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Abstract: Hypergravity accelerators are a type of large machinery used for gravity training or medical
research. A failure of such large equipment can be a serious problem in terms of safety or costs.
This paper proposes a prediction model that can proactively prevent failures that may occur in a
hypergravity accelerator. An experiment was conducted to evaluate the performance of the method
proposed in this paper. A 4-channel accelerometer was attached to the bearing housing, which is a
rotor, and time-amplitude data were obtained from the measured values by sampling. The method
proposed in this paper was trained with transfer learning, a deep learning model that replaced the
VGG19 model with a Fully Connected Layer (FCL) and Global Average Pooling (GAP) by converting
the vibration signal into a short-time Fourier transform (STFT) or Mel-Frequency Cepstral Coefficients
(MFCC) spectrogram and converting the input into a 2D image. As a result, the model proposed in
this paper has seven times decreased trainable parameters of VGG19, and it is possible to quantify
the severity while looking at the defect areas that cannot be seen with 1D.

Keywords: artificial intelligence; deep learning; fault detection; hyper-gravity machine; vibra-
tion monitoring

1. Introduction

All objects on Earth are affected by the Earth’s gravity. Conducting research on
microgravity on the ground, instead of outer space, has many practical difficulties. On the
other hand, research on hypergravity is relatively easy to carry out using the centrifugal
force from a spinning simulation. Hypergravity research requires a gravity simulator that
can control gravity by a constant rotation angular speed. Therefore, to conduct hypergravity
research, a gravity simulator was developed to enable the formation and maintenance
of a hypergravity environment of up to 15 times the Earth’s gravity (15 G), as shown in
Figure 1.

Gravitational accelerators are generally used for the hypergravity training of astro-
nauts and can be used for animal testing in basic research for medical purposes. In addition,
they can be used to conduct experimental ground tests on the effects of sudden changes
in gravity, such as hypergravity and hypogravity, and the changes in pressure that the
human body undergoes in a space environment to investigate the biological responses to
these harmful stimuli to the human body. These changes in gravity can result in fluid shifts
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and redistribution in the human body, fluid loss, red blood cell loss, muscle damage, bone
damage, hypercalcemia, immune system changes, or spatial disorientation and vertigo [1].
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Many studies have examined the changes in the human and animal body due to
changes in gravity. The necessity of monitoring the safety and reliability of large gravity
acceleration equipment has become an important issue. One of the major issues regarding
gravity acceleration equipment is the occurrence of abnormal vibrations when machinery
failures occur due to high-speed rotation. The amplification of small vibrations generated
in the rotating part of the gravity acceleration equipment may result in damage to the shafts
rotating at high speeds, which may lead to serious accidents. Traditional machine learning
(ML) that uses feature-based methods [3–5] on hand-crafted lists of feature engineering
has limitations that cannot improve performance. Furthermore, it is difficult to say that
human-designed features are for defective representation. The recently appeared Deep
Neural Network (DNN) [6–8] has good performance, but it is difficult to describe the
characteristics of the defect site due to the parameters of many hidden layers.

This paper proposes a preventive maintenance model that enables the monitoring and
visualizing of vibrations that can occur in machinery to proactively prevent the mechanical
failures described above.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the proposed method and dataset collected from the equipment used in the experiment.
In Section 3, we experimented with various models and conditions to evaluate the per-
formance of the proposed model. In addition, we also calculated fault scores through
visualizations for each class of faults. Finally, Section 4 proposes a conclusion and fu-
ture work.

Related Work

Fault Detection using ML: Many studies on vibration-related failures and predictive
failure diagnosis have been conducted [3,9–21]. Lee et al. [3] proposed a rotating mecha-
nism system—a mixture of feature extraction and selection classifies it as a Support Vector
Machine (SVM) [4]. Zhang et al. [5] proposed fault detection for bearing wind turbines
using ANNs (Artificial Neural Networks). Khlaief et al. [13] adopted a method of learning
via K-Nearest Neighbor (KNN), SVM, and Linear Discriminant Analysis (LDA) by screen-
ing features based on genetic algorithms to continuously check the state of ball bears in
rotating ball bears of asynchronous electrical motors. Le et al. [14] proposed an algorithm
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based on the ensemble machine learning (EML) for fault detection in Series dc arc and
tested its performance using techniques such as bagging, boosting, and stacking various
linear classifiers such as fault perceptrons, Decision Trees (DTs), and SVMs. Yang et al. [15]
proposed a signal reconstruction modeling technique using support vector regression with
a sliding-time-window technique for fault detection. Abdelgayed [16] et al. proposed Deci-
sion Tree and K-Nearest Neighbor to diagnose faults in both unlabeled and specified data
of transmission and distribution systems with confidence of microgrids. Wang et al. [17]
proposed chiller fault detection to enable fast parameter determination without expert
assistance using the Bayesian network. Zhang et al. [18] proposed a clustering-based Prin-
cipal Component Analysis (PCA) to propose a fault detection method for water heat pump
systems. Yoo et al. [19] proposed a Fault Detection method using multi-mode PCA and
Gaussian mixed model in a sewage heat pump system. Kim et al. [20] proposed the fault
detection of photovoltaic current and voltage through the ANN-based modeling method.
Zhehan et al. [21] proposed solar current and voltage fault detection using multi-resolution
signal composition (MSD) and a two-stage support vector machine classifier.

Fault Detection using Deep Learning (DL): In the case of the CNN (Convolution
Neural Network), which is an ANN method, training is carried out using the following
procedure: multiple inputs are received; the computation is performed using a model form
that the user wants; an output is produced. The method of applying a 1-D CNN model
using time-amplitude data with a constant period has been presented as a failure diagnosis
method [22–31]. Another CNN model is 2-D CNN, in which the computation produces
images of 3-D shapes with a width and length like the input data as the output [6,32–35].
There have been many attempts to apply 2-D CNNs to speech recognition and fault
diagnosis because 2-D CNNs are transferable with various models [36–39]. Zong [24] et al.
proposed a fault diagnosis of bearing using an autoencoder. Hassan et al. [34] performed
fault detection based on acoustic spectral imaging visualizing acoustic emission signals.
Shao et al. [25] proposed a fault detection method by constructing feature extractors based
on denoising auto-encoder (DAE) and conventional auto-encoder (CAE) for fault detection
using vibration data. Shao et al. [26] proposed an autoencoder learning method using
an artificial fish swarm algorithm for fault detection of rotating machines. Li et al. [27]
proposed a Gaussian–Bernoulli deep Boltzmann machine (GDBM) method for diagnosing
rotating machine failures. Sohaib et al. [28] developed a fault-diagnostic system that can
overcome axial velocity fluctuations using a deep neural network based on a complex
envelope spectra-stacked sparse autoencoder. He et al. [29] presented a fault-finding
method based on a Gaussian restricted Boltzmann machine (Gaussian RBM) using envelope
spectra of sampled data as a high-dimensional feature vector for fault diagnosis of bearings.
Shao et al. [30] proposed a convolutional deep relief network (CDBN) using an expansion
moving average (EMA) technique to efficiently learn the fault features of the vibration
signal. Verstraete et al. [35] proposed a bearing classification model for a deep learning
model after transforming it into a 2D image using short-time Fourier transform, wavelet
transform, and Hilbert–Huang transforms. Jiao et al. [31] proposed a one-dimensional
CNN-based deep coupled dense convolutional network (CDCN) to integrate information
fusion, feature extraction, and fault diagnosis together for intelligent diagnosis.

2. Proposed Method and Environment

The method proposed in this study was divided into three major methods. The first
method was to convert vibration data into two-dimensional data by converting time-
amplitude data with a constant period, such as the existing signals, into spectrograms.
These spectrograms display the time, frequency (Hz), and amplitude, which are used
mainly for speech recognition [36,38,39]. The second method was to apply the preprocessed
data to a deep neural network model and compare the results with those obtained by the
existing machine learning models. Finally, we expressed the fault score and the area
representing each class using Class Activation Map (CAM) [40].
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2.1. Design and Fabrication of Experimental Rotating Equipment

The simulation equipment was manufactured as described below. Pulse 3560C and
four accelerometers (B&K 4371) were used to acquire the rotation and vibration data, and
the data acquisition time for each condition was 30 s. Table 1 lists the specifications of the
data acquisition system.

Table 1. Properties of the data acquisition system [3].

Type Properties

Pulse 3560C
(B&K)

4/2-ch Input/output Module
Operating Freq. range: 0~25.6 kHz

Direct/Constant Current Line Drive (CCLD)/Microphone (MIC). preamp 1 Tacho
Conditioning

Accelerometer
(B&K 4371)

Operating Freq. range: 1~25.6 kHz
Operating Temp. −50 C~121 C

Sensitivity: 9.84 pC/g

Figure 2 presents the RK4 (Rotor-kit) of the lab-scale rotating simulation equipment,
which is the experimental model, and the locations of the sensors used in the experiment.
The experiment system was composed of a motor to operate the rotating equipment, a
flexible coupling connecting the rotor and motor, and two copper sleeve bearings support-
ing the rotor. An 800 g disk was installed between the bearings to simulate the unbalance
fault. Sensors were installed on the drive-end side of the motor and rotor. The measure-
ments were taken at locations in the vertical and axial directions of the motor and rotor.
The experimental equipment was operated at 2000 RPM (Rotating Per Minute), avoiding
2400 RPM, which is the first critical speed.
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In this experiment, fault simulations were carried out by simulating four representative
conditions of the rotating equipment: Normal, Unbalance, Misalignment, and Shaft rubbing
conditions. Figure 3 presents the methods of application of the normal condition and each
type of fault. A normal condition was obtained after performing shaft balancing using
the RK4, and the residual unbalance was measured to be 0.02 g/117.4◦ after balancing.
Unbalance was induced by attaching a 3.2 g object in a direction towards the location of
residual unbalance (117.4◦). Misalignment was achieved by installing a 4 mm shim plate at
the foot of the drive-end side of the motor, and shaft rubbing was applied in the horizontal
direction using a magnetic base. In addition, a contact device made from Teflon was used
to minimize the damage to the axis that may occur due to rubbing.
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Unbalance is the most fundamental fault that causes vibrations in rotating equipment.
Unbalance occurs when the mass distribution of the rotor is asymmetric with respect to the
axis centerline, and all the causes of unbalance exist to some degree in the rotors. Excessive
unbalance increases the vibrations and noise of the rotating equipment. As a result, fatigue
destruction may occur due to a deterioration of the bearings and consumable parts.

Misalignment is one of the most common faults of rotating equipment along with
unbalancing [41], and refers to a condition where the centers of the two axes do not
coincide, or a condition where the centers coincide but are not parallel. A large degree of
misalignment can cause overheating of the coupling, an increase in the shaft cracks and
fatigue, and damage to the bearings and consumable parts.

A rubbing fault is a secondary transient phenomenon caused by excessive unbalance
and misalignment in rotating machinery [42]. Rubbing may be caused by the occurrence
of friction between the stator and rotor caused by excessive vibrations, or a narrow gap
due to thermal expansion during equipment operation. Continuous rubbing during the
operation of rotating machinery may cause the separation of parts or axis bending, and
severe rubbing can lead to the destruction of the rotating equipment.

The sampling rate of the obtained signals was 65,536 Hz. The signals measured
for 30 s were divided into 0.48-s units considering the measurement environment of the
actual equipment, and each of the 0.48-s units was assumed to be one dataset. Machine
learning was performed by dividing one dataset into 14 samples. Sampling was performed
because a vibration is a periodic signal in the time domain [43], and most fault signals have
periodicity. Therefore, sampling is used to examine the consistency and continuity of each
condition using the features calculated from the signals.

The signal segmentation for sampling was based on the rotational frequency of the
rotor. Generally, in rotating equipment, the rotational frequency is the most dominant
component, and the majority of fault components appear in the harmonic form of the
rotational frequency. Therefore, the length of the sample of experimental data was set to
0.06 s. This was two times 0.03 s, which is the period of vibrations at 2000 RPM, and the
number of samples was increased by overlapping half the signal.

The total number of training and test data was 1056, and the dataset was divided
into training and testing datasets by allocating 80% to the training dataset and 20% to the
testing dataset. At this time, the training dataset consisted of 229 Normal condition data
(no faults in operation), 199 Rubbing data, 205 Unbalance data, and 211 Misalignment data,
and the testing dataset included 43 Normal data, 61 Rubbing data, 55 Unbalance data, and
53 Misalignment data.

2.2. Proposed Method

Figure 4 is a comparison between the proposed deep method and machine learning.
Data are acquired from the laboratory equipment at 0.06 s intervals as shown in Section 2.1.
Traditional machine learning selects features hand-crafted by someone with knowledge
of the vibration anomaly detection domain. For better visualization or classification, the
feature is reduced in dimension and then an algorithm such as SVM or Multi-Layer Percep-
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tron (MLP) is applied. After that, the cause analysis is performed through visualization,
where the characteristics are located for each datum.
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method (Down). The traditional machine learning method consists of a total of 5 steps, and the Deep Neural Network
(DNN) method consists of 3 steps: Feature Engineering, Extraction, and Classification at once.

The proposed method uses a spectrogram to visualize the processing of signals from
each class of Short-Time Fourier Transform (STFT) or Mel Frequency Cepstral Coefficients
(MFCC) signals, such as in Figure 5. Applying a spectrogram changes the existing one-
dimensional input into two dimensions. A two-dimensional based deep learning model is
learned through transfer learning. After that, the CAM is applied to calculate and visualize
the fault score through differences from the defect class except for the normal, and the
cause analysis for each class can be visualized and quantified.

2.2.1. STFT (Short-Time Fourier Transform)

With respect to the method for converting time-amplitude data to 2D images, spectro-
grams were used after performing discrete STFT. Discrete STFT is a method of partitioning
continuous signals over a long period into shorter segments at short time intervals and
applying a Fourier transform to each signal segment. This technique allows researchers to
observe how the vibrations of signals change with time. These changes in vibrations can
be expressed as Equation (1) [44,45]:

X(k, n) =
L−1

∑
m=0

w[m]x[m + nH]exp(−2πk/N)m (1)

w[m] was assumed to be a non-zero window function in the interval m = 0, 1, · · ·, L− 1,
and L is the window length, and a smaller signal than the signal x[m]. In this experiment,
the Han window was applied as the window function [45]. w[m]x[n + nH] is a non-zero
signal in m = 0, 1, . . . , L− 1. The signal x[m] is a form that undergoes N point DFT (Discrete
Fourier Transform) according to the hop size of H(=512). The hop size H is specified in
samples and determines the step size moving through the window in the overall signal [45].
Therefore, FFT was calculated according to the size of m. Because a signal generated
through this process constitutes a different spectrum with time, it cannot be represented
as a spectrum. Therefore, it was represented by taking |X(k, n)| and applying a color map
(spectrogram), as shown in Figure 6.
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2.2.2. MFCCs (Mel Frequency Cepstral Coefficients)

MFCC is a conversion algorithm used mainly in speech recognition. This is one of
the methods for extracting the features from sound signals, and the procedure for feature
extraction consists of the following six steps [38,39], as shown in Figure 7:
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• Frame the signal into short frames.
• For each frame, calculate the periodogram estimate of the power spectrum.
• Apply the mel filterbank to the power spectra, and sum the energy in each filter.
• Take the logarithm of all filterbank energies.
• Take the Discrete Cosine Transform (DCT) of the log filterbank energies.
• Keep DCT coefficients 2–13, and discard the rest.
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2.3. Deep Learning Network

The deep learning neural network architecture proposed in this study was based on
VGG19 [6]. VGG19 is a model that is widely used as a basic deep learning method because
it is relatively easy to implement and modify because it uses only 3 × 3 convolutional
layers. In this study, the number of parameters was reduced using Global Average Pooling
(GAP) to eliminate the Fully Connected Layer (FCL), which is one of the parts of VGG19
that requires a large number of computations, and to match with the output layer. The
deep learning architecture was constructed, as shown in Figure 4 (Down).

The size of the spectrogram images in Figures 6 and 7 used as training data was
changed by converting a rectangular shape (432, 288) to a square shape (298, 298) before
using it in the experiment. For convergence of the learning errors, an attempt was made to
find the global minimum error using the learning scheduler [5], which changes the learning
rate each epoch. The other hyperparameters were set, as shown in Table 2.

Table 2. Hyperparameters used in model training.

Hyper Parameter Value

Learning Rate 0.001
Batch Size 4

Warm-up Train phase 10
Weight Decay 0.0001

Optimizer SGD (Stochastic Gradient Descent)
Epoch 200

Early Stopping patience 10
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An initial learning rate of 0.001 was set for faster training speeds. A batch size of four
was used to set the maximum batch size in the environment to speed up learning. The
early 10 epochs were used to warm-up [46] the training phase and adjust the learning rate
according to the complexity of the training data. The first 200 epochs were used for a more
robust model. Lastly, to avoid overfitting, an early stopping [47] technique was introduced
based on the verification data, and the patience was set to 10.

2.4. Fault Score

In this paper, the Global Average Pooling (GAP) layer was applied later to calculate
and visualize the fault score using CAM. In general, the Fully Connected Layer (FCL)
has the disadvantage of losing feature map location information through CNN. This was
applied as GAP, and using CAM, it is possible to check the characteristics of which part
of the image the deep learning model looked at and determined the class. The equation
process for deriving the CAM to be used in this paper can be derived by Equation (2):

Sc = ∑
k

wc
kFk

= ∑
k

wk
c ∑

x,y
fk(x, y)

= ∑
x,y

∑
k

wc
k fk(x, y)

(2)

As seen in Equation (2), given an image, let fk(x, y) be a feature map located at (x, y)
through the last k convolution layers. When we obtain the value for all the features, it
becomes Fk, and the sum of the probability w obtained for a specific class c is called Class
Score Sc. In other words, the larger wk

c is, the greater the influence of Fk in class c.

FaultScore = ∑
x,y

∣∣∣∣∣ N

∑
i

S(Xi)

N
− S

(
X̂
)∣∣∣∣∣ (3)

Equation (3) is the failure score proposed in this paper. For the N training normal
images X, the CAM was calculated using the absolute value of the difference with the
CAM result of X̂. Each image has the same number of x, y pixels.

2.5. Deep Learning Environment

In this study, the deep learning environment for training and testing a deep learning
model was built with a PC with the following configuration: 32 GB Random Access
Memory (RAM), i5-8500 3.0 GHz Central Processing Unit (CPU), and RTX 2080 Ti Graphics
Processing Unit (GPU). The experimental software environment was developed in a Python
3.7.6 environment, and the main packages used to set up the environment were Pytorch
1.5 [43], librosa 0.6.3 [48], and sklearn 0.22 [49].

3. Experiment Result
3.1. Performance Evaluation

In the experiments of this study, the accuracy, precision, recall, and F1-Score were mea-
sured using True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). The accuracy, precision, recall, and F1 Score can be expressed using Equations (4)–(7),
respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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F1Score = 2× Precision× Recall
Precision + Recall

(7)

At this time, to demonstrate the superiority of the methods used in this experiment,
they were compared with one of the most commonly used methods, the method of applying
SVM (Support Vector Machine), after feature selection based on the GA (genetic algorithm)
after extracting the hand-crafted features from a raw signal and [3]. The [3] method is a
method of applying SVM by mixing a GA and PCA (Principal Component Analysis) from
a list of hand-crafted feature values through feature engineering. The proposed methods
were also compared with the MLP (Multi-Layer Perceptron) method [5] from the same
feature engineering [3] to determine if it shows better performance in training after data
visualization. Table 3 lists the experimental results. Under Normal, Rubbing, Unbalance,
and Misalignment conditions, the proposed methods showed better performance than
the existing methods [3,5]. In this study, an attempt was made to improve performance
through k-fold cross-validation, but the following problems were encountered. First, the
accuracy was low compared to the results not applied because the number of datasets was
not large. Second, the experimental results of the current dataset were not applied because
they were unnecessary owing to the very high accuracy.

Table 3. Experimental Results.

Class Model Accuracy Precision Recall F1

Normal
STFT based + our model 0.98 1.0 0.98 0.99

MFCC based + our model 0.98 1.0 0.98 0.99

Rubbing STFT based + our model 1.0 1.0 1.0 1.0
MFCC based + our model 1.0 1.0 1.0 1.0

Unbalance
STFT based + our model 1.0 0.98 1.0 0.99

MFCC based + our model 1.0 0.98 1.0 0.99

Misalignment STFT based + our model 1.0 1.0 1.0 1.0
MFCC based + our model 1.0 1.0 1.0 1.0

The performance of the deep learning methods was superior to that of a method based
on MLP or SVM, as listed in Table 3. This can be attributed to a large amount of information
that cannot be expressed as features that are lost when selecting the features of input data
in the preprocessing stage. Although all hand-crafted features were selected and learned
using the MLP algorithm, a performance equal to or better than that of deep learning could
not be achieved. As shown in the results in Table 3, the results of our DNN models using
two methods transforming raw data into images through STFT and MFCC were almost
identical. Any preprocessing method such as STFT or MFCC doesn’t impact to extracting
semantic information from CNN filters and output metric of the DNN model.

Table 4 compares the training results based on the dataset that has undergone an STFT
transformation with the existing deep learning model [6–8,33]. The training hyperparam-
eters of each model were trained under the same conditions, as listed in Table 2. Table 4
shows that DNN is superior to traditional machine learning models with hand crafted
characteristics. In addition, in the case of the proposed model, the number of SqueezeNet
parameters was large, but the performance of Equations (4)–(7) was excellent. Also, if we
compare our method with two Alex Net and VGG19, the performance of the equations are
the same but the parameters are much lower than others. As a result, it was confirmed that
the proposed model works well with GAP without the existing FCL.



Appl. Sci. 2021, 11, 1564 11 of 15

Table 4. Train noise-added data to compare test results with existing deep learning models.

Method Algorithm Parameters Accuracy Precision Recall F1

Machine
Learning

MLP [5] 74,500 0.95 0.9525 0.955 0.9525
GA-SVM [3] - 0.51 0.507 0.505 0.5025

PCA-SVM [3] - 0.96 0.9625 0.9675 0.965

Deep Learning

Squeeze Net [8] 737,476 0.995 0.982 0.985 0.985
Alex Net [7] 57,020,228 0.995 0.995 0.995 0.995
VGG19 [6] 139,597,636 0.995 0.995 0.995 0.995

Our 20,037,444 0.995 0.995 0.995 0.995

In Figure 8, the left figure compares Validation Loss and Train Loss, and the right
figure compares Train Accuracy and Validation Accuracy. Each model is all finished before
the epochs set before running out due to Early Stopping. Experiments have confirmed that
the model proposed in this paper shows better accuracy than the comparison model in
Table 5. Although the VGG19 [6]-based model proposed in this paper ended later than
SqueezeNet, it was confirmed that it is superior in terms of loss and acceleration stability.
Table 5 is a representation of the results of Figure 8, which is the result of training the
proposed deep learning model and the existing deep learning models by adding noise to
the data. As shown in Table 5, Transfer Learning was concluded to help produce more
robust results. We confirm that the model proposed in this paper has the least learning
accuracy and learning loss, and the least validation loss compared to VGG19.
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Table 5. Results of the models proposed in this paper and existing deep learning models learned based on data with noise.

Transfer
Learning Epoch Train Accuracy Train Loss Valid Accuracy Valid Loss

Ours
Yes 23 0.991 0.033 0.995 0.007
No 22 0.988 0.050 0.995 0.009

Squeeze Net [8] Yes 22 0.990 0.066 0.995 0.004
No 114 0.760 0.364 0.707 0.107

AlexNet [7]
Yes 22 0.986 0.053 0.995 0.007
No 12 0.271 1.385 0.203 0.348

VGG19 [6]
Yes 16 0.982 0.062 0.995 0.008
No 17 0.985 0.043 0.995 0.004
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3.2. Visualization of Failure Causes

Figure 9 shows the CAM result (Up) of the test data and the average value (Down)
of the input image as the proposed method. It is difficult for a human to identify an
abnormal image in the average class image. However, when looking at the result of CAM,
the difference between the normal class and other defect classes is clearly visible.
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3.3. Fault Score Variation

The Fault Score proposed in this paper has a distribution as shown in Figure 11.
Because the Normal class is the standard label, the Failure Score is averagely small, about
Normal (0.2), and the highest class is Rubbing (0.8), and it is composed in the order of
Misalignment (0.7) and Unbalance (0.5). We can identify the normality and abnormality
of the image class depending on the value of the fault score. Each defect class has the
same minimum and maximum values as the Normal condition class. The disappearance of
locality caused by adding the score shows this result.
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4. Conclusions and Future Work

The vibration signals were measured with accelerometers to prevent accidents that
can occur in large equipment, such as a gravitational accelerator. In this paper, four signals
that can arise when a defect occurs in the rotating part of a gravitational accelerometer
were analyzed. The existing vibration data can also be converted into image data, such as
spectrograms, which are mainly used in speech recognition, and they can also be applied
to an image-based deep learning model. The measured data were used to train and test a
deep learning model using the spectrogram visualization based on the MFCC and STFT,
and the proposed method was evaluated.

The major methods used in this experiment were to convert vibration signals to im-
ages and apply a modified DNN model to a fault model. The proposed deep learning
architecture enabled a diagnosis of the four conditions, such as Normal, Rubbing, Misalign-
ment, and Unbalance. Both MFCC and STFT models showed an average accuracy of 99.5%.
According to the experiment, there was no difference in performance due to processing
between STFT and MFCC in the four classifications of vibration data. In addition, the
proposed model was compared with GA-SVM, PCA-SVM, and MLP, which are machine
learning models made with hand-crafted features. The experimental results showed that
the proposed models have better performance in terms of accuracy, recall, precision, and
F1-Score compared to hand-crafted feature-based models. So, performance, accuracy, and
learning speed were compared with the existing deep learning method. These results
suggest that the proposed method can be used successfully as a fault diagnosis and as-
sessment model if the monitoring environment is constructed by attaching sensors in an
assessment of the stability of gravity acceleration equipment in the future. In addition, it
was confirmed that VGG19, which replaced FCL with GAP, works well for vibration data
learning to be applied in this paper. In comparison with the deep learning model, it was
confirmed that the parameter was reduced by about seven times compared to the existing
VGG19 because there was no FCL. As the data to be applied in this paper, the performance
of the proposed deep learning model was almost similar, which was confirmed by Early
Stopping that the complexity of the data is higher than that of the model.

Finally, using CAM, it was possible to measure abnormal areas of data that humans
cannot see, and a failure score to quantify this was proposed. The Failure Score proposed in
this paper can act as a measure to check how much difference there is compared to the Nor-
mal class. The proposed method can show the area of the defect. This is possible because
the one-dimensional signal is expanded in two dimensions. Based on the characteristics of
signal, which is periodic difference between each class, we applied CAM and proposed a
fault score.

The method proposed in this study had the following limitations. The patterns of the
fault data need to be prepared in advance. It is believed to bring high accuracy because
the data complexity is lower than that of the model. This is believed to be because it is a
repetitive signal due to the nature of vibration data. Second, training takes considerable
time and requires additional hardware, such as GPUs. Considering these limitations, a
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method that can reduce the computation cost so that the proposed method can be used in
small edge devices will be needed before this method can be commercialized.
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