM images show that the proposed approach compares
favorably to state-of-the-art interpolation methods, both quantitatively and qualitatively,

and generates high-quality frame synthesis results.
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