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Abstract: In the wake of developments in remote sensing, the application of target detection of 
remote sensing is of increasing interest. Unfortunately, unlike natural image processing, remote 
sensing image processing involves dealing with large variations in object size, which poses a great 
challenge to researchers. Although traditional multi-scale detection networks have been successful 
in solving problems with such large variations, they still have certain limitations: (1) The traditional 
multi-scale detection methods note the scale of features but ignore the correlation between feature 
levels. Each feature map is represented by a single layer of the backbone network, and the extracted 
features are not comprehensive enough. For example, the SSD network uses the features extracted 
from the backbone network at different scales directly for detection, resulting in the loss of a large 
amount of contextual information. (2) These methods combine with inherent backbone classifica-
tion networks to perform detection tasks. RetinaNet is just a combination of the ResNet-101 classi-
fication network and FPN network to perform the detection tasks; however, there are differences in 
object classification and detection tasks. To address these issues, a cross-scale feature fusion pyr-
amid network (CF2PN) is proposed. First and foremost, a cross-scale fusion module (CSFM) is 
introduced to extract sufficiently comprehensive semantic information from features for perform-
ing multi-scale fusion. Moreover, a feature pyramid for target detection utilizing thinning 
U-shaped modules (TUMs) performs the multi-level fusion of the features. Eventually, a focal loss 
in the prediction section is used to control the large number of negative samples generated during 
the feature fusion process. The new architecture of the network proposed in this paper is verified 
by DIOR and RSOD dataset. The experimental results show that the performance of this method is 
improved by 2%-12% in the DIOR dataset and RSOD dataset compared with the current SOTA 
target detection methods. 

Keywords: multi-scale feature fusion pyramid; remote sensing images; single-stage target detec-
tion; M2Det; focal loss 
 

1. Introduction 
With regard to development in technology and the advent of the era of machine 

learning, deep learning technology is advancing by leaps and bounds and has encour-
aged the development of target detection technology.  

Traditional target detection [1,2] extracts features from candidate regions within the 
image using techniques such as Haar [3], HOG [4] or sparse representation [5–8] and 
then classifies them using the SVM [9] model. Deep learning [10–13] is characterized by 
automatic learning of image features, thus replacing manual feature extraction. Mean-
while, the efficiency of target detection has been greatly improved. Therefore, deep 
learning-based target detection methods have been used widely. There are two catego-
ries of deep learning-based target detection methods: the first category involves 
two-stage target detection based on region proposals whereas the second category in-
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volves single-stage target detection based on regression. An example of a deep leaning 
technology falling into the first category is R-CNN [14–16], which extracts all candidate 
regions in advance using the selective search method, then automatically extracts and 
learns features from the CNN to improve efficiency. Fast R-CNN [17–19] first feeds the 
whole image into the CNN to extract features just once, then maps the candidate box to 
the extracted feature map. Therefore, Fast-RCNN greatly improves the efficiency of de-
tection. Faster R-CNN [20–22] replaces Fast R-CNN with a new RPN [20] that predicts 
regions over a wide range of scales and aspect ratios effectively, thereby improving the 
accuracy of detection. Compared to these two-stage object detectors, a single-stage target 
detection network, YOLO [23–33] deals with target detection as a regression problem, 
which greatly enhances the detection speed. The SSD [34] network uses VGG-16 as the 
backbone extraction network, and predicts each feature layer at different scales extracted 
by the backbone network. Multi-scale target detection is achieved. RetinaNet [35] is a 
combination of the ResNet-101 classification network and feature pyramid network to 
achieve multi-scale detection. 

Although all the above methods have achieved good results, the use of only single 
scale feature layers, renders the target detection involving large-scale variations unsatis-
factory. 

Due to the wide application of target detection for natural images, a large number of 
researchers have turned their attention to remote sensing images with high resolution. 
However, target detection with remote sensing images differs from natural image target 
detection in the following ways: 
1. The remote sensing images are much larger in size than natural images, leading to a 

large number of samples being treated as the background when extracting candidate 
boxes and thus causing object class imbalances. 

2. The complex scenes of remote sensing images allow them to be characterized by 
inter-class diversity and intra-class similarities. 

3. Remote sensing images generally have a larger field of view, i.e., objects are smaller 
relative to the size of the image, and small and tiny objects are difficult to deal with. 
Researchers have offered several solutions to the above problems. A multi-scale 

image block-level fully convolutional neural network (MIF-CNN) was proposed by Zhao 
et al [36] to better cope with the complexity of scenes. In particular, MIF-CNN aims to 
extract advanced multi-scale-based features to better represent various classes of objects. 
For the problem of positive and negative sample imbalance, Sergievskiy et al [37] pro-
posed reduced focal loss based on focal loss [35]. Chen et al. [38] proposed a scene con-
textual feature pyramid network (SCFPN) to deal with the scale variation of object spe-
cies in remote sensing images effectively by combining contextual detection objects. With 
SCRDet, Yang et al. [39] designed a sampling fusion network that fuses multiple layers of 
features into effective anchor sampling to improve the detection sensitivity for small 
targets, by suppressing noise and highlighting features of targets using supervised pixel 
attention networks and channel attention networks for small and cluttered target detec-
tion. Subsequently, Yang et al. improved SCRDet by proposing SCRDet++ [40]. This 
method reduces inter-class feature coupling and intra-class interference by Instance Level 
Denoising (InLD), while blocking background interference. 

In our work, we find that remote sensing images have high inter-class similarity and 
intra-class diversity due to complex and variable scenes. In particular, we analyze the 
DIOR [41] dataset and discover that has the characteristics of high fine-grained object 
categories and semantic overlap, such as “bridge” and “dam,” “bridge” and “overpass” 
and “tennis court” and “basketball court”, as is shown in Figure 1. 
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(a) Bridge (b) Dam 

  
(c) Ship (d) Ship 

Figure 1. Inter-class similarity as shown in (a) and (b), intra-class variability as shown in (c) and (d). 

 In light of the above problems, a cross-scale feature fusion pyramid network 
(CF2PN) that improves a M2Det [42] is proposed. In contrast to M2Det, however, our 
approach fully considers the scenario’s context and adds a focal loss function to balance 
positive and negative samples. The contributions of this paper are as follows: 
1. This paper proposes a multi-scale feature fusion and multi-level pyramid network 

that improves the M2Det to address the problem of inter-class similarities and in-
tra-class diversity caused by remote sensing images with complex and variable 
scenes. 

2. To balance the amount of positive and negative samples from the background to 
the object in remote sensing images we adopt the focal loss function. 

3. We use the method of cross-scale feature fusion to enhance the association between 
scene contexts. 
We then conduct experiments on two challenging public datasets to verify our 

proposed method. The remainder of this paper consists of the following parts. In Section 
2, we describe related work and our proposal for the method, and Section 3 introduces 
details of the experiments. In Section 4, with comparative experiments, we demonstrate 
the feasibility of our proposal. Finally, we provide conclusion in Section 5. 

2. Materials and Methods 
2.1. Related Work 

In previous work, researchers have proposed a variety of detection algorithms, for 
example, the R-CNN series (including R-CNN, Fast-RCNN and Faster-RCNN) repre-
sented by a two-stage detector, and YOLO, an SSD series represented by single-stage 
detector. However, they all have their own advantages and disadvantages, as shown in 
Table 1. 

Table 1. Advantages and defects of different detection algorithms. 

Method Advantages Defects 

R-CNN CNN accelerated feature extraction. 
Unable to achieve end-to-end; lim-
ited by selective search algorithm. 

Fast-RCNN The addition of SPPNet [17–19] ef- Limited by selective search algo-
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fectively avoids the loss of spatial 
information. 

rithm. 

Faster-RCNN 
Introduction of RPN instead of se-
lective search algorithm improves 

detection speed. 

Selective search and detection are 
divided into two stages resulting in 
slow speed; poor detection for small

targets. 

YOLO 
Converts the target detection task 
into a regression problem, greatly 

speeding up detection. 

Detection for small targets and ob-
jects close to each other will not be 

effective. 

SSD Achieved multi-scale detection. 

The feature map extracted first is 
large, but the semantic information 

is not enough, and the semantic 
information extracted later is rich 
and the feature map is too small, 
resulting in small target detection 

effect. 

RetinaNet 

The focal loss function is introduced 
to effectively solve the problem of 
positive and negative sample im-

balance 

Using the FPN network, each fea-
ture map is represented by a single 
layer of the backbone, resulting in 
less comprehensive extracted fea-

tures. 

M2Det  

The introduction of the new feature 
pyramid solves the defect that the 

feature map of each scale in the tra-
ditional feature pyramid contains 
only single level or few levels of 

features. 

Only the features of the last two 
layers of the backbone network are 
used for fusion, and a large amount 

of semantic information is lost, 
which is not significant enough for 
direct application to remote sensing 

images 

The R-CNN series, despite their better performance relative to the accuracy of sin-
gle-stage detectors, are slow and poor for small targets, which are fatal for remote sensing 
image target detection. With the development of technology, researchers have also im-
planted FPN networks into Faster RCNN, YOLOv4-Tiny [43] and RetinaNet to improve 
the accuracy of small target detection, but the traditional FPN contains only a few layers 
or one layer of features one scale, which leads to lose the rich semantic information of 
remote sensing images and greatly decreases the performance of the detector. 

Different from the FPN network, SSD achieves multi-scale target detection by de-
tecting on feature maps at different scales, but the detection effect for small targets is not 
satisfactory. M2Det, combined with SSD, improves on the traditional pyramid network 
and solves the defect that the feature maps at each scale in the traditional feature pyra-
mid network contain only a single layer or a few layers of features. However, M2Det 
only fuses the last two layers of the backbone network, which causes a large amount of 
semantic information to be lost, resulting in unsatisfactory results in the field of remote 
sensing image target detection. The problem of positive and negative sample imbalance 
existing in remote sensing images also needs to be solved. 

2.2. Proposed Method 
Our proposal of the network architecture of CF2PN is shown in Figure 2. The net-

work is composed of three parts: a backbone feature extraction network, multi-level 
feature pyramid modules (MLFPN), and classification and regression sub-networks. 
First, the features of remote sensing images are extracted through the backbone network 
and then the features at different scales are merged to form the input of the thinning 
U-shaped module [42]. The fused features are sent to the U-shaped multi-level feature 
pyramid module to obtain six effective feature layers. Operating in a manner similar to 
SSD, the subnets generate dense regression prediction boxes and category scores based 
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on the six effective feature layers learned, and then filters these results through NMS [20] 
to output the final result. Since the backbone network fusion enriches the contextual in-
formation while also greatly increasing the number of negative samples, we use the focal 
loss function to optimize the model training. 
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Figure 2. The CF2PN architecture. 

The structure settings for the M2Det and CF2PN networks are shown in Tables 2 
and 3. 

Table 2. Setting of M2Det network structure. 

M2Det 
VGG-16 x1, x2, x3, x4, x5 Convolution 
FFMv1 Base Feature = Concatenation (x4, x5) Fusion 

TUM × 7 p1, p2, p3, p4, p5, p6 Fusion 
FFMv2 × 7 Concatenation (Base Feature, p1) Fusion 

TUM  f1, f2, f3, f4, f5, f6 Fusion 
SFAM SFAM (f1, f2, f3, f4, f5, f6) Reweight 

Table 3. Setting of CF2PN network structure. 

CF2PN 
VGG-16 x1, x2, x3, x4, x5 Convolution 
CSFM Base Feature = Concatenation (x1, x2, x3,x4,SE(x5)) Fusion 

TUM × 7 p1, p2, p3, p4, p5, p6 Fusion 
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FFM2 × 7 Concatenation (Base Feature, p1) Fusion 
TUM  f1, f2, f3, f4, f5, f6 Fusion 
SFAM SFAM (f1, f2, f3, f4, f5, f6) Reweight 

Class and Box Subnets × 5 t1, t2, t3, t4, t5, t6 Convolution 

x1, x2, x3, x4, x5 represent the five feature layers extracted from the VGG-16 net-
work. p1, p2, p3, p4, p5, p6 are the six effective feature layers obtained by the TUM 
module. f1, f2, f3, f4, f5, f6 represent the six effective feature layers obtained after the 
eighth TUM process. Concatenation is the operation of fusion of feature layers at differ-
ent scales. SE is the processing operation of the channel attention mechanism using SE-
Net [44] as shown in Table 3; SFAM [42] is the Scale-wise Feature Aggregation pro-
cessing. In Table 3, we obtain the prediction results t1, t2, t3, t4, t5, t6 for the results de-
rived from SFAM after the classification and regression subgrid. 

2.2.1. Backbone Network 
In our proposed CF2PN network, for the backbone feature extraction network we 

employ the popular VGG-16. The VGG network has the following main characteristics: 
(1) to explore the relationship between depth and performance of convolutional neural 
networks, and VGG networks employ iterative overlapping of 3 × 3 small convolutional 
kernels and 2 × 2 maximum pooling layers; (2) the VGG model has a simple structure in 
that each part of the network employs the same convolution kernel (of size 3 × 3) and 
maximum pooling (of size 2 × 2); (3) it has five convolution stages, with each stage having 
two to three convolution layers and a maximum pooling layer at the end to shrink the 
image; and (4) the VGG model shown in Figure 3 uses three groups of 3 × 3 kernels in 
place of a 7 × 7 kernel. In the VGG-16 network, three groups of 3 × 3 kernels are used 
continuously (with a stride of 1) in the deep network, which not only increases the mod-
el’s linear expression ability but also reduces the amount of calculation.  

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3

1

7×7 conv 3×3 conv1

3×3 conv2

3×3 conv3
 

Figure 3. Convolution kernel substitution module. 

Therefore, to prevent the effect of the detector from being suppressed by an exces-
sively large number of parameters, we adopt VGG-16 for feature extraction in the back-
bone network. 

2.2.2. CSFM 
The M2Det network utilizes the feature maps computed from two network layers, 

Conv4_3 and Pooling_5 in the VGG-16 backbone network for its prediction output. Alt-
hough the M2Det algorithm uses feature maps from two different network layers for fu-
sion, for high resolution remote sensing images, if only the last two feature layers are 
selected for fusion, the shallow feature map’s feature rich in location information will not 
be well utilized, and the contextual connection is ignored. Unlike the M2Det network, we 
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select five feature layers of the VGG-16 network, namely, P1, P2, P3, P4, and P5, respec-
tively, for feature fusion based on P4. We also impose a channel attention mechanism on 
P5 to highlight the high-level semantic information between feature channels. This not 
only exploits the rich location information of the shallow feature map but also obtains the 
rich semantic information contained in the deep feature map. 

There are two main methods used for feature fusion, namely, vector splicing (con-
catenating) and element-by-element feature correspondence (point-wise additions). 
Vector stitching is often used to fuse features from multiple convolutional feature ex-
traction frameworks, or the information in the output layer, while point-wise addition is 
more like overlay information. Hence, in the latter case, the amount of information de-
scribing the image increases as the dimension remains unchanged, which is obviously 
beneficial in the final image classification, while, in the former case, the dimension in-
creases while the amount of information remains unchanged, which is very important for 
target detection. Therefore, we employ vector stitching to fuse the features extracted by 
VGG-16 at each stage. 

As shown in Figure 4, the five features extracted by VGG-16 are P1, P2, P3, P4 and 
P5. Meanwhile, we also impose a channel attention mechanism on P5 to highlight the 
high-level semantic information between feature channels. Then compressed and ex-
panded by a 1 × 1 convolution with different specifications to obtain F1, F2, F3, F4 and F5. 
F1, F2, F3 and F5 are down-sampled and up-sampled respectively and then vector spliced 
with F4 to obtain the base features as input to the TUM module. 

1×1 conv

1×1 conv

1×1 conv

1×1 conv

1×1 conv

Concatenate

Up-sample

Down-sample

Down-sample

Down-sample

Base Feature

100×100
×768

P5

P4

P3

P2

P1

F5

F4

F3

F2

F1

SENet

 
Figure 4. CSFM: cross-scale fusion module. 

2.2.3. TUM 
In general, TUM is a U-shaped structure designed to function as an encod-

er-decoder. The size of the feature map of the encoder decreases gradually, and the size 
of the feature map of the decoder increases gradually, as shown in Figure 5. The encoder 
is a convolutional network consisting of a series of 3 × 3 convolutional kernels of stride 
size 2. First enter the fused base feature into a TUM module for encoding, then the de-
coder takes the outputs of each layer for its feature map. After up-sampling and 
point-wise adding in the decoding branch, 1 × 1 convolutional layers are added to en-
hance learning and maintain feature smoothness. Each TUM has all outputs in its de-
coder forming multi-scale feature maps of the current level. Overall, multiple TUMs form 
multi-scale, multi-level features by stacking outputs, with the shallow features provided 
by the first TUMs used to explore the location information of objects, the middle-level 
features provided by later TUMs used to explore the features of small objects, and the 
final deep-level features provided by the last TUMs used to extract the features of large 
objects. 
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Figure 5. Single TUM module. 

For the initial TUM module, we add a 1*1*256 convolution operation in front of its 
input to turn our fused 100*100*768 feature layer into a 100*100*256 feature layer via us-
ing the convolution as the input for the initial TUM module. 

𝑥 , 𝑥 , … , 𝑥 = 𝑇 𝐶𝑜𝑛𝑣(𝑋 )             𝑖 = 1𝑇 𝐹(𝑋 , 𝑥 )            𝑖 = 2, … , 𝐼        (1)

The output is calculated as shown in Equation (1), where 𝑥  represents the 𝑛-th 
feature map extracted from the i-th TUM module, 𝑇  represents the i-th TUM module 
process, 𝐶𝑜𝑛𝑣 denotes the 1*1 convolution, 𝐹 is the FFM2 feature fusion operation, and 𝑋  is the base feature obtained by the CSFM module. 

2.2.4. FFM2 
As shown in Figure 6, the FFM2 consists of a 1 × 1 convolution and a vector splicing 

module. To further enhance the feature extraction capability of the network, we remove 
the 100 × 100 × 128 feature layers from these six valid feature layers perform enhanced 
fusion with the initial fusion feature layer extracted from the CSFM, then output en-
hanced 100 × 100 × 256 fusion feature layers. 

 
Figure 6. FFM2 module. This module is used to merge base features with the TUM. 

Each layer extracted in the TUM module can be considered to be a mapping from 
the input space to the output space. If the distribution of a set of data in the original space 
is not linear separability, the features will have strong linear separability when the fea-
tures of each layer are fused to another space by the FFM2 module, which renders the 
feature map more informative and enhances the feature extraction. 

2.2.5. SFAM 
 As shown in Figure 7, the features extracted from each of the six valid feature layers 

generated by each TUM module are different from each other. For measuring the im-
portance of features in the extracted feature map using weights, we adopt the SENet ap-

Base Feature
100×100×768

Conv
1×1×128 Concate

TUM
100×100×128
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proach to merge and reweight the feature layers of the same scale generated by each 
TUM module. 

SENet reweights features using the squeeze-and-excitation module, where the in-
terdependencies between feature maps are first modeled, and according to its importance 
strengthen the important features and suppress the unimportant ones. 

In this module, the squeeze operation uses global average pooling to turn each 
two-dimensional feature map into a real number within a global receptive field, which is 
then made available to layers close to the input. SENet employs global average pooling 
for squeezing, namely, the average of each feature map is output as a real number. 

The squeeze operation is followed by the excitation operation. Specifically, a bot-
tleneck structure is formed using two fully connected layers for modeling the correlation 
between feature maps and weights with the same number of input features are output. 
Fully connected layers are used to reduce the feature dimension to 1/16 of the input, and 
then the fully connected layers are raised through ReLU activation back to the same di-
mension. Benefits compared to direct access to the full connection are: (1) the network has 
more nonlinear characteristics and better matches the complexity of the channels’ corre-
lations; (2) normalized weights are obtained by logistic functions (sigmoid), which 
greatly reduces the number of parameters and computational effort. 

TUM
Out 1

TUM
Out 2

TUM
Out n

Same-scale
concatenate

Global
Average
Pooling

Fully
connected 1 ReLU SigmoidFully

connected 1

Rewight

3 × 3 × 1024

7 × 7 × 1024

100 × 100 × 1024
……

 
Figure 7. SFAM. 

Finally, the importance of each feature map is expressed by normalizing the weight 
of the excitation output by the reweighting operation. Then the feature-by-feature map is 
weighted onto the previous feature map, completing the reweighting of the original 
feature map in terms of depth. 

2.2.6. Classification and Regression Subnets 
The detection part mainly includes a classification subnet and a regression subnet, 

where the probability of a category (category number K) for each anchor (number A) is 
predicted by the classification subnet. Predicting the offset between the anchor and 
ground truth at each location is achieved by regression subnet. The regression subnet is 
similar to the classification subnet, but it uses 4A output channels. The characteristics of 
the subnets at each CF2PN layer share parameters. This process is somewhat similar to 
that used by RPN, but the classification regression subnets of CF2PN are multi-classified 
and deeper in level. 

2.2.7. Loss Function 
Furthermore, to prevent the impact of positive and negative sample imbalances on 

detection accuracy, we employ a multi-task loss function that is divided into two parts: 
one for 𝐹𝑜𝑐𝑎𝑙 𝑙𝑜𝑠𝑠 classification loss and the other for 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 regression loss, as de-
fined in Equations (2)–(5). 𝐿𝑜𝑠𝑠 = 1𝑁 𝐹𝐿 (𝑝 , 𝑝∗) + λ 1𝑁 𝑝∗𝐿 (𝑡 , 𝑡∗) (2)
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𝐿 𝑡 , 𝑡∗ = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡 − 𝑡∗) (3)

where j represents the index of an anchor in a mini-batch; 𝑝  is the probability that the 
region selected by the j-th anchor has a object; 𝑝∗ is the label of the true box, where if the 
positive sample is 1, the negative sample is 0; and 𝑡  and 𝑡∗ represent the prediction box 
and the candidate box respectively. The 𝑁  and  𝑁  are normalized with 𝐿 𝑝 , 𝑝∗  
and 𝑝∗𝐿 𝑡 , 𝑡∗ , respectively. In addition, we use λ as a parameter to balance the 
weights. Equations (4) and (5) indicate the 𝐹𝑜𝑐𝑎𝑙 𝑙𝑜𝑠s function and the 𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1 loss 
function, respectively. 𝐹𝐿 (𝑝) = −𝛼(1 − 𝑝) log (𝑝) (4)

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(x) = 0.5𝑥 , 𝑖𝑓|𝑥| < 1 |𝑥| − 0.5 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (5)

The main procedure of the proposed CF2PN method is summarized in Algorithm 1. 

Algorithm 1: The procedure of CF2PN 
Input: 𝑋, 𝑋 refers to input remote sensing images. 
Step 1: Input to the VGG-16 network to generate feature maps P. 
       𝑃 = {𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 } 
Step 2: 𝐵𝑎𝑠𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑆𝐹𝑀(𝑃 , 𝑃 , 𝑃 , 𝑃 , 𝑃 ), 𝑃 gets Base Feature by 𝐶𝑆𝐹𝑀. 
Step 3: 𝐹 refers to the list of feature maps by 𝑇𝑈𝑀 𝐹 = [] 
       for 𝑘 in range (1, 9) 
         if 𝑘 = 1 
           𝐹  = 𝑇𝑈𝑀 (Conv(Base feature)) 
         else 𝑘 ≠ 1 
           𝐹  = 𝑇𝑈𝑀 (𝐹𝐹𝑀2(Base feature, 𝑇𝑈𝑀 )) 
         𝐹 = 𝐹.append(𝐹 ) 
Step 4: Enter 𝐹 into the 𝑆𝐹𝐴𝑀 to obtain six different scale of the feature maps 𝑓. 
Output: Predict 𝑓 into classification and regression subnets and obtain predict re-
sults. 

3. Experiments 
To validate our proposed method, we performed quantitative comparisons on the 

publicly available and challenging DIOR and RSOD dataset. In the next section, we de-
scribe the datasets, evaluation metrics, and training, respectively. 

3.1. DIOR Dataset 
The DIOR dataset, as shown in Figure 8, was presented by Li et al. in 2019, and 

consists of 23,463 optical remote sensing images with high resolution and 192,472 in-
stance objects with 20 object classes: airplane, airport, baseball field, basketball court, 
bridge, chimney, dam, expressway-service-area, expressway-toll-station, golf field, 
ground track field, harbor, overpass, ship, stadium, storage tank, tennis court, train sta-
tion, vehicle, and windmill. As shown in Figure 8, the dataset contains approximately 
1200 images with no classes (i.e., there may be multiple class objects in a single image), 
and all images are 800 × 800 pixels in size and have a spatial resolution of 0.5 to 30 meters. 
Compared to other remote sensing image datasets, the DIOR dataset has greater object 
size variation, richer image variation, and higher inter-class similarity and intra-class 
diversity. 
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Figure 8. DIOR dataset.  
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The entire dataset is divided into a training dataset (5862 images), a validation da-
taset (5863 images), and a test dataset (11,738 images). 

3.2. RSOD Dataset 
RSOD is an open target detection dataset for target detection in remote sensing im-

ages. The dataset contains aircraft, oil tank, playground and overpass, labeled in the 
format of PASCAL VOC dataset. The dataset consists of 4 folders; each folder contains 
one kind of object: (1) Aircraft, 4993 aircrafts in 446 images. (2) Playgrounds, 191 play-
grounds in 189 images. (3) Overpasses, 180 overpasses in 176 images. (4) Oil tanks, 1586 
oil tanks in 165 images. We divided it into training sets, testing sets, and validation sets, 
which include 60%, 20%, and 20% of the images, respectively. Details of the RSOD da-
taset are shown in Table 4. 

Table 4. Details of the RSOD dataset. 

Class Image Instances 
Aircraft 446 4993 
Oil tank 165 1586 

Overpass 176 180 
Playground 189 191 

3.3. Evaluation Metrics 
This paper used mean average precision (mAP) [45–47] and the F-measure(F1) 

[48–50] for evaluation. For each category, the P_R curve can be obtained based on preci-
sion and recall, and the average precision (AP) is the area under the P_R curve. The 
equations for precision and recall are as follows:  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁  (7)

where 𝑇𝑃 is the true positive samples, 𝑇𝑁 is the true negative samples, false positive 
samples for 𝐹𝑃, and false negative samples for 𝐹𝑁. Precision indicates how many of the 
positive samples are recalled. Recall, on the other hand, indicates how many of the true 
positive samples are recalled. The average precision for the i-th class of objects is: 

A𝑃 = 𝑃 (𝑅 )𝑑𝑅 = 𝑃 (𝑘)∆𝑅 (𝑘) (8)

where 𝑃  and 𝑅  stand for the 𝑖-th class’ precision and recall, respectively, whereas n 
represents the number of equal parts the P_R curve is divided into. The average precision 
is used to measure the target detection performance for a class of objects. Finally, the 
equation for mAP is: 𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑁  (9)

where 𝑁  indicates the number of classes in the dataset used to measure the detection 
performance for all the objects in these classes. 

F-measure can be defined as follows: 𝐹1 =  2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  × 100% (10)
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3.4. Training Details 
In the data pre-processing stage, we randomly selected 50% of the images in the 

dataset to flip horizontally, thus achieving diversity in data orientation. 
To be specific, for the TUM model, we use six effective feature layers with sizes of 

100 × 100, 50 × 50, 25 × 25, 13 × 13, 7 × 7, and 3 ×3. The whole model was optimized with 
SGD [20], the momentum is 0.9, and the decay of the weights was 0.0001. A total of 150 
with three different learning rates epochs were iterated during the training process. The 
first three epochs constitute the warm-up phase, which has an initial learning rate of 
1×10−3; the second phase consists of epochs 5–90 and has an initial learning rate of 1 × 10−4; 
and the last phase, which consist of epochs 91–150, has an initial learning rate of 1 × 10−5. 
For the focal loss, we used the generic α = 0.25, γ = 1.5, and an aspect ratio of {1/2,1,2}. All 
our experiments were performed on an 11-GB RAM Nvidia GTX 1080Ti GPU. 

4. Results and Discussion 
4.1. Experimental Results and Analysis 

Figure 9 exhibits the visualization results obtained by CF2PN in the DIOR dataset 
and RSOD dataset. The figure shows that CF2PN not only performs well on small, dense 
objects such as small ships, windmills, oil tanks, aircrafts and airplanes, but also on large 
objects, such as playground, chimneys, ground track fields and overpasses. 
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(m) aircraft (n) oil tank (o) overpass (p) playground 

Figure 9. Visualization results for the CF2PN on the DIOR dataset in (a–l); visualization results for the CF2PN on the 
RSOD dataset in (m–p). 

Figure 10 shows the mAP values of CF2PN in the DIOR dataset and RSOD dataset, 
respectively, as well as the average accuracy (AP) values of various categories on both 
datasets. As can be seen in DIOR dataset, there are 12 categories with AP values exceed-
ing 0.7, namely, basketball court, tennis court, windmill, airplane, airport, ground track 
field, baseball field, ship, golf field, expressway service area, chimney and stadium. In 
addition, the AP values for dam, overpass, harbor, storage tank, expressway toll station 
and train station all exceed 0.5. In the RSOD dataset, the AP values for oil tanks, play-
grounds and aircraft are above 0.95, and only the AP value for the overpass category is 
below 0.9. 

 
 

(a) mAP values for the DIOR dataset. (b) mAP values for the RSOD dataset. 

Figure 10. The average precision (AP) values for the various categories and the mAP value for 
CF2PN in the DIOR dataset and RSOD dataset as shown in (a) and (b), respectively. 

However, the results of our model are not satisfactory for the two categories of ve-
hicles and bridges in the DIOR dataset, namely, vehicles and bridges. There are two 
reasons for this result. First, the number of vehicles is more than any other objects, and 
the vehicles’ scenes are too complex. We used five feature layers for fusion in CSFM, 
which increases the contextual information provided by the scene. Second, samples from 
bridges have an inter-class similarity with samples from overpasses, which greatly in-
creases the likelihood of misidentifying bridges as overpasses. 

 In addition, the reason why our method did not work very well in the RSOD da-
taset for detecting objects of the class overpass is due to the small number of training 
samples in the RSOD dataset. In Table 4, it can be seen that overpass is the class of ob-
jects with the lowest number of samples. Therefore, the improvement of the detection 
accuracy for small samples will also be included in our future research. 
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Figure 11 shows the confusion matrix detected by CF2PN in the DIOR dataset. The 
vertical coordinates of the matrix are the real labels and the horizontal coordinates are 
the prediction labels. The diagonal in the matrix is the number of samples of TP. In addi-
tion, the confusion matrix also shows that 57 bridge samples are predicted to be over-
pass, which also verifies the existence of interclass similarity between bridge and over-
pass. 

 
Figure 11. Confusion matrix of CF2PN on DIOR dataset. The index of each category is shown in Table 5. 

Table 5. The 20 object classes in the DIOR dataset. 

1 2 3 4 5 6 7 8 9 10 

airplane  airport bridge vehicle ship 
expressway 
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field 

harbor chimney dam 

11 12 13 14 15 16 17 18 19 20 

overpass stadium 
train 

station 
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tank 
ground 

track field 
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court 

expressway 
service area 

windmill 
basketball 

court 
baseball 

field 

Figure 12 shows the P_R curve of each class of target in the DIOR dataset. The larg-
er the area of shaded part is, the better the algorithm effect will be. When bridge and ve-
hicle have high accuracy, the recall rate is too low, resulting in poor detection effect. 
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Figure 12. P-R curves of CF2PN for each category on the DIOR dataset, where the horizontal axis represents the recall 
for each class of target and the vertical axis represents the precision for each class of target and the scale is the normal-
ized probability. 

As shown in Figures 13 and 14, our proposed method achieved good results in the 
RSOD dataset. 
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Figure 13. Confusion matrix of CF2PN on RSOD dataset. 

Figure 14. P-R curves of CF2PN for each category on the RSOD dataset, where the horizontal axis represents the recall 
for each class of target and the vertical axis represents the precision for each class of target and the scale is the normal-
ized probability. 

4.2. Comparative Experiment 
We executed multiple experiments on the DIOR dataset to confirm the effectiveness 

of our proposed CF2PN method. And our proposed CF2PN method produced the most 
advanced level of results with a mAP of 67.29%. 

As shown in Table 6, the mAP value of Faster RCNN is the lowest, whereas the AP 
value for vehicles is only 5.76%. This is caused by the poor detection of small target ob-
jects by Faster RCNN on the one hand, and the lack of a good solution for targets with 
inter-class similarity by Faster RCNN on the other hand. 
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Table 6. Comparison of the mAP values for different methods obtained for the DIOR dataset, where the results in bold represent the best performances. Each class 
corresponds to Table 5. 

Detection 
Methods 

Backbone Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class 
mAP(%) 

F1 
Score(%)Network 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Faster RCNN 
[20] 

ResNet-101 41.28 67.47 66.01 81.36 18.24 69.21 38.35 55.81 32.58 68.73 48.96 34.14 43.66 18.5 51.02 19.96 71.81 41.37 5.76 41.03 45.76 26.06 

SSD [34] VGG-16 82.55 54.79 78.76 88.92 35.75 74.39 52.02 71.39 58.67 52.21 74.9 44.52 49.59 78.35 69.32 60.12 89.92 38.23 39.54 82.46 63.82 40.58 
RetinaNet 

[35] 
ResNet-101 75.39 70.3 73.39 85.61 31.34 72.11 62.86 78.45 50.26 74.73 76.7 56.46 53.3 72.37 71.81 48.33 87.67 41.57 26.9 78.01 64.38 38.88 

YOLOv3 [27] Darknet53 66.98 79.71 78.39 85.89 39.64 72.44 70.69 85.65 65.01 74.61 79.83 44.97 58.93 33.67 59.61 34.58 89.14 61.72 37.88 79.16 64.93 44.49 
YOLOV4-tiny 

[43] 
CSPdarknet53-tiny 59.22 65.01 71.55 80.01 27.13 72.49 56.2 70.39 47.22 67.3 70.16 48.41 49.97 30.65 69.43 28.35 80.56 49.49 15.49 50.94 55.5 34.52 

M2Det [42] VGG-16 68.03 78.37 69.14 88.71 31.48 71.94 68.05 74.57 48.14 73.98 73.15 54.97 54.55 29.96 68.87 30.58 85.79 54.06 17.94 65.52 60.39 37.03 
CF2PN VGG-16 78.32 78.29 76.48 88.4 37 70.95 59.9 71.23 51.15 75.55 77.14 56.75 58.65 76.06 70.61 55.52 88.84 50.83 36.89 86.36 67.25 38.01 
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The mAP values of SSD, RetinaNet and YOLOv3 also all reached over 63%, because 
they all use multi-scale feature layers for prediction and obtain different size perceptual 
fields by different scale feature layers, thus improving the accuracy of detection. Addi-
tionally, M2Det also uses multi-scale feature layers for prediction where its network 
depth is too deep. Due to constant pooling operations, M2Det leads to the disappearance 
of shallow features used to detect small targets, thus reducing the performance. CF2PN 
aims at using M2DET to conduct cross-scale operation on the feature layer extracted 
from the backbone extraction network, to enrich its feature information. 

The detection performance of M2Det is low in the DIOR dataset compared to that of 
the other detectors. This is due to the fact that the M2Det network only fuses the last two 
layers of the feature maps in the backbone extraction network, which greatly reduces the 
contextual semantic information. The reason why the performance of M2Det applied di-
rectly to remote sensing images is not significant is that the remote sensing image scenes 
are very complex. Therefore, the performance applied to remote sensing images is worse 
than that applied to natural images. 

The CF2PN network detected more than 75% of the values for airplane, airport, 
baseball field, basketball court, golf field, ground track field, ship, tennis court, and 
wind mill. As can be seen, the proposed CF2PN method can detect not only large targets 
such as baseball fields and basketball courts, but also small targets, such as airplanes, 
ships and windmills. 

Table 7 shows the results of different algorithms on RSOD data. The proposed 
method shows advantages of small target detection such as aircrafts. Compared with 
YOLOv3, the AP value of our method increased by 10.72% for aircraft. 

Table 7. Comparison of the mAP values for different methods obtained for the RSOD dataset, where the results in bold 
represent the best performances. 

Detection Methods Backbone 
Network Aircraft Oil Tank Overpass Playground mAP (%) F1 score (%) 

Faster RCNN [20] ResNet-101 50.20 98.12 95.45 99.31 85.77 77.00 
SSD [34] VGG-16 57.05 98.89 93.51 100.00 87.36 79.75 

RetinaNet [35] ResNet-101 75.01 99.23 54.68 94.66 80.90 75.75 
YOLOv3 [27] Darknet53 84.80 99.10 81.20 100.00 91.27 88.00 

YOLOV4-tiny [43] CSPdarknet53-tiny 66.47 99.42 80.68 99.31 86.47 82.25 
M2Det [42] VGG-16 80.99 99.98 79.10 100.00 90.02 80.50 

CF2PN VGG-16 95.52 99.42 83.82 95.68 93.61 89.25 

4.3. Ablation Experiments and Discussion 
The contrast experiments were designed to evaluate the effectiveness of the pro-

posed CF2PN, using the cross-scale feature fusion and focal loss function, respectively. 
In Tables 8 and 9, the M2Det + CSFM method represents a fusion of five feature 

layers extracted from the VGG-16 backbone network, and its performance is lower than 
that of the M2Det approach. This is due to the fact that the fusion of the five feature lay-
ers enriches the scene with contextual information and adds a large amount of back-
ground, leading to an imbalance of positive and negative samples and an increase the 
error detection rate. 

Table 8. Ablation study for the DIOR dataset, where the results in bold represent the best perfor-
mances and the total parameters of each network. 

Detection 
Methods mAP (%) F1 Score (%) Parameters 

M2Det 60.39 37.03 86.5M 
M2Det + CSFM 57.76 35.16 86.2M 

M2Det + focal loss 63.32 32.95 91.9M 
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CF2PN 67.25 38.01 91.6M 

Table 9. Ablation study for the RSOD dataset, where the results in bold represent the best perfor-
mances and the total parameters of each network. 

Detection 
Methods mAP (%) F1 score (%) Parameters 

M2Det 90.02 80.50 86.5M 
M2Det + CSFM 87.30 76.75 86.2M 

M2Det + focal loss 91.00 86.50 91.9M 
CF2PN 93.61 89.25 91.6M 

In Table 6, the average precision value of the ship in class 14 detected using the 
M2Det detector was 29.96%, while the AP value of the ship detected by our proposed 
CF2PN network reached 76.06%. This is due to the more complex background and rich 
semantic information of the image containing the ship. Therefore, we enhanced the se-
mantic information by using CSFM and achieved balanced positive and negative sam-
ples via focal loss. 

 Several sets of experiments on the DIOR dataset were compared and analyzed to 
demonstrate that the proposed CF2PN method reaches the most advanced performance 
and that it demonstrates a superior performance in detecting multi-scale and complex 
objects. However, for some of the object classes in Table 6, such as bridge and vehicle, 
the detection accuracy is still very low, and it is difficult to achieve satisfactory results 
with the existing methods. This problem may be due to the relatively low image quality 
of these two types of scenes and their overly complex and cluttered backgrounds, which 
leads to objects being missed. 

 Thus, the accurate detection of objects in DIOR datasets with more complex sce-
narios remains a challenge. In future work, the more accurate detection of objects with 
complex scenarios will be the key goal. 

5. Conclusions 
Nowadays, the technology of optical remote sensing images with high resolution 

target detection is the focus of the majority of researchers, and a large number of optical 
remote sensing images target detection algorithms have appeared that have focused 
mainly on two-stage target detection methods based on Faster-RCNN and SSD one-stage 
target detection. However, both types of target detection algorithms for high-resolution 
remote sensing images face the following three problems: (1) there is great variability in 
objects sizes in remote sensing images with high resolution, and the ground objects vary 
in size even when they are in the same class; (2) since high-resolution remote sensing 
images are characterized by a large field of view (usually covering several square kilo-
meters), a variety of backgrounds may be included in the field of view, which can inter-
fere strongly with their object detectors; and (3) many of the objects in high-resolution 
remote sensing images are small (tens of, even a few, pixels), which leads to low object 
information. CNN-based target detection methods have achieved good results in tradi-
tional target detection datasets, but for small objects, further information reduction will 
be achieved by the CNN pooling layer, which ultimately makes low dimensions too dif-
ficult to identify. 

For solving the above problems, CF2PN as a new object detector is proposed, which 
resolves the large size differences between objects in remote sensing images with 
high-resolution by means of feature fusion via multi-level and multi-scale methods. To 
address the problem of high background complexity in high-resolution remote sensing 
images, we balanced the positive and negative samples by using a focal loss function. 

However, although the proposed method achieved the most advanced results, its 
performance for more complex scenes is still not satisfactory. In further work, we will 
address how to extract useful features from complex scene contextual information, and 
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combine the natural language processing domain. In addition, remote sensing images 
may also appear hazy due to light, weather, and other factors. This is still a big challenge 
for the performance of the algorithm. Therefore, the detection of hazy images is also a 
direction of our future exploration. 
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Abbreviations 

The abbreviations in this paper are as follows: 
CF2PN Cross-scale Feature Fusion Pyramid Network 
CSFM Cross-scale Fusion Module 
TUM Thinning U-shaped Module 
DIOR object DetectIon in Optical Remote sensing images 
SOTA State Of The Art 
M2Det A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network 
HOG Histogram of Oriented Gradient 
SVM Support Vector Machine 
CNN Convolutional Neural Network 
R-CNN Region- Convolutional Neural Network 
RPN Region Proposal Network 
YOLO You Only Look Once 
MIF-CNN Multi-scale Image block-level Fully Convolutional Neural Network 
FFPN Feature Fusion Deep Networks 
CPN Category Prior Network 
SCFPN Scene Contextual Feature Pyramid Network 
SCRDet Towards More Robust Detection for Small, Cluttered and Rotated Objects 
InLD Instance Level Denoising 
SPPNet Spatial Pyramid Pooling Network 
MLFPN Multi-level Feature Pyramid Network 
SSD Single Shot MultiBox Detector  
NMS Non-Maximum Suppression 
VGG Visual Geometry Group 
SENet Squeeze-and-Excitation Network 
FFM Feature Fusion Module 
ReLU Rectified Linear Unit 
IOU Intersection-Over-Union 
SGD Stochastic gradient descent 
GT Ground Truth 
ResNet Residual Network 
TP True Positive 
FP False Positive 
FN False Negative 
TN True Negative 
AP Average Precision 
Map Mean Average Precision 
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