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The IoT era observes the increasing demand for data to support various applications and services. The Mobile Crowdsensing
(MCS) system then emerged. By utilizing the hybrid intelligence of humans and sensors, it is significantly beneficial to keep
collecting high-quality sensing data for all kinds of IoT applications, such as environmental monitoring, intelligent healthcare
services, and traffic management. However, the service quality of MCS systems relies on a dedicated designed task allocation
framework, which needs to consider the participant resource bottleneck and system utility at the same time. Recent studies tend
to use a different solution to solve the two challenges. The incentive mechanism is for resolving the participant shortage
problem, and task assignment methods are studied to find the best match of participants and system utility goal of MCS. Thus,
existing task allocation frameworks fail to consider the participant’s expectations deeply. We propose a semiopportunistic
concept-based solution to overcome this issue. Similar to the “shared mobility” concept, our proposed task allocation framework
can offer the participants routing advice without disturbing their original travel plan. The participant can accomplish the
sensing request on his route. We further consider the system constraints to determine a subgroup of participants that can obtain
the utility optimization goal. Specifically, we use the Graph Attention Network (GAT) to produce the target sensing area’s
virtual representation and provide the participant with a payoff-maximized route. Such a method makes our solution adapt to
most of MCS scenarios’ conditions instead of using fixed system settings. Then, a reinforcement learning- (RL-) based task
assignment is adopted, which can help the MCS system towards better performance improvements while support different
utility functions. The simulation results on various conditions demonstrate the superior performance of the proposed solution.

1. Introduction

The Mobile Crowdsensing (MCS) paradigm, as a crucial part
of the current IoT ecosystem, is offering an integrated sensing
capability for various aspects of the human environment,
such as urban environmental monitoring [1], traffic manage-
ment [2], and intelligent healthcare applications [3]. Taking
advantage of the essential features of “crowdsourcing-based
sensing,” existing IoT applications and platforms have signif-
icantly relieved sensor resources’ poverty by extending the
sensing range and various sensing capabilities to support
more types of sensing tasks [4]. Compared to other sensing
data collection methods, we observe a significant difference

between traditional sensing service and MCS systems: rather
than deploying specified sensors for IoT applications with
expensive cost, MCS leverages the sensing capability of mul-
tiple types of mobile devices to build a “human-in-the-loop”
system [5]. In this system, each participant could be a poten-
tial worker to accomplish the sensing tasks. When they
accept the task request, the participants would follow the task
guidance and use the personal devices (like phones, vehicles,
or smart home devices) as the sensors to collect data and then
upload them to the MCS platform for further processing.
To implement this working process, MCS platforms need
to select participants and provide effective rewards to make
participants keep high-quality contributions. The task
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allocation problem is thus essential for encouraging people to
participate proactively in MCS tasks, while scheduling the
sensing resource and requests properly [6]. There are two
primary challenges that need to be solved for the MCS task
assignment problem: the first challenge is how to accumulate
and maintain a sufficient large participant pool, which refers
to the participant resource bottleneck [7]; the second one is
how to maximize the MCS platform benefits or satisfy task
requirements under limited system budget constraints,
which refers to the budget-utility contradiction [8].

In coping with the above challenges, most of the existing
works assume the MCS systems already have an accurate tra-
jectory prediction method based on sufficient mobility data
and valid incentive settings. Then, the “opportunistic mode”
or “participatory mode” is adopted as the primary method to
organize the participants and distribute the tasks. In the
opportunistic mode, the MCS platforms manage the sensing
request, predict each potential worker’s future trajectory, and
finally distribute the sensing request to the workers who have
similar routes. Thus, the workers can keep their daily routine
since the sensing tasks would not disturb their original plan.
Alternatively, the participatory mode means that the MCS
platform needs to schedule the participants and task requests;
meanwhile, the participants should follow the route to
accomplish the sensing request. When they accept the sens-
ing task, they might change their original daily routine or trip
plan to follow the planned route and collect sensing data.

However, both of the two modes have several limitations.
The opportunistic mode implies an essentially passive frame-
work; the performance of the MCS platform is bounded with
the conditions of participants’ historical mobility and trajec-
tory prediction method [9]. Furthermore, the MCS platform
needs enough time to accumulate participant trajectory
information to keep the prediction method working steadily.
Furthermore, the participants’ expected payoff in this mode
could be high since they need to expose more historical tra-
jectories to help the MCS platform understand their daily
routines for better task scheduling, which may significantly
raise privacy concerns [10]. Differently, the participatory
mode uses an active way to schedule the participants and
requests, but it may fail to satisfy the individual expectation
of participants, especially when they are not prepared to
change their original travel plan. Besides, it is notable that
although the opportunistic mode considers not disturbing
the participants’ daily routine, they fail to provide a route
to maximize the participants’ payoft. As we know, unsatisfac-
tory income can broadly impact the motivations to keep
uploading high-quality data [11].

We also observe that the above limitations could be exac-
erbated when MCS platforms exhibit increasing sensing
requests that uncertainly occur. For example, urban emer-
gencies in healthcare and traffic scheduling [12] often need
information for some targeted areas with no forecasts. These
timely sensing requests come in randomly with a very short
life cycle, and there is no explicit recurring need for collecting
data. The sensing resource can hardly be prepared well in
advance so that they enlarge the above contradiction between
the increasing demand of sensing requests and the limited
participant resources.
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To fill the research gap, we expect to use an effortless but
payoff-maximized route to motivate the participant to
accomplish sensing requests. Thus, in this work, we propose
a novel semiopportunistic task allocation design. Different
from the existing solution, we allow participants to send the
travel plan to the MCS platform, including the start and
end addresses and also time constraints. Our proposed
method would actively provide routing advice to maximize
each participant’s payoff. Compared to the task assignment
adopting the opportunistic or participatory mode, our pro-
posed semiopportunistic task allocation concept has a similar
property like payoff guarantee but less impact on the partic-
ipants’ original travel plan. For clarity, we give an example
scenario illustrated in Figure 1, and we assume that the MCS
platform has seven sensing requests and five potential partici-
pants with a fixed starting point and ending point. Then, our
proposed framework could provide routing advice with a
maximized payoft and finally select three participants as the
workers to achieve the MCS platform’s performance goal.

Therefore, our work contains two parts:

(1) Semiopportunistic sensing-based participant profiling
is aimed at resolving the participant resource bottle-
neck; we introduce the novel semiopportunistic sens-
ing concept into our solution, which could be
regarded as the combination of the opportunistic
mode and participatory mode. This semiopportunis-
tic sensing concept is inspired by the “shared mobil-
ity” idea [13]. The popularity of “shared mobility”
gives us a novel perspective to rethink the MCS par-
ticipant’s bottleneck challenge. We investigated that
pilot studies on real-world applications prove that
“shared mobility” offers several benefits for our envi-
ronmental concerns like reduced emissions and traf-
fic congestion. Meanwhile, participants of such
applications can share costs of travel or earn addi-
tional income by accepting several route changes
(14, 15]

Motivated by these successful attempts, our design is
aimed at adopting a similar perspective to accumulate poten-
tial participators and promote their willingness to accom-
plish the tasks. Specifically, unlike the opportunistic sensing
method using workers to complete tasks unintentionally,
we plan the participant’s trip with more dedicated sensing
request selection: our proposed method could insert the sens-
ing request to their trips with no harm to their origin-
destination stations and consider the individual time con-
straints but ensure the planned routes with a maximized
accumulated payoff.

(2) Reinforcement learning-based participant selection is
aimed at considering the system budget constraints
and maximizing the utility of MCS platforms; we
need to decide on a subgroup of participants to opti-
mize the system utility under different settings. Fur-
thermore, we expect the solution to automatically
adapt to large-scale participants and choose the opti-
mal mapping between tasks and participants under
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F1GURE 1: Framework overview.

different system constraints. Thus, we utilize the
Double Deep Q-Network (DDQN) algorithm from
the reinforcement learning theory to achieve an
improved trade-off between stability and reactivity.
It utilizes a goal-directed learning method to auto-
matically gather the information about current par-
ticipant profiles, system budget constraints, and
system utility status and investigate a task allocation
strategy by searching a group of participants that
can guarantee the optimization goal

The fundamental differences from existing research pro-
vide the main contribution of this paper.

First, to adapt to individual participant willingness, we draw
inspiration from the literature on the shared mobility concept to
generate a quasi-optimal route for each worker to guarantee the
maximum accumulated payoft on their daily trips.

Second, we employ Graph Attention Network techniques
from graph representation learning so that the MCS platform
can provide routing advice based on an improved under-
standing of the target sensing area. The separation of partic-
ipant profiling and participant selection in our proposed
framework is more tractable since the GAT method can
simultaneously fuse the sensing request representations and
the sensing area topology. Also, it can provide high-quality
input of the participant selection method to simplify the
searching process.

Finally, a participant selection strategy that utilizes the
DDQN algorithm from the reinforcement learning theory is
proposed to achieve an improved trade-off between stability
and reactivity. It is worth mentioning the reward settings in
DDQN-based participant selection decoupling the system
utility goal of MCS platforms and the selection strategy,
which suggests our participant selection method can adapt
to different requirements for various MCS platforms.

The rest of the paper is organized as follows. Section 2
introduces related works. The system model of our proposed
task allocation framework is presented in Section 3. Section 4
explains the implementation details. The simulations and
results are analyzed in Section 5. Finally, the conclusion is
presented in Section 6.

2. Related Works

Due to the rapid growth of big IoT data [16], the concept of
MCS has been proposed to facilitate innovation in IoT sens-

ing solutions. In various IoT scenarios like air pollution mon-
itoring systems, urban traffic control, and noise monitoring,
the MCS system offers these applications various types of
sensing capability by a novel combination between humans
and mobile devices. Furthermore, it can also provide plenty
of information for various virtual services like information
inferences [17], map services [18], and location-based social
networks [19]. Task allocation becomes the major challenge
to support such an MCS system since it directly affects the
task response rate, sensing data quality, and economic benefit
[20, 21]. This section reviews this area’s recent progress and
gives a brief introduction to several techniques related to
our work.

2.1. Task Allocation Problem in Mobile Crowdsensing. The
task allocation is an essential part of managing sensing
requests and scheduling the sensing resource in MCS sys-
tems. A typical task allocation process has three primary
steps: first, it characterizes current task requests under a lim-
ited system budget; second, the worker’s mobility profiling
with trajectory prediction or route is utilized to obtain the
task acceptance rate; and finally, the platform selects a subset
from existing workers to meet the system utility maximiza-
tion goal like system budget, coverage ratio, or time cost of
task execution.

Besides, to respond to the sensing request efficiently,
existing task allocation schemes are bounded with several
performance objectives, such as response latency, sensing
coverage, and sensing quality of collected data. Thus, for
implementing the task allocation scheme properly, recent
research regards the following two problems as the primary
challenges: first, select a group of participants with the max-
imum sensing coverage while still under the total system
budget; second, translate the sensing tasks’ needs into a sys-
tem utility optimization goal precisely. For the first question,
Zhang et al. [22] propose a coverage-oriented participant
selection method and implement it as a searching process
to reach the spatial coverage goal. For the latter, there are a
lot of works that adopt similar thoughts with different
approaches, like using enhanced greedy algorithms [7] or
Genetic Algorithms (GA) [23]. Furthermore, there are also
several works that consider the security concerns like sensi-
tive information inference attacks and privacy leakage risks
in the MCS task assignment [24]. For the second question,
we observe some research studies are with different settings
of the system utility goal. For example, Xiong et al. [25]



propose an iCrowd task allocation framework with a k-depth
utility goal using a more individualized way to capture the
coverage ratio of different tasks. They consider every task’s
spatial-temporal coverage needs and calculate the coverage
by a flexible K threshold. Under such settings, the sensing
resource will not be wasted on sensing tasks that cannot have
enough participants.

However, we observe that most of the existing works are
platform-oriented, which indicates that they consider more
the platform’s utility rather than the expectations of partici-
pants [26]. As a complementary, several incentive mecha-
nisms are proposed to resolve the participant resource
bottleneck by exploring multiple methods to motivate them
to upload high-quality data with reasonable payoft settings
[27-29], using the social network propagation theory [30]
to support crowdsensing, so that they can investigate the
preferences of participants to ensure the task acceptance rate.
Besides, utilizing the enhanced privacy method to maintain
the participant tool is another promising way, since more
and more participants have privacy concerns when upload-
ing data for IoT applications [31]. By using the influence
propagation method, considering the privacy concerns of
potential participants, or utilizing the recommender
system-like concepts, such task assignment strategy can focus
more on individual requirements to accumulate qualified
workers actively [32]. There are also other types of works that
consider designing a more secure MCS platform to motivate
more workers to accomplish the tasks like using the
blockchain-based framework [33]. Obviously, these works
shift the focus from platform-oriented performance optimi-
zation to solving the trade-off between individual intentions
and platform requirements.

It still faces several challenges in practical conditions; for
example, the influence propagation-based task assignment
needs to investigate participants’ preference first, which is
an additional cost that most of the applications are often
unwilling to afford. What is more, these methods need much
more private information than traditional approaches to
meet the requirement to select the valid seed or construct
the social graph.

To overcome these limitations, recent works use the
Sparse Mobile Crowdsensing concept [34] instead to resolve
the contradiction between the limited participant resource
and the increasing need for sensing data volume. Such works
use fewer participants as seed workers to collect raw data and
then use data inference techniques to generate supplemental
data. However, when several participants cannot provide suf-
ficient sensing data, the sensing quality will be significantly
affected.

Unlike the prior works, we propose a novel task alloca-
tion approach that uses semiopportunistic sensing to moti-
vate potential participants to join the sensing task. The
proposed method using the “shared mobility” idea reduces
the extra expense for participants and provides routing
advice that can further fulfill the sensing task requirements.

2.2. Graph Attention Networks. Representation learning for
graph structure data is an emerging topic, and several novel
neural networks are proposed to obtain graph embedding
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with low-dimensional representations of nodes. The Graph
Attention Network (GAT) is recently regarded as a useful
graph convolutional network architecture, which leverages
the graph structure by the attention mechanism to extract
intermediate feature representations for the nodes in the
graph [35]. The sole layer of GAT is the graph attention layer,
which accepts the input of a set of node features and outputs
the node embedding results by performing self-attention
computation between the target node and its first-order
neighbors. Then, GAT uses the normalized attention coeffi-
cients to compute a linear combination of the neighbors’ fea-
tures and generate the final output embedding results [36].
Additionally, multihead attention is introduced in the self-
attention learning process for stability consideration. By
adopting a graph convolutional layer based on the masked
attention mechanism, GAT satisfies several distinguished
properties such as computational efficiency, considering each
neighbor node’s different importance, and better applicabil-
ity to inductive learning problems. The interest in applying
GAT to graph embedding has dramatically increased, includ-
ing the traffic prediction [37], recommender system [38], and
compliment techniques for knowledge graph completion
[39]. Thus, we consider adopting GAT in the participant pro-
filing step to generate routing advice for potential partici-
pants concerning different sensing area topology scales
robust to the topology changes.

Reinforcement learning (RL) [40] has been used for a
variety of learning tasks, ranging from resource allocation
in IoT application scenarios [41], game AI like AlphaGo
[42], and combinatorial optimization problems [43]. In typ-
ical settings of a model-based RL, the RL agent achieves the
environment exploration and obtains an optimal policy to
interact with the environment to maximize its benefits. Such
a process is referred to as the Markov Decision Process
(MDP), which explains an RL agent’s life cycle by state,
action, and reward. With the further support of deep learn-
ing, RL has proven its effectiveness on the problems requiring
discrete stochastic control or continuous control with a sig-
nificantly large sample size. It also shows much better perfor-
mance than heuristic-based approaches. Multiple successful
research attempts show that RL makes the system learn to
manage the functions or resources by self-cognitive capabil-
ity, which motivates us to design a feasible solution using
RL to resolve the MCS task allocation problem. To the best
of our knowledge, we are among the first to leverage the RL
approach for enabling semiopportunistic sensing in MCS.
With RL support, our solution is aimed at providing a prac-
tical self-management approach that can be easily extended
to other task allocation problems with different system utility
settings.

3. Problem Analysis and Formulation

This section gives the preliminary knowledge of typical task
allocation problems in MCS, introduces our proposed semi-
opportunistic concept as a novel solution for this problem,
and explains the necessity and advantages. Furthermore, we
give the general system inputs, the assumptions on
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participants and the MCS platform, and the system optimiza-
tion goal to explain in detail the problem formulation.

3.1. Preliminary: Task Allocation Problem in MCS. For most
application scenarios, the MCS platform expects enough par-
ticipant resources to improve the system utility. However, the
participants always tend to search for a method that can
maximize individual benefits without extra expense. Obvi-
ously, the MCS platform’s participant requirements and the
expected payoff of individuals lead to a contradiction for
accomplishing the sensing request efficiently. Unfortunately,
such circumstances could be even worse: in practical condi-
tions, the MCS platform with only a limited system budget
still needs to respond to the sensing request immediately.

There are two task allocation strategies adopted widely in
current works:

(1) Opportunistic Mode. The opportunistic mode means that
the MCS platform uses a mobility prediction method for par-
ticipant selection and distributes the sensing requests to the
participants with a similar trajectory. Based on the potential
participant’s historical trajectory data, the MCS platform
can adopt machine learning models to predict each partici-
pant’s daily routine, possible activity, or destinations. After
that, the task assigner matches the sensing request with the
participant’s future trajectory and decides a number of par-
ticipants as selected workers. The platform that utilizes the
opportunistic mode for participant profiling can positively
affect the delay-unaware sensing requests, the requests with
a detailed time schedule, or the recurring sensing requests.
In such conditions, the MCS platform can have a longer time
to accumulate the participant resource, schedule the sensing
request, and respond to the requests properly. While the
opportunistic mode works efficiently for these sensing
requests, it still faces several challenges: first, maintaining a
large potential participant pool and accomplishing the profil-
ing task precisely highly rely on the historical data and pre-
diction method; second, for the MCS platform with bursts
of sensing requests that occur suddenly, the opportunistic
mode fails to recruit workers immediately since it needs more
time to predict the future trajectory to prepare the participant
pool.

(2) Participatory Mode. Instead of utilizing participants’ pos-
sible trajectory, the selected workers should arrive at the spe-
cific locations on time to accomplish the sensing request,
which means that they may change their travel plan or daily
routine. The participant profiling step can then be regarded
as a route planning problem with no historical trajectory
requirement. Unfortunately, it also increases the sensing
budget since participants may think these changes should
be paid more. Besides, this mode could be unreliable, espe-
cially when the participants are unwilling to deviate from
their original routines or travel plans.

Thus, we expect a task allocation framework that com-
bines the advantages of the existing modes, while having bet-
ter performance to deal with both the delay-unaware and
urgent sensing requests.

3.2. A Semiopportunistic Task Allocation Concept for MCS.
Many IoT applications need to make quick reactions to
urgent cases, for example, the sensing request of collecting
information about a traffic accident or emergency medical
care activity. In such circumstances, the sensing requests
occur suddenly with a fixed life cycle. The MCS platform
can only have very limited time to recruit participants and
schedule their sensing resources. Consider the urgent sensing
requests’ needs and the existing task allocation method’s lim-
itations; we proposed our semiopportunistic mode by utilizing
the “shared mobility” concept. The standard shared mobility
service means the shared use of vehicles. For example, a car-
pooling platform enables shared rides between drivers and
passengers with similar origin-destination pairings. The
recent success of shared mobility applications indicates that
people tend to obtain benefits by making a few changes as
possible. Thus, we are inspired to extend this concept into
the MCS task allocation framework, which is referred to as
the “semiopportunistic” concept in this paper. Under our
concept, all potential participants can upload their travel
plans with an explicit start point, destination, and deadline
based on individual conditions like using carpooling applica-
tions, while the MCS platform would regard the travel plans
of participants as the fixed constraints. The MCS platform
then checks the current sensing requests and provides the
participants with routing advice to match their travel plans
while maximizing profits. Besides, we consider the system
limitations of MCS (like the limited budget or different cov-
erage requirements of task requests) and determine the final
task allocation plan.

3.3. Assumptions. In our settings, we consider an MCS system
with total budget B, which has a set of sensing requests TR
={t,, t,, -, t,} that occur randomly in a target sensing area
L and a set of potential participants W = {w;, w,, -~ w;}
posting their travel plans, while waiting to be paired with
the maximized profit path planning advice. We assume target
sensing area L is composed of a set of cells, and each cell
refers to a possible sensing location. A task request ¢; has a
target location loc;, a minimal sensing coverage threshold g;
, a task deadline time;, and a specific incentive val; in terms
of credits or monetary rewards to encourage participants
to respond to this sensing request. Note that the value of
q is the minimum coverage required of this sensing
request to characterize the target region. When there is
less than g, participants who accept the individual task
request, the sensing coverage of t; will be set to zero.
Besides, g of each task request could be different to adapt
to each task’s needs.
Then, we define a task request as follows:

t; = (loc;, val;, time;, q;),  t; € TR. (1)

Furthermore, the travel plan of each potential participant
is denoted by a fixed start point sta, a destination des, and
also a time constraint time, which indicates that the partici-
pant must arrive at the destination location no later than



time. Then, the travel plan can be defined as follows:

w; = (sta;, des;, time;), w; € W. (2)
The routing advice for participant w; can be defined as
follows:

Pu, = {staj, Byt = Ty desj}, Py, €P- (3)

After the MCS platform provides the routing advice for
each potential participant, it checks the system budget and
selects a subset of participants W' as the selected workers
that could maximize the system utility. Here, we define the
system utility as follows:

L,
uy:min z it (4)
ijW, 9
where
0, whent;notinp,,
I = ' (5)
7 1, whentjinp, .
J

Finally, the selected participants would accept the routing
advice with a group of sensing task requests inserted in their
original trip plan and then sequentially visit the location of
each task to collect sensing data.

3.4. Problem Definition. In our proposed task allocation
framework based on the semiopportunistic concept, our pri-
mary objective is to select a subset of participants with
payoft-maximized routes while maximizing MCS platforms’
system utility.

Specifically, with the constraint of the given travel plan of
the participant, our MCS platform tends to provide the par-
ticipant w; with the routing advice Pu, having maximized

payoff(p,, ), which can be denoted as follows:

p:Jj = argmax Z val, . (6)

Pu; Licpy,;

The objective function of system utility is further defined
as follows:

max Z u[w
s.t. 1

t,eT

s.t. Z payoff(pwj) <B,

!
wjeW

(7)

We can find it is a multiobjective optimization problem
when we expect to maximize the above two objectives simul-
taneously. Unlike the current solutions using Pareto optimal-
ity to resolve this problem of having scale limitations, we
implement our objective problem in two parts: firstly, for
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every potential participant, we calculate a route with the
maximized payoff to accomplish the participant profiling
stage; we further select valid participants from the
participant-route set to find the subset with maximized sys-
tem utility under a limited system budget.

4. Implementation: MCS Task Allocation
Framework with Deep Learning Support

This section gives the detailed implementation of our pro-
posed semiopportunistic concept for the MCS task alloca-
tion problem, which includes two parts: the participant
profiling and the participant selection. First, we give the
system overview of our proposed framework. Second, we
propose the participant trajectory profiling method based
on GNN techniques. We give the detailed GNN model
structure and the primary training process to demonstrate
the detailed implementation. Finally, an RL-supported par-
ticipant selection algorithm is proposed. We elaborate on
the MDP underlying our method and further explain it
by a simplified example.

4.1. Framework Overview. Our proposed working process of
the MCS task allocation has three primary stages of fulfilling
various types of task requests efficiently, which includes: task
request initialization, trajectory profiling for potential partic-
ipants, and participant selection.

4.1.1. Task Request Initialization. This component accepts
the sensing request that randomly occurs. Each request is
tagged with a list of the necessary information, including
the target location, the maximum requirement of partici-
pants, the time of the deadline, and incentive settings. Mean-
while, the platform allows multiple types of sensing requests
at one time, which could have different sensing requirements
like coverage ratio or time constraints.

4.1.2. Potential Participant Profiling. This component calcu-
lates a route with the maximum profits for each participant
using the personal travel plan as the available time, start,
and destination constraints. Specifically, to motivate the par-
ticipants to respond to the task requests quickly, the MCS
platform calculates the routing advice with the maximum
payoft for each participant. Obviously, it is a critical challenge
since the routing advice task can be reduced as the orienteer-
ing problem [44], which is NP-hard. That means, when the
MCS platform has a large set of potential participants and
sensing requests, the participant profiling could be the bottle-
neck. Thus, we introduce an attention-based encoder-
decoder model to implement the participant profiling step.
Unlike the greedy-based algorithms with approximation
bound determined by a fixed utility function, our attention-
based model has improved flexibility to adapt to different
utility function settings and different sensing area topology
scales. It can also adapt to the target sensing area topology
changes to adjust to different urban environment dynamics
without introducing much extra computation cost.

4.1.3. Participant Selection. Given the participant profiling
information, this component determines a group of
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participants that can fit the system utility goal under a fixed
system budget constraint. In our proposed framework, we
give a reinforcement learning-based solution for searching
the participant-route pairs. In the typical RL settings, the
MCS platform can serve as the RL agent to collect the infor-
mation of the sensing requirements and participant profiles;
then, it actively searches for an optimal subset of
participant-route pairs as the selected workers to accomplish
the sensing tasks.

4.2. GAT-Based Solution for Potential Participant Profiling.
For the sensing requests that randomly occur but expect a
quick response, the MCS platform needs to motivate each
potential participant efficiently. Thus, in our proposed task
allocation framework, the participant trajectory profiling
stage serves as an essential part to motivate the participant
by providing them with a payoft-maximized route. However,
the sensing area could be large. The topology may change due
to urban traffic management, accident, or abnormal climate,
which indicates that we need a flexible and efficient solution
to resolve the topology dynamic challenges while ensuring
good scalability.

Specifically, we formalize the routing problem by using
a Graph Attention Network to produce embeddings of the
target sensing area and then compute the routing advice.
As we know, the graph embedding representation can pro-
vide a powerful solution to adapt to large-scale urban
sensing scenarios. It also supports various types of infor-
mation that can be represented by the nodes’ attributes
[45, 46]. Thus, the topology of the target sensing area
can be represented as a graph G with a node set 7= {m,
, 705,57, }, where each node could be a potential sensing
location. Then, the attention-based encoder-decoder model
proposed in [43] is adopted to implement the participant
profiling component; we illustrate the working process in
Figure 2.

Encoder. The encoder takes each nodemrand its
featureval,inmas inputs, and when there is no sensing
request at noder;, thevalwould be0. The initial node
embedding of m; with parameters W and b can be
represented by h) = W(m, val] + b. By using the N atten-
tion layer, h) can learn the relations with all the other
nodes and update itself as Y. Each attention layer has
two sublayers, including a multihead attention (MHA)
layer and a feedforward (FF) layer. The encoder then
uses all the node embedding results to produce the
graph embeddings of the target sensing area as follows:
B = (1S

Decoder. At time ¢, the decoder takes the node embedding

. . ZN
hY, the sensing area embedding i, and the travel plan of the
participant w; including the start location, destination loca-
tion, and time constraint (sta;, des;, time;) as the inputs.

Then, the decoder produces the context embedding hzj of
the participant w; by considering the sensing area embedding

=N . . .
k™, the location of the previously selected task request at time
t =1, and the destination des, which is denoted as follows:

7
NN N
[h > hsta}-’ hdes]} » =1
n = (8)
[EN, W, h{jesj, £>1.
wj )

After we have hﬁj and the node embedding of nodes hav-

ing sensing requests, the decoder uses MHA to get a new
embedding result h)'', which indicates the correlation
J

between K and other nodes with sensing requests at time
J

. To produce the routing advice, we use a single head atten-
tion layer to determine the next node that the participant
w; should visit. To adapt to the time constraint of w;, we

mask the nodes with a task finishing deadline that the partic-
ipant w; cannot visit them within his remaining time. We
also mask the nodes that are already visited to ensure the par-
ticipant would not accomplish a sensing request twice. Such a
working process repeats for several iterations until the
remaining time runs out. Finally, we can obtain the routing
advice for each potential participant. To ensure the final
route is payoft-maximized, several training methods can be
used to train the encoder-decoder network like the actor-
critic algorithm [47] or REINFORCE with deterministic
greedy rollout baseline [48].

4.3. Participant Selection with RL Support. Before diving into
the details of our proposed RL-based participant selection,
we first depict the MDP that formalizes the target problem
about selecting a subset of participants to optimize the sys-
tem utility. Then, we use a tabular Q-learning example to
describe the RL working process and further extend it by
introducing DNN to ensure our method can adapt to the
practical conditions of large-scale participants and sensing
requests.

RL is a goal-directed learning approach that uses an
interactive manner to explore the environment and investi-
gate how an agent can derive the maximum accumulated
reward. To formalize the problem space, the Markov Deci-
sion Process is adopted to describe the interactions between
the RL agent and the environment, which has three essential
components: state, action, and reward. The state includes the
direct knowledge of the problem to indicate what we have
already known at a specific time slice. Then, the RL agent
learns how to make actions at each state, and it always
expects to find the optimal action-state mappings (optimal
policy) to maximize the cumulative reward as a learning
result. Although the problem space may be full of uncer-
tainty, RL can automatically explore the environment and
recognize the optimal policy to help the agent always make
the right decisions under different conditions. From the
above facts, we observe an explicit relation between RL tech-
niques and our participant selection problem, which can be
tully explained by the following MDP (Markov Decision Pro-
cess) formulation.

4.3.1. MDP Formalization. To adopt the RL approach for the
participant selection problem, we regard the MCS system as
the environment. The RL agent interacts with the
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FIGURE 2: Model structure and working process.

environment to gather information about the available par-
ticipant profiles (planned routes), current task requests, and
system budget requirements. Through the RL agent’s explo-
ration and exploitation, the agent learns the optimal policy
to decide the participant-task mappings to achieve better sys-
tem utility. To implement the above process, we first define
the state, action, and reward as three primary elements and
depict our MDP in Figure 3.

State. We represent the functional conditions of the MCS
platform—the current task request TR, system budget B,
available participant resources, and related profiles P—as
the state of our MDP. Thus, the state s, at time ¢ can be rep-
resented as s, = (tr,, b,, p,) that belongs to the state space S.

Action. We assume there are k participant profiles in the
current MCS platform, and at each time step, the RL agent
selects one participant to accomplish the tasks in his route.
Then, the action space is given by A ={1,2,---,k} and action
a, represents the decision on participant selection. With each
available action, the RL agent observes a state transition.
When a participant’s route is selected to improve the system
utility, the next state will be updated accordingly.

Reward. The reward signal guides the agent towards an
optimal solution for the target problem. In our problem set-
tings, the objective is maximizing the total system utility
under resource constraints. Specifically, we set the reward
at each time step as the system utility. Note that although
the agent can receive an immediate reward for each action
participant selection, the RL agent focuses more on maximiz-
ing the cumulative reward to ensure the MCS system receives
the largest utility value by the selected participant group. To
ensure the RL agent can be farsighted, we use the discount
rate y € [0, 1] as the parameter to determine the present value
of the future reward. As its value approaches 1, it means that
the RL agent takes future rewards into account more
strongly.

4.3.2. A Tabular Q-Learning Example. For small-scale appli-
cations, the MCS system can use tabular Q-learning, a value-
based reinforcement learning algorithm that uses an evalua-
tion concept—Q-function—to derive the optimal policy. In
the tabular Q-learning-based participant selection algorithm,
it utilizes the Q-function denoted as Q(s, a) to calculate the

maximum expected future reward (system utility) that the
agent will get if it takes action a at state s. Afterward, each
possible state-action pair’s Q-value will be stored in the Q
-table Qg4 Thus, the RL agent can evaluate each partici-
pant selection in terms of reward, derive the estimated value
of Q(s, a), and record this value in Q- To find the opti-
mal policy, the Q-table Q4 will be further iterated and
updated by the Bellman equation with learning rate « as fol-
lows:

Q(s,a)=Q(s,a) + oc(r +y n}laxQ(s', a) -Q(s a)). 9)

After Qg4 is updated, the available action space will be
changed accordingly so that the agent can select another par-
ticipant satisfying the current budget constraints. Through
the tabular Q-learning process, the agent follows the &
-greedy policy, that is, with 1 — € possibility to select the par-
ticipants with the largest Q-value until the Q-table Qg4 is
converged. That means, under each state s, the agent can
select the participant with the largest Q-value by searching
the Q-table Qg4 as an optimal policy.

To further explain the training process, we introduce a
simplified participant selection problem as a toy example
illustrated in Figure 4.

In our example, we assume that the MCS system has 10
task requests with different participant requirements denoted
as task;d : g; for example, tr0 : 2 indicates that task 0 has a
minimum requirement of 2 participants. We also have 4 par-
ticipants with profiles (planned routes) denoted as Partici-
pant A (tr0—trl —tr2), Participant B (trl —trd — tr7),
Participant C (tr3 — tr6 — tr7), and Participant D (tr7 — tr8).
For the tabular Q-learning process, we set the discount factor
y and learning rate « as 1. First, at state s;, the MCS system
has not chosen any participants, and the Q-table is initialized
with 0. Then, the RL agent begins to interact with the envi-
ronment by a random policy, and we assume it chooses
action a, that selects Participant B. The RL agent receives
an immediate reward in terms of current system utility,
and we observe a state transition from s, to s;. We can
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now update the Q(sy,a,) in the Q-table as Q(sy, a,) =0.2
+0=0.2.

Similarly, at the next time step, we use the simple greedy
policy and choose action a, that selects Participant D to
update Q(s;,a,) as Q(s;,a,)=0.3+0=0.3. After several
rounds, at time step #;, the Q-table is changed as in the figure:
t;. At this time step, we assume the RL agent goes back to s,
and it checks the current Q-table and recognizes that under s,
, Q(sy» a,) has the largest Q-value. Hence, the RL agent exe-
cutes action a, and observes a state transition from s, to s,.
According to the Q-table at time step t;, the largest expected
future reward is 0.3. Hence, at the next time step ¢, ;, Q(s,»
a, ) will be updated as Q(sy, a,) =0.2 + 0.3 = 0.5. That means,
when the RL agent meets s, at future time steps, it has a
higher possibility to select action a,, since the Q-table has
explicit evidence that it can lead to higher accumulating
rewards. As an iterative process, the above operations repeat
several times and the Q-table will be improved at each itera-
tion so that the Q-value is approaching the practical state-
action value.

4.3.3. DDQN-Based Participant Selection Algorithm.
Although tabular Q-learning offers an effective solution for
our simplified participant selection problem, we still require
a method meeting the practical requirements, such as large-
scale participants, system budget constraints, and various
attributes of task requests. Thus, instead of using the Q
-table in the tabular Q-learning method, we choose the Con-
volution Neural Network (CNN) as a Q-network to obtain
the estimation of the Q-function. Specifically, we represent
the state of our MDP—the current allocation task request
waiting to be scheduled, available participant resource, and
planned route profiles—as a m x n x (i + j) matrix. Here, m
x n indicates the target map has m x n cells, i is the number
of participants, and j is the number of task request’ attributes.
With two convolutional layers and one fully connected layer,
our proposed CNN is used to extract the above state matrix’s
primary feature and output the Q-function value for each

state. We further illustrate the Q-network training via the
DDQN-based algorithm in Algorithm 1 as follows:

In the DDQN-based participant selection algorithm, we
utilize the experience replay technique to break the temporal
correlations that lie in various training episodes. A replay
buffer with a fixed size is utilized to mix experiences at differ-
ent time steps for the Q-network updates. At the beginning of
this algorithm, the Q-network is initialized to a random value
(Line 3). Meanwhile, the initial state s, feeds the Q-network
and the RL agent selects an action under the e-greedy policy
to start the first training episode (Lines 5 and 6). Next, the
state transition {s, a, ,s'} is stored in the replay buffer (Line
8). When executing an action, the algorithm checks the avail-
able system budget to ensure the remaining budget can afford
the next participant selection (Line 9). Then, given the replay
buffer, the agent samples a random minibatch and updates
the Q-network using the following loss function (Lines 14
and 15):

Loss(0) = % z

minibatch

[(T +y H;?XQe’ (S" “’) = Qp(s a))z} ~

(10)

Here, the target Q-network is an independent estimator
that updated slower than the Q-network, to avoid maximiza-
tion bias by disentangling updates from biased estimate
values.

5. Performance Evaluation

This section validates our proposed method through exten-
sive simulations of multiple application scenarios. We first
introduce the experimental setup, parameter settings, and
baseline algorithms. Then, we demonstrate the performance
comparison result in multiple scenarios having different sys-
tem budgets, numbers of participants, or numbers of sensing
requests.

5.1. Dataset and Selected Parameters. For generating the trip
plans of the potential participants, we adopt the T-drive data-
set [49] to provide the start location and destination, which
contains the GPS trajectories of 10,357 taxis from Feb 2nd
to Feb 8th, 2008. We then select 1000 travel plans and ran-
domly generate a deadline as the time constraint of each trip
plan to form our potential participant pool. Furthermore,
since we propose a two-stage solution to implement the semi-
opportunistic MCS task assignment concept we defined in
this paper, four primary factors that affect the simulation
results are selected to describe the validity and performance:
the total system budget of the MCS platform, the number of
task requests, the value of the task, and the number of
participants.

5.2. Experimental Setup and Settings. We implement our
work on the PyTorch platform. The encoder-decoder model
in [19] is adopted to provide the route with a maximized pay-
oft. The minimum requirement of participants for each task
request is randomly generated from (2, 15), while the value
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FIGURE 4: A tabular Q-learning example.

Participant selection based on DDQN.

1: Initialize Q-network, Q' target network with 0

2: while In each episode do

3: [Initialize s

4: for step in episode do

5: With probability €, select a random action a

6: otherwise select a = max Qy(ssa)

7: rs = perform_action(s, a)

8: store transition {s, a, 7, s/} in replay_buffer

9: if current system budget cannot afford any participant then
10: s is terminal state

11: else

12: s=s'

13: end if

14: sample random minibatch () of transitions from replay_buffer
15: perform minibatch gradient descent

16: every updated period T, 0" =6

17: end for

18: end while

ALGORITHM 1:

of the task request is randomly generated from (10, 50).
For clarity, we take the routing advice for 15 participants
as an example shown in Figure 5. The sample routes are
the example solutions for a sensing area consisting of
100 x 100 cells and 200 sensing requests using the GAT-
supported routing method. For the proposed RL-based
task allocation solution using the DDQN algorithm, the
Q-network is CNN-based. The replay buffer size is 1000,
and the minibatch size for sampling is 32. We set the
learning rates of the Q-network as 10~ and the discount-
ing factor y as 0.99.

5.3. Baseline Algorithm. Since no previous works have stud-
ied the task allocation method with the semiopportunistic

concept via deep learning support, we select the following
baseline methods to accomplish the comparative studies:

Random allocation. This method randomly selects partic-
ipants from the potential participant pool until meeting the
total system budget. Since the random character may affect
the simulation result, in our simulation, we repeat this
method for 10 times and the average overall utility is utilized
as the final result.

Low-payoff first allocation. This is a single-loop greedy
algorithm which tends to select more participants to obtain
higher system utility. It orders the potential participants from
the minimal total payoff and then selects a subgroup of par-
ticipants having a route with a low total payoff until the total
system budget runs out.
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Long-route first allocation. This is a single-loop greedy
algorithm which tends to select participants with the long-
route first method to reach the system utility goal, since the
longer route means this participant could obtain more sens-
ing request than others. It orders the participant by the route
length and then selects a subgroup of participants with the
longer route until the total system budget runs out.

5.4. Performance Comparison via Multiple Scenarios

5.4.1. Different Numbers of Task Requests. Figure 6 depicts
the performance comparison result on the system utility
among the DDQN-based allocation and other baseline
methods under the different numbers of task requests, where
we fix the number of selected participants as 200. We observe
that in the beginning, the performance difference on the sys-
tem utility is not very significant due to the very small task
numbers. When the system utility decreases with the increas-
ing number of tasks for all three methods due to the limited
resource’s enhanced competition, our proposed algorithm
outperforms other baseline methods to obtain higher utility
for different settings for the number of task requests. When
the number of requests increases while all the three methods’
utility decreases, our method’s system utility still outper-
forms the other methods, and the utility decreases more
steadily. Although we can observe the same decreasing trend
with the other three methods, they fail to obtain a similar

utility performance as our method does. Such results indicate
that our method works well at both the small- and large-scale
sensing requests.

5.4.2. Different Values of the Total System Budget. Figure 7
gives the results for the system utility changes among all the
four allocation methods when the system budget is varied.
In this experiment, we define the system budget as B=
YierrVal; X g;. When the total budget increases, it indicates
that the MCS platform can have more participants to accom-
plish the request. Therefore, we observe an increase of all four
methods. At the beginning, except for the utility of the ran-
dom method that is dragging by the random character, all
the other three methods have a similar increasing trend.
Then, the performance gap between our method and the
other three methods becomes larger. From Figure 7, we find
the random method has the smallest utility increment while
the low-payoff first method and the long-route first method
have a very similar trend in the end. At the same time, our
method is more stable and can always obtain higher utility
when the system budget changes.

5.4.3. Performance Comparison for Different Values of q of
Each Task Request. Figure 8 shows the comparison result
when we are varying the values of g for each task request.
We generate g, the minimum requirement of the participant
for each request, by randomly choosing a number from (5,
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15). Figure 8 plots the utility changes when the value of g var-
ies, which can simulate the multiple types of the minimum
thresholds for different application scenarios. When the
requirement of the task request increases, we observe that
the system utility decreased since the total budget and poten-
tial participant pool are fixed. The system utility of the ran-
dom method decreased sharply, while the low-payoff first
method and the long-route first method represent similar
trends with our method; however, when the value of ¢
increases from 8, we observe that both of them have a notice-
able decline. Thus, compared to other baseline methods, our
method can obtain a significantly high system utility that
decreases more steadily during the value changes ofg.

5.4.4. Number of Assigned Participants for Each Task Request.
Figure 9 represents the changes in the number of assigned
participants when varying the total number of task requests.
In this experiment, we assume all the 100 task requests have
the same minimum threshold g = 5, which is represented by
the dotted line in Figure 9. We can see that for each task
request, the long-route first method tends to select the partic-
ipant with the longer route to obtain the system utility goal;
however, it could waste several participants. Meanwhile, we
observe a similar result of the low-payoff first method. For
example, we can notice for task id:40 that it allocates 7 more
participants, which is significantly larger than the minimum
threshold. Compared with the three baseline models, our
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method tends to meet the threshold with less waste of partic-
ipant resources so that we can see that the number of
assigned participants of all the 100 task requests is closer to
the dotted line.

6. Discussion and Conclusion

This paper studied the task allocation problem in MCS
systems by introducing a novel semiopportunistic concept
inspired by “shared mobility” applications. Meanwhile,
we aim to maximize the payoff of the participant by pro-
ducing a well-considered route. Then, we use the rein-
forcement learning technique to select a subgroup of
participants under the system utility optimization goal.
Our proposed solution has several advantages. First, to
implement our proposed framework efficiently, we adopt
a representation learning approach to produce the target

sensing area embeddings. At the same time, output a
payoff-maximized route for each participant. Second, the
reinforcement learning-based participant selection algo-
rithm is proposed for selecting a subgroup of participants
that can meet the system utility goal. Unlike traditional
solutions using greedy-based or heuristic-based algorithms,
our proposed framework and its implementation can sup-
port large-scale sensing requests and various types of util-
ity optimization goals. Finally, extensive simulations
indicate our solution outperforms the baseline methods
under various conditions. In the future, we plan to extend
our method into the social network-based MCS platforms
to investigate the participant profiling problem with social
influence analysis. We expect that investigating social rela-
tionships among participants by using deep learning
approaches could be a different solution to solve the par-
ticipant resource bottleneck.
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