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
Abstract—The proliferation of wireless mobile devices has led 

to a number of challenges in mobile data communication. The 
world is experiencing an increasing usage of finite spectrum 
bands for social media and other data communication services. It 
is due to this high usage that the Federal Communications 
Commission (FCC) sought to open up some spectrum bands to be 
used opportunistically by secondary users (SUs). However, the 
coexistence of Primary Users (PUs) and SUs may cause 
interference which leads to wastage of spectrum resources. This 
study investigates the impact of interferences between PUs and 
SUs. To ensure higher detection of PU signal, a cooperative rule 
was used to decide which SU to share and make a final decision 
about the availability of the spectrum band. To maximize the 
throughput of SU, a maximum likelihood function was designed 
to reduce delays in searching for the next available channel for 
data transmission. To discover more transmission opportunities 
and ensuring that a good number of free channels are detected, a 
parallel sensing technique was employed. Matlab was used to 
simulate and generate the results in a distributed cognitive radio 
environment. The proposed extended generalized predictive 
channel selection algorithm (EXGPCSA) outperformed other
schemes in literature in terms of throughput, service time and
probability of detection.

Index Terms—Cognitive radio network, cooperative sensing, 
parallel sensing, inter-sensing

I. INTRODUCTION

recent introduction of internet of things has brought a
different dimension to how wireless devices are 

connected and communicate. The world saw an increase in 
mobile devices over the last few years. According to a study 
conducted [1], the number of mobile devices connecting to the
internet is increasing yearly by about 20% worldwide. Given 
the fact that a spectrum is finite and assigned statically for 
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traditional networks, there is a need to free more bands to 
cater for the high demand in data transmission. In most parts 
of the world, frequency bands assigned to military, paging, 
ham radio and television frequencies are hardly used or there 
are times when they are not used at all [2]. A proposed 
solution [2] was designed to allow cognitive radios or SUs to 
learn a network environment in which they are operating. 
Programming and configuring radio to efficiently learn their 
operating environment remained a challenge. Numerous 
studies were conducted to improve the utilization of the 
spectrum through using intelligently programmed radio to 
detect the transmission of licensed users or PUs in the 
spectrum. Detection is performed by cognitive radio users or 
SUs to avoid interferences. Detection is often harder under 
high Signal-Noise-Radio (SNR).

In this paper, considerations are in cooperative sensing 
where sensing results from SU with higher SNR are discarded 
for final decision making. In other words, only SU with 
sensing results below a predefined SNR will be allowed 
cooperatively to share their sensed data. We use channel 
selection algorithm to select those channels with the highest 
chances of being free. This will be achieved through ordering 
channels in the order of their idling probabilities and using the
maximum likelihood function for the selection of channels 
with the highest probabilities. We propose a scheme named 
extended generalized predictive channel selection algorithm 
(EXGPCSA) which is an extension of generalized predictive 
channel selection algorithm (Generalized Pre. CSA) [4]. The 
results obtained from two schemes will be compared and 
evaluated in terms of probability of detection, packets arrival,
service rates and throughput.

II. RELATED WORK

Authors [6] proposed Signal-to-Noise ratio (SNR)-based 
weighted cooperative spectrum sensing schemes in CR 
networks. Weights based on the SNR are assigned to every 
cooperating SUs and a SU with higher SNR received from a
PU signal will have a major contribution towards the final 
decision. Contrary to this, a study [3] indicated that SNR 
cannot be the best option for assigning weights since there is a 
certain threshold, the SNR wall, in which the performance of 
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SUs cannot be improved at all.
SUs in CR networks must have the capabilities to adapt to 

their time varying environment. To enhance this adaptability, 
authors [7] proposed a Penalty-Based Weights Adjustment 
Mechanism (PBWAM) for cooperative spectrum sensing. Past 
experience of SUs were not considered when designing this 
algorithm because of the time varying nature of the SUs 
environment. The weight factors of the proposed algorithm are 
adjusted based on the recent decision of each cooperating SU. 
The computation of the final results is made by cooperating 
SUs using fusion of soft decision. Although the proposed 
algorithm has shown to minimize the effects of sensing errors, 
authors did not investigate the effects of delays in exploring 
the spectrum for detecting the presence of PUs.

Spectrum sensing methods performed at physical layer were 
integrated into a cooperative MAC protocol to optimize a 
proposed cooperative MAC framework [8]. An Allocated-
group sensing policy (ASP), which is a deterministic sensing 
policy, was also incorporated into a proposed framework. ASP 
uses a dynamic ID number approach to detect spectrum 
opportunities. This policy has shown to be effective compared 
to the following sensing policies: Random sensing policy 
(RSP) and Distinct-sensing policy (DSP). ASP allowed 
different groups of channels to be sensed by SUs and this has 
substantially increased the average number of channels to be 
sensed. Allowing different channels to be sensed at the same 
time, unfortunately incurred more overheads and delays,
especially when the number of SUs in cooperative sensing 
increases. There is no specific number of cooperating users to 
sense a particular channel, which might lead to over-sensing 
of channels in a particular group and these would compromise 
SU’s throughput.

The scheme proposed in [9] was designed to allow SUs to 
collaborate in sensing channels in parallel. The scheme 
allowed a certain number of SUs to cooperatively sense 
different channels at the same time and that has shown to 
significantly improve the efficiency of sensing. An optimum 
number of channels and a threshold value were key design 
parameters which determined better sensing results. The 
numerical results obtained from this study show that a greater 
throughput was achieved and delays were further minimized. 
With an observation from the study conducted in [10], the 
performance or efficiency of the scheme in [9] can further be 
improved by incorporating channel grouping technique. 
Authors in [10] incorporated channel grouping technique in 
their study. However, the strategy for sensing was never 
emphasized.

The SU’s throughput and the impact of interference on PUs 
in a multichannel opportunistic spectrum access (OSA) were 
centrally coordinated with random channel assignment [11]. 
Processes of sensing spectrum were not considered. A similar 
problem is also studied in [12], in which Authors considered 
PU and SU networks in multichannel and distributed Ad hoc 
networks. Unfortunately, zero delays in the processes of 
sensing the spectrum using genie-aided channel selection were 
assumed.

A fully distributed channel selection algorithm has been 

designed to facilitate the coexistence of LTE devices or 
systems in the unlicensed 5 GHz band [13]. The Game theory 
and Q-learning approaches were used and their 
implementations were compared as far as performance is 
concerned. The effectiveness of this study was evaluated in 
terms of the signaling requirement, convergence time, as well 
as the effect of errors in the estimation of throughput.

The study in [16] addressed the overhead problem 
associated with many SUs which send their observation to the 
fusion center by partitioning a network into clusters. Clusters 
send their observation to the fusion center through cluster 
heads. The clusters are formed through the use of machine 
learning affinity propagation algorithm. This study has shown 
the highest performance efficiency compared to other 
convectional cluster-based schemes. Designing an 
infrastructure-based scheme is easier considering the fact that 
the fusion center does not move, despite SUs movement. It 
would have been interesting if infrastructure less environment 
was considered along with explored methods.

Modelling channel states is considered as a very important 
activity in [17]. The channel states are modelled using a
stochastic process with joint distribution known to the user. 
The study considered a fast-varying channel model where the 
states of the channel are assumed to be identical and 
independently distributed in each time slot.  The state of these 
channels changes with respect to time. A slow time varying 
channel model was also considered. Not all channels which 
have been selected, are good for transmission. Using the two 
state Markov model, the authors show that the optimal channel 
selection policy which minimizes the expected time to 
rendezvous a single selection policy that hops onto the best 
channel when the fast time varying channel mode is 
implemented.

A backward propagation training model using neural 
networks was proposed to predict the future channel state from 
historic data [18]. In order to reduce the aggressive structural 
pattern and optimize the structure of a neural network, the 
genetic algorithm was used to avoid local optimal solution. To 
increase randomness crossover, a selection and mutation 
function was performed to extend network convergence to the 
set that contains the global optimal solution. The results 
obtained indicated high spectrum prediction accuracy.

Authors [19] designed a novel machine learning algorithm; 
the support vector machine to select the best possible free 
channel for transmission by SUs. The algorithm makes use of 
four parameters to select a better channel. These parameters 
are the service time, transmitted and received power, 
maximum vacancy time and data rate. These parameters were 
used to generate preference order of channels for SUs to 
perform channel switching. The scheme maintains two queues
using the M/M/1 queueing model to minimize the number of 
channel switching, and poison distribution was used as well to 
determine the number of SUs arriving in a given time period. 
A support vector machine achieved an accuracy of 97.6% and 
the achievable throughput of SUs has greatly improved.

SNR variations, spectrum sensing uncertainties and the 
availability of desired channel bandwidth make it difficult to 
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avoid mixing of SU and PU signals [20]. The study proposes 
dynamic channel selection algorithm based on a fuzzy 
inference system. An algorithm uses the minimum required 
SNR, desired bandwidth and the probability of miss-detection 
to select the most appropriate available free channel.  

The block chain with mining pool was proposed to support 
the internet of things services based on cognitive radio 
networks [21]. Due to channel dynamics, the study 
emphasizes the challenge faced by SUs in determining an 
optimal sensing and transmission policy. To derive an optimal 
transmission policy for SU, reinforcement learning algorithm 
was used; specifically, Double Deep-Q Network was adopted 
to allow SUs to learn optimal. Reinforcement learning 
algorithm was also used in [22] to determine sensing order of 
channels and cooperative sensing partner selection. SUs use 
time varying probability of detection of neighbors and select 
the ones with higher probability of detection for cooperation.  
The learning rate and performance gain were far better for 
deep reinforcement learning algorithm than conventional Q-
learning algorithms.  

To detect the presence or absence of PUs, soft and hard 
decision detection are usually employed at the fusion center in 
making a global decision [23]. Soft decision detection always 
achieves better performance in terms of sensing than hard 
decision sensing. The scheme was designed to trade-off 
between band cost and sensing performance. The energy 
detection was deployed and the decisions are made by sending 
1 bit or 2 bits of information. Fusion center makes a final 
global decision through data reconstruction module which is 
based on the statistical distribution. Better detection 
performance was achieved even in lower SNR.  

Cooperative spectrum sensing by SUs can greatly improve 
detection performance in a real cognitive radio network 
environment [24]. Energy detectors under noise power 
uncertainty may experience threshold mismatch. Hence, an 
effective dynamic dual threshold for cooperation spectrum 
sensing was formulated and “an optimizing combinative 
fusion rule was designed by tracking optimal voting threshold 
and credibility of SU’s energy statistic jointly”. The influence 
of noise uncertainty was mitigated and spectrum detection 
accuracy was increased, compared to other detection 
algorithms in literature.  

III. SYSTEM MODELS 

We consider a group of SUs sensing and transmitting data 
over N channels in a cognitive radio network. Each SU is 
equipped with two radios with an assumption that there is no 
self-interference. Channels are modelled using probability 
density function (PDF) where ON and OFF periods are 
assumed to be exponentially distributed. Channels are divided 
into k groups where k=2, such that channels in each group can 
be sensed simultaneously to allow greater discovery of 
opportunities. Figure 1 illustrates the grouping of channels. 
Within each group, channels are ordered in the descending 
order of their idling probabilities. This technique ensures 
faster and accurate detection of PU signal in the spectrum 
bands.  

  
 

 
Figure 1.  Parallel sensing through channel grouping. 
 
This study prioritizes the protection of PU signal to avoid 

bandwidth wastage caused by interference by SUs. Hence, a 
rule was set to determine which SU can participate in making 
the decision about the availability of the spectrum. Only SUs 
with higher signal-to-noise ratio (SNR) can share their 
observations with other SUs. It is exceedingly difficult to 
detect the PU signal under a low SNR [3]. With a low SNR, 
there is no certainty in detecting PU signal, which could lead 
to interferences. Setting a rule to govern how sensed data is 
shared can improve the performance of the proposed 
algorithm.   

A. Proposed cooperative spectrum sensing and aggregation  
Before we delve into how SUs cooperate and how the 

whole system works, there are few assumptions we make. 
Although mobility in CR networks is inevitable, we assume 
slowly moving SUs, such as a network, is not portioned during 
simulation. SUs are assumed to always have data packets to 
send and have to first search for idle channels.  

Cooperative sensing is performed by a group of SUs in a 
cooperative cognitive radio network. There are K SUs 
cooperatively sensing spectrum in a 1000m2 area. Cooperative 
sensing is performed in the following three steps; first SUs 
individually sense the frequency bands. They perform what is 
known as local sensing. Since we are using the hard-fusion 
rule, each SU sends one bit to a fusion node for decision 
making. In other words, each SU makes a local decision about 
the availability or unavailability of the spectrum band.  

A decision can either be 1 or 0 where 1 represents 
unavailability of the spectrum and 0 means the spectrum is 
available to be utilized by SUs. Secondly, individual SUs 
report their observations about the spectrum to the fusion node 
using the common control channel (CCC). Only SUs with 
higher SNRs are allowed to report their sensing results. 

Fusion node receives one-bit sensing results from each SU 
involved in cooperation. This will greatly reduce 
communication overheads and bandwidth usage. Each SU 
maintains a table or vector containing sensed results together 
with a channel number from which results are obtained. A 
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table is maintained after SUs have sensed and made local 
individual decision about the spectrum. Figure 2 shows 
decentralized network architecture for the proposed scheme 
where dk denotes the sensing results or decisions sent from 
SUk ∀ k≥2 to the fusion node (SU1) for final global decision. 
The number of channels to be used is limited to six (6) and 
labelled one (1) to six (6). These channels are meant to be 
used by both SUs and PUs for data transmissions. Once the 
results about the availability/unavailability of channels are 
obtained, SUs share recent results or vector directly with SU1. 

 

 
Figure 2.  Cooperative sensing and sharing in a cluster-based cognitive 
radio networks. 

 
Finally, SU1 aggregates sensing results stored in the vector 

to make a final decision. SU1 combines the results from 
neighboring SUs and maintains a table in its buffers to the last 
24 sensing results. This is done to keep history of the 
previously sensed results. This is extremely critical for the 
estimation of channel parameters. We limited a history to 24 
sensed results to avoid buffer overflow. A history is referred to 
as the previous state of the channel before the current state. 
SU1 will keep previous four states for each channel since the 
estimation is based on history. E.g., {ON, ON, OFF, OFF} 
which is equivalent to {1, 1, 0, 0}.   

We considered the easiest and fastest way of aggregating 
data to ensure faster data transmission. After spending 
considerable amount of time going through what a research 
community has done, we came with a conclusion to use an OR 
data aggregation rule. Some of the benefits of this rule are 
higher detection and faster data aggregation. A major 
drawback of OR aggregation rule is the fact that the 
probability of false alarm increases with the increase in the 
probability of detection [15]. However, this cannot be a 
hindrance since minimization of delays in finding available 
channel is a major focus of this study. Although other 
aggregation rules such as AND or N-Out-M may be used, they 
incur more delays and give lower detection probabilities 
compared to OR rule. 

We formulate hypothesis for both SUs which individually 
senses the spectrum and make a decision if it’s free or not. The 
fusion node based on the decision made by the SU, will make 
final global decision. We first formulate the hypothesis for 

SUs for local decision making using Neyman and Pearson and 
followed by hypothesis for fusion node to make the final 
global decision.  

For Individual SUs, we formulate our hypothesis as 
follows: 

 
𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑃𝑃[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑋𝑋 = 𝑌𝑌 ∈ 𝛾𝛾1|𝜌𝜌 = 𝜌𝜌0]  (1) 

 
𝑃𝑃𝐷𝐷 = 𝑃𝑃[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑋𝑋 = 𝑌𝑌 ∈ 𝛾𝛾0|𝜌𝜌 = 𝜌𝜌1]   (2) 

 
where test statistics is given by 𝜑𝜑(𝑦𝑦) 

 
Since both 𝑃𝑃𝐹𝐹𝐹𝐹 and 𝑃𝑃𝐷𝐷 take normal distribution, we give the 
following interpretations before modelling the system.  

 
(a) The sinking (i.e., 𝑋𝑋 → ∞) of 𝛾𝛾1 region implies that 

the probabilities in (1) and (2) shrink towards zero.  
(b) On the other hand, as the region 𝛾𝛾1 grows (i.e., 𝑋𝑋 →

0), then the probabilities referenced by (1) and (2) 
will eventually grow towards unity. 

(c) Observations in (a) and (b) do not necessarily imply 
that 𝑃𝑃𝐹𝐹𝐹𝐹 and 𝑃𝑃𝐷𝐷 are equal. The  𝑃𝑃𝐷𝐷  grows much faster 
than 𝑃𝑃𝐹𝐹𝐹𝐹. 

(d) The perfect case (𝑃𝑃𝐹𝐹𝐹𝐹 = 0 and 𝑃𝑃𝐷𝐷 = 1) is the rule we 
set and seek to achieve. This rule cannot be true when 
the overlapping of conditional PDFs 𝑃𝑃(𝑦𝑦|𝜌𝜌1) and 
𝑃𝑃(𝑦𝑦|𝜌𝜌0) occur. 

(e) In order to increase 𝑃𝑃𝐷𝐷 , we have to also allow 𝑃𝑃𝐹𝐹𝐹𝐹 to 
increase. This provides the fundamental trade-off in 
the detection theory and hypothesis testing. We are, 
therefore, motivated to introduce Neyman and 
Pearson to test our hypothesis.  
 

We setup parametric data models  
𝑃𝑃(𝑦𝑦; 𝜌𝜌0), 𝑃𝑃(𝑦𝑦; 𝜌𝜌1)                                           (3) 

 
and hypothesis testing as 

 
𝐻𝐻0: 𝜌𝜌 = 𝜌𝜌0                  (4) 
𝐻𝐻1: 𝜌𝜌 = 𝜌𝜌1                 (5) 

 
The design goal of this test is to maximize the probability of 
detection such that 

 
𝑃𝑃𝐷𝐷 = 𝑃𝑃[𝑌𝑌 = 𝛾𝛾1; 𝜌𝜌 = 𝜌𝜌0]               (6) 

 
A probability in (6) is equivalent to minimizing the probability 
of miss detection (𝑃𝑃𝑀𝑀) under the constraints that  

 
𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑃𝑃[𝑌𝑌 = 𝛾𝛾1; 𝜌𝜌 = 𝜌𝜌0] = 𝛽𝛽′ ≤ 𝛽𝛽       (7) 

 
We now apply the Lagrange-multiplier in an effort to 
maximize L. 

 
𝐿𝐿 = 𝑃𝑃𝐷𝐷 + 𝜇𝜇(𝑃𝑃𝐹𝐹𝐹𝐹 − 𝛽𝛽′)                 (8) 

= ∫ 𝑃𝑃(𝑦𝑦; 𝜌𝜌1)𝑑𝑑𝑑𝑑𝛾𝛾1
+ 𝜇𝜇[∫ 𝑃𝑃(𝑦𝑦; 𝜌𝜌0)𝑑𝑑𝑑𝑑 − 𝛽𝛽′]𝛾𝛾1

           

SU1

SU6

SU7

SU2

SUk

SU4

SU3 SU5
d5

d4

d1

dk

d3

d2

d6

dk where k 
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= ∫ [𝑃𝑃(𝑦𝑦; 𝜌𝜌1)𝛾𝛾1
− 𝜇𝜇𝜇𝜇(𝑦𝑦; 𝜌𝜌0)]𝑑𝑑𝑑𝑑 − 𝜇𝜇𝛽𝛽′            

         
Maximizing L, we set 

 
𝛾𝛾1 = {𝑦𝑦: 𝑃𝑃(𝑦𝑦; 𝜌𝜌1) − 𝜇𝜇𝜇𝜇(𝑦𝑦; 𝜌𝜌0)}         (9) 

 = {𝑦𝑦: 𝑃𝑃(𝑦𝑦;𝜌𝜌1) 
𝑃𝑃(𝑦𝑦;𝜌𝜌0) > 𝜇𝜇}       

 
We can then calculate the likelihood ratio as 

 
𝜑𝜑(𝑦𝑦) = 𝑃𝑃(𝑦𝑦;𝜌𝜌1) 

𝑃𝑃(𝑦𝑦;𝜌𝜌0)                    (10) 
 

We recall from (7) that the constraint is given by 
 

∫ [𝑃𝑃(𝑦𝑦; 𝜌𝜌0)𝛾𝛾1
𝑑𝑑𝑑𝑑 = 𝑃𝑃𝐹𝐹𝐹𝐹 = 𝛽𝛽′ ≤ 𝛽𝛽         (11) 

 
If we increase threshold  𝜇𝜇, both 𝑃𝑃𝐹𝐹𝐹𝐹 and 𝑃𝑃𝐷𝐷 go down. 
Similarly, decreasing  𝜇𝜇 implies that both 𝑃𝑃𝐹𝐹𝐹𝐹 and 𝑃𝑃𝐷𝐷 go up. In 
order to maximize 𝑃𝑃𝐷𝐷 , we have to choose 𝜇𝜇 such that the 𝑃𝑃𝐹𝐹𝐹𝐹 
is as huge as possible under the constraint in (11).  

To achieve a specific false alarm rate, we have to determine 
a threshold that satisfies the equation in (12) 

 
∫ 𝑃𝑃(𝑦𝑦; 𝜌𝜌0)𝑦𝑦:𝜑𝜑(𝑦𝑦)>𝜇𝜇 𝑑𝑑𝑑𝑑 =  𝑃𝑃𝐹𝐹𝐹𝐹 = 𝛽𝛽          (12) 

 
we make the assumption that 𝑃𝑃𝐹𝐹𝐹𝐹 is a continuous function 
of  𝜇𝜇.  

Next, for simplicity, we model fusion node separate from 
ordinary SU and formulate its hypothesis. Firstly, we consider 
𝐊𝐊 SUs that are spatially distributed across a wider geographic 
area as shown in Fig 2 and follow the same probabilistic 
model:  

 
𝐻𝐻𝑖𝑖∶ 𝑤𝑤𝑘𝑘~𝑃𝑃(𝑤𝑤𝑘𝑘|𝑧𝑧𝑖𝑖)                (13) 
where 𝑘𝑘 = 1,2,3 … … … . . 𝐾𝐾 and 𝑘𝑘 ∈ {0,1} 

 
Every SU makes a decision 𝑑𝑑𝑘𝑘 based on its local 

observations 𝑤𝑤𝑘𝑘 and forward it to the fusion node. The fusion 
node collects observations from SUs and makes final global 
decision about the availability of the spectrum band. Instead of 
SUs sending likelihood ratios to the fusion node, we allow SU 
to send only decisions (0 or 1) to reduce overheads.  

Suppose that a decision 𝑑𝑑𝑘𝑘  ∈ (0,1) for 𝑘𝑘 = 1,2,3 … . . 𝐾𝐾 is 
made by SU k and send to the fusion node. Then the fusion 
node aggregates and makes a final global decision about the 
availability of the free channel to transmit based on likelihood 
ratio formed from the 𝑑𝑑𝑘𝑘s. We assume that local decisions or 
𝑑𝑑𝑘𝑘s are conditionally independent of 𝑧𝑧.  

 
𝑃𝑃(𝑑𝑑𝑘𝑘|𝑧𝑧1) = 𝑃𝑃𝐷𝐷,𝑘𝑘

𝑑𝑑𝑑𝑑(1 − 𝑃𝑃𝐷𝐷,𝑘𝑘)1−𝑑𝑑𝑘𝑘          (14) 
 

Where 𝑃𝑃𝐷𝐷,𝑘𝑘 is the kth SU’s local detection probability and the 
probability of false alarm is given by 

 
𝑃𝑃(𝑑𝑑𝑘𝑘|𝑧𝑧0) = 𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘

𝑑𝑑𝑑𝑑(1 − 𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘)1−𝑑𝑑𝑘𝑘             (15) 

 
Where 𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘 is the kth SU’s local probability of false. 
Taking the log of likelihood ratio, we get 

 

 log 𝜑𝜑(𝑑𝑑) = ∑ log[𝑝𝑝(𝑑𝑑𝑘𝑘|𝑧𝑧1)
𝑝𝑝(𝑑𝑑𝑘𝑘|𝑧𝑧0)]

𝐾𝐾

𝑘𝑘=1
                                       (16)     

 

= ∑ log[ 𝑃𝑃𝐷𝐷,𝑘𝑘
𝑑𝑑𝑑𝑑(1 − 𝑃𝑃𝐷𝐷,𝑘𝑘)1−𝑑𝑑𝑘𝑘

𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘
𝑑𝑑𝑑𝑑(1 − 𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘)1−𝑑𝑑𝑘𝑘

]
𝐾𝐾

𝑘𝑘=1
 log 𝜏𝜏<

>  

 
We further simplify the expression by assuming that all SUs 
have the same performance: 

 
𝑃𝑃𝐷𝐷,𝑘𝑘 = 𝑃𝑃𝐷𝐷  and  𝑃𝑃𝐹𝐹𝐹𝐹,𝑘𝑘 = 𝑃𝑃𝐹𝐹𝐹𝐹           (17) 

 
Next, we define the number of SUs having 𝑑𝑑𝑘𝑘=1 as 

 

𝑠𝑠𝑠𝑠1 = ∑ 𝑑𝑑𝑘𝑘

𝐾𝐾

𝑘𝑘=1
                                                                      (18)       

        
and its likelihood ratio can be defined as follows:  

  
log 𝜑𝜑(𝑑𝑑) = 𝑠𝑠𝑠𝑠1 log ( 𝑃𝑃𝐷𝐷

𝑃𝑃𝐹𝐹𝐹𝐹
) + (𝐾𝐾 + 𝑠𝑠𝑠𝑠1) log ( 1−𝑃𝑃𝐷𝐷

1−𝑃𝑃𝐹𝐹𝐹𝐹
)   (19) 

                   log 𝜏𝜏<
>   

 
The SU’s local decisions (𝑑𝑑𝑘𝑘) is meaningful if and only 𝑃𝑃𝐷𝐷 >
𝑃𝑃𝐹𝐹𝐹𝐹, which means 

 
𝑃𝑃𝐷𝐷(1−𝑃𝑃𝐷𝐷)

𝑃𝑃𝐹𝐹𝐹𝐹(1−𝑃𝑃𝐹𝐹𝐹𝐹) > 1               (20) 
 

And its logarithm gives a positive result. Therefore, the 
decision rule in (19) can further be simplified to:  

 
𝑠𝑠𝑠𝑠1  log 𝜏𝜏′

<
>                   (21) 

 
For global decisions to be made by Fusion Node, we choose 
random variable 𝑆𝑆𝑆𝑆1 which is binomial given 𝑧𝑧1. We therefore 
have,  

 
𝑃𝑃[𝑆𝑆𝑆𝑆1 = 𝑠𝑠𝑠𝑠1] = ( 𝐾𝐾

𝑠𝑠𝑠𝑠1
) 𝑝𝑝𝑠𝑠𝑠𝑠1(1 − 𝑝𝑝)(𝐾𝐾−𝑠𝑠𝑠𝑠1)     (22) 

 
Where 𝑝𝑝 = 𝑃𝑃𝐷𝐷  under  𝐻𝐻1 and 𝑝𝑝 = 𝑃𝑃𝐹𝐹𝐹𝐹 under  𝐻𝐻0. Hence, the 
global 𝑃𝑃𝐹𝐹𝐹𝐹 is given by 

 
 
 
 
 
   

𝑃𝑃𝐹𝐹𝐹𝐹,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑃𝑃[𝑆𝑆𝑆𝑆1 > 𝜏𝜏′| 𝑧𝑧0]                                          (23)         
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 =  ∑ ( 𝐾𝐾
𝑠𝑠𝑠𝑠1

) 𝑃𝑃𝐹𝐹𝐹𝐹
𝑠𝑠𝑠𝑠1

𝐾𝐾

𝑠𝑠𝑠𝑠1=[𝜏𝜏′]
(1 − 𝑃𝑃𝐹𝐹𝐹𝐹)(𝐾𝐾−𝑠𝑠𝑠𝑠1) 

and the global 𝑃𝑃𝐷𝐷 is given by

𝑃𝑃𝐷𝐷,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑃𝑃[𝑆𝑆𝑆𝑆1 > 𝜏𝜏′| 𝑧𝑧0]  (24) 

 =  ∑ ( 𝐾𝐾
𝑠𝑠𝑠𝑠1

) 𝑃𝑃𝐷𝐷
𝑠𝑠𝑠𝑠1(1 − 𝑃𝑃𝐷𝐷)(𝐾𝐾−𝑠𝑠𝑠𝑠1)

𝐾𝐾

𝑠𝑠𝑠𝑠1=[𝜏𝜏′]

It should be noted that any SUs can be selected as a fusion 
node and all SUs are moving. It is therefore possible to have 
the current fusion node being at some point in time relegated 
and have a different SU taking over as a fusion node. Two 
criteria were used in the selection of fusion node. (i) The SUs 
with the highest SNR and (ii) the slowest moving SUs. SUs 
with the highest SNR is better positioned to correctly detect 
the presence of PUs in the channel. On the other hand, the 
slow moving SU becomes a suitable candidate since moving at 
a slower pace implies the network will not be partitioned. That 
is, a SU that remains in the network before leaving the 
network grid. In this case, we try to predict which SU is within 
transmission range of other SUs.  

B. Sensing and channel selection
Figure 3 models ON/OFF time distributions. The length of

ON periods are represented  𝑌𝑌𝑛𝑛
𝑐𝑐 while OFF periods are shown

by 𝑋𝑋𝑛𝑛
𝑐𝑐 ∀ nєɌ. Sensing of the spectrum is done for t ms and no 

transmission can be done during this time. Blindly selecting t
may have a negative impact of the usage of the spectrum [14]. 
Having smaller t may incur higher sensing overheads while on 
the other hand making t large enough might lead to missing of 
transmission opportunities.

Figure 3.  ON/OFF time distributions with complete cycle 𝑍𝑍𝑛𝑛
𝑐𝑐 .

On periods are always followed by OFF periods and this 
forms a cycle  𝑍𝑍𝑛𝑛

𝑐𝑐 for all nєɌ. It is very important to identify
the beginning and the end of 𝑍𝑍𝑛𝑛

𝑐𝑐 which forms a complete
cycle. In this cycle, it can then be predicted that a channel is 
either ON or OFF.

Next, we look at how transmission opportunities can be 
missed by SUs. 𝑥𝑥, shows an actual data transmission

immediately after an opportunity was missed and can be 
represented by equation 𝑇𝑇𝑐𝑐0(𝑡𝑡) = 1 − 𝑥𝑥′ and on the other
hand 𝑇𝑇𝑐𝑐1(𝑡𝑡) = 1 − 𝑦𝑦′. There will be no missed opportunity
for 𝑇𝑇𝑐𝑐1(𝑡𝑡) since sensing was done while channel was busy.  In
order to reduce missed opportunities, we adopt proactive 
sensing with adaptive sensing period proposed in [4]. This will 
be incorporated into our proposed channel selection algorithm 
to effectively utilize the spectrum. A spectrum is effectively 
utilized when 𝑇𝑇∗𝑐𝑐0(𝑡𝑡) = 𝑥𝑥 while  𝑇𝑇∗𝑐𝑐1(𝑡𝑡) = 𝑦𝑦 degrades the
performance of spectrum sensing algorithm due interference if 
ever SUs try to transmit during this period. Carefully 
modeling 𝑍𝑍𝑛𝑛

𝑐𝑐 for all n = 1,2,3..,N will ensure maximum
discovery of transmission opportunities while reducing 
interferences by SUs.

Figure 4 presents a two state Markov model. This is used to 
predict the future state of the channels. SUs should be able to 
predict the next channel transition state for them to make an 
informed decision about whether the channel is likely to be 
available or not. There are two state (0/1) and four state 
transitions as shown in Figure 4. At a particular point in time, 
a channel can be in exactly one state or may be in a transition 
from one state to the next. We will use probabilistic approach
in predicting a current and future state of the channel. For 
example, what is the probability that a channel c is idling after 
being occupied by PUs for t duration? If we can correctly 
determine this probability, then idle channel search time can 
greatly be reduced. Probabilities are defined as follows: 

P00(Xc)- a probability that a channel c remains idling
P01(Xc) - a probability that a channel c started in an idling
state before changes its state 
P11(Xc)- a probability that a channel c remains busy
P10(Xc) - a probability that a channel c begins in busy state
before transiting into idling state

Figure 4.  Representation of state transition probabilities.

These probabilities are modeled using four transition states 
Markov chain where Sc(t) is the state of a channel c at time t
and the sensed result obtained from state Sc(t) is given by 𝑆𝑆̅c(t)
and Sc(t) = P00(Xc)= P01(Yc)= P11(Yc) = P10(Xc). {0 if channel 
c is free, 1 if channel c is busy}єSc(t) and {0 if channel c 
sensed free, 1 if channel c sensed busy } є 𝑆𝑆̅c(t) . To maximize 
SU throughput, it will be necessary to accurately detection the 
presence PUs while reducing false alarm. To achieve this, we 
consider the following interpretations:

State 1: If channel c is correctly sensed as free; i.e, Sc(t) =0 
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and the results obtained are such that 𝑆𝑆̅c(t)=0, then SUs 
transmit data packets since there will be no interference. 

State 2: If Sc(t) =0 and 𝑆𝑆̅c(t) =1, because the channel c idles 
and the results gives the opposite, this is the state under which 
a false alarm occurs. More opportunities will be missed and 
SU throughput will be compromised. 

State 3: Here, we consider a case where Sc(t) =1 and 𝑆𝑆̅c(t) 
=0, since decisions are taken based on sensed results, this 
leads to miss detection. This affects both SU and PU 
throughput.  

State 4: If Sc(t) =1 and 𝑆𝑆̅c(t) =1, then we correctly detected 
PU signal in channel c. In this case there will be no 
interference since SU will sense and switch to the next 
available channel for transmission. This is also one of the 
requirements (interference avoidance) of SU in CR networks.  

It is extremely critical to identify P10(Xc) since this will 
ensure maximum utilization of transmission opportunities. 
Identifying opportunities when they begin will ensure efficient 
utilization of the spectrum and maximum throughput of SUs. 
It is also important to identify a start of busy period P01(Yc). 
This is critical for collision avoidance since detecting the PUs 
signal when they start occupying a channel would mean that 
SU should vacate a channel and start its transmission on the 
next available channel. 

To maximize the throughput, SUs should have intelligence 
to sense and correctly select idling channels for transmission 
within minimal time possible. From the channel modelling, we 
allow SUs to maintain a believe vectors, 𝑉𝑉𝑝𝑝𝑝𝑝(𝑡𝑡) of dimension 
N whose contents or elements are the probability correlating 
with the channel being free from PU at time t. If we let the 
probability of channel c being free from PU, then 𝛿𝛿𝑐𝑐

𝑝𝑝𝑝𝑝(𝑡𝑡) such 
that 

 
𝑉𝑉𝑝𝑝𝑝𝑝(𝑡𝑡) = {𝛿𝛿1

𝑝𝑝𝑝𝑝(𝑡𝑡), 𝛿𝛿2
𝑝𝑝𝑝𝑝(𝑡𝑡) … … . . , 𝛿𝛿𝑁𝑁

𝑝𝑝𝑝𝑝(𝑡𝑡)}    (25) 
 

 𝛿𝛿𝑐𝑐
𝑝𝑝𝑝𝑝(𝑡𝑡) is derived from ON/OFF time distribution of PU 

currently using channel c. SU selects a channel 𝑐𝑐∗ having the 
highest probability of being free from PU, that is 

 
𝑐𝑐∗(t) = arg { max

𝑐𝑐=1,2….𝑁𝑁
𝛿𝛿𝑐𝑐

𝑝𝑝𝑝𝑝(𝑡𝑡)}                    (26) 

 
Whenever the channel 𝑐𝑐∗ is sensed busy, SU selects the next 

channel with the highest probability of being free from PU. If 
the selected channel is found to be free from PU, then SU uses 
the channel for transmission for the duration of ∆𝑡𝑡. Correctly 
sensing and selecting free channels for SU’s transmission 
within minimal time maximizes the achievable throughput of 
SUs. The throughput of the individual SU is given by 
𝜏𝜏(𝑡𝑡) = 𝑁𝑁𝑔𝑔(𝑡𝑡)×𝐹𝐹𝑆𝑆

𝑡𝑡                  (27) 
where 𝑁𝑁𝑔𝑔(𝑡𝑡) is the number of frames correctly decoded at the 
receiving SU till time t and 𝐹𝐹𝑆𝑆 denotes the frame size in bits. 
The average throughput of SU network is given by 

 
𝜏𝜏 = lim

𝑡𝑡→∞
𝜏𝜏(𝑡𝑡)                           (28) 

 

 
Figure 5. A frame structure for secondary user in a cognitive radio network 

[5]. 
 
The frame structure shown in Figure 5 is composed of two 

main phases: sensing and transmission. Sensing has 
extensively been modeled and explained in Figure 3. We 
model sensing using PDF assuming ON/OFF time 
distributions. Transmission phase is marked by a series of data 
transmission by SU. A spectrum must be sensed before any 
data transmission. A channel is periodically sensed to ensure 
faster data transmissions. Since data transmission is performed 
immediately after an opportunity is discovered, it is critical to 
find an opportunity as fast as possible to allow faster packet 
transmission. Hence, a channel selection algorithm was 
implemented to fast track channels and picks the one with the 
highest probability of being free. 

 

C. Service time and simulation parameters 
Our scheme makes use of Fusion Node for aggregation, 

processing, and decision making. A Fusion Node maintains a 
queue of decision reports from SUs on whether the channel is 
busy or free from PUs. It is therefore important to model the 
inter-arrival and waiting time before the decision is made by 
Fusion Node. It is also necessary to monitor the rate at which 
decisions are being processed. For inter-arrival and waiting 
times, we define T_k as the time elapsed between (k-1) st and 
the kth event. The sequence of SU’s inter-arrival time is given 
by 

 
{𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3 … … … , 𝑇𝑇𝐾𝐾}     ∀    𝑘𝑘 ∈ {0; ∞}         (29) 

 
𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3 … … … , 𝑇𝑇𝐾𝐾  for 𝑘𝑘 ∈ {0; ∞} are identically independent 
distributed exponential random variables with mean 1 𝛾𝛾⁄ . 

 
Arrival time for the 𝑘𝑘𝑘𝑘ℎ event is defined as 

 
  𝑆𝑆𝑘𝑘 = ∑ 𝑇𝑇𝑗𝑗

𝑘𝑘
𝑗𝑗=1                   (30) 

 
and the gamma distribution of 𝑆𝑆𝑘𝑘 is given by 

 

𝑔𝑔𝑠𝑠𝑘𝑘(𝑡𝑡) = 𝛾𝛾𝛾𝛾−𝛾𝛾𝑡𝑡
(𝛾𝛾𝑡𝑡)𝑘𝑘−1

(𝑘𝑘−1)!               (31) 
 

with parameters 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾. The expected arrival time is given 
by  
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𝐸𝐸𝑥𝑥(𝑆𝑆𝑘𝑘) = ∑ 𝐸𝐸(𝑇𝑇𝑖𝑖) = 𝑘𝑘
𝛾𝛾

𝑘𝑘
𝑗𝑗=1              (32) 

 
Presented in Table 1 is the simulation parameters used to 
simulate our proposed scheme.  

 
TABLE 1: 

Simulation Parameters 
Network environment Infrastructure less distributed 

environment 

Simulation Area 1000m x 1000m 
Simulation time 200 seconds 
Modulation scheme QPSK 
Collaborative sensing OR based collaborative sensing 
Number of radios 1 
Number of SUs 20 
Number of channels 6 
Frame length (ms):  10 
  

IV. ANALYSIS OF RESULTS 
This section discusses the results obtained through 

simulating cognitive radio networks. Simulations were carried 
out in MATLAB for 200 seconds in area coverage of 1000m2. 
QPSK was used to modulate the signal and the transmission 
was done over six channels.  

SU rely heavily on sensing to avoid interferences with PU. 
One of the factors influencing signal detection in the channel 
is SNR. It is indeed difficult to accurately detect signal in the 
presence of noise. Based on the results depicted in Figure 6, a 
rule was set to decide which SU to participate in sharing 
sensed results with their neighbors. As it can be observed from 
Fig 6 the probabilities of detecting a PU signal increases with 
the increase in SNR. The higher the SNR, the better are the 
chances of detecting the PU signal. 

 

Figure 6.  SNR for the selection of cooperating Secondary Users. 
 
There is at least 90% chance of detecting PU signal for any 

SNR above 2𝑑𝑑𝑑𝑑, hence, this serves as the minimum 
requirement for collaborative sensing. That is, only SUs with 
higher SNRs (equal or above 2𝑑𝑑𝑑𝑑) are allowed to forward 
their observation to the fusion centre. The main motive of 

setting this threshold is that SUs with lower SNRs often 
inaccurately detect PU signal which leads to interference. The 
threshold therefore mitigates interference amongst PUs and 
SUs and it also ensures maximum utilization of SUs 
bandwidth. 

Figure 7 shows the probability of detection where simulated 
cognitive radio network consisted of SU where the final 
decision was made by SU with  𝑆𝑆𝑆𝑆𝑆𝑆 ≥  2𝑑𝑑𝑑𝑑 . It is clear that 
the probability of detection increases as the probability of false 
alarm increases and that the detection probability of 
EXGPCSA improves with the increase of 𝝁𝝁 where 𝝁𝝁 is a 
parameter passed to a threshold function.  

 

 
Figure 7. Detection by cooperative secondary users transmitting over 6 
channels - ROC for the hard-fusion rules with SNR = -2dB and energy 
detection over 1000 samples. 

A noticeable increase can be observed for probability of 
false alarm below 50% in which EXGPCSA kept the 
probability of false alarm constant while increasing the 
probability of detection. This shows that changing a value of 
threshold can somehow have an impact on the detection of PU 
signal. Our proposed scheme maintained high level of 
detection through the implementation of a rule set to allow 
only SUs with higher SNR to participate in collaborative 
detection and by varying the value of 𝝁𝝁. It is important to keep 
probability of false alarms low and increase probability of 
detection to enhance performance. 

Figure 8 and 9 analyses generalized predictive CSA and 
EXGPCSA in terms of packet arrival rates and the packet 
service rates. It is critical to evaluate the performance of the 
fusion node which performs a critical task of aggregating and 
making decision about the availability of the spectrum. Hence, 
two schemes are evaluated on the ability to aggregate or 
service packets within the shortest possible time. In Figure 8, 
two (2) and three (3) packets have the highest chances of 
arriving within a one (1) second time window for generalized 
predictive CSA while given the same amount of time, 
EXGPCSA has the highest chances of four (4) and five (5) 
packets arriving. This means that the rate at which packets 
arrive at the fusion node is higher for EXGPCSA than 
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generalized predictive CSA. 
 

 
Figure 8. Secondary user's packets arrival rates per seconds. 

 
The processing or aggregating of packets should be faster 

for EXGPCSA to prevent buffer overflow. It can be observed 
from Figure 9 that EXGPCSA has lower service time and 
packets are aggregated within five (5) milliseconds. This 
contributes to the achievable throughput of SU.  

 

 
Figure 9. The probability that a time taken to services or aggregate results is 
greater than time t. 

 
When data is aggregated faster, the decision about the 

availability of channels for transmission and the throughput is 
likely to improve. The rate at which packets arrive at the 
fusion node for generalized predictive CSA is slower 
compared EXGPCSA. The maximum service time for 
EXGPCSA is twice lower than the generalized predictive CSA 
which meets the objectives of our scheme. 

Shown in Figure 10 is the average throughput of SU. The 
average throughput dropped as inter-sensing intervals 
increase. When spectrum is sensed for a short period of time, 
less time is taken in sensing and opportunities are discovered 

faster which leads to higher throughput. The throughput is 
further compromised when inter-sensing intervals are 
increased. In this case, more opportunities are missed and 
delays are incurred affecting throughput in a negative way. 
One of the reasons why throughput drops is that, increasing 
sensing time delays data transmission since transmission 
should be done after sensing.  

In Figure 10, two schemes were compared and EXGPCSA 
performed slightly better than Generalized predictive channel 
selection algorithm in that it deployed a different approach to 
spectrum sensing. In ensuring accurate spectrum sensing and 
channel selection, the cooperative sensing and maximum 
likelihood function were used for developing a spectral map. 
The maximum likelihood function was used to determine a 
channel with the highest probabilities of being free. Ninety 
percent (90%) of the times, channels decided by this function 
were idling which ensured higher throughput since channel 
search times were minimized. As it can be observed from the 
figure, throughput decreases with the increase of cooperating 
SUs. This happens due contention and limited number 
channels available to be used by many SUs. 

 

 
Figure 10. Cooperative secondary user’s throughputs gathered over six 
channels. 

 
Our study highlights the importance of multi-sensing in a 

cognitive radio environment where mobility of nodes is 
inevitable. The transmission of data and sensing of channels 
can heavily be affected by mobility. Our study addressed this 
problem by allowing nodes or SUs to share or relay data with 
any neighbor within their transmission range. In the presence 
of mobility, network could not be partitioned due to inter-
connectedness of SUs. With these contributions, the detection 
probabilities increased and positively influenced the 
throughput. The multi-cooperative sensing resulted in reduced 
sensing delays which, generally, yielded better performance of 
EXGPCSA. 
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V. CONCLUSION AND FUTURE WORK. 
This study explored cooperative spectrum sensing to 

mitigate the interferences caused by coexistence SU and PU.  
The main aim was to maximize the chances of detecting the 
presence of PU in the spectrum. An intelligent algorithm was 
used to achieve higher detection rate. To ensure less 
interference with PU, the study proposed a rule to govern 
which SU to share their sensed data with their neighbors. This 
was because the detection is compromised under a lower SNR.  

Different techniques for sensing were deployed to ensure 
the efficiency of the proposed scheme. Allowing only SU with 
higher SNR to collaborate in sharing and making decisions 
about the spectrum and parallel sensing technique was a major 
breakthrough in achieving better performance. Cooperative 
and parallel sensing were performed in two groups of channels 
in which channels were ordered in their descending orders of 
their idling probabilities. Ordering channels this way allowed 
channels to be sorted into a first-in-first-out queue with 
channels with higher probabilities of being free occupying the 
front lines of the queue. This approach minimized delays in 
finding available channels and facilitated faster data 
transmission to achieve maximized throughput. 

A wireless network has many dynamics such a security 
issues, mobility especially in cognitive radio, different service 
providers where interoperability is an issue, etc. Our future 
work will incorporate all these issues to evaluate the efficiency 
of the proposed scheme. It would be interesting to see how our 
algorithm performs in a decentralized network architecture 
under the presence of some security threats with all SUs given 
freedom of movement.  
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