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Abstract

Motivation: Transferring knowledge between species is challenging: different species contain distinct proteomes
and cellular architectures, which cause their proteins to carry out different functions via different interaction net-
works. Many approaches to protein functional annotation use sequence similarity to transfer knowledge between
species. These approaches cannot produce accurate predictions for proteins without homologues of known func-
tion, as many functions require cellular context for meaningful prediction. To supply this context, network-based
methods use protein-protein interaction (PPI) networks as a source of information for inferring protein function and
have demonstrated promising results in function prediction. However, most of these methods are tied to a network
for a single species, and many species lack biological networks.

Results: In this work, we integrate sequence and network information across multiple species by computing IsoRank
similarity scores to create a meta-network profile of the proteins of multiple species. We use this integrated multi-
species meta-network as input to train a maxout neural network with Gene Ontology terms as target labels. Our mul-
tispecies approach takes advantage of more training examples, and consequently leads to significant improvements
in function prediction performance compared to two network-based methods, a deep learning sequence-based
method and the BLAST annotation method used in the Critial Assessment of Functional Annotation. We are able to
demonstrate that our approach performs well even in cases where a species has no network information available:
when an organism’s PPI network is left out we can use our multi-species method to make predictions for the left-out
organism with good performance.

Availability and implementation: The code is freely available at https://github.com/nowittynamesleft/NetQuilt. The
data, including sequences, PPI networks and GO annotations are available at https://string-db.org/.

Contact: mmb557@nyu.edu or rb133@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequences have been the primary source of information protein
function prediction, mainly because of their abundance and the
ease with which many models can incorporate large amounts of se-
quence data. However, for function prediction, sequence informa-
tion fails to give the context of a protein in an organism; this
context can be highly relevant in determining the protein’s func-
tion. Protein interaction networks, on the other hand, offer a way
to understand how proteins function in cellular pathways, and thus
have been a powerful source of information for inferring the func-
tions of unannotated proteins (Chen et al., 2014; Cho et al., 2016;

Milenkovi�c and Pr�zulj, 2008; Mostafaviet al., 2008;Sharanet al.,
2007).

In community benchmarks, such as the Critical Assessment of
Functional Annotation (CAFA), the best-performing methods rely
on multiple complementary data sources—protein sequence, struc-
ture and network information—in order to make more accurate pre-
dictions (Radivojacet al., 2013; Rentzsch and Orengo, 2009; Zhou
et al., 2019). There are many reviews of protein function prediction
methods in general (Friedberg, 2006; Kihara, 2016; Lee et al., 2007;
Rentzsch and Orengo, 2009). Most previous network-based
approaches integrate different types of networks containing comple-
mentary information to achieve state-of-the-art performance (Cho
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et al., 2016; Gligorijevi�cet al., 2018; Mostafaviet al., 2008), but are
limited to training on and making predictions for a single organism’s
proteins. Methods for sequence and structure-based function predic-
tion are numerous (Cozzettoet al., 2016; Gligorijevicet al., 2019;
Gong et al., 2016; Kulmanov and Hoehndorf, 2020); these methods
are inherently able to predict functions for proteins of multiple
organisms, and can have certain other advantages such as region
specificity for predictions (Gligorijevicet al., 2019; Koo and
Bonneau, 2019; Vacicet al., 2010). A remaining challenge is using
the vast amounts of network information from multiple species in a
single model.

Our method, NetQuilt, accomplishes several important goals in
function prediction. First, NetQuilt allows for the integration of
sequences and networks, which allows the limited knowledge of the
homology between proteins to be supplemented by knowledge of
the network topology, and vice versa—incomplete protein-protein
interaction networks are supplemented by homology. NetQuilt also
creates protein features that are not tied to single species and that in-
clude evolutionary and functional information. As a result of the
increased training examples in the multispecies setting compared to
methods considering only single species, rarer Gene Ontology (GO)
(Ashburneret al., 2000) terms are able to be trained on. The much
larger set of training examples also serves to improve prediction on
more abundant terms. Most importantly, our method enables
network-based function prediction even for species for which know-
ledge of their protein interaction networks is limited. We demon-
strate the achievement of these goals in several settings. We compare
the quality of protein features of a single organism in a single-
species versus a multispecies setting. We show that multispecies fea-
tures are more indicative of a protein’s function than single-species
features. We also test the model’s ability to predict functions of a
species whose entire PPI network is missing, with the model trained
on all other species in the set being considered, in an approach
termed ‘leave one species out’ (LOSO). We demonstrate that our
model is capable of using information from other species to correctly
infer functions of the missing species.

2 Related work

Protein function prediction using PPI networks is a node classifica-
tion problem, the methods for which can be categorized into two
groups: label-propagation methods, and classifiers trained on graph
features. Label propagation methods propagate labels from labeled
nodes to unlabeled nodes via random walks; this strategy is used to
predict protein function in a method called GeneMANIA
(Mostafaviet al., 2008). Another approach, FunctionalFlow, uses
the idea of network flow to propagate labels based on simple local
rules (Nabievaet al., 2005). The category of classifiers trained on
graph features can be split further into two categories: those that
manually engineer features from the network data, or those methods
that learn network embeddings of nodes in order to be used in a
classifier. The manually engineered graph features can be based on
graph measures such as node degree, neighborhood size within some
number of steps, number of shortest paths, etc. Other features that
can be constructed over nodes include graphlets (Milenkovi�c and
Pr�zulj, 2008; Pr�zulj, 2007; Vacicet al., 2010), and random walk pro-
files of nodes within their graph, which have been extended and
applied to heterogeneous and multiplex biological networks (Li and
Patra, 2010; Valdeolivaset al., 2019). Network embedding has been
extensively used in protein functional analysis and includes methods
based on matrix factorization (Cho et al., 2016), graph kernels (Fan
et al., 2019) and deep learning (Gligorijevi�cet al., 2018; Wan et al.,
2019; Zitnik and Leskovec, 2017). A comprehensive review of net-
work embedding in computational biology compared to other types
of network-based algorithms for several applications can be found
in Nelson et al. (2019), and reviews of network representation learn-
ing methods in general can be found in Hamilton et al. (2017) and
Goyal and Ferrara (2018).

Our previous study (Gligorijevi�cet al., 2018) introduced a
method called deepNF (deep Network Fusion), which involves using
a multimodal autoencoder to create embeddings of nodes from

different types of protein-protein interaction networks of an organ-
ism. These embeddings are then used to train support vector
machines (SVM) to predict GO terms. This method outperformed
other methods using different types of interaction networks to pre-
dict function, including Mashup (Cho et al., 2016) and
GeneMANIA (Mostafaviet al., 2008), all of which had access to six
STRING network types f’experimental’, ’coexpression’, ’coocur-
rence’, ’neighborhood’, ’fusion’ and ’database’g. This work demon-
strated that multimodal autoencoder neural networks could
effectively extract functionally informative features from graphs
with multiple edge types. Another method, STRING2GO, uses max-
out neural networks in order to create functional representations of
proteins from protein interaction networks of a single species (Wan
et al., 2019). The maxout network is trained to predict GO terms
from Mashup or Node2Vec (Grover and Leskovec, 2016) node
embeddings, and the representations of each protein is taken from
the layer before the output predictions. These representations are
then used to train SVMs to predict GO terms. The authors show
that these representations are able to outperform the original
Mashup and Node2Vec embeddings of PPI networks when used to
train SVMs for the function prediction task. In Zitnik and Leskovec
(2017), an unsupervised neural network is used to learn embeddings
from a tissue-specific multi-layer PPI graph. These task-independent
embeddings are then used to predict multi-cellular function.

However, these methods are limited to using information from
single organisms for prediction, because they operate on a feature
space common only to proteins of that organism. A better approach
would be to take into account information from proteins of many
different organisms at once in order to take advantage of large-scale
training sets.

A few methods make use of information from protein interaction
networks of multiple species. One such method is NetGO, an en-
semble learning-to-rank method that combines six component meth-
ods, one of which is a k-nearest-neighbors method that uses PPI
networks of multiple species (You et al., 2019). One drawback to
this method is that it is unable to use the homology information in
any way beyond direct transfer of annotation between homologues.
Ideally, a protein function prediction method should be able to use
homology information to supplement network information even on
proteins whose sequences are not similar to the training set protein
sequences. In addition, MetaGO (Zhang et al., 2018) is a method
that combines scores of sequence homology, structure alignment
and homologues of PPI network neighbors combined with logistic
regression in order to transfer functional annotations. This method
is unable to predict function for a protein without either a sequence
homolog, a structurally similar protein in the training set or with a
network neighbor with a training set homolog. Another method,
MUNK, is a kernel-based method that produces functional embed-
dings used for predicting synthetic lethality for pairs of proteins of
multiple species (Fan et al., 2019); they additionally demonstrate
that proteins close in this embedding space are similar in function.
The key idea of their approach is that proteins from different species
are embedded in the same vector space using graph kernels with
landmark proteins in the networks of the two species that perform
the same functions.

The problem of network alignment is to find topological and
functional similarities between nodes of different networks. Local
network alignment algorithms aim to find subgraphs which are con-
served between input networks, while the goal of global network
alignment algorithms is to find mappings of all nodes between the
input networks. Most network alignment methods focus on this lat-
ter goal (Gligorijevi�cet al., 2016; Liao et al., 2009; Malod-Dognin
and Pr�zulj, 2015; Patro and Kingsford, 2012; Saraph and
Milenkovi�c, 2014; Singh et al., 2008; Vijayanet al., 2015).IsoRank
(Singh et al., 2008) is a global network alignment algorithm used to
align multiple PPI networks. This is done in two stages: first by solv-
ing an eigenvalue problem across all pairs of input networks to ob-
tain protein similarity scores, and then by using k-partite matching
to obtain the final alignment of all organisms, giving sets of func-
tional orthologs across species. IsoRankN (Liao et al., 2009) was
developed as an improvement to the alignment extraction portion of
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IsoRank in which instead of k-partite matching, spectral clustering
was applied to the meta-graph of all organisms’ proteins induced by
the similarity scores given by the eigenvalue problem. More recent
global network alignment algorithms include L-GRAAL (Malod-
Dognin and Pr�zulj, 2015), which uses a graphlet similarity-scoring
function used with a search heuristic based on Lagrangian relax-
ation, and GHOST, whose key step uses a signature of nodes based
on the spectrum of the normalized Laplacian of local subgraphs; this
signature is then used to measure topological similarity of networks
(Patro and Kingsford, 2012). Fuse (Gligorijevi�cet al., 2016) is an-
other network alignment method consisting of two steps. The first
step calculates functional similarity between proteins using a
weighted sum of scores from a non-negative matrix tri-factorization
of all considered PPI networks and sequence similarity. The second
step constructs an edge-weighted k-partite graph (where k is the
number of PPI networks) from these similarities and then obtains
the one-to-one network alignment using an approximate maximum
weight k-partite matching solver. A comprehensive review of bio-
logical network alignment can be found in Faisal et al. (2015).
Other algorithms for network alignment include those that focus on
finding small network region similarities conserved among net-
works, unconstrained by the assumption of one-to-one mapping of
nodes. These algorithms fall into the local network alignment cat-
egory. A comparison study of local and global network alignment
methods can be found in Menget al. (2016), where it was found that
network topology has additional biological knowledge compared to
sequence data; additionally, global and local network alignment
methods may give complementary information for protein function
prediction.

In this study, we use the first step of IsoRank to integrate se-
quence homology information with PPI network information to gen-
erate functionallyinformative similarity scores between species as
well as within species themselves. We use these similarity scores for
every protein as its feature representation to enable the training of a
neural network with proteins coming from many different organ-
isms’ PPI networks in the same input space.

3 Materials and methods

In this section, we describe the problem of protein function predic-
tion from PPI network and homology information, define our per-
formance measures and outline the components of our method,
NetQuilt. These components are the global network alignment algo-
rithm for creating both intranetwork (within-species) and internet-
work (between proteins in different species) node-similarity profiles,
and the maxout neural network, which uses the concatenated
aligned-network vectors to predict Gene Ontology (GO) terms. See
Figure 1for an overview of the procedure.

3.1 Problem specification
Consider a set of Norg undirected graphs, where each graph is a
protein-protein interaction network of a different organism. The
graphs each have a set of nodes representing proteins for each organ-
ism, and a set of edges representing the interactions between these
proteins. The graphs are represented by adjacency matrices
fA1;A2; . . . ;ANorg

g. Consider further that we have a set
fR1;1;R1;2;R1;3; . . . ;R1;Norg

;R2;2; R2;3;R2;4 . . . ;RNorg ;Norg
g of edges

representing homology links, between all proteins of all species. Our
objective is to assign a predicted GO score vector ŷi 2 R

c to each
protein i, where c is the number of considered terms of a particular
GO branch, and each entry ŷij in ŷi is a score between 0 and 1 repre-
senting the confidence of assigning the jth GO term to protein i.

3.2 Evaluation metrics
We evaluate our predictions with three function-centric measures;
precision recall curve (AUPR) under macro and micro averaging, as
well as function-centric F1-score, and two protein-centric measures;
accuracy, and F-max score.

Under macro averaging, AUPR is calculated for each GO term
label in the prediction matrix, and then averaged across all terms.

Under micro averaging, the label and prediction matrices are vector-
ized, and then AUPR is computed across the resulting label and pre-
diction vectors. We calculate F-1 score as in Gligorijevi�cet al. (2018)
and as previously introduced in Cho et al. (2016): we take the top
three scoring terms for each protein as ‘positive’ predictions, and
calculate the geometric mean of precision and recall under‘micro’
averaging for all terms. We have chosen AUPR, rather than the area
under the ROC curve, because the ROC can mask poor classifica-
tion performance in datasets where there is an imbalance of positive
labels, which is the case in protein function prediction (Saito and
Rehmsmeier, 2015).

The remaining two, accuracy and F-max score, are protein-
centric measures. We define accuracy to be the proportion of pro-
teins that were assigned all of their correct GO terms, with no add-
itional terms, using a threshold of 0.5 for assignment. F-max is
calculated as in the CAFA competition (Zhou et al., 2019): for each
protein, calculate the precision and recall of all GO term predictions
for a given threshold between 0 and 1, averaging across all proteins,
and compute the F-1 score for all thresholds. F-max is then the max-
imum of these F-1 scores.

3.3 Creating multispecies similarity profiles with

IsoRank
Our method computes profiles of the nodes in all species’ networks,
creating a shared feature space for all proteins, which we then use to
train a maxout neural network to predict protein function. We first
compute similarity scores between proteins of different species in a
way derived from the IsoRank method of multispecies network
alignment (Singh et al., 2008). The scores are given by the following
recurrence equation:

S
ðtþ1Þ
ij ¼ aÂ

T

i S
ðtÞ
ij Â j þ ð1� aÞRij (1)

where:

• S
ðtÞ
ij is the similarity matrix between networks (species) i and j

after t steps of diffusion;
• Rij½k; l� ¼ �logðeval½k; l�Þ is the blast e-value similarity between

protein k in network (species) i and protein l in network (species)

j, with a maximum e-value cutoff of 1e-3 and with the log score

scaled between 0 and 1.; and
• Â i; Âjare the row-normalized adjacency matrices of networks

(species) i and j.

Starting with Sð0Þ ¼ Ini�nj , we iterate this calculation
(Equation 1) until convergence with respect to the norm of the dif-
ference between the previous matrix S

ðT�1Þ
i;j and the current matrix

S
ðTÞ
i;j . We then calculate IsoRank similarity scores between proteins

within each species. This computes‘alignment’ scores between a net-
work and itself, integrating sequence homology scores computed
using BLAST and protein-protein interactions.

We can now construct a large symmetric matrix S in which the
IsoRank similarity matrices of all species with themselves are placed
along the diagonal, resulting in a block-diagonal matrix. Next, each
interspecies protein similarity matrix Si;j is placed on the off-
diagonal, comprising the submatrix with row indices of the proteins
of species i and column indices of the proteins of species j. Refer to
steps B, C, D, E and F in Figure 1 for a visual description of this ma-
trix construction. S now contains the information from all the indi-
vidual protein interaction networks as well as the links between
them, integrated with sequence-similarity information. We finally
use this matrix as input to a maxout neural network, with each row
of the matrix S being used as a single training sample. We note that
since the maxout neural network input depends on the dimensional-
ity of S, the total number of proteins considered by the algorithm is
limited by the available GPU memory to contain a batch of training
samples.
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3.4 Using maxout neural networks to predict protein

function from aligned Meta-network features
Maxout neural networks, introduced in Goodfellowet al. (2013),
are neural networks whose layers have the maxout activation func-
tion. The maxout activation of a layer is the element-wise maximum
of a set of affine transformations to the input of that layer. More ex-
plicitly, a maxout layer’s ith output value hi 2 R

m given an input
x 2 R

d is defined as:

hiðxÞ ¼ max
j21;k

zi;j

wherezij ¼ xTW:;i;j þ bi;j is the ith element of the jth affine trans-
formation of the input vector with learned parameters W 2 R

d�m�k

and b 2 R
m�k. Maxout activation functions are able to approximate

arbitrary convex functions given a sufficient number of maxout
units, (i.e. affine transformations), and therefore enable the neural
network to learn not only relationships between hidden units but
also the activation functions themselves. This provides additional
flexibility, which enables the neural network to learn features that
are more specifically tailored to a prediction task.

Goodfellowet al. (2013) also demonstrated that maxout net-
works more precisely approximate the average over all neural net-
works with randomly dropped out connections every iteration. This
can be interpreted as a more effective approximation of an ensemble
of these neural networks. This applies to the ReLU activation func-
tion as well: in fact, maxout activation can be seen as a generaliza-
tion of ReLU, which is itself a piecewise linear function. However,
maxout activation does not have the problem of output units
‘dying’—becoming and staying at 0 during optimization.

The architectures for our models are listed in Table 1 (see also
part G in Fig. 1). To avoid overfitting, we use early stopping with
the criterion of improving AUPR calculated over a validation set
consisting of 20% of the training data, with patience 30 (i.e. if the

AUPR score does not improve in 30 consecutive epochs, the training
is stopped).

The architectures were chosen using cross-validation perform-
ance on datasets for eukaryotes and bacteria using a previous ver-
sion of the STRING (v10.5) database (Szklarczyket al., 2017) for
annotations and network information. The hyperparameter search
started with an architecture based on Wan et al. (2019), with three
rounds of random search, trying 1% of possible models each round.
We include a list of hyperparameter ranges for these rounds, as well
as a description of this process, in Supplementary Section S5.
Empirically, maxout neural networks performed better than neural
networks with sigmoid or ReLU activation functions for this task.
Other benefits of maxout neural networks include fast gradient

Fig. 1. Overview of our method for running on two organisms (human and yeast). (A) For each taxonomy ID, download network, annotation and sequence files from the

STRING-db static website (version 11). (B) Use BLAST to create sequence identity links between proteins of pairs of different species. (C) Compute IsoRank scores between

proteins of different species, using BLAST sequence identity values and the organisms’ networks to create a combination of network and homology information. (D) Use

BLAST to create sequence identity links among proteins of each individual species. (E) Compute IsoRank alignment scores between proteins of the same species, creating

denser matrices S11 and S22 from weighted adjacency matrices A11 and A22 and sequence identity matrices R11 and R22. (F) Concatenate all IsoRank matrices between all spe-

cies to make the full S matrix. (G) Train maxout neural network with the S matrix as features and the annotation matrix as labels

Table 1. Model architectures for Eukaryote and Bacteria datasets

(see Section 3.5 for a description of these datasets)

Hyperparameters Bacteria Eukaryotes

Hidden layer dimensions [500, 800, 800] [500, 800, 800]

Maxout units 3 4

Dropout 0.2 0.2

Batch normalization True True

Learning rate 0.01 0.01

Batch size 16 32

Max number of epochs 100 300

Optimizer AdaGrad AdaGrad

Note: ‘Maxout units’ refers to the number of separate weight matrices for

a given layer; the element-wise max is computed over the product of the

weight matrices with the outputs of the previous layer. Batch normalization

(Ioffe and Szegedy, 2015) and AdaGrad (Duchiet al., 2011) were used for

both sets of species.
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computations relative to other activation functions, e.g. sigmoid,
and fewer choices of hyperparameters, since the activation function
is learned. The models were implemented using Keras (Cholletet al.,
2015).

3.5 Datasets
We conduct our analyses on both a collection of eukaryote net-
works and a separate collection of bacteria networks. Each dataset
consists of STRING PPI networks, of which we use only the ‘ex-
perimental’ category for our method, and Gene Ontology annota-
tions of each organism retrieved from STRING version 11
(Szklarczyket al., 2017). The statistics on the organisms we include
in our study are given in Supplementary Figures S1 and S2, which
show the networks’ largest connected component ratios and the an-
notation percentages of proteins present in STRING. The numbers
of nodes and experimental PPI edges, for bacteria and eukaryotes,
are shown in Supplementary Tables S1 and S2, respectively. In
order to select the value of the a parameter for our experiments for
each set, we tested several values in a single-species cross-validation
setting (see Supplementary Figs S3–S5 for the results of the search).
The chosen organisms come from the set of organisms that were
evaluated in CAFA 4. For the bacteria, all of the organisms from
CAFA 4 were used in our pipeline; for the eukaryotes, we selected
a subset to conserve memory when training our models
(Caenorhabditis elegans, Drosophila melanogaster, Danio rerio,
Homo sapiens, Sus scrofa, Mus musculus and Rattus norvegicus).
We use GO terms that cover between 0.5% - 5% of the species’
proteins in its PPI network (including IEA annotations), and re-
move proteins without annotations of these GO terms from train-
ing and evaluation sets. We note that GO terms, organized in a
hierarchy, are dependent on each other, and so average perform-
ance across all terms can be influenced by these relationships. A
table of the number of GO terms that we consider for both cross-
validation and leave-one-species-out validation for each organism
can be found in Supplementary Table S3. However, by choosing
specific GO terms, with annotations covering between 0.5%-5% of
a given organism’s proteome, we reduce the influence of the hier-
archy on the aggregated performance as a result of removing the
more general terms.

3.6 Cross-validation
In our first set of evaluations, in order to compare with single-
species methods, we perform cross-validation on a single test species
at a time. The performance is averaged over 5 repetitions with 20%
of data used as the test set. We train our models, as well as the
BLAST baseline, on GO term annotations of any evidence
code(Ashburneret al., 2000), but evaluate our predictions with
annotations of the evidence codes EXP, IDA, IPI, IMP, IGI, IEP,
TAS and IC, as previously used in CAFA papers (Radivojacet al.,
2013). Since, realistically, our method has access to more training
examples than the single-species methods, we include three bench-
mark versions of our method:

1. NetQuilt trained on a subsampled set of multispecies annota-

tions, where we randomly subsample training examples equal to

the number of training examples we would have if only consider-

ing the species being tested on

2. NetQuilt trained on single-organism annotations, in which we

take only rows corresponding to the particular organism being

evaluated from the original matrix S containing protein similar-

ities among all organisms (for example, training the maxout

neural network only on the rows corresponding to human pro-

teins in the block S matrix represented in Fig. 1B)

3. Single-species Maxout, in which we take only the IsoRank-score

matrix for integrating the single organism’s PPI network with se-

quence homology information from BLAST, but not including

similarities to any other organisms’ proteins (for example,

training the maxout neural network only on the S11 matrix for

human proteins represented in Fig. 1E)

These benchmarks allow us to disentangle the effects that the
number of training examples and the addition of new features have
on performance. In addition to these, we also include deepNF,
BLAST [propagating labels from training to test proteins based on
sequence similarity as in CAFA (Radivojacet al., 2013)],
DeepGOPlus (Kulmanov and Hoehndorf, 2020) and MetaGO.
deepNF includes information from STRING network types not used
by our models: i.e. the coexpression, cooccurrence, neighborhood,
fusion and database networks. BLAST, like our main multispecies
model, uses proteins from all organisms in the set of chosen species
to make predictions on the cross-validation test proteins.
DeepGOPlus is a method combining predictions from a deep convo-
lutional neural network and homology-based annotation transfer.
DeepGOPlus was trained on its original training set described in
Kulmanov and Hoehndorf (2020) with the default parameters, but
with proteins present in our test sets removed for each evaluation.
We also include the PPI-network and homology-based scoring pipe-
lines of MetaGO, as a method that uses similar input data. These
pipelines of MetaGO made predictions with the default settings for
all evaluations. In order to make the comparison to our method fair
we excluded the structure-based pipeline from MetaGO as our
method uses only sequence and PPI information.

3.7 Leave-one-species-out validation
The next set of experiments we performed simulate a scenario in
which we use the networks of multiple species in order to predict the
functions of proteins of an organism with no PPI network available
(a reasonably common occurrence for non-model species). An out-
line of the procedure is shown in Figure 2.

We first take a single organism with its annotations left out from
training and used as the test set, and leave out the network for that
organism. In order to construct the features of the organism for use

Fig. 2. Procedure for predicting a network to be used in the leave-one-species-out

validation setting, where we assume no knowledge of the PPI network for one or-

ganism. First, BLAST connections (represented as purple dashed lines) between the

proteins of the known network and the left-out network are created. IsoRank is

then run for the interspecies matrix, using the known network A1 and the left-out

network given by the identity matrix I, giving the IsoRank connections S12 depicted

by the large green dashed lines. We finally obtain a predicted network by taking the

one-mode projection of the IsoRank connections: ST
12S12 ¼ Â2 . In the case of mul-

tiple known organisms, we simply take the average of all organisms’ one-mode pro-

jections with the left-out organism
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in the maxout neural network, we first need to obtain interspecies
connections between the test organism and all other organisms in
the dataset. To do this, we first calculate the sequence similarity be-
tween the test organisms’ proteins and all other organisms’ proteins,
and run IsoRank in the previously described way, except that we use
the identity matrix in place of the PPI network of the left-out organ-
ism. We obtain an ni � ntest interspecies protein similarity matrix
Si;test relating each species’ ni proteins with the test species’ ntest pro-
teins. We then perform a one-mode projection, given by ST

i;testSi;test,
which predicts connections between the nodes of the test species
from their shared neighbors (through the IsoRank connections) in
other species. Since we have a prediction matrix for every other spe-
cies in the set besides the test species, we take the element-wise mean
of these different matrices to get the predicted network Âtest.
Finally, using this matrix as a proxy for a real PPI network, we run
IsoRank on the matrix with itself, combined with its own species’
BLAST connections, to obtain the matrix Stest;test. In these LOSO
evaluations, we did not remove any network information from
MetaGO. It was run under default settings to predict function for
the given organisms.

4 Results

In the following sections, we present the performance of our method
in two evaluation settings. The first setting is cross-validation over
the annotations of a single species, in which we can compare our
method to single-species network-based methods. The second setting
is leave-one-species-out (LOSO) evaluation, in which we leave out
both a species’ PPI network and its annotations while using the rest
of the organisms to train, as outlined in the previous section.

4.1 Cross validation over annotations of one species
We present the performance of our method in cross-validation on
human, fly, mouse and E.coli. We summarize our results using
AUPR under micro and macro averaging, accuracy score (Acc), F1-
score and F-max, as described in Section 3.2. We show results separ-
ately for the three different branches of Gene Ontology, molecular
function (MF), biological process (BP) and cellular component (CC).

In Figures 3–5, we see that the NetQuilt network trained on
model bacteria proteins outperforms the other methods across the
three branches of Gene Ontology for E. coli, human and mouse, for
macro and micro AUPRs, F1 score and F-max. This can primarily be
attributed to the large number examples included in the training set
compared to the benchmark versions of NetQuilt and deepNF,

which can only run on a single organism. In addition, the diversity
of training examples across multiple species also serves to increase
performance, as indicated by the higher performance of the maxout
network trained on subsampled sets of annotations from multiple
species equal in size to the training set for a single species. As for the
methods taking multiple species’ annotations into account, NetQuilt
has several advantages allowing it to perform better. Compared to
DeepGOPlus, NetQuilt has access to PPI information of several spe-
cies, whereas DeepGOPlus only uses sequence information.
Compared to MetaGO, NetQuilt’s high-capacity neural network is
able to learn more complex dependencies between homology and
network topology to predict function. However, for the accuracy
measure, NetQuilt performs worse than the other methods. It is like-
ly that the 0.5 cutoff, which we use to consider a GO term ‘pre-
dicted’ in the accuracy measure, is not optimal for NetQuilt, as its
predictions are not necessarily calibrated for classification for that
particular cutoff.

For fly, shown in Figure 6, deepNF outperforms our method in
the biological process and cellular component branches for the
macro and micro AUPR, accuracy and F1 scores. We note that

Fig. 3. Performance comparison of NetQuilt method with baselines. Methods

shown: NetQuilt trained on model bacteria annotations; NetQuilt trained on sub-

sampled model bacteria annotations; NetQuilt trained only on E.coli str. K-12

substr. MG1655 examples; single-species NetQuilt (taking only the E.coliIsoRank

matrix and annotations); deepNF (single-species, but integrating 6 STRING net-

work types); DeepGOPlus (trained on original dataset with our test set proteins

removed); MetaGO (predicted with PPIþhomology pipelines only, using its default

dataset of annotations); and CAFA BLAST annotation transfer method using all

selected bacteria annotations

Fig. 4. Performance comparison of NetQuilt method with baselines. Methods

shown: NetQuilt trained on model eukaryote annotations; NetQuilt trained on sub-

sampled model eukaryote annotations; NetQuilt trained only on human examples;

single-species NetQuilt (taking only the human IsoRank matrix and annotations);

deepNF (single-species, but integrating 6 STRING network types); DeepGOPlus

(trained on original dataset with our test set proteins removed); MetaGO (predicted

with PPIþhomology pipelines only, using its default dataset of annotations); and

CAFA BLAST annotation transfer method using all selected eukaryote annotations

Fig. 5. Performance comparison of NetQuilt method with baselines. Methods

shown: NetQuilt trained on model eukaryote annotations; NetQuilt trained on sub-

sampled model eukaryote annotations; NetQuilt trained only on Musmusculus

examples; single-species NetQuilt (taking only the mouse IsoRank matrix and anno-

tations); deepNF (single-species, but integrating 6 STRING network types);

DeepGOPlus (trained on original dataset with our test set proteins removed);

MetaGO (predicted with PPIþhomology pipelines only, using its default dataset of

annotations); and CAFA BLAST annotation transfer method using all selected eu-

karyote annotations
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deepNF has additional information—the coexpression, cooccur-
rence, neighborhood, fusion and database networks—in addition to
the experimental PPI network from STRING, while our method
incorporates only the experimental network and BLAST connec-
tions. The performance of the CAFA BLAST baseline method also
performs poorly for fly, which reflects the smaller number and mag-
nitude of BLAST connections between fly and the other organisms
(see SupplementaryFig. S7 for network and homology comparisons
between eukaryotes). Similarly, for biological process and cellular
component, both DeepGOPlus and MetaGO perform relatively
poorly compared to their performance in molecular function. This
indicates that the homology of the organisms in the set does not give
as much information as the other sources of information that
deepNF takes into account for the fly protein function prediction
task. Since our method also relies on homology information, we ex-
pect a corresponding decrease in performance when such informa-
tion is not as salient to the classification task. We see this effect also
in the maxout network trained in the subsampled setting, where
homology information from the proteins of other organisms is
included in the training data at the expense of other proteins in the
fly network.

For all organisms, NetQuilt trained only on a single species’
annotations performs similarly whether it uses multispecies features
or single-species features.

For E.coli and human, training on multispecies features gives
slightly better performance with regard to the molecular function
ontology than training on single-species features. However, for
cross-validation on human in the biological process ontology, the
multispecies features actually decrease performance.

This is because adding a significantly larger number of features
without increasing the number of training examples has limited ben-
efits, with a higher number of parameters needing more samples to
train on. On the other hand, both of these baseline models’ perform-
ances are comparable to that of deepNF for the molecular function
ontology for all of the considered organisms. This suggests that the
features based on PPI networks integrated with homology through
our method can enable the neural network to have competitive per-
formance even without large numbers of training examples.

4.2 Leave-one-species-out validation
In order to explore the performance of our method in a situation in
which no PPI interaction network is known for an organism but
homology information is present, we present results for E. coli and
fly LOSO validation in Figures 7 and 8, and for human and mouse
in Supplementary Figures S3 and S4. This setting often describes the

case for many newly sequenced species; mass spectrometry or yeast
two-hybrid data may not be available for such organisms.

For E.coli, we see that our model outperforms the CAFA BLAST
labeling method, DeepGOPlus and MetaGO. There are annotations
available from all other bacteria, including another well-annotated
substrain of E.coli (K-12 substr. W3110; see SupplementaryFig. S2).
BLAST can use these presumably useful homologs in transferring
annotations to the E.coli K-12 substr. MG1655, our test organism.
However, even with this information, our method outperforms
BLAST by more than double in the macro-AUPR performance for
biological process, and by similarly large margins in the molecular
function and cellular component ontologies. MetaGO does do better
than the other two benchmark methods, likely because the E.coli
PPI network information, which was removed for NetQuilt, is quite
relevant to the function prediction task. In addition, MetaGO has
access to annotations of some test set proteins, given that the default
dataset included with the method was not modified.

For fly, we see NetQuilt generally outperforming the CAFA
BLAST labeling method, though for cellular component, the im-
provement is not as significant. In terms of F-max score, NetQuilt
outperforms all other benchmark methods, but MetaGO and
DeepGOPlus outperform NetQuilt in the other measures. We note
that for MetaGO, the PPI network for fly was not removed, as it
was run with its default dataset and settings. This likely contributed
to MetaGO’s performance, since NetQuilt outperformed MetaGO

Fig. 6. Performance comparison of NetQuilt method with baselines. Methods

shown: NetQuilt trained on model eukaryote annotations; NetQuilt trained on sub-

sampled model eukaryote annotations; NetQuilt trained only on D.melanogaster

examples; single-species NetQuilt (taking only the fly IsoRank matrix and annota-

tions); deepNF (single-species, but integrating 6 STRING network types);

DeepGOPlus (trained on original dataset with our test set proteins removed);

MetaGO (predicted with PPIþhomology pipelines only, using its default dataset of

annotations); and CAFA BLAST annotation transfer method using all selected eu-

karyote annotations

Fig. 7. E.coli annotations. Training set included all other species listed in

Supplementary Figure S2 besides E.coli K-12 substr. MG1655, which was the test

organism. No PPI network information of the test organism was used for NetQuilt,

BLAST and DeepGOPlus.The PPI-network and homology-based scoring pipelines

of MetaGO were used to make predictions with the default data and settings for all

evaluations

Fig. 8. D.melanogaster annotations. Training set included all other species listed in

Supplementary Figure S1 besides D.melanogaster, which was the test organism. No

PPI network information of the test organism was used for NetQuilt, BLAST and

DeepGOPlus. The PPI-network and homology-based scoring pipelines of MetaGO

were used to make predictions with the default data and settings for all evaluations
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when both methods had access to the fly network in the cross-
validation setting.

On human and mouse (see Supplementary Figs S3 and S4), our
model performs approximately as well as the CAFA BLAST labeling
method. The BLAST labeling method performs much better for
these organisms than it does for fly and E.coli. When homology in-
formation is highly informative, as is the case in human and mouse,
BLAST is difficult to improve upon. However, in cases where hom-
ology is not as informative for the annotation task, the complemen-
tary PPI data used by our model allows for significant improvements
in performance.

We observe consistent underperformance of DeepGOPlus across
E. coli, human and mouse organisms in LOSO which could be
explained by the fact the DeepGOPlus was trained only on experi-
mental annotations and the removal of the entire organism greatly
impairs its performance. MetaGO, too, relies only on experimental
evidence codes to transfer annotations to the test proteins. This
could be one reason that both MetaGO and DeepGOPlus perform
worse than NetQuilt and the BLAST baseline for human and mouse.

These results show that our method of integrating multiple spe-
cies’ PPI networks and their homology link information can be used
effectively to annotate proteins for organisms for which neither PPI
network nor annotations are available. In particular, it shows that
we can outperform strictly homology-based predictions when there
is PPI network information available for species related to the organ-
ism we want to annotate.

5 Conclusion

With the arrival of high-throughput experimental techniques came
large PPI network datasets of thousands of organisms. Many func-
tion prediction algorithms use PPI information for function predic-
tion using a single species at a time. In order to fully exploit this rich
source of information, new protein function prediction algorithms
should be designed so that multiple PPI networks can be integrated,
along with the most abundant source of protein information: hom-
ology. We present here a method that is the first of its kind: a multi-
species network-based deep learning method for protein function
prediction that effectively integrates PPI network information and
homology. The integration of multiple PPI networks is based on
IsoRank, a PPI network alignment technique that uses homology to
transfer topological similarity scores between nodes of different net-
works. We use the integrated similarity scores as input to a maxout
neural network in order to accurately predict protein function. We
demonstrate the superiority of our method in Gene Ontology term
prediction to single-species network-based approaches, the hom-
ology transfer method from the Critical Assessment of Function
Annotation (CAFA), the deep learning sequence-based method
DeepGOPlus, and the PPI and homology-based pipeline of MetaGO
using a cross-validation evaluation.

The multispecies approach enables us not only to produce better
predictions in situations involving completing the annotations of a
single species using its PPI network, but also to make accurate
network-informed predictions on species for which the organism
has either an incomplete or an entirely non-existent PPI network.
We show this capability through a leave-one-species-out validation
whereby we leave out a species’ network and annotations and train
our model on multiple other species, and then evaluate our function
predictions on the left-out species. We show that our method can be
at least as good as the CAFA homology transfer method in settings
in which homology is very informative, and is a great improvement
over the CAFA homology transfer method in settings in which hom-
ology information is not enough to produce accurate predictions.
We show performance increase in most comparisons to
DeepGOPlus and MetaGO under this setting as well.

This method shows promise for training deep learning models on
large multispecies PPI network datasets. In light of the informative
representations learned by deep-learning algorithms trained on se-
quence datasets with millions of training examples, we have a vision
of applying deep learning techniques similarly to the millions of
nodes in all PPI networks. In future work, we hope to explore

principled ways of integrating much larger numbers of PPI networks
with homology information for function prediction.
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