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Abstract: Unmanned ground vehicles (UGVs) have great potential in the application of both civilian
and military fields, and have become the focus of research in many countries. Environmental
perception technology is the foundation of UGVs, which is of great significance to achieve a safer
and more efficient performance. This article firstly introduces commonly used sensors for vehicle
detection, lists their application scenarios and compares the strengths and weakness of different
sensors. Secondly, related works about one of the most important aspects of environmental perception
technology—vehicle detection—are reviewed and compared in detail in terms of different sensors.
Thirdly, several simulation platforms related to UGVs are presented for facilitating simulation testing
of vehicle detection algorithms. In addition, some datasets about UGVs are summarized to achieve
the verification of vehicle detection algorithms in practical application. Finally, promising research
topics in the future study of vehicle detection technology for UGVs are discussed in detail.

Keywords: unmanned ground vehicles; sensor; vehicle detection; simulation platform; dataset

1. Introduction

The unmanned ground vehicle (UGV) is a comprehensive intelligent system that
integrates environmental perception, location, navigation, path planning, decision-making
and motion control [1]. It combines high technologies including computer science, data
fusion, machine vision, deep learning, etc., to satisfy actual needs to achieve predetermined
goals [2].

In the field of civil application, UGVs are mainly embodied in autonomous driving.
High intelligent driver models can completely or partially replace the driver’s active con-
trol [3–5]. Moreover, UGVs with sensors can easily act as “probe vehicles” and perform
traffic sensing to achieve better information sharing with other agents in intelligent trans-
port systems [6]. Thus, it has great potential in reducing traffic accidents and alleviating
traffic congestion. In the field of military application, it is competent in tasks such as acquir-
ing intelligence, monitoring and reconnaissance, transportation and logistics, demining
and placement of improvised explosive devices, providing fire support, communication
transfer, and medical transfer on the battlefield [7], which can effectively assist troops in
combat operations.

The overall technical framework for UGVs is shown in Figure 1. It is obvious that
environmental perception is an extremely important technology for UGVs, including the
perception of the external environment and the state estimation of the vehicle itself. An en-
vironmental perception system with high-precision is the basis for UGVs to drive safely and
perform their duties efficiently. Environmental perception for UGVs requires various sen-
sors such as Lidar, monocular camera and millimeter-wave radar to collect environmental
information as input for planning, decision making and motion controlling system.
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Figure 1. Technical framework for UGVs.

Environment perception technology includes simultaneous localization and mapping
(SLAM), semantic segmentation, vehicle detection, pedestrian detection, road detection
and many other aspects. Among various technologies, as vehicles are the most numerous
and diverse targets in the driving environment, how to correctly identify vehicles has
become a research hotspot for UGVs [8]. In the civil field, the correct detection of road
vehicles can reduce traffic accidents, build a more complete ADAS [9,10] and achieve better
integration with driver model [11,12], while in the field of military, the correct detection
of military vehicle targets is of great significance to the battlefield reconnaissance, threat
assessment and accurate attack in modern warfare [13].

The complete framework of vehicle recognition in UGVs autonomous driving system
is portrayed in Figure 2. Generally, vehicle detection is used to extract vehicle targets in a
single frame of an image, vehicle tracking aims to reidentify positions of the vehicles in
subsequent frames, vehicle behavior prediction refers to characterizing vehicles’ behavior
basing on detection and tracking in order to make a better decision for ego vehicle [14]. For
tracking technology, readers can refer to [15,16], while for vehicle behavior prediction, [17]
presented a brief review on deep-learning-based methods. This review paper focuses
on the vehicle detection component among the complete vehicle recognition process,
summarizes and discusses related research on vehicle detection technology with sensors as
the main line.
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This article is organized as followed. Section 2 introduces the commonly used sensors
on UGVs and compares the pros and cons of different sensors under different application
scenarios. Sections 3–8 systematically summarizes and compares the research works
related to vehicle detection using different sensors, the structure of the vehicle detection
overview is illustrated in Figure 3. Section 9 introduces the simulation platform related to
UGVs, which is convenient for simulation tests of the vehicle detection algorithm. Section
10 introduces the datasets to verify the actual effect of the vehicle detection algorithm.
Section 11 summarizes and looks forward to the research focus and direction of vehicle
detection technology.
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2. Sensors for Vehicle Detection

The operation of UGVs requires a persistent collection of environmental information,
and the efficient collection of environmental information relies on high-precision and high-
reliability sensors. Therefore, sensors are crucial for the efficient work of UGVs. They can
be divided into two categories: Exteroceptive Sensors (ESs) and Proprioceptive Sensors
(PSs) according to the source of collected information.

ESs are mainly used to collect external environmental information, specifically vehicle
detection, pedestrian detection, road detection, semantic segmentation, commonly used
ESs include Lidar, millimeter-wave radar, cameras, ultrasonic. PSs are mainly used to
collect real-time information about the platform itself, such as vehicle speed, acceleration,
attitude angle, wheel speed, and position, to ensure real-time state estimation of UGV itself,
common PSs include GNSS, and IMU.

Readers can refer to [18] for detailed information on different sensors. This section
mainly introduces ESs that have the potential for vehicle detection. ESs can be further
divided into two types: active sensors and passive sensors. The active sensors discussed in
this section include Lidar, radar, and ultrasonic, while passive sensors include monocular
cameras, stereo cameras, omni-direction cameras, event cameras and infrared cameras.
Readers can refer to Table 1 for the comparison of different sensors.
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Table 1. Information for Different Exteroceptive Sensors.

Sensors
Affecting Factor Color

Texture
Depth Disguised Range Accuracy

(Resolution) Size Cost
Illumination Weather

Lidar -
√

-
√

Active 200 m

Distance accuracy:
0.03 m

Angular resolution:
1.5◦

Large High

Radar
(Long
Range)

- - -
√

Active 250 m

Distance accuracy:
0.1 m~0.3 m

Angular resolution:
2◦~5◦

Small Medium

Radar
(FMCW
77 GHz)

- - -
√

Active 200 m

Distance accuracy:
0.05 m~0.15 m

Angular resolution:
about 1◦

Small Very
Low

Ultrasonic - - -
√

Active 5 m Distance accuracy:
0.2 m~1.0 m Small Low

Monocular
Camera

√ √ √
- Passive -

0.3 mm~3 mm
(Different fields of

view and
resolution have

different accuracy)

Small Low

Stereo
Camera

√ √ √ √
Passive 100 m

Depth accuracy:
0.05 m~0.1 m

Attitude resolution:
0.2◦

Medium Low

Omni-
direction
Camera

√ √ √
- Passive -

Resolution (Pixels):
can reach 6000 ×

3000
Small Low

Infrared
Camera -

√
- - Passive -

Resolution (Pixels):
320 × 256~1280 ×

1024
Small Low

Event
Camera

√ √
- - Passive -

Resolution (Pixels):
128 × 128~768 ×

640
Small Low

Note: The range of cameras except for depth range of stereo camera is related to operation environmental thus there is no fixed
detection distance.

2.1. Lidar

Lidar can obtain object position, orientation, and velocity information by transmitting
and receiving laser beam and calculating time difference. The collected data type is a series
of 3D point information called a point cloud, specifically the coordinates relative to the
center of the Lidar coordinate system and echo intensity. Lidar can realize omni-directional
detection, and can be divided into single line Lidar and multi-line Lidar according to the
number of laser beams, the single line Lidar can only obtain two-dimensional information
of the target, while the multi-line Lidar can obtain three-dimensional information.

Lidar is mainly used in SLAM [19], point cloud matching and localization [20], object
detection, trajectory prediction and tracking [21]. Lidar has a long detection distance and
a wide field of view, it has high data acquisition accuracy and can obtain target depth
information, and it is not affected by light conditions. However, the size of Lidar is large
with extremely expensive, it cannot collect the color and texture information of the target,
the angular resolution is low, and the long-distance point cloud is sparsely distributed,
which is easy to cause misdetection and missed detection, and it is easily affected by
sediments in the environment (rain, snow, fog, sandstorms, etc.) [22], at the same time,
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Lidar is an active sensor, and the position of the sensor can be detected by the laser emitted
by itself in the military field, and its concealment is poor.

2.2. Radar

Radar is widely used in the military and civilian fields with important strategic
significance. The working principle of a radar sensor is like that of Lidar, but the emitted
signal source is radio waves, which can detect the position and distance of the target.

Radars can be classified according to the different transmission bands, and the radars
used by UGVs are mostly millimeter-wave radars, which are mainly used for object
detection and tracking, blind-spot detection, lane change assistance, collision warning and
other ADAS-related functions [18]. Millimeter-wave radars equipped on UGVs can be
further divided into “FMCW radar 24-GHz” and “FMCW radar 77-GHz” according to
their frequency range. Compared with long-range radar, “FMCW radar 77-GHz” has a
shorter range but relatively high accuracy with very low cost, therefore almost every new
car is equipped with one or several “FMCW radar 77-GHz” for its high cost- performance.
More detailed information about radar data processing can refer to [23].

Compared with Lidar, radar has a longer detection range, smaller size, lower price,
and is not easily affected by light and weather conditions. However, radar cannot collect
information such as color and texture, the data acquisition accuracy is general, and there
are many noise data, the filtering algorithm is often needed for preprocessing, at the same
time, radar is an active sensor, which has poor concealment and is easy to interfere with
other equipment [24].

2.3. Ultrasonic

Ultrasonic detects objects by emitting sound waves and is mainly used in the field of
ships. In terms of UGVs, ultrasonic is mainly used for the detection of close targets [25],
ADAS related functions such as automatic parking [26] and collision warning [27].

Ultrasonic is small in size, low in cost, and not affected by weather and light conditions,
but its detection distance is short, the accuracy is low, it is prone to noise, and it is also easy
to interfere with other equipment [28].

2.4. Monocular Camera

Monocular cameras store environmental information in the form of pixels by convert-
ing optical signals into electrical signals. The image collected by the monocular camera is
basically the same as the environment perceived by the human eye. The monocular camera
is one of the most popular sensors in UGV fields, which is strongly capable of many kinds
of tasks for environmental perception.

Monocular cameras are mainly used in semantic segmentation [29], vehicle detec-
tion [30,31], pedestrian detection [32], road detection [33], traffic signal detection [34], traffic
sign detection [35], etc. Compared with Lidar, radar, and ultrasonic, the most prominent
advantage of monocular cameras is that they can generate high-resolution images con-
taining environmental color and texture information, and as a passive sensor, it has good
concealment. Moreover, the size of the monocular camera is small with low cost. Never-
theless, the monocular camera cannot obtain depth information, it is highly susceptible to
illumination conditions and weather conditions, for the high-resolution images collected,
longer calculation time is required for data processing, which challenges the real-time
performance of the algorithm.

2.5. Stereo Camera

The working principle of the stereo camera and the monocular camera is the same,
compared with the monocular camera, the stereo camera is equipped with an additional
lens at a symmetrical position, and the depth information and movement of the environ-
ment can be obtained by taking two pictures at the same time through multiple viewing
angles information. In addition, a stereo vision system can also be formed by installing
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two or more monocular cameras at different positions on the UGVs, but this will bring
greater difficulties to camera calibration.

In the field of UGVs, stereo cameras are mainly used for SLAM [36], vehicle detec-
tion [37], road detection [38], traffic sign detection [39], ADAS [40], etc. Compared with
Lidar, stereo cameras can collect more dense point cloud information [41], compared with
monocular cameras, binocular cameras can obtain additional target depth information.
However, it is also susceptible to weather and illumination conditions, in addition, the field
of view is narrow, and additional calculation is required to process depth information [41].

2.6. Omni-Direction Camera

Compared with a monocular camera, an omni-direction camera has too large a view
to collect a circular panoramic image centered on the camera. With the improvement of
the hardware level, they are gradually applied in the field of UGVs. Current research
work mainly includes integrated navigation combined with SLAM [42] and semantic
segmentation [43].

The advantages of omni-direction camera are mainly reflected in its omni-directional
detection field of view and its ability to collect color and texture information, however, the
computational cost is high due to the increased collection of image point clouds.

2.7. Event Camera

An overview of event camera technology can be found in [44]. Compared with
traditional cameras that capture images at a fixed frame rate, the working principle of
event cameras is quite different. The event camera outputs a series of asynchronous signals
by measuring the brightness change of each pixel in the image at the microsecond level.
The signal data include position information, encoding time and brightness changes.

Event cameras have great application potential in high dynamic application scenarios
for UGVs, such as SLAM [45], state estimation [46] and target tracking [47]. The advantages
of the event camera are its high dynamic measurement range, sparse spatio-temporal data
flow, short information transmission and processing time [48], but its image pixel size is
small and the image resolution is low.

2.8. Infrared Camera

Infrared cameras collect environmental information by receiving signals of infrared
radiation from objects. Infrared cameras can better complement traditional cameras, and
are usually used in environments with peak illumination, such as vehicles driving out
of a tunnel and facing the sun, or detection of hot bodies (mostly used in nighttime) [18].
Infrared cameras can be divided into infrared cameras that work in the near-infrared (NIR)
area (emit infrared sources to increase the brightness of objects to achieve detection) and
far-infrared cameras that work in the far-infrared area (to achieve detection based on the
infrared characteristics of the object). Among them, the near-infrared camera is sensitive to
the wavelength of 0.15–1.4 µm, while the far-infrared camera is sensitive to the wavelength
of 6–15 µm. In practical applications, the corresponding infrared camera needs to be
selected according to the wavelength of different detection targets.

In the field of UGVs, infrared cameras are mainly used for pedestrian detection at
night [49,50] and vehicle detection [51]. The most prominent advantage of an infrared
camera is its good performance at night, Moreover, it is small in size, low in cost, and not
easily affected by illumination conditions. However, the images collected do not contain
color, texture and depth information, and the resolution is relatively low.

3. Vehicle Detection: Vision-Based Methods

Vision-based vehicle detection can be divided into two-stage methods and one-stage
methods according to the inspection process. These two methods will be discussed in detail
in the following content.
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3.1. Two-Stage Methods

Vision-based two-stage vehicle detection method usually follows two steps: hypothet-
ical generation (HG) and hypothetical verification (HV). The purpose of the HG step is to
generate a candidate region that may contain vehicles in the captured image, represents
the region of interests (ROIs), while the HV step aims to identify the presence of a vehicle
in ROIs. The detection process of two-stage methods is described in Figure 4.
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3.1.1. Hypothetical Generation (HG)

Various HG methods with vision sensors can be divided into three categories: appearance-
based methods, motion-based methods and stereo-based methods. Moreover, related works
of appearance-based and motion-based methods are summarized in Table 2 related works
of stereo-based methods are summarized in Table 3.

Table 2. Summary of hypothetical generation (HG) methods for monocular vision.

Methods Literature Pros Cons

Appearance-Based
Methods

Color [53–58]

Low computing cost;
Easy to implement;

Color characteristics are
generally obvious

Easily affected by illumination
condition and shadow

Edge [59–64]
Low computing cost;

Easy extraction of vehicle edge
features.

Easily affected by other objects
with obvious edge feature;

Difficult to choose a suitable
threshold

Corner [65,66]
High detection accuracy;
Easily locate vehicle to be

detected in the image.

Hard to apply in complex
environments

Symmetry [67–70]
High detection accuracy;
Highly symmetrical for

common vehicles

High computing cost;
Suitable for ahead and behind

vehicle detection, bad
performance for others

viewing angle

Texture [71–73] High detection accuracy
Hard to apply in complex

environments;
Easily affected by shadow

Shadow [74–77] Low computing cost

Easily affected by illumination
condition and shape of

shadow; Difficult to choose
and optimize threshold

Lights [78–84] Better performance in the
night environment

Easily affected by street lights
and other non-vehicle lights

Features Fusion [62,69,85–87] High detection accuracy;
High robust and reliable

High computing cost; Complex
algorithm structure;
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Table 2. Cont.

Methods Literature Pros Cons

Motion-Based Methods

Frame
Difference [88–92]

Fast detection speed and good
real-time performance;
Not easily affected by
illumination condition

Impossible to detect stationary
vehicles;

Difficult to detect low-speed
vehicles

Background
Modeling [93–99] Easy to implement;

good real-time performance

Difficult to build background
models for complex scenes;

Background update is
challenging

Optical [100–104]

Robust;
Suitable for real-time

monitoring of long video
streams

Easily affected by illumination
condition; Difficult to detect

High-speed vehicles

Table 3. Summary of HG methods for stereo vision.

Methods Literature Pros Cons

IPM [105–111] Low computing cost;
Simple and mature algorithm

Vulnerable to road conditions including
off-road and uneven road

Disparity Map [112–124] High detection accuracy;
Easy to obtain depth information

High computing cost;
Low resolution for planes with similar shapes

Optical
Flow [125–127] Same with monocular camera Same with monocular camera

• Appearance-based Methods

The appearance-based method depends on the prior knowledge of the vehicle to
generate the ROIs in an image. Some important cues to extract vehicle features including
color, edges, corners, symmetry, texture, shadow and vehicle lights are reviewed in the
following content.

(a) Color

Color provides rich information in an image, ensuring the great potential for scene
understanding. In general, colors of vehicle body and lights are evenly distributed and have
large discrimination from the road surface and image background, thus color information
can be extracted to segment vehicles from background to generate ROIs.

In [53], a conventional RGB color space was used to generate ROIs. Firstly, all red
areas in the image were extracted through the RGB color space, then prior knowledge that
the vehicle brake lights have the same shape, size and symmetrical distribution was used
to design a similar scale calculation model to extract the position of brake lights to be the
final ROIs.

Since the RGB color space is sensitive to changes of illumination, in [54], ROIs were
also generated by detecting brake lights, but the color space proposed is L*a*b, which is
insensitive to the changes of illumination, Moreover, in [55], HSV color space was put
forward to generate ROIs. In [56], RGB color space was combined with the background
modeling method to reduce the impact of illumination, and the accuracy of the extracted
ROIs was about 95%, but the real-time performance of the algorithm was therefore affected.

To achieve a better balance between accuracy and real-time performance, in [57], ROIs
were extracted based on HSV color space with the “convex hull” operation to filter out
noisy points in the image, then the boundary of ROIs was fitted to make it smooth, the
accuracy of the algorithm was about 91.5% with running time about 76 ms/fps. In [58],
ROIs were first extracted using HSV color space, and then RGB color space was utilized to
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further detect the vehicle lights in the ROIs to achieve the detection of emergency vehicles
(vehicles with double flashes in an accident, ambulances, etc.). This work expanded the
application scenarios and made a contribution to the early warning of vehicle behavior.

(b) Edges

Different views of the vehicle (especially front and rear view) contain different types
of edge features, for instance, the horizontal edge features of the bumper and the horizontal
and vertical edge features of the windows show a strong ability to generate ROIs.

In general, the changes of gray value on sides of edges in the image is faster than in
other areas. Thus, a possible solution is to calculate the sum of the gray value of each row
and column in the image to form an “Edge Map”, and preliminarily judge the location of
edges in the image (potential location of ROIs) according to the peak gray value [59,60].

In addition to the implementation of “Edge Map” methods, the Sobel operator is
another choice to extract vehicle edge features. In [61], Sobel operator was used to extract
the left and right edge features of the vehicle, then the grayscale of the image was analyzed
to extract the shadow of the vehicle, both were finally fused with a designed filter to
generate ROIs, the accuracy of this approach is about 70%.

Moreover, several approaches were carried out to optimize Sobel operator in edge
extraction. In [62], the “Scharr-Sobel” operator was established to highlight image edge
features and reduce the complexity of the algorithm with an accuracy of 82.2%. In [63],
the Sobel operator was combined with Hough transform to extract vehicle edge features,
and a Faster-RCNN was trained for verification. In [64], the Sobel operator and Perwitt
operator were combined to extract the edge features of vehicles for detection. The accuracy
is different under different traffic conditions, which fluctuated between 70% and 90%.

(c) Corners

From the perspective of vehicle design, the shape of the vehicle can be generally
regarded as a rectangle. The four corners that can form a rectangle in all corners detected
in the image can be used as the basis for generating ROIs.

In [65], Harris corner detection model was proposed to extract corners in the image,
and “corner mask” was designed to remove false-detected corners, then corners and color
features were fused to generate ROIs, the detection accuracy of vehicles of different colors
varied from 79.66% to 91.73%. In [66], a grayscale map was created to select appropriate
threshold value to detect corners in the image, then, coordinate of all corners were calcu-
lated and paired between each other, and finally “Convex Hull algorithm” were carried
out to generate ROIs.

(d) Symmetry

The front view and the rear view of the vehicle have obvious symmetry with respect
to the vertical centerline, thus the location of the vehicle is able to be evaluated by detecting
the area with high symmetry characteristics in the image to generate ROIs. The symmetry
detection methods need to calculate the symmetry measurement in the image to generate a
symmetry axis or center point for the vehicle by adapting the image pixel characteristics
(grayscale, color, feature point, etc.).

The detection of symmetry features usually requires the extraction of edge features in
the image. In [67], the edge features of the image were firstly extracted and 15 horizontal
scan lines were generated to select the candidate areas, then, a symmetry measurement
function was designed basing on contour features to extract the vehicle symmetry axis,
and the k-means clustering was used to extract the central point and generate ROIs. The
detection accuracy was about 94.6% with a running time of 80 ms/fps. In [68], the symmetry
measurement function was also based on the contour feature to extract the symmetry axis
and the center point, compared with [67], the author transplanted the program package to
the Android system, and the detection accuracy was about 92.38%, with a running time of
33 ms/fps. Limited by the computing performance of the Android system, although this
algorithm meets the requirements of good detection accuracy and real-time performance,
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it can only be used for the detection of simple scenes, and the results did not have a strong
reference. The Canny operator was used in [69] to extract edge features, and combined
with the two-frame difference method, the extracted edge was “amplified” to enhance its
feature strength, so as to improve the accuracy of symmetry axis extraction. This method
had been tested to achieve a better performance for dynamic vehicle detection.

Apart from extract image edge features first, a linear regression model was also used
to extract vehicle symmetry axis in [70], Haar features with Adaboost classifier were
trained for verification using an active learning method, with an accuracy of about 87%
and running time of 40 ms/fps.

(e) Texture

The presence of the vehicle will cause the local intensity change in an image, and
the rules of intensity change follow a certain texture form. Thus, the difference between
the vehicle texture and the background environment can be used to extract ROIs from
the image.

There were few studies on the algorithm of vehicle detection by extracting texture
features. The main approaches include entropy [71], gray level co-occurrence matrix [72]
and LBP [73]. In [71], the entropy value of each pixel was calculated in the image, and
the area with high entropy value was regarded as the ROIs of possible vehicles. In [72],
ROIs were extracted by calculating the gray co-occurrence matrix of images, compared
with the simple calculation of image entropy, this method was a second-order statistic of
pixels, with higher accuracy but larger computing cost. In [73], the texture feature of the
image background (mainly referred to road area) was extracted by LBP method, and the
location of the shadow was extracted by using the characteristic that the bottom shadow
is similar to the texture feature of the road area, both were fused to generate ROIs. The
texture features extracted by the LBP method were suitable for further classification by
SVM.

(f) Shadow

The shadow area underneath the vehicle in the image is darker than the area of
the road surface. The feature of brightness difference can be used to extract ROIs by
investigating image intensity.

The conventional shadow-based method is to select an appropriate threshold (lower
bound of road intensity) to segment the shadow areas. In [74], road areas in the image were
first extracted, and the shadow areas were defined according to the intensity that is less
than the threshold “m-3σ” to generate ROIs, where m and σ are the average and standard
deviation of the road pixel frequency distribution, after which ROIs were verified by SVM.
The detection accuracy is about 92% with a running time of 76 ms/fps.

Since the intensity of the shadow area is sensitive to changes of illumination, selecting a
fixed threshold to segment the shadow area cannot be applied to various scenes. Therefore,
an adaptive threshold algorithm is carried out in [75], the pixel ratio of each point in the
image was first calculated, then two parameters α and β between 0 and 1 were selected
and the areas whose pixel ratio between α and β were defined as shadows. Although this
method solved the limitation of the fixed threshold methods, the selection of parameters α
and β requires constant iteration, which makes it difficult to obtain an optimal solution.
Thus, in [76], a “three threshold” method was presented based on the RGB color space
combined with the ViBe algorithm to extract the shadow areas in order to further improve
the robustness.

Different from the aforementioned literature by determining the threshold value as
the lower bound of the intensity of the road area in the image to segment the shadow area,
in [77], the rough upper bound of the intensity of the undercarriage was determined based
on the “binary mask function” constrained by saturation and intensity difference Value to
reduce false detection rate.
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(g) Vehicle Lights

For nighttime vehicle detection, the performance of vision cameras is greatly affected
due to the poorly illuminated conditions, therefore most cues summarized above are not
reliable during nighttime detection. A salient feature of the vehicle is its headlights and
taillights that can be extracted to represent ROIs of the vehicle.

One possible solution is to extract the features of vehicle lights from the image back-
ground by setting a specific threshold [78]. In [78], the threshold was selected as 30% of the
maximum gray value in the threshold image to extract the position of the lights to generate
ROIs. Since the gray value of the vehicle lights is various at different distances from the
camera, and the roadside lighting equipment will also affect the environmental brightness,
only setting a single threshold for detection is prone to false detection.

In order to solve this problem, in [79], the lower bound of the threshold value of lights
was first calculated based on the grayscale image, then, the OTSU method was proposed
to obtain the optimized threshold, the similarity measurement was finally calculated to
match the extracted vehicle lights with Kalman filter for noisy reduction to generate ROIs.
In [80], the “CenSurE” method was put forward based on the Laplacian of Gaussian (LOG)
to detect areas with sharp intensity changes in the image to extract the features of the lights,
and paired by detecting lights on the same horizontal line, this approach did not depend
on a specific threshold and achieved a faster calculation speed than LOG.

Apart from the threshold method, some researchers used machine learning methods
to extract features of vehicle lights. In [81,82], original images were first converted into
grayscale images, then an Adaboost classifier with Haar features was trained to get the
position of the vehicle lights, and finally, the similarity measurement was calculated to pair
the lights.

The width lights and brake lights of vehicles are red, therefore the red areas can
be detected according to the color-based method discussed above. In [83], RGB color
space was used to extract features of vehicle lights, and then closing operation (one of the
morphological operations) was performed to eliminate holes in the feature map. ln [84]
HSV color space was proposed to extract features of car light, after which Gaussian filter
was used for filtering and noise reduction, and non-maximum suppression (NMS) method
was implemented to eliminate the overlapping area.

(h) Multiple Features Fusion

Since using a single feature for vehicle hypothesis generation is limited in different
application scenarios, ROIs can be generated by fusing multiple features to improve the
robustness and reliability of the detection system, however, it will increase the complexity
and calculation time of the system. There is no conventional method to select which
features and which algorithm to use for fusion, some related works are listed in Table 4.

• Motion-based Methods

The motion-based methods generate ROIs by extracting the changes of the moving
vehicle relative to the background in the image sequence. Compared with the appearance-
based method, it is able to achieve a more direct detection process without prior knowledge
of the vehicle. Nevertheless, for a single frame image or a low-speed moving and a
stationary vehicle in the image sequence, the method will fail. Related methods include
the frame difference method, background modeling method and optical flow method.
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Table 4. Summary of Fusion methods for HG.

Year Literature Features for
Fusion Datasets Accuracy Time

(ms/fps) Hardware Adaption

2013 [62] edge;
shadow

100 images
consist of

downtown and
highway

70% - Intel core i5;
2 GB RAM

Only good weather
condition

2015 [85] edge; texture PASCAL VOC About 80% - -
Better performance

in detecting
occluded vehicles

2015 [86]
edge; corner;

lights;
symmetry

iROADS 95.1% 40 ms
Core i5 2.7

GHz;
8 GB RAM

Daytime; nighttime;
rainy; snowy

2018 [87] color; texture KITTI 89.91% 170 ms Nvidia Titan
X

Occluded vehicles in
complex traffic
environment

2019 [69] edge;
symmetry Own dataset 94% 10 ms Intel core i5

Vehicle without
occlusion in simple
traffic environment

(a) Frame Difference

The frame difference methods first calculate the absolute value of the grayscale dif-
ference between adjacent frames of the image sequence and then select a threshold to
distinguish the background and foreground in the image. If the absolute value satisfies the
threshold condition, it can be judged as the ROIs of moving vehicles.

In [88], a conventional two-frame difference method was proposed for vehicle detec-
tion. Although the two-frame difference method achieved a low computing cost, it was
pointed out that if the detected object had a relatively uniform grayscale, the overlapping
part of the moving objects in the image will appear to be “blank” [89]. Therefore, the
three-frame difference method was established to solve this problem in [89]. Later, some
researchers made further improvements to the three-frame difference method to better
solve the problem of “blank holes” in the image. The three-frame difference method was
combined with the Gaussian model in [90], while it was combined with the image contrast
enhancement algorithm and morphological filtering in [91]. In [92] a five-frame difference
method was designed for vehicle detection in low-speed motion.

(b) Background Modeling

This approach establishes a background model through the video sequence. It gener-
ates a hypothesis of moving vehicles through pixel changes with the assumption that the
background is stationary. The main challenge background modeling needs to solve is the
establishment and update of the background model.

The typical background modeling method is the Gaussian Mixture Model (GMM)
proposed by [93]. The main idea of the method is to assume that all data points in the
image are generated by a finite Gaussian distribution with unknown parameters. Due to
the slow initialization of GMM and the inability to distinguish between moving objects
and shadows [94], an adaptive GMM method was designed to solve this problem in [94],
and adaptive GMM was combined with a vehicle underneath shadow features to improve
the computational efficiency and robustness.

Another typical algorithm is the codebook algorithm [95], which is characterized
by high calculation accuracy. An improved codebook algorithm based on the conven-
tional codebook algorithm was designed in [96] to improve its computational efficiency in
complex environments.
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In addition, the ViBE algorithm was proposed in [97]. This approach first selected
a pixel and extracted the pixel value in the neighborhood of this pixel at a current and
previous time to form a point set, then the pixel value of the selected pixel was compared
with the pixel value in point set to determine whether the pixel belonged to the background,
in general, the ViBE algorithm was able to achieve strong real-time performance, and overall
has a relatively good background detection effect. Moreover, in [98], an adaptive ViBE
algorithm was designed based on the ViBE algorithm to improve the background update
efficiency for scenes with changing illumination.

Machine learning methods have also been applied to background modeling by re-
searchers. In [99], the feature input was the first to fourth order statistics of the grayscale
of the image, and the output was the appropriate morphological parameters to dynami-
cally adjust the extracted background, the author tested it under the condition of sudden
illumination changes and result showed better robustness.

(c) Optical Flow

The optical flow methods obtain the motion information of the object by matching the
feature points between two adjacent frames in the image sequence or calculating the pixel
changes, the return value is the optical flow vector of the object (describes the instantaneous
velocity of a certain point in the image), and the optical flow at each point in the image
constitutes an optical flow field to generate ROIs for moving objects.

Optical flow can be divided into dense optical flow and sparse optical flow. Dense
optical flow is also called global optical flow, and it calculates the optical flow field of
the whole image or a certain area, the registration n result is accurate but the computing
cost is large. The typical methods are the Horn–Schunck (HS) optical flow method and its
extension [100]. Sparse optical flow is also called local optical flow to calculate the optical
flow field at some specific point, which improves the calculation efficiency but reduces the
registration accuracy. The typical methods are the Lucas–Kanad (LK) optical flow method
and its extension [101].

In [102], pyramid LK optical flow was proposed with the fusion of edge feature
extraction, and k-means clustering was finally used to detect vehicles. In [103], the fusion
of HS optical flow method and median filtering was proposed to achieve vehicle detection.
In [104], ROIs were first extracted based on CNN, then, the Haar feature was utilized
to extract feature points for ROIs, and finally, the LK optical flow method and k-means
clustering were combined to achieve vehicle detection.

• Stereo-based Methods

It should be noted that the aforementioned appearance-based methods and motion-
based methods can also be carried out in the images collected by stereo vision. Compared
with monocular cameras, stereo cameras can obtain scene depth information, which enables
more information for vehicle detection. Typical hypothesis generation methods using stereo
camera include Inverse Perspective Mapping and disparity map.

(a) Inverse Perspective Mapping

The Inverse Perspective Mapping (IPM) refers to transforming the image collected
by the stereo camera from the camera coordinate system to the world coordinate system
through the rotation and translation transformation, and the result is a top view image
without disparity. Depth information of roads and objects can be obtained through IPM,
providing intuitive information for vehicle detection.

In [105,106], IPM was used to convert the left and right images from stereo camera
into two top view images respectively; then, pixel difference between top view images
was calculated, the areas with a non-zero difference were regarded as possible vehicles,
and the locations of the ROIs were finally determined by the polar coordinate histogram.
In [107], IPM was fused with a background modeling method to detect vehicles in motion.
Moreover, IPM can also be used to obtain more information about the vehicle to be detected.
In [110], ROIs were extracted based on IPM and the distance between the vehicle and the
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camera center was obtained, while in [111], IPM was combined with CNN to obtain the
location, size and attitude angle of vehicles.

Using IPM for vehicle detection is easy to implement and computationally efficient, but
this approach needs to be assumed that the road surface is completely flat and the road area
in the image is large, so it is not suitable for vehicle detection in complex or unstructured
scenes. Since the geometric information of the road can be extracted intuitively from the
top view, IPM can often implement for road detection [128–130], some researchers used
IPM to detect road areas to assist vehicle detection.

In [108], the drivable areas were first generated through IPM as preliminary deter-
mined ROIs, then vehicle lights were extracted to generate precise ROIs. In [109], road
edges were extracted through IPM to first generate ROIs, the left and right cameras were
then transformed to top view images and pixel differences were compared to achieve
vehicle detection.

(b) Disparity Map

The difference between the corresponding pixels between left and right images is
represented as disparity, calculating disparity of all the image points forms the disparity
map, in addition, the disparity is negatively related to the distance between the image
point and the camera. Planes in the image can be extracted by statistically analyzed the
disparity distribution to generate areas contain an object with flat features (i.e., Side of
the vehicle).

The derivation and calculation of the disparity map were reviewed in [131]. In order to
make better use of the disparity map for object detection, some researchers have optimized
the traditional disparity map to directly acquire scene information. For instance, the V-
disparity map [112] that can be used to extract planes parallel to the camera horizontal
plane (usually referred to as road areas), the UV-disparity map [113] that combined the
U-disparity map on the basis of the V-disparity map to further extract planes perpendicular
to the camera horizontal plane to realize 3D reconstruction of the environment.

In [114], a V-disparity map was combined with an optimized evolutionary algorithm
(EA) for vehicle ROIs generation. In [115], the UV-disparity map and DCNN were combined
to jointly extract vehicle ROIs. In [116], V-disparity maps with Hough transform were first
utilized to extract road areas, and then a U-disparity map was used to generate ROIs, in
addition, the distance of the vehicles was also derived based on depth information. In [118],
a stereo camera was fused with millimeter-wave radar for vehicle detection, where stereo
images were acquired to detect nearby vehicles through UV-disparity maps. In [119], ROIs
were extracted based on a UV-disparity map and verified by Faster-RCNN.

Vehicle detection based on original disparity maps were also carried out by some
researchers. One main approach is clustering point clouds data to extract vehicle infor-
mation. In [120], a mean-shift algorithm was proposed based on a semi-dense disparity
map to achieve vehicle detection and tracking. In [121], K-neighbor clustering with frame
difference method and fast corner detection method was put forward to realize vehicle
detection, while in [123], K-neighbor clustering was combined with optical flow, moreover,
in [122], DBSCAN was used for ROIs generation. In [124], CNN was trained to generate
semantic maps, then clustering based on the DFS method was performed to detect vehicles.

In addition, some researchers did not process the original disparity map for vehicle
detection based on the clustering method. A typical method was designed in [117], the
author first calculated the disparity map and combined the depth information to achieve
3D reconstruction, then, the RANSAC method was used to fit the road surface, and the
areas above a certain threshold of the ground were regarded as ROIs, which were then
matched with the predefined CAD wireframe model of the vehicle for verification.

(c) Optical Flow

The application of the optical flow method in stereo vision is similar to that in monoc-
ular vision. In general, feature points of interest are usually extracted through a single
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camera, and the three-dimensional coordinate of the object to be detected is determined by
combining the disparity map and depth map.

In [126], the optical flow was used to detect vehicles moving in opposite directions,
while the Haar feature was extracted to detect vehicles moving in the same direction.
In [125], the 3D optical flow was obtained by matching feature points and the motion state
of ego vehicle generated by the visual odometer, then 3D optical flow was projected to the
aerial view to realize vehicle detection. In [127], optical flow and vehicle motion estimation
model were designed based on stereo vision, then optical flow generated by camera motion
(COF) was estimated by using the motion information of vehicle and the depth information
of scene, and mixed optical flow (MOF) of scene was estimated by using HS algorithm.
Finally, MOF and COF were differential calculated with elimination of static objects in the
background, and vehicle detection was achieved by morphological filtering.

3.1.2. Hypothetical Verification (HV)

The input of the HV stage is the set of hypothesis locations generated from the HG
stage. During the HV stage, solutions are carried out to validate whether there is a true
vehicle in ROIs. Various HV methods can be divided into two categories: template-based
methods and classifier-based methods.

• Template-based Methods

The template-based methods need to establish the predefined vehicle feature template
basing on different types of vehicle images, then the similarity measurement is put forward
by calculating the correlation between the templates and ROIs.

Due to various types, shapes, and brands of vehicles, it is necessary to establish a
generic template that can represent the common characteristics of the vehicle in order to
make the template more widely used. Typical feature templates included as follows: a
template that combines rear windows and license plates [132], a rectangular template with
a fixed aspect ratio [133], and an “inverted U-shaped” template with one horizontal edge
and two vertical edges [134].

In the same image, the vehicle could appear in different size and shape related to its
distance and captured perspective from the camera [9], therefore, the traditional template
matching method did not achieve good robustness, and the establishment of a dynamic
template was significant to improve the efficiency of verification. In [135], a hybrid template
library was established for matching, fusing four kinds of feature templates including
vehicle wireframe model, texture model, image flatness and image color consistency.
In [136] a deformable vehicle wireframe model was established with logistic regression to
achieve vehicle detection, the model was composed of several discrete short line segments,
and it could be dynamically adjusted to adapt to different capture perspectives and distance
of vehicles in image, through the translation and rotation transformation of the short
line segments.

A large number of modern vehicle datasets were collected in [137], vehicle appear-
ances were analyzed through active learning methods, and a multi-view variable vehicle
template library was then established. It should be noted that this approach was differ-
ent from the conventional vehicle template mentioned above, this template library was
composed of visual images of various vehicles from different perspectives, and each pic-
ture in the template library could be replaced according to driving condition, thereby
expanding the application range of the template matching algorithm and optimizing the
matching accuracy.

• Classifier-based Methods

The classifier-based methods establish an image classifier to distinguish vehicle targets
versus non-vehicle targets in the candidate area. A large number of labeled positive (vehicle)
and negative (non-vehicle) samples are used to train a classifier to learn the characteristic of
the vehicle. This approach consists of two steps: feature extraction and object classification.
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(a) Feature Extraction

In general, feature extraction refers to the process of converting the training samples
into a feature vector that satisfies the input of the classifier. In order to achieve better
classification results, the design and selection of features are particularly important. A
fine feature should include most of the appearance of the vehicle, and should be as simple
as possible to improve training efficiency. Commonly used feature extraction methods
include HOG feature, Gabor filter, PCA, Haar feature, SIFT and SURF feature.

HOG refers to Histogram of Oriented Gradient, which was first proposed in [138]
for pedestrian detection, and then gradually used in the related work of vehicle detection.
Most of the current research are devoted to optimizing conventional HOG in order to
improve its calculation efficiency and detection accuracy.

In [139], the vehicle feature was extracted based on traditional HOG methods for
classification training. In [140], the performance of three feature extraction methods of
CR-HOG, H-HOG and V-HOG in vehicle detection were compared, and it was found
that V-HOG has the best overall effect, compared with the conventional HOG method,
the calculation efficiency was improved with the reducing of accuracy. The results of
this literature were further verified in [141]. In [142], the accuracy of the V-HOG was
optimized by constantly adjusting its parameters from experimental results. In [143], the
calculation efficiency was improved by reducing the dimensions of the extracted feature
vector based on the traditional HOG method. Since the traditional HOG method can only
calculate the gradient features in both horizontal and vertical directions, in [144], Compass-
HOG was designed to expand the direction dimension of image gradient calculation to
reduce information loss and improve accuracy. In [145], 2D-HOG is designed to deal with
the problem of resolution change of input image, and the accuracy was also improved
compared with HOG.

The principle of the Gabor filter is to perform Fourier transform in a specific time
window of the image, which can better extract the straight line and edge features of
different directions and scales in the image. This method is very similar to the response
of human vision to external stimuli, and can effectively extract image frequency-domain
information, however, it has a high computing cost.

In [146], a parameter optimization method based on a genetic algorithm was designed
for the Gabor filter to extract vehicle features. In [147,148], the Log–Gabor filter was
designed to compensate for its amplitude attenuation in the process of processing natural
language images [149] to achieve better image frequency-domain information extraction
characteristics in vehicle detection. In [150], vehicle features in the night environment were
extracted by the Gabor filter, and the filter parameters were adjusted through experiments.

PCA refers to Principal Component Analysis, converting the relevant high-dimensional
indicators into low-dimensional indicators to reduce the computing cost with as less as
possible loss of the original data.

In [151], PCA was used to extract vehicle features and SVM was trained to classify
the generated ROIs, which can identify vehicles in front view and rear view at the same
time. Since the traditional PCA extracted one-dimensional feature vectors of the image, the
vector dimension is large with high computing cost, in [152], the vehicle feature extraction
was realized by 2D-PCA combined with a genetic algorithm, nevertheless, the image pixel
of the dataset used by the author is relatively low, optimizing computation efficiency
by reducing the pixel was not representative. Thus in [153], the pixel of datasets was
improved, 2D-PCA was combined with a genetic algorithm, fuzzy adaptive theory and
self-organizing mapping for vehicle identification. In [154], features were extracted by
HOG and dimensionality was reduced by PCA to reduce the amount of computation.

The Haar feature is based on the integral map method to find the sum of all the pixels
in the image, which was first applied to face recognition in [155], Haar features include
edge features, straight-line features, center features and diagonal features. The Haar feature
is suitable for extracting edge features and symmetry features of vehicles, with a high
computational efficiency to better meet the real-time requirements of vehicle detection.
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In [156], the Haar feature was combined with a 2D triangular filter to achieve feature
extraction. In [157,158], the Haar feature was introduced into LBP to realize vehicle
detection through statistical image texture features, In [70], detection of frontal vehicles was
based on the Haar feature, and active learning was then carried out to realize the detection
of occluded vehicles. In [159], the Haar feature was used in infrared images combined with
the maximum entropy threshold segmentation method to achieve vehicle detection.

SIFT refers to Scale-Invariant Feature Transform. It was proposed in [160], generating
features by extracting key points in the image and attaching detailed information.

In [161], feature points were extracted based on SIFT, and feature vectors near feature
points were extracted using the implicit structural model (ISM) to train SVM to detect
vehicles. Due to the slow computing speed of the traditional SIFT method, in [162] vehicle
feature was extracted by the Dense-SIFT method, so as to realize the detection of remote
moving vehicles and improve the computing efficiency. In [163], the color invariant “CI-
SIFT” was designed to enable it to have good characteristics when detecting vehicles of
different colors. The author first recognized the body color through HSV color space, and
then extracted the features through CI-SIFT, finally, vehicle detection was realized based
on the matching algorithm.

SURF feature is the optimization and acceleration of SIFT feature. In [164,165], the
symmetric points of vehicles were extracted based on SURF features to realize vehicle
detection. By combining Haar features and SURF features, the real-time performance of
this algorithm was improved by combining good robustness of SURF features and fast
calculation speed of Haar features in [166]. In order to further improve computational effi-
ciency, SURF characteristics and the BOVW model were combined to realize the detection
of front and side vehicles in [167].

The comparison of different feature extraction methods is shown in Table 5.

Table 5. Summary of feature extraction methods for hypothetical verification (HV) stage.

Methods Literature Pros Cons

HOG [139–145] Good optical and geometric invariance;
High feature extraction accuracy High computing cost

Gabor [146–148,150]

Similar to the response of human vision
to external stimuli;

Effectively extract image frequency
domain information

High computing cost

PCA [151–154]
Feature vector dimension can be
effectively reduced to improve

calculation efficiency

How to effectively avoid information loss
when reducing feature vector dimension

remains a challenge

Haar [156–159] Various forms of extractable features;
Low computing cost

How to select relevant feature templates
to extract features for different scenarios

remains a challenge

SIFT [161–163] Good scale invariance;
Good local stability and scalability High computing cost

SURF [164–167] Optimized computational efficiency
compared to SIFT features

Search accuracy is reduced compared to
SIFT feature

(b) Object Classification

The purpose of object classification step is to choose or design a classifier according to
the extracted features. The most commonly used classifiers for hypothesis verification are
SVM and AdaBoost, related works are listed in Table 6.
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Table 6. Summary of related works for classifiers of HV stage.

Year Literature Feature Classifier Datasets Accuracy Time
(ms/fps) Hardware Adaption

2009 [151] PCA SVM
PASCAL

VOC;
INRIA

94.93% — —

Vehicles without
occlusion in

simple traffic
environment

2013 [139] HOG SVM Own
dataset 96.87% 40 ms Core i5

2.67 GHz

Vehicles under
various

illumination
condition

2017 [141] HOG SVM GTI 98.61% 50 ms —

Vehicles without
occlusion in

simple traffic
environment

2018 [150] Gabor SVM Own
dataset 92.87% — — Daytime;

nighttime

2018 [158] Haar Adaboost GTI 90.10% —
Core i5

1.80 GHz;
4 GB RAM

Vehicles without
occlusion in

highway

2019 [145] HOG
+PCA SVM UIUC 99.28% 61 ms CPU 2.9 GHz;

8 G RAM
Vehicles with
multi-view

3.2. Deep-Learning Based Methods

The aforementioned two-stage method includes two steps: HG and HV to form two-
stage detector. In general, deep-learning based methods refer to designing a single-stage
detector which does not need to extract ROIs from the image through training a neural
network, but directly considers all regions in the image as region of interest, the entire
image is taken as input, and each region is judged to verify whether it contains vehicles to
be detected. Compared with the two-stage method, this method omits ROIs extraction and
achieves a much faster processing speed, which is suitable for scenes with high real-time
requirements, however, the detection accuracy is relatively low and the robustness is poor.
In addition, there are also two-stage detectors designed based on deep learning methods,
such research will be discussed together in this section.

3.2.1. Two-Stage Neural Network

Generally speaking, the two-stage neural network is composed of region proposal
stage and region verification stage, where the region proposal stage aims to generate
candidate regions, while the region verification stage is carried out to train a classifier
based on features generated by the convolution process to determine whether there is a
true vehicle in candidate regions. With the development of deep learning technology, it
has been widely used in various fields for its highly nonlinear characteristic and good
robustness. Classical and recent neural networks are summarized in Tables 7 and 8.
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Table 7. Summary and characteristic of classical two-stage neural network.

Year NN Literature Region
Generation Classifier Comment

2012 CNN [168] Sliding
Windows SVM

Images were divided into different
ROIs, and then classified after feature

extracting through convolution.

2014 RCNN [169] Selective
Search SVM

Similar with CNN except that region
generation is achieved through

selective search.

2014 SPPNet [170] Selective
Search SVM

Convolution process directly on the
original image and then extract ROIs

through Selective Search.

2015 Fast-RCNN [171] Selective
Search SoftMax ROI polling is different from SPPNet.

2017 Faster-RCNN [172] RPN [173] SoftMax Region generation is achieved
through RPN.

Table 8. Summary of related works for recent two-stage neural network for vehicle detection.

Year Literature Network Dataset Accuracy Time
(ms/fps) Hardware Adaption

2018 [87] FMLA-
CNN KITTI 88.83% 170 ms NVIDIA

TitanX

Vehicles with occlusion
under various

illumination condition

2018 [174] Mobile-Net Own
dataset 91.59% 66 ms NVIDIA

TX2
Vehicles detection for 360◦

FOV in nighttime

2018 [175] extraCK KITTI 82.46% 30 ms Inter Core
i7 2.70 GHz

Vehicles with occlusion in
simple traffic environment

2018 [176] MFR-CNN
KITTI;

PASCAL
VOC

84.30% 105 ms NVIDIA
TitanX

Vehicles with
multi-view under various

traffic environment

2019 [177] SINet KITTI 89.21% 110 ms NVIDIA
TitanX

Vehicles under sparse and
crowded highway

environment

2019 [178] CNN-
LSTM UC Merced 96.10% — — Vehicles detection as well

as tail lights recognition

2019 [119] Faster-
RCKK KITTI 91.20% 200 ms Two Inter

Xeon

Vehicles at long distance
under poor illumination

condition

2019 [179] RoarNet KITTI 84.25% 65 ms NVIDIA
TitanX

Vehicles under various
traffic environment

3.2.2. One-Stage Neural Network

Training a one-stage neural network to achieve vehicle detection have emerged in
recent years, typical single-stage detectors include the YOLO series and SSD. YOLO was
proposed by [180] and it was the first single-stage detector in the field of deep learning.
The framework of YOLO was a deep convolutional neural network (DCNN) and full
convolutional neural network (FCNN), where DCNN was used to extract image features
and greatly reduce its resolution to improve computational efficiency, FCNN was adapted
for classification. Although YOLO has fast detection speed, it sacrificed detection accuracy.
Thus in [181], SSD was proposed to solve the limitations of YOLO, which increased the
resolution of the input image before extracting image features, thereby improving the
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detection accuracy, and also allowing to detected objects with a different scale. Subsequent
YOLO-based improved networks include YOLO9000 (YOLOv2) [182], YOLOv3 [183], and
recently optimized detection efficiency of YOLOv4 [184] and YOLOv5 [185]. Typical
one-stage networks are summarized in Table 9.

Table 9. Summary and characteristic of classical one-stage neural network.

Year NN Literature Comment

2016 YOLO [180] Images were directly divided into defined number of grids, and then bounding box
and category are predicted through a neural network.

2016 SSD [181] Allow to detect different objects with different scales compared with YOLO.

2017 YOLOv2 [182] Better prediction, faster, and enable more type of objects to be detected.

2018 YOLOv3 [183] Detection speed and accuracy can be balanced by changing the size of the network
structure; FPN was implemented to achieve multi-scale prediction.

2020 YOLOv4 [184] Network can be better used in practice and easier to train.

2020 YOLOv5 [185] Faster detection speed with lightweight network.

In addition to the typical networks mentioned above, there are also many scholars
who have improved original networks and designed new networks on this basis. See
Table 10 for related work.

Table 10. Summary of related works for recent one-stage neural network for vehicle detection.

Year Literature Network Dataset Accuracy Time
(ms/fps) Hardware Adaption

2018 [186] MB-Net KITTI 80.01% 19 ms NVIDIA
TitanX

Vehicles with occlusion under
various traffic environment

2019 [187] EZ-Net Own
Dataset 75.60% 7.14 ms NVIDIA

TitanX

Vehicles detection with
panoramic image at both
daytime and nighttime

2019 [188] BS3D KITTI 84.80% 21.88 ms NVIDIA
TitanX

3D regression BB for vehicles
under various traffic

environment

2019 [189] YOLO with
MMW

PASCAL
VOC 90.90% 66.67 ms —

Vehicles under weather
condition (sunny, foggy,

cloudy)

2019 [190] Dense-
ACSSD BSD 100 K 84.02% 28.57 ms GTX 1080Ti

Vehicles under crowded
environment at both daytime

and nighttime

2020 [191] MSI-
OHEM

PASCAL
VOC 85.35% 15.63 ms NVIDIA

DriverPX2

Both car and bus can be
detected under simple and

moderate traffic environment

4. Vehicle Detection: Lidar-Based Vehicle Methods

Although vision-based vehicle detection methods are popular among UGVs, the lack
of depth information makes it difficult to obtain vehicle position and attitude information.
Therefore, three-dimensional detection methods are significant to be designed to achieve
better scene understanding and communication with other modules such as planning and
decision making, furthermore, they are also important for vehicle-to-everything (V2X) in
ITS application [192]. Lidar is a good choice to effectively make up for the shortcomings of
vision methods in vehicle detection, related approaches can be divided into four categories:
classical feature extraction methods and learning-based approaches including projection
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methods, voxel methods and point-nets methods. Characteristics of each method and
related learn-based methods are summarized in Tables 11 and 12.

Table 11. Research of vehicle detection with Lidar.

Methods Literature Pros Cons

Feature Extraction
Methods [193–200] Good interpretability;

High real-time performance
Poor robustness to changing

environments

Projection
Methods

Spherical [201,202] Point cloud get denser after
transformation Difficult to achieve sensor fusion

Plane [203–208] Convince for data fusion with
camera images

Empty pixels may be produced at
distant location due to sparse

point cloud.

Bird-Eye [209–219] Directly provide the location and
size information of the object

Sparse point cloud at distant
location may cause error detection

Voxel Methods [220–227] Original 3D data information can
be retained

Empty voxel grids are generated
due to sparse and uneven
distribution of point cloud

Point-Nets Methods [179,228–233] Simple and fast; No hard demand
for point cloud pre-processing

Usually a long network
training period

Table 12. Summary of related works for learning-based vehicle detection using Lidar.

Methods Network Dataset Accuracy Time
(ms/fps) Hardware Adaption

Spherical
Projection
Methods

SqueezeSge
[201]

GTA-
simulated 69.6% 8.7 ms NVIDIA TitanX Vehicles under simple

traffic environment

PointSeg
[202] KITTI 74.8% 11 ms GTX 1080Ti

Vehicles with occlusion
under simple

traffic environment

Front-View
Projection
Methods

DepthCN
[205] KITTI 56% 230 ms

GTX 1080;
64 GB RAM;

Hexa core 3.5 GHz

Vehicles with occlusion
under complex traffic

environment

ConvNets
[206] KITTI 61.14% 49 ms

GTX 1080;
64 GB RAM;

Hexa core 3.5 GHz

Vehicles with occlusion
under complex traffic

environment

Faster-RCNN
[207] KITTI 87.9% 250 ms GTX graphics card;

Intel Xeon processor
Vehicles under moderate

traffic environment

Bird-Eye
Projection
Methods

BirdNet
[210] KITTI 67.56% 110 ms GTX graphics card Vehicles under various

traffic environment

YOLO-3D
[214] KITTI 75.3% 25 ms -

Vehicles at long distance
under moderate traffic

environment

PIXOR
[216] ATG4D 73.3% 100 ms -

Vehicles mainly in front
view under moderate

traffic environment

FCNN
[217] KITTI 65.89% 72 ms NVIDIA TitanX

Vehicles with multi-view
at long distance under

moderate traffic
environment
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Table 12. Cont.

Methods Network Dataset Accuracy Time
(ms/fps) Hardware Adaption

Voxel
Methods

Voxelnet
[223] KITTI 65.46% 33 ms NVIDIA TitanX Vehicles under various

traffic environment

Second
[224] KITTI 76.48% 50 ms GTX 1080 Vehicles under various

traffic environment

Part-A2
[225] KITTI 79.47% - NVIDIA Tesla V100 Vehicles under various

traffic environment

MVX-NET
[226] KITTI 72.7% - -

Vehicles at long distance
under various traffic

environment

Point-Nets
Methods

IPOD
[231] KITTI 76.4% - - Vehicles under various

traffic environment

PointPillars
[232] KITTI 74.99% 16 ms GTX 1080Ti Vehicles under various

traffic environment

PointRCNN
[233] KITTI 78.63% - - Vehicles under moderate

traffic environment

RoarNet-3D
[179] KITTI 74.29% 20 ms NVIDIA TitanX

Vehicles mainly at long
distance under moderate

traffic environment

4.1. Feature Extraction Methods

Classical feature extraction methods for Lidar mainly refer to extracting various types
of features by processing point clouds, such as lines extracted by Hough Transform, planes
fitted by RANSAC. In the field of vehicle detection, vehicle geometric feature and vehicle
motion feature are usually extracted from point clouds to achieve vehicle detection.

4.1.1. Vehicle Geometric Feature

Vehicles show various types of geometric features in point clouds, such as planar,
shape, and profile. Therefore, vehicle detection can be realized by extracting geometric
features in Lidar point clouds.

In [193], a 3D occupancy grid map was first constructed through octree, then a list
of the grids whose states were inconsistent between the current and previous scan was
maintained as potential areas of objects, finally, the shape ratio feature of potential areas
was extracted to achieve vehicle detection. However, this extracted shape feature was not
robust for occluded vehicles. In [194], a Bayesian approach for data reduction based on
spatial filtering is proposed that enables detection of vehicles partly occluded by natural
forest, the filtering approach was based on a combination of several geometric features
including planar surface, local convex regions and rectangular shadows, finally features
were combined into maximum likelihood classification scheme to achieve vehicle detection.
In [195], profile features were first extracted under polar space as the input of the subse-
quent detection scheme, then an online unsupervised detection algorithm was designed
based on Gaussian Mixture Model and Motion Compensation to achieve vehicle detec-
tion. In [196], vehicle shape features were extracted approximately through non-uniform
rational B-splines (NURBS) surfaces to achieve vehicle detection and tracking. In [197],
the shape features of vehicles were predefined by constructing a CAD point clouds model
of vehicles, then point clouds registration was carried out to realize vehicle detection and
tracking. Results showed very good performance in detecting and tracking single vehicles
without occlusions.
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4.1.2. Vehicle Motion Feature

The movement of vehicles in the environment will cause inconsistencies in Lidar
point clouds of different frames. Thus, positions that may contain moving vehicles can be
generated by extracting motion features in point clouds.

In [198], vehicle motion features were extracted from the continuous motion displace-
ment, and are represented by rectangular geometric information on the 2D grid map. The
algorithm was implemented on “Junior” which won second place in the Urban Grand
Challenge in 2007. In [199], motion features were extracted by estimating Lidar flow from
two consecutive point clouds, then FCN was trained to generate 3D motion vectors of
moving vehicles to achieve vehicle detection as well as motion estimation.

Considering that it is a great challenge to detect vehicles that are far from Lidar
because of the sparse point clouds. In [200], a dynamic vehicle detection scheme based on a
likelihood-field-based model with coherent point drift (CPD) is proposed to achieve vehicle
detection. Firstly, dynamic objects were detected through an adaptive threshold based on
distance and grid angular resolution, then vehicle pose was estimated through CPD, finally,
vehicle states were updated by Bayesian filter. Results showed that the proposed algorithm
especially increased the accuracy in the distance of 40~80 m.

4.2. Projection Methods

Since vehicle detection in 2D vision images is a hot topic due to the various kinds of
methods as well as the high availability of datasets, projection methods are put forward
to transform Lidar point clouds into 2D images with depth and attitude information that
can be processed via 2D detection methods. Related approaches can be divided into three
categories including spherical projection, front-view projection and bird-eye projection on
the basis of the representation of Lidar point clouds data.

4.2.1. Spherical Projection

Spherical projection refers to projecting point clouds to a spherical coordinate system.
The information contained in each point includes azimuth, elevation and distance from the
Lidar scanning center.

Related work mainly focused on deep learning methods after projecting point clouds
to the spherical image. In [201], “SqueezeSeg” was trained based on CNN to achieve
detection after completing the point cloud projection. In [202], “PointSeg” was trained also
based on CNN.

4.2.2. Front-View Projection

Front-view projection refers to projecting the point clouds into the camera plane
(similar to the depth image generated by a stereo camera). However, this kind of approach
would generate numerous empty pixels at long-distance from Lidar due to the sparse
distribution of point clouds. Thus in [203], a high-resolution image was constructed through
a bilateral filter, results showed that the point cloud density of vehicles, pedestrians, etc., in
the image had increased to a certain extent to optimize the overall resolution.

In [204], after completing the front-view projection, FCNN was performed for vehicle
detection. In [205], ROIs were generated based on the DBSCAN algorithm, and ConvNet
was trained for verification. Since the characteristics of the point cloud information for
variant types of objects are different due to the measurement distance, angle and material of
the object, in [206], Lidar echo intensity information was fused on the basis of [205] to firstly
generate “sparse reflection map” (SRM), and points were connected into non-coincident
triangles to establish “dense reflection map” (DRM), finally “ConvNet” was trained for
faster vehicle detection compared with [205].

Some scholars also perform detection by fusing camera data. In [207], a non-gradient
optimizer was carried out to fuse camera Lidar data, project Lidar point cloud data into a
depth map, and establish Faster R-CNN for target detection, in [208], point clouds were



Sensors 2021, 21, 1354 24 of 46

projected into plane images and echo Intensity map, ROIs were generated from the camera
image, and then the active learning network is trained for verification.

4.2.3. Bird-Eye Projection

Bird-eye projection refers to projecting the point clouds into the top-view plane that is
able to directly provide size and position information of objects to be detected. The bird-eye
view can be further divided into three types [211]: height map generated by computing
the maximum height of the points in each cell, intensity map generated according to the
reflectance value of the point which has the maximum height in each cell, density map
generated based on the number of points in each cell.

Deep learning methods are still popular in current research. In [209], multiple height
maps, intensity maps and density maps were established, vehicle detection was then
implemented based on CNN. Similar approaches included “Birdnet” in [210], “Complex-
YOLO” in [211,212].

In [213] a three-channel bird’s eye view was established based on the maximum,
median, and minimum height values of all points in the grid, which enable the network
used for RGB image detection to be transferred for Lidar detection, and then RPN is used to
realize vehicle detection with posture information. In [214], a heightmap and an intensity
map were generated only considering the point clouds with maximum height in each grid,
and “YOLO-3D” was proposed for vehicle detection. In [215], Lidar bird’s-eye view was
fused with camera image, and then CNN with “coefficient non-uniform pooling layer” was
put forward for vehicle detection. In [216], a density map was first generated to predefine
a calculation area, a “PIXOR” network was then designed based on CNN for vehicle
detection. In [217], a series of height maps through slices was generated, and features were
extracted through RPN with classifies based on FCNN.

In addition to deep learning methods, in [218] stereo vision and 2D Lidar were
integrated for vehicle detection. ROIs were generated based on bird’s-eye view established
from 2D Lidar with depth information, then the similarity measurement with loss function
evaluation of vehicle template is established for vehicle detection. In [219], point clouds
were directly projected to the bird’s-eye view, vehicles were detected based on the edge
and contour features, and the detection areas containing vehicles were trimmed according
to vehicle size information to achieve optimization.

4.3. Voxel Methods

The voxel method decomposed the environmental space into numerous voxels, and
points are allocated to the voxel grid at the corresponding position. In this way, objects to
be detected can be represented as 3D voxel grid with their shape and size information.

In [220], point cloud was voxelized and vehicles were detected based on CNN. In [221],
a “3D-FCN” was established for vehicle detection. The main idea was to take down
sampling of voxel characteristics at 1/8 step length, and then deconvolution with phase
synchronization length. In [222], monocular camera and Lidar was combined for vehicle
detection. Firstly, the candidate regions were extracted from camera images based on “2D-
CNN”, then the voxels in candidate area were matched and scored with the established
three vehicle point cloud models (SUV, car and van), which were finally verified by CNN.

A more typical voxel method via neural network was “Voxelnet” designed in [223].
The main idea of this method was the designed “VFE layer” to characterize each Voxel,
then objects could be detected through RPN. In [224], the “Second” network was designed
based on “Voxelnet” to improve the processing capacity for sparse voxel grid, and a “angle
loss regression equation” was designed to improve the detection performance of attitude
angle. Subsequent improvements based on “Voxelnet” include “Part-A2” in [225] and
“MVX-NET” in [226].

In addition to the deep learning method adopted by most researchers, in [227], a
3D occupancy grid map was generated after voxelization, and vehicles were detected by
particle filter algorithm.



Sensors 2021, 21, 1354 25 of 46

4.4. Point-Nets Methods

Compared with the projection method and the voxel method, point–nets method does
not need to preprocess the point clouds. It directly regards the raw point clouds data as
input to vehicle detection system with fewer points information loss, such approaches
usually depend on an end-to-end deep-learning framework to process point clouds data.

The point-nets method was first proposed in [228]. The author designed a “PointNet”
neural network to directly detect targets with the original point cloud of Lidar as input.
The author then designed “PointNet++” [229] on the basis of “PointNet” to improve
its ability of fine-grained identification (object subclass identification) to make it better
applied in complex scenarios. It was pointed out in [230] that point clouds from Lidar
were irregular and disordered, therefore applying direct convolution processing would
cause shape information loss. Thus, an “X transformation” was first conducted for the
processing of point clouds, and then “PointCNN” was established for vehicle detection.
Other subsequent point-nets methods included “IPOD” in [231], “PointPillars” in [232]
and “PointRCNN” in [233].

A fusion method of monocular camera and Lidar with limitation point cloud pro-
cessing area was proposed in [179]. ROIs were first generated through the “RoarNet-2D”
network. Then, the “RoarNet-3D” network was designed to detect vehicles from candidate
areas and obtain the final attitude information of vehicles in order to lower the computing
cost of point cloud processing.

5. Vehicle Detection: Radar-Based Methods

Radar has a wide range of applications in vehicle detection with higher cost perfor-
mance, with the development of communication technology, automotive radar applications
have played an increasingly critical role in intelligent transport system since it can obtain
numerous types of information of the object (e.g., distance, relative speed, phase informa-
tion), and is not affected by weather conditions. Therefore, co-existence between radars
and UGVs has become more and more important. The commonly used radars for UGVs are
millimeter-wave radar and ultrasonic radar (sonar). Both have similar working principles,
therefore, this article only reviews the vehicle detection methods using millimeter-wave
radar (MMW). The radar-based vehicle detection methods mainly include registration
methods, learning-based methods, end-to-end methods and advanced radar-based imaging
methods. Related works are summarized in Table 13.

Table 13. Research of vehicle detection with Radar.

Methods Literature Pros Cons

Registration
Methods [189,234–237] Strong robustness to weather and

illumination condition

Low detection accuracy under complex
environment;

Additional preparations such as coordinate
transformation need to be carried out

Learning-Based
Methods [238–241] High detection accuracy

Long training period;
Low real-time performance under a complex

environment.

End-to-End
Methods [242–244] High real-time performance;

Simple algorithm framework
Long training period;
Poor interpretability

Advanced
radar-based

Imaging Methods
[245–251]

Environmental information can be
obtained intuitively under different
illumination and weather condition

How to achieving better compatibility with
UGVs still remains challenges;

Resolution and real-time performance still need
to be improved
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5.1. Registration Methods

The essence of the registration method is the sensor fusion vehicle detection framework
of MMW and vision sensors to achieve a better balance between detection accuracy and
real-time performance. The vehicle position and speed information are firstly derived from
MMW to initially generate ROIs, which are then registered by coordinate transformation
with images to achieve joint vehicle detection.

In [234], MMW and monocular camera were fused for vehicle detection, MMW data
were first transformed to the camera plane to jointly generate ROIs, and then verified
based on DPM. In [235], vehicle contour features were used to verify ROIs after registration.
In [189], MMW was used to extract feature points of vehicles, they were then transformed to
the camera plane to jointly generate ROIs, and finally verified based on YOLOv2. In [236],
the algorithm framework was similar to that of [189], however, ROIs were verified by
HOG-SVM.

In [237], a stereo camera was equipped to detect side and nearby vehicles, while MMW
was used to detect distant and longitudinal vehicles. The vehicle’s attitude and relative
speed were estimated by MMW, and feature points were projected to the camera plane to
realize jointly multi-directional vehicle detection.

5.2. Learning-Based Methods

Learning-based methods utilized for radar mainly include LSTM and Random Forest,
this approach requires the establishment of a training set. Usually, the training data are
clustered and calibrated first, then features are extracted and converted into feature vectors
to input into the classifier.

In addition to vehicles, this method can also detect other road users such as pedestrians
and bicycles. In [238,239], radar data were clustered based on the DBSCAN method, and
results of random forest and LSTM in vehicle detection were compared. In [240], ROIs were
extracted based on radar echo intensity, and LSTM was used to classify and track targets.

The above works all cluster radar data and convert it into feature vectors, then deter-
mines which type of target it belongs to (vehicles, pedestrians, bicycles, etc.), however, a
different approach was carried out in [241]. After clustering the data, it directly judged the
category based on the characteristics of the clustering points, and then LSTM was utilized
to determine the correctness of classification (two-category classification); compared with
traditional classification methods, the accuracy of this approach is improved by about 2%.

5.3. End-to-End Methods

The end-to-end methods directly use radar data as input to train a neural network for
vehicle detection, whose principle is similar to that of “point-net methods” introduced in
the above section. Due to the similarities between radar data and Lidar data, the design of
the network often relies on the Lidar end-to-end framework.

In [242], radar data were directly used as input to PointNet++ for vehicle detection,
while “PointNets” was used in [243]. In [244], “RTCnet” was established based on CNN
with the input of the vehicle distance, azimuth and speed information collected by radar
for vehicle detection.

5.4. Advanced Radar-Based Imaging Methods

The aforementioned vehicle detection methods are all based on the principle of radar
echo to obtain distance, velocity and other types of information to achieve vehicle detection,
however, the detected vehicles cannot be embodied or visualized. If the scene within
UGVs’ detection range can be imaged by radar, the accuracy and scalability of the detection
algorithm can be improved, and more complete environmental information can be obtained
under different weather conditions. Advanced radar-based imaging methods has become a
rapidly emerging technique, and it has great potential for improving the stability of UGVs.

In general, advanced radar-based imaging technology is usually applied in the field
of aerospace. However, some related research is still carried out among vehicle detection
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in UGVs, and research about vehicle detection through radar-based imaging technology is
summarized below.

High-resolution radar imaging can be achieved through SAR imaging technology.
Using a suitable algorithm to generate images from radar data is the basis of applying ad-
vanced radar imaging technology to UGVs, algorithms about SAR imaging were reviewed
in [245]. However, SAR data are inherently affected by speckle noise, methods related to
reducing speckle noise for full polarimetric SAR image were briefly reviewed in [246]. In
addition, real-time performance of SAR imaging is also crucial for the efficient operation
of UGVs, SAR sparse imaging technologies that will help improve real-time performance
were reviewed in [247].

In [248], a squint SAR imaging model was proposed via the backward projection
imaging algorithm to perform high-resolution imaging for vehicle detection. In [249],
Maximally Stable Extremal Region (MSER) methods were carried out to generate ROIs
of vehicles, and a morphological filter was utilized to redefine ROIs; finally, the width-to-
height ratio was used for verification to achieve vehicle detection in a parking lot. The
same work was also carried out in [250], where the spectral residual was utilized to judge
the postures of the vehicles, and vehicle detection was realized by PCA with SVM.

To make a better balance between image resolution and real-time performance, in [251],
a hierarchical high-resolution imaging algorithm for FMCW automotive radar via MIMO-
SAR imaging technique was designed for improving real-time performance while process
imaging resolution, the algorithm was implemented in a UGV for roadside vehicle detection
with a run time of 1.17 s/fps.

6. Vehicle Detection: Infrared-Based Methods

Commonly used vision-based vehicle detection algorithms are extremely susceptible
to illumination conditions, the efficiency of the algorithm will greatly reduce especially at
nighttime or under bad weather conditions. Therefore, the implementation of an infrared
camera is crucial to compensate for vehicle detection under poor illumination conditions.

Some researchers used vision-based methods for vehicle detection in infrared images.
In [252], edge features of vehicles in infrared images were extracted for vehicle detection.
In [253], edge features were also extracted to generate ROIs, then, a vehicle edge template
was established to achieve verification, the algorithm was embedded into FPGA and the
running time reached 40 ms/fps. In [254], a polar coordinate histogram was established
to extract vehicle features based on the polarization characteristics of vehicles in infrared
images, with SVM implemented to classification. In [255], HOG was carried out to extract
vehicle features, with supervised locality-preserving projections (SLPP) method to reduce
dimensionality, and finally, an extreme learning machine was trained for classification.

It should be noted that the resolution of the infrared image is relatively low, conse-
quently, accuracy feature extraction is difficult, some researchers first enhanced the contrast
of infrared images in order to achieve better results. In [256], the contrast of infrared
images was first enhanced, then ROIs were generated based on image saliency and average
gradient method, finally, the confidence level was assessed to verify the ROIs. In [159],
the contrast between the vehicle and the background was enhanced through top-hat trans-
formation and bottom hat transformation, then vehicle features are extracted through
the Haar method, and ROIs were generated through the improved maximum entropy
segmentation algorithm which was finally verified by vehicle prior knowledge (vehicle
size and driving position).

Two or more infrared cameras can also be equipped to form an “infrared stereo rig”
to obtain depth information. In [51], two infrared cameras were used to form a stereo
infrared vision, and a disparity map was generated for vehicle detection under different
weather conditions.

With the development of artificial intelligence technology, some researchers have
applied the deep learning framework for vehicle detection in infrared images. In [257],
improved YOLOv3 was put forward for vehicle detection in infrared images. In [258], SSD



Sensors 2021, 21, 1354 28 of 46

was used with the adding of the “incomplete window” module to optimize the structure of
datasets to solve the problem of vehicle missed detection.

7. Vehicle Detection: Event-Based Methods

Compared with traditional cameras, millisecond-level time resolution for event cam-
eras makes it have powerful potential for detecting dynamic objects. Due to the low
resolution of sensors, event cameras are currently used to detect small-sized targets. For
example, in [259], a robot was used as a platform to detect small balls based on clustering
and polar coordinate HOG transformation, in [260], a hierarchical model “HOTS” was
established to recognize dynamic cards and faces. The application of event cameras for
UGVs mainly focuses on SLAM and 3D reconstruction, and the generated 3D maps and
models can intuitively represent the vehicles to be detected in the environment, but it is
difficult to extract information from the maps or reconstructed models for subsequent
planning and decision-making.

There has been little related research carried out with event cameras for vehicle
detection. In [261], a time average histogram “HATS” was presented to extract vehicle
features, with machine learning methods to achieve detection and classification. In [262],
visual camera and event camera were fused, and an “SNN” was built based on CNN for
vehicle detection under different illumination conditions. Although there are few relevant
studies, it should be noted that event cameras have great potential for development in
detecting moving vehicles.

8. Vehicle Detection: Sensor-Fusion Methods

Compared with separate sensors, vehicle detection with multi-sensor fusion can
fuse the characteristics of different sensors to achieve higher accuracy, wider application
range and stronger robustness, nevertheless, it will increase the complexity of models and
algorithms, computing time, and the cost of sensors implemented on UGVs.

Sensor fusion needs to solve two main problems: Which sensors are needed to be
fused? How does one distribute the work of different sensors? There are no conventional
answers to these questions. Generally speaking, sensor fusion also needs to consider
numerous details such as sensors calibration, sensors fusion level and fusion network.
Here, we only summarize recent sensor-fusion-based methods for vehicle detection includ-
ing Radar-Vision fusion and Lidar-Vision fusion methods, for detailed architecture and
methods about sensor fusion can refer to [263]. Related works are summarized in Table 14.

Table 14. Summary of sensor-fusion based methods for vehicle detection.

Fused
Sensors Literature Works

for Sensors Fusion Characteristic

Radar-
Vision

[189,234,235,237,264]
ROIs are generated based on radar

and camera respectively and
then matched.

Various information of detected target can be obtained.
Strong robustness to weather and

illumination condition.
Low hardware cost [265].

Widely used in vehicle detection.[118,150,266–268]
ROIs are generated by radar first

and then verified by
vision methods.

Lidar-
Vision

[207,218,269]
Lidar data are projected into a

specific view, then fused with ROIs
generated by vision methods.

Various information of detected target can be obtained.
Strong robustness to illumination condition.

High hardware cost and high computing cost.[270]
Lidar data are segmented with edge
feature extracted from vision image

to achieve fused detection.

[179] Deep-Learning based NN are
trained for both Lidar and vision.
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9. Simulation Platform for Vehicle Detection

When a new algorithm is developed, it is usually difficult to directly verify its perfor-
mance in UGVs for real scenarios. Since the instability and uncertainty of newly develop
algorithm must be considered, which may cause danger and accident. Therefore, before
testing the algorithm in a real scenario, preliminary tests in a simulation platform should
be conducted to quickly find out the problems as well as improve the algorithm. The
constructed simulated environment can help to shorten the development cycle, reducing
development cost, increasing the safety of the test and constructing a variety of scenarios
even under extreme conditions for testing in a simulated driving environment.

Testing in the simulation platform mainly includes three procedures. Firstly, a simu-
lation scene should be set up, in which vehicles, pedestrians, buildings and roads in the
real world are modeled on the platform including their appearance and dynamics model.
Secondly, a sensor model should be established to convert the scene constructed into the
data type received by the sensor. Finally, the algorithm is carried out for simulated tests.
Here we introduce the commonly used simulation platforms in detail, for information
about more comprehensive simulation platform can refer to Table 15.

Table 15. Summary of simulation platform for UGVs.

Simulation
Platform Current Version License Operating

System Usage Support
Language

AirSim (Microsoft) June. 2018
vl .2

Open source
(MTI License) Linux, Windows

Drone and car
simulation

3D visual environment
HIL controller support

C++, C#, python,
and java

ASM Traffic
(dSpace) 2017 Commercial N/A

DJL traffic environment
simulation for ADAS

controllers
N/A

CARLA Jul. 2018
v0.9.0

Open source
(MTI License)

Linux
(Ubuntu 16.04 or

later)

3D urban environment
Camera and sensor

simulation
Python

CarMaker
(IPG Automotive) N/A

Commercial
Free trial on

demand
N/A Virtual testing driving N/A

DYNA4
(TESIS)

2017
V2.8 Commercial Windows

Modular simulation SIL
and SIL functional
testing report and

analysis generation

C/C++,
Matlab/Simulink

Gazebo for ROS Jan. 2018
v9.0.0

Open source
(Apache 2.0)

Linux, Mac OS X,
Windows

Robot dynamics
simulation

3D visual sensor data
generation

C++

(Simulator of)
HankVirtual Env.

Lab
N/A Access on

demand

N/A
(Hardware
platform)

Bicycling and pedestrian
simulator N/A

Legion for Aimsun N/A Commercial (Aimsun Plug-in)

Integrated pedestrian
and traffic simulation for
traffic engineering and

planning

N/A

OpenDaVINCI
and OpenDLV

Sep. 2017
v4.16.0

Open source
(GPLv2,
LGPLv2)

POSIX-com
patible OS,
Windows

Environment
visualization sensor
model Autonomous

driving

C++, Python
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Table 15. Cont.

Simulation
Platform Current Version License Operating

System Usage Support
Language

PELOPS
(fka) 2011 Commercial Linux

Traffic simulation
combining

sub-microscopic vehicle
model and microscopic

traffic model

N/A

PreScan
(Tass)

2018
v8.5

Commercial
Free trial on

demand
Windows

Sensor simulation for
ADAS

HIL driving simulation
Matlab/Simulink

PTV Vissim Vl0.0
Commercial

Free trial
available

Windows

Road junction geometry
Public transport

simulation
Active traffic
management

N/A

Racer Aug. 2014
V0.9.0

Free for
Non-commercial

use

Linux, Mac OS X,
Windows

3D car racing simulation
High DOF car modeling C++

SCANeR Studio
(OKTAL)

Oct. 2017
vl.7 Commercial Windows

Traffic scenario
simulation

Vehicle dynamics
Autonomous driving

C++,
Matlab/
Simulink

Sim IV(VTI) N/A Commercial
N/A

(Hardware
platform)

2-Axe driving simulator
facility with 210◦

forward FOV
N/A

Speed Dreams Dec. 2015
v2.2 Beta

Open source
(GPL)

Linux, Mac OS X,
Windows (32-bit)

3D car racing erg
simulation

(TORCS alternative)
Simu V3 physics engine

C/C++

SUMO Dec. 2017
v0.32.0

Open source
(EPLv2) Linux, Windows

Urban traffic flow
simulation
Vehicular

communication

C++

TORCS Mar. 2017
vl.3.7

Open source
(GPLv2)

Linux, FreeBSD,
Mac OS X, Open

Solaris,
Windows

3D car racing simulation
Programmable AI for

racing
C/C++

VDrift Oct. 2014 Open source
(GPLv2)

Linux, FreeBSD,
Mac OS X,
Windows

3D car racing simulation
Driving physics C++

V-Rep
(Coppelia)

Feb.2018
v3.5.0

Commercial
Free educational
license possible

Linux, Mac OS X,
Windows

Virtual robot simulator
Robotic dynamics and

kinematics
Sensor simulation

C/C++, python,
Matlab,
Octave,

Java and Lua

VTD
(Vires) May. 2018 Commercial N/A

Driving simulation
tool-chain

Free data standards
N/A

9.1. Gazebo

Gazebo [271] is an open-source simulation platform mainly for robots based on the
Robot Operating System (ROS). There are numerous interfaces between Gazebo and 3D
modeling software, such as Solidworks and ProE, which facilitates the import of 3D models
for UGVs. In the aspect of scene construction, a simulation environment can be built by
placing geometry, but it is not suitable for building a complex driving environment. Sensors
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including Lidar, camera, GPS and IMU can be realized in Gazebo. In addition, the dynamic
model of two to six-wheeled platform can be realized through a “differential drive plug-in”.
The gazebo is usually used with Rviz to build a joint simulation environment, and then
users can visualize the sensor detection results and platform movement process in Rviz. It
should be noted Gazebo is mainly used for robotics and small UGVs, thus it is not suitable
for simulation and verification of large outdoor UGVs.

9.2. Autoware

Autoware [272] is a simulation platform developed by a team from Nagoya Univer-
sity for autonomous driving basing on ROS. Works including SLAM, localization, object
detection (vehicle, pedestrian, traffic light, etc.), path planning decision and motion control
simulation can be realized in Autoware. This simulation platform integrates many main-
stream algorithms such as YOLO, SSD and Euclidean clustering, which can be directly used,
in addition, algorithms designed by users can also be verified based on this simulation
platform. Last but not least, data collected from the real environment by the sensor can
also be processed, and carry out the testing of various algorithms.

9.3. Udacity

Udacity [273] is developed based on the Unity3D engine, which mainly conducts
simulation test for the deep learning algorithm for UGVs. This simulation platform is
similar to a racing game, including training mode and automatic mode. In the training
mode, users can manually control the vehicle to record data and train the designed deep
learning model (the model can be built through C++ and python). Then, the trained model
can be used to control the vehicle running in the automatic mode to evaluate the model.

9.4. Carla

Carla [274] is a simulation platform developed by Intel LABS and Toyota Research
Institute for UGVs simulation in urban environments based on Unreal Engine 4. This
platform is built with a number of urban scenes, including the numerous types of road,
pedestrian and vehicle models, different weather conditions can also be configured, such
as rain, snow, fog, noon and sunset, to test the effect of the algorithm under different
conditions. Carla has powerful functions and good rendering effects, but it needs large
running memory and high requirements for computer configuration.

9.5. AirSim

AirSim [275] is developed by Microsoft based on Unreal Engine 4 for UGVs and UAVs.
Simulation scenes including city, countryside with better rendering effect is constructed
in this platform. Moreover, AirSim has many types of interfaces that can be combined
with C++, Python, Java and other programming languages. In particular, it performs well
performance in verifying artificial intelligence methods such as machine learning and deep
learning algorithm.

9.6. Apollo

Apollo [276] is developed by Baidu Company. It is equipped with algorithms in
aspects of perception, planning, decision-making, etc., the data collected by users from
sensors can also be tested through algorithms embed in Apollo. This platform is supported
by cloud technology, thus high computing efficiency can be achieved by virtue of the
powerful cloud computing capability.

9.7. Deepdrive

Deepdrive [277] is a simulation platform developed by The University of Berkeley,
based on Unreal Engine. It also includes a variety of built driving scenarios, mainly for
verifying related algorithms of deep learning.
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10. Datasets for Vehicle Detection

Datasets are of great significance for the validation of designed algorithms. Datasets
mainly include environmental information including vehicles, pedestrians, buildings, and
more, collected by different sensors equipped on the platform under various driving condi-
tions. With the development of sensors and computer technology, more and more research
institutions share their collected and calibrated datasets to the network to achieve open source.
Datasets related to vehicle detection technology are summarized in Table 16 below.

Table 16. Summary of datasets for UGVs.

Dataset Environment Sensors Format and Capacity Content

Apollo
Expressway under

various weather
conditions

3 monocular color
cameras

Lidar with 32 layers;
Velodyne-64 Lidar;
real time kinematic

GPS + IMU

ca 270 GB in total (172 GB
available);

jpg or png: image;
txt: label;

bin: Velodyne;
HD F5: image; curvature

Raw data (train-
ing/validation/motation/

test sets);
annotations/label;

benchmark; source code;
demo video

BDDV Various road/weather/
lighting conditions

Monocular color
camera;

sensors from a smart
phone: GPS/IMU;

gyroscope;
magnetometer

+100;000 videos; 40 s each
(+1.8 TB);

mov: video
jpg: image;
Json: label;

other formats to be found
by checking the dataset

Raw data (training/
validation/test sets);

annotations: 2D bounding
box; lane marking; drivable
area; pixel/instance-level

segmentation

Ford Downtown; loop
closure; campus

Velodyne-64 Lidar;
omnidirectional

camera;
2 Riegl LMS-Q120
Lidars; Applanix

+Trimble GPS;
Xsens consumer IMU

ca 100 GB;
mat: Velodyne scan;

ppm: image;
log: sensor data and

timestamp;
pcap: Velodyne stream;

mat: calibration;

Raw data;
Matlab and C code

JAAD

Mainly urban; a few
rural roads; most

daytime; occasional
night;

various weather
conditions

Monocular color
camera

347 videos; 5–15 s each;
mp4; seq: video;
vbb/tsv: textual

annotation;
xml: bounding box

annotation

Videos;
textual and bounding box

annotations;
bash script for splitting

videos

Karlsruhe
labeled objects Urban; daylight Monocular grayscale

camera

631.2 MB (ca 1800 images
with labels);
png: image;
mat: label

Images;
object labels;

object orientation

Karlsruhe stereo Urban; rural; daylight
Stereo grayscale

camera;
GPS + IMU

20 sequences (0.2–1.4 GB
each);

png: image;
txt: GPS + IMU data

Raw data;
camera calibration

KITTI Urban; rural; highway

2 monocular grayscale
cameras; 2 monocular

color cameras;
Velodyne-64 Lidar;

GPS + IMU

180 GB;
png: image;

txt: velodyne and GPS +
IMU data; calibration;

xml: bounding box label

Raw data;
object annotation (3D

bounding box);
calibration; various

benchmarks: Matlab and
C++ code
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Table 16. Cont.

Dataset Environment Sensors Format and Capacity Content

Malaga Urban; highway;
loop closure

Stereo color camera;
3 Hokuyo UTM-30LX

laser scanners;
2 Sick Lidars;
GPS + IMU

15 sequences (+70 GB);
txt: raw laser scan;

GPS/IMU data; camera
calibration;
jpg: image;

rawlog: own format binary;
kml: google earth file to

represent path

Raw data;
C++ example code for
parsing raw log files;

demo videos;
support for posting public

messages by users

MVD
Various

road/weather/light
conditions

Cameras of different
devices: mobile phones;
tablets; action cameras;

professional
capturing rigs

25;000 images (25.6 GB);
jpg; png: image

Raw data
(training/validation/test
sets);object annotations

Stanford Urban; campus;
intersections

Velodyne-64 Lidar;
Applanix (GPS/IMU)

33 files (5.72 GB);
tm: Velodyne and

Applanix data (own
format)

Raw data;
background data without

objects (training and
testing sets);
object labels;

code in ROS package

Udacity Sunny; overcast;
daylight

Monocular color
camera;

Velodyne-32 Lidar;
GPS + IMU

223 GB (10 h); png or jpg:
image;

log: GPS and vehicle
motion;

csv: label;
ROSBAG

Videos;
labels: vehicle; pedestrian;
traffic lights; open source

code;
tools for ROSBAG files

CityScapes

Urban; daytime; good
and medium weather

condition; different
seasons

Stereo color camera;
GPS + IMU

16 cities (12.7 GB);
png: image;
txt: labels

Raw data;
bounding box annotations

of people;
images augmented with

fog and rain;
25,000 annotated images

H3d-HRI-US
Urban;

various traffic
condition

3 monocular color
cameras;

Velodyne-64 Lidar;
GPS + IMU

csv: yaw; speed; GPS +
IMU;

txt: labels
ply: point clouds

Raw data;
bounding box label for

only
3D detection and tracking

nuScens

Urban;
various weather

condition;
various traffic

condition

Lidar;
6 monocular color

cameras;
5 radars;

GPS + IMU

1000 scenes of driving;
customized data format

containing various sensor
data

Raw data;
detailed map information;

3D bounding boxes
annotation for 23 classes

11. Summary and Prospect

UGVs have profound application prospects in both civil and military fields, thus have
gradually become the focus of research in various countries. With the progress of the
social economy, science and technology, UGV technology has made rapid progress. This
paper first introduces the sensors commonly used in UGVs. Moreover, research of vehicle
detection in the field of environmental perception is summarized for different sensors.
Then, simulation platforms that can be applied to UGVs are described to facilitate the
simulation test of the algorithm. Finally, datasets of UGVs are listed to verify the actual
effect of the algorithm. The future research emphasis of vehicle detection technology for
UGVs are forecasted on the following aspects.
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11.1. Sensor-Based Anomaly Detection

The performance of sensors plays an important role in the efficiency and safe operation
of UGVs. High accuracy and reliability sensors are very important for the construction
of an environmental perception algorithm. If sensors are damaged during the runtime of
UGVs no matter due to internal factors or external attacks, it will have an extremely adverse
impact, even cause accidents, resulting in harming the economy and endangering lives.

Not only in the field of vehicle detection, as long as UGVs are in running status,
but it is also necessary to carry out real-time monitor of sensor anomalies. Abnormal
detection can be realized by monitoring the change range of sensor data or training the
neural network [263], in addition, decision-making scheme should be further optimized
to ensure that when any important sensor fails, UGVs can dock in the nearby safe area as
soon as possible without affecting the operation of other road users. Therefore, how to
efficiently design the sensor anomaly detection block and relevant decision-making scheme
will be a focus of future research.

11.2. Multi-Mode Sensor Fusion for Vehicle Detection

In general, the application scenarios of vehicle detection based on a single sensor are
limited, in order to make the algorithm applicable to more driving scenes, it is necessary
to fuse detection methods of different sensors to realize the complementary advantages
among each sensor. Sensor fusion will increase the complexity of the algorithm, and for
simple driving scenes, high-precision detection can often be achieved with only a single
sensor, in this case, sensor fusion methods will waste resources and affect the computing
efficiency. Therefore, for different scenarios, different sensor detection schemes should be
adopted, and sensor modes should be switched based on decision trees or other methods
according to different working conditions so as to maximize resource utilization. Therefore,
multi-mode sensor fusion for vehicle detection will be the focus of future research.

11.3. Special Vehicle Inspection

At present, most of the research works on vehicle detection focuses on the detection
and identification of traditional vehicles, while there is little research devoted to special
vehicle detection. In the civil field, the proper detection of ambulances, fire engines, police
vehicles and other special vehicles is crucial to the rational decision for UGVs. In the field
of military, there are various types and styles of ground vehicles, and the correct detection
of different types of vehicles can promote the information acquisition of the battlefield and
the correct issuance of operational instructions for UGVs. Therefore, how to construct the
feature database and datasets to realize the efficient detection of special vehicles will be the
focus of future research.

11.4. Vehicle Detection under High Speed

The high-speed running of UGVs is an important guarantee for its high operating
efficiency. If the driving speed of the vehicle is increased, it is highly possible that the
algorithm will not be able to process the environmental information in a good real-time
performance, which will lead to wrong environmental perception and affect the security
of UGVs. If the speed of the vehicle is slow, the efficiency of reaching the target position
and achieving the expected goal will be reduced. Therefore, how to improve the real-time
performance of the algorithm and ensure that UGVs can realize vehicle detection in the
process of the high-speed driving condition is significant, which will become the research
focus in the future.
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