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Multiplex networks have been widely used in information diffusion, social networks, transport, and biology multiomics. *ey
contain multiple types of relations between nodes, in which each type of the relation is intuitively modeled as one layer. In the real
world, the formation of a type of relations may only depend on some attribute elements of nodes. Most existing multiplex network
embedding methods only focus on intralayer and interlayer structural information while neglecting this dependence between
node attributes and the topology of each layer. Attributes that are irrelevant to the network structure could affect the embedding
quality of multiplex networks. To address this problem, we propose a novel multiplex network embedding model with high-order
node dependence, called HMNE. HMNE simultaneously considers three properties: (1) intralayer high-order proximity of nodes,
(2) interlayer dependence in respect of nodes, and (3) the dependence between node attributes and the topology of each layer. In
the intralayer embedding phase, we present a symmetric graph convolution-deconvolution model to embed high-order proximity
information as the intralayer embedding of nodes in an unsupervised manner. In the interlayer embedding phase, we estimate the
local structural complementarity of nodes as an embedding constraint of interlayer dependence.*rough these two phases, we can
achieve the disentangled representation of node attributes, which can be treated as fined-grained semantic dependence on the
topology of each layer. In the restructure phase of node attributes, we perform a linear fusion of attribute disentangled rep-
resentations for each node as a reconstruction of original attributes. Extensive experiments have been conducted on six real-world
networks. *e experimental results demonstrate that the proposed model outperforms the state-of-the-art methods in cross-
domain link prediction and shared community detection tasks.

1. Introduction

*e abundant relations and views between entities can be
collected from various sources or scenarios, allowing a slew
of problems to be better solved in different application
domains, e.g., information diffusion [1], social network
analysis [2], intelligent transportation [3], biomedicine, and
ecology [4, 5]. Taking together these data may be able to give
a more accurate and nuanced picture of network structure
than the individual network alone [6]. Taking social net-
works as an example, different online social networks show
different views and behavior patterns of people. A user
makes connections to their friends on Facebook or WeChat
but uses Twitter or Weibo to follow people that interested
him/her. *ough different online social networks present

distinct views and aspects of social behavior of one same user
with the consistent feature, abundant user features and social
information can facilitate the construction of a more ac-
curate and nuanced user profile. *erefore, these multiple
sources and views of network data are worth exploring
because they often contain complementary information that
improves the quality of analysis results [7].

Intuitively, modeling the information fusion problem of
nodes as a feature fusion problem is a straightforward way.
Based on the fused features, we can furthermine the network
data for node classification, link prediction, node clustering,
and visualization. Multiple-relation or view network data are
vividly modeled as a multiplex network (also known as
multidimensional, multiview, or multilayer networks)
[8–12] in which the same set of nodes are connected by
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different types of relations. Different from a single network,
multiplex networks reflect more complex topological
properties. Multiplex networks can not only present the
intralayer dependence between nodes but also can well
model the interlayer network dependence. *e analysis of
multiple networks not only needs to consider the interde-
pendence or interaction between nodes at the intralayer and
interlayer but also focus on the dependence of node attri-
butes and the topological structure of nodes. In this paper,
the high-order node dependence of multiplex networks is
defined as intralayer dependence between nodes, interlayer
dependence in respect of anchor nodes, and the dependence
between node attributes and the topology of each layer. In a
multiplex network, the information fusion of multiple layers
of nodes is a significant fundamental issue for the joint
analysis of networks. A multiplex network, as shown in the
middle of Figure 1, is composed of three social networks,
which are Douban (https://www.douban.com/), LinkedIn
(https://www.linkedin.com/), and Weibo (https://weibo.
com/). *ese three social networks are geared towards
different social scenarios; Douban provides books and music
services, LinkedIn serves for social occupation, andWeibo is
geared towards entertainment services. Multiplex network
representation learning (also known as multiplex network
embedding) is an effective method to analyze and mine the
network. It can project the node (or network) into a con-
tinuous low-dimensional space. In this paper, we are mo-
tivated to focus on multiplex network representation
learning considering the high-order dependence.

Recently, existing methods have achieved excellent
performance in the intralayer dependence between nodes.
However, few studies have comprehensively focused on the
properties unique to multiplex networks. *e first challenge
is preserving high-order proximity information of nodes.
Some state-of-the-art models based on the graph neural
network (GNN) [10, 13, 14] take into account both intralayer
and interlayer dependencies of nodes. However, due to the
oversmoothing problem of GNNmodels [15], such methods
cannot effectively preserve high-order proximity informa-
tion. *e second challenge is preserving the interlayer de-
pendence property of multiplex networks. *e layers with
strong interlayer dependence have similar local structure
characteristics, while those with weak interlayer dependence
show obvious differences in the local topology [16]. From
Figure 1, we can see that the nodes in the Douban layer and
the Weibo layer have similar local structures. It indicates the
interlayer dependence property of nodes in these two layers.
*is dependency cannot be preserved by extended random
walk-based methods [17–19] and GNN-based methods
[20–22]. *e extended random walk-based representation
learning method realizes the generation of node sequences
through cross-layer sampling. In the node sampling process,
most of them use random strategy to cross-layer sampling,
but this ignores the similarity between layers. For GNN-
based methods, nodes are embedded independently in in-
terlayer. *e node embedding of each layer is concatenated
in the later stage. Such embedding and fusion processes will
introduce repetitive and redundant information. However,
LinkedIn layer is dissimilar with the other two layers. In this

situation, it makes the fusion embedding of nodes obtained
by methods [23–26] based on the assumption of information
sharing between layers is inaccurate. *e third challenge is
preserving the dependence between node attributes and the
topology of each layer. Previous studies also ignore the
interaction of node attributes with the topology of each layer.
Figure 1 illustrates this important property that different
social scenarios depend on different attribute information of
the user.*e formation of friendship in the Douban network
mainly depends on the user’s preference for music and
books. *e formation of the following relationships in
LinkedIn mainly depends on attributes such as the user’s job
and education level.*e formation of relationships inWeibo
mainly depends on the user’s multiple attributes (books,
sports, and music) besides job and education. In support of
the dependence between the node attributes and the network
structure, the interaction between them has been shown in
several cases [27–29].*erefore, the embedding of multiplex
networks contains not only dependence information be-
tween nodes in each layer (intralayer dependence) but also
local structure similarity information (interlayer depen-
dence) and dependence between node attributes and the
topology of each layer (attribute dependence).

In light of this, we propose a novel and hierarchy rep-
resentation learning model for multiplex networks with
node attributes called HMNE. We propose a symmetric
graph convolution-deconvolution (GCD) method with
multiple convolution layers to embed the intralayer adja-
cency information of a node as a low-dimensional dense
vector in an unsupervised manner. *e graph convolution
module (GCM) preserves high-order proximity informa-
tion, and the graph deconvolution module (GDM) serves as
an embedding restriction to alleviate the oversmoothing
problem of GCM. To preserve interlayer local dependence
information, inspired by Graph Infomax [30], we use the
similarity between the representations obtained by the
multilayer convolution and the entire layer embedding as
the estimation of complementary information. We fit this
estimation of complementary information to actually
quantify the local structural complementarity of nodes. For
the dependence between attributes and the topology of the
layer where the node is located, we treat the output of the
graph deconvolution module as the disentangled repre-
sentation of node attributes. Each disentangled represen-
tation is the result of the interaction between node attributes
and the topology of each layer.

*e main contributions of this paper are summarized as
follows:

(i) We propose a symmetrical graph convolution-
deconvolution neural network model to achieve
intralayer node embedding, which is an unsuper-
vised and general representation learning method.
*is method can not only flexibly adjust the number
of hidden layers to capture the high-order structural
information but also avoid the oversmoothing
problem.

(ii) We present a method to estimate interlayer com-
plementary information. *is method can measure
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the interlayer dependence property [9, 10, 31] in
respect of the topology of the layer where the node is
located and constrain the intralayer embedding.

(iii) We design a disentangled representation learning
architecture to solve the dependence between node
attributes and its local topology. Graph deconvo-
lution component is used to select attribute frag-
ments associated with the semantics of each layer.
We use a linear layer to restructure the original node
attributes.

(iv) Extensive evaluations on real-world datasets have
been conducted, and the experimental results
demonstrate the superiority of the proposed HMNE
model against the state-of-the-art models.

*e rest of the paper is organized as follows. Section 2
describes some related works. Section 3 introduces related
definitions of the data model we use, problem formulation,
and preliminary knowledge. Section 4 presents HMNE’s
core modules. Section 5 shows the experiment results. Fi-
nally, the summary and outlook are described in Section 6.

2. Related Work

In this section, to distinguish from the single-layer network,
we call the traditional representation learning method of one
network as single-layer network embedding and the em-
bedding of multiple networks as multiplex network em-
bedding. Among them, we introduce the related work from
joint embedding and cooperative embedding of multiplex
network embedding. We first describe the ideas of network
embedding for a single-layer network. *en, we, respec-
tively, introduce related works about multiplex network
(mainly involves multiview networks, multirelation net-
works, multidimensional networks, and multilayer net-
works) embedding methods. Finally, we also summarize the

shortcomings of these related works and the similarities and
dissimilarities with the proposed model.

2.1. Single-Layer Network Embedding

2.1.1. Random Walk-Based Methods. Embedding techniques
based on random walk to obtain node representations have
been proposed: DeepWalk [32] is the first algorithm based on
random walk to learn node representation. Based on the
breadth-first search and depth-first search, node2vec [33] was
proposed to replace the node sampling strategy of the Deep-
Walk method. Both algorithms are traditional single-layer
network embedding. Gu et al. [34] proposed an approach based
on the open-flow network model to reveal the underlying flow
structure and its hidden metric space of different random walk
strategies on networks. It shows that the essence of network
embedding by random walk is the latent metric defined on the
open-flow network. In order to learn the representation of
multirelation heterogeneous information networks, the fol-
lowing algorithm is proposed. Dong et al. [35] proposed a
strategy for random walk sampling from heterogeneous net-
works, where the random walk is restricted to transition be-
tween particular types of nodes. *is strategy allows many
methods to be applied to heterogeneous graphs and comple-
ments the idea of taking type-specific encoders and decoders
into account. Ribeiro et al. [36] presented struc2vec, a novel and
flexible framework with the target to learn latent representa-
tions for the structural identity of nodes. *e framework uses a
hierarchy to measure node similarity at different scales and
constructs a multilayer graph to encode structural similarities
and generate a structural context of nodes.

2.1.2. Graph Neural Network-Based Methods. Kipf and
Welling [37] introduced the variational graph autoencoder
(VGAE), a framework for unsupervised learning on graph-
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Figure 1: *e illustration of our data structure and dependence between node attributes and each layer’s topology for three-layer multiplex
networks as an example. *e first part on the left presents node attributes. *e second part on the middle indicates the multiplex network
data model. *e latter part shows the different dependence between node attributes and each layer.
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structured data based on the variational autoencoder (VAE).
*is model makes use of latent variables and is capable of
learning interpretable latent representations for undirected
graphs. Hamilton et al. [38] proposed GraphSAGE, which
uses a two-layer deep neural architecture. In each convo-
lution layer, a node computes its representation as an ag-
gregation of its neighbors’ representations (from the
previous layer). In addition, to achieve unsupervised em-
bedding, the parameters of aggregation functions are learned
using the loss function similar to DeepWalk. GraphSAGE is
incapable of selective neighbor sampling and has a lack of
memory of known nodes that have been trained. To address
these problems, Luo and Zhuo [39] proposed an unsuper-
vised method that samples neighborhood information
attended by co-occurring structures and optimizes a
trainable global bias as a representation expectation for each
node in the given graph. Velickovic et al. [30] presented
Deep Graph Infomax (DGI), a general approach for learning
node representations within graph-structured data in an
unsupervised manner. DGI relies on maximizing mutual
information between patch representations and corre-
sponding high-level summaries of graphs, both derived
using established graph convolution network architectures.
Li et al. [29] proposed a principled unsupervised feature
selection framework ADAPT to find informative features
that can be used to regenerate the observed links and further
characterize the adaptive neighborhood structure of the
network. Yu et al. [15] proposed KS2L, a novel graph
Knowledge distillation regularized Self-Supervised Learning
framework, with two complementary regularization mod-
ules, for intra- and cross-model graph knowledge distilla-
tion. Xiao et al. proposed three rumor propagation models
based on evolutionary game and antirumor [40], data en-
hancement [41], and representation learning [42]. *ey
proved that rumors are not only influenced by antirumor
information but also affected by user behavior and psy-
chological factors. And they studied the user’s network
structure and historical behavior characteristics in the rumor
topic communication space in social networks and predicted
the user behavior in the next time slice based on the current
time slice data. At the same time, they introduced evolu-
tionary game theory and considered the internal and ex-
ternal factors that affect user behavior within rumor
propagation.

2.2. Multiplex Network Embedding. *e goal of multiplex
network embedding methods is to achieve the information
fusion of multiple features of networks, in which these
methods can be divided into joint representation learning
and coordinated representation learning [43] (in Figure 2 of
[44], an illustration of coordinated and joint representation
learning is presented).

2.2.1. Joint Representation Learning. Zhang et al. [24] pro-
posed a scalable multiplex network embedding (MNE)
method, which assumes that the same nodes in multiple
networks preserve certain common features and unique
features of each layer. *us, the common and unique

embedding of nodes in each layer is learned by the DeepWalk
algorithm separately. Ma et al. [25] implemented node em-
bedding for multidimensional networks with hierarchical
structure. *ey simply added up node embedding in multiple
dimensions as the fusion feature of nodes in multiple net-
works. Matsuno and Murata [26] presented a multilayer
network embedding method (MELL) that captures and
characterizes each layer’s connectivity. *e method utilizes
the overall structure to consider the similar or complementary
structure of the layer. Finally, the fusion feature learning of
nodes in multiplex networks is obtained by combining node
embedding in each layer with layer vectors. Cen et al. [9]
focused on embedding learning for attributed multiplex
heterogeneous networks, where different types of nodesmight
be linked withmultiple different types of edges, and each node
is associated with a set of different attributes. GATNE splits
the overall node embedding into three parts: base embedding,
edge embedding, and attribute embedding. GATNE-T con-
tains only the first two parts. Zhao et al. [45] proposed a novel
and principled approach: a multiview adversarial completion
model (MV-ACM). Each relation space is characterized in a
single viewpoint, enabling us to use the topological structural
information in each view. Yuan et al. [46] proposed a novel
multiview network embedding model with node similarity
ensembles. Node similarities are first selected to maximize the
represented network information while minimizing the in-
formation redundancy. For each combination of the selected
node similarities, a latent space is generated as a view of the
network.

2.2.2. Coordinated Representation Learning. In some cases,
graphs have multiple “layers” that contain copies of the same
nodes. *ey can be beneficial to share information across
layers so that a node’s embedding in one layer can be in-
formed by its embedding in other layers. Qu et al. [47]
proposed an attention-based method (MVE) to learn the
weights of views for different nodes with a few labeled data.
MVE can obtain robust node representations across dif-
ferent views by vote strategy. Recently, Liu et al. [17] ex-
tended a standard graph mining into the area of the
multilayer network. *e proposed methods (“network ag-
gregation,” “results’ aggregation,” and “layer coanalysis”)
can project a multilayer network of a continuous vector
space. Zitnik and Leskovec [18] proposed the OhmNet
framework to learn the features of proteins in different
tissues. *ey represented each tissue as a network, where
nodes represent proteins. Individual tissue networks act as
layers in a multilayer network, where they use a hierarchy to
model dependencies between the layers (i.e., tissues).
Schlichtkrull et al. [20] introduced relational graph con-
volution networks (R-GCNs) and applied them to two
standard knowledge base completion tasks: link prediction
(recovery of missing facts, i.e., subject-predicate-object tri-
ples) and entity classification (recovery of missing entity
attributes). Zhiyuli et al. [48] proposed highly scalable node
embedding for link prediction in large-scale networks. *e
method learns node pairs’ co-occurrence features to embed a
node into a vector by a damping-based random walk
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algorithm. In the node sampling process, there is a bias
problem with these existing methods that samples are
trapped in a local structure. In addition, cross-layer sam-
pling heavily depends on fixed parameters, which is in an
inflexible manner. Sun et al. [49] presented a MNGAN
framework for multiview network embedding by the gen-
erative adversarial network, aimed at preserving the infor-
mation from the individual network views while accounting
for connectivity across different views. Wei et al. [50]
proposed an attributed node random walk framework,
which can not only be able to incorporate both topology and
attribute information flexibly but also easily deal with
missing data and is applied to large networks. For the
multiple-network alignment problem, Chu et al. [51] pro-
posed a cross-network embedding method (CrossMNA). It
defines two categories of embedding vectors for each node:
intervector, and intravector. *e idea of CrossMNA is the
same as that of MNE. *ey thought intravector contains
both the commonness among counterparts and the specific
local connections in its selected network due to the se-
mantics. Park et al. [10] presented a simple yet effective
unsupervised network embedding method for the attributed
multiplex network called DMGI, inspired by Deep Graph
Infomax (DGI), which maximizes the mutual information
between local patches of a graph and the global represen-
tation of the entire graph. Vashishth et al. [21] proposed a
novel graph convolutional framework (COMPGCN) which
jointly embeds both nodes and relations in a relational
graph. COMPGCN leverages a variety of entity-relation
composition operations from knowledge graph embedding
techniques and scales with the number of relations. Yu et al.
[22] proposed a novel GEneralized Multirelational Graph
Convolutional Networks framework, which combines the
power of GCNs in graph-based belief propagation and the
strengths of advanced knowledge-based embedding
methods, and goes beyond.

In summary, in response to the challenges presented in
this paper, the single-layer network embedding methods
cannot achieve the preservation of interlayer-dependent
information. *e joint representation learning methods of
multiplex networks assume that nodes have shared em-
beddings in interlayer, and information sharing and transfer
are realized through these embeddings. However, different
levels of dependence between layers will cause this as-
sumption to be invalid (please refer to Figure 3 of literature
[44]). *e existing coordinated representation learning
methods neglect node attributes and their local topology.
Aggregating these coarse-grained attributes in the graph
neural network can include noise and affect the performance
of the model. In order to fill this gap, we propose a hier-
archical multiplex network embedding (HMNE) model with
high-order node dependence. *e specific implementation
will be described in detail in Section 4.

3. Data and Problem Formulations

In this section, we describe related symbols, concepts, and
definitions in detail. Our data model’s basic concepts are
introduced in Section 3.1. *en, we formalize a generalized
node embedding problem of multiplex networks in Section
3.2. *e important notations are summarized in Table 1.

3.1. DataModel. In terms of network data of multiple views
and sources, it is more appropriate to represent such net-
works as multiplex networks. As shown in Figure 1, three
layers of this multiplex network are derived from three
modal data, such as social network, semantic relation net-
work, and co-occurrence network. Multiplex networks can
not only express the intralayer link but also can well model
the dependencies and interactions between networks [44].
*e detailed definitions of multiplex networks are as follows.
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Definition 1 (multiplex network architecture). Given a
multiplex network of N nodes with the sets of layer L, in
which each node can interact with the other ones through |L|

kinds of relations with |L|≥ 2, we denote an aligned mul-
tiplex networkG� {Gl(V,El), l ∈ L} which is made up of |L|

layers with N� |V| nodes and E� |􏽐l∈LE
l| edges.
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Each layer in multiplex networks has the same node set
and different edge sets, as shown in the middle part of
Figure 1. Let i, j ∈V be two nodes. il denotes node i at layer
l, and el

i,j ∈ E
l denotes the edge to link il and jl in layer l. il

and il are the duplicates of the same node i in different layers.
We assume that nodes il and jl′ can be implicitly linked by
the duplicates of i in layer l′ and el′

i,j cross-layers l and l′.
Figure 1 shows an illustrative example of a multiplex net-
work with |L| � 3-layer network (i.e., L� {Douban, LinkedIn,
Weibo}) and a target node User. *e dotted line represents
an anchor link. eLinkedInUser,A is an edge between node User and
node A in layer LinkedIn. eDouban,LinkedIn

User,A is a cross-layer link
between node UserDouban and node ALinkedIn through an
anchor link.

3.2. Problem Formulation

Definition 2 (multiplex network representation
learning). Suppose the methods make use of a real-valued
superadjacency matrix A, A ∈ R(N×|L|,N×|L|) (e.g., repre-
senting text or metadata associated with nodes). Node
embedding aims at learning a map function f: A⟶H.

f is a function, which maps Ai � A
l1
i , A

l2
i ,􏽮

. . . , A
l|L|

i } ∈ R(N,|L|) to a d-dimensional representation of
node i, and Ai is a group of vectors of node i in the
superadjacency matrix of G, and it can also be under-
stood that it is composed of adjacency matrices of
multiple layers. H is a d-dimensional vector/tensor, and
d≪N. For coordinated representation learning, hi is a
vector for node i. For joint representation learning, hi is a
tensor for node i. Notice that all the aforementioned
definitions can be easily extended to the case of weighted
networks. We only focus on coordinated representation
learning in this paper.

4. Proposed Model

In this section, we introduce the overall model of our HMNE
by addressing the three major challenges mentioned in
Section 1:

(1) Preserving high-order proximity information of
nodes: as shown in Figure 2, a symmetric graph
convolution-deconvolution network (SGCD) model
is designed to solve the oversmoothing problem of
the traditional GCN. GCD includes the graph
convolution component (GCC) and graph decon-
volution component (GDC). We formulate a re-
striction constraint for the GDC to restructure the
original input feature of the GCC.*e output feature
of the GCC with K (graph) convolution layers xk

i in
respect of node i is inputted into the GDC for
reconstructing original input feature xi. Even if
many graph convolution layers are added to the
GCC, the oversmoothing problem can be avoided
because of this reconstruction constraint. *erefore,
we can conveniently preserve high-order proximity
information of nodes by increasing the graph con-
volution layers.

(2) Preserving the interlayer dependence property of
multiplex networks: as shown in Figure 2, there are
two major components to capture the intralayer
dependence property of multiplex networks. We
first utilize a structural similarity metric method to
measure the difference target layer l and the other
layer l′, respectively, in respect of node i. *e result
is served as a structural complementary infor-
mation estimation Ptrue. *en, the similarity
measure between the embedding hl

i of node i in the
target layer l and the global embedding Hl′ in the
other layer l′ is served as the complementary in-
formation Ppred in respect of node i. *rough the
minimization of Ppred and Ptrue, the learned em-
bedding of node i can preserve the dependency
property between layers.

(3) Preserving the dependence of node attributes with
the topology of each layer: as shown in Figure 2, the
input feature is attributes xi of node i. We utilize the
idea of disentanglement learning to disentangle xi as
|L| attribute subsets. *ese attribute subsets depen-
dent on the topology of each layer have different
semantic information. *ree main processes are as
follows: firstly, we use xi of node i as the input of the
GCC. *en, the embedding hl

i of node i with attri-
bute information and structure information is ob-
tained by the GCC in layer l of multiplex networks.
Finally, the disentangled representations of the
node’s attributes are the output of the GDC in each
layer. In the GCC, the attributes associated with the
topology of each layer are preserved. In the GDC, the
structure information is disentangled from hl

i.

Table 1: Notations.

Notation Explanation
G A multiplex network
V,Eα *e sets of nodes and edges in layer α, respectively
Gl, Al A network/adjacency matrix of layer l, respectively
N, El *e node number/edge number of layer l, respectively
X xi | i ∈ V􏼈 􏼉, the set of node attributes
H *e node representations of multiplex networks
i, xi A node and its features, respectively
deg(i) *e degree of node i

el
i,j An edge between i and j in layer l

k *e number of neural network layers
Nl

i Neighbors of node i in layer l

hl
i *e learned representation of node i in layer l

d *e dimension of node representations
Zl, 􏽥Zl *e output of GCC/GDC in layer l of G

Z(k), 􏽥Z(k) *eoutput of the k-th convolution/deconvolution layer
Θ,Θd *e convolution/deconvolution kernel
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4.1. Preserving High-Order Proximity

4.1.1. Graph Convolution. In spectral-based graph convo-
lution models, a mathematical representation of an undi-
rected graph is the normalized graph Laplacian matrix
defined as L � In − D− (1/2)AD− (1/2), where D is a diagonal
matrix of node degrees. *e normalized Laplacian matrix
can be factored as L � UΛUT, where Λ is the diagonal
matrix of eigenvalues. *e eigenvectors of the normalized
Laplacian matrix form an orthonormal space; in mathe-
matical words,UTU � I. In graph signal processing, a feature
vector of node i of a graph is a graph signal xi ∈ RN.

*e graph Fourier transform to a signal xi is defined as
F(xi) �UTxi, and the inverse graph Fourier transform is
defined as F− 1(􏽢xi) �U􏽢xi, where 􏽢xi represents the resulting
signal from the graph Fourier transform. *e graph con-
volution of the input signal xi with a convolution kernel
(filter) g is defined as

xi ∗ Gg � F
− 1

F xi( 􏼁⊙F(g)( 􏼁 � U UTx ⊙UTg􏼐 􏼑, (1)

where ⊙ denotes the Hadamard product. If we denote a
filter as gθ � diag(UTg), then the graph convolution is
simplified as

xi ∗ Gg � UgθU
T
xi. (2)

*e graph convolution component from [52] limits the
layerwise convolution operation to alleviate the problem of
overfitting on local neighborhood structures for graphs with
very wide node degree distributions. *e equation simplifies
to

xi ∗ Gg ≈ θ0′xi + θ1′ L − IN( 􏼁xi � θ0′xi − θ1′D
− (1/2)AD− (1/2)

xi.

(3)

After constraining the number of parameters with
θ� θ0′� − θ1′, we can obtain the following expression:

xi ∗ Gg ≈ θ IN + D− (1/2)AD− (1/2)
􏼐 􏼑xi. (4)

Kipf and Welling [52] introduced the trick:
IN + D− (1/2)AD− (1/2) ≈ 􏽥D− (1/2) 􏽥A 􏽥D− (1/2), where 􏽥A � A + IN

and 􏽥Dii � 􏽐j
􏽥Aij. Finally, we treat Θ as a convolution kernel

(a matrix of filter parameters), a general definition of graph
convolution as follows:

Z � 􏽥D− (1/2) 􏽥A 􏽥D− (1/2)XΘ. (5)

In order to express the following sections more clearly,
we denote Zl as the node embedding of layer l of a multiplex
network G and Z(k) as a node embedding output of the k-th
layer of the graph convolution neural network.

4.1.2. Graph Deconvolution. To capture the high-order
proximity information of the nodes, we can simply stack
multiple convolution layers as our HMNE’s graph convo-
lution component (GCC) based on equation (5). However,
previous studies showed that graph convolution is a type of
Laplacian smoothing. *ey proved that, after repeatedly
applying Laplacian smoothing many times, the features of

the nodes in the (connected) graph would converge to
similar values. To avoid this problem and capture the high-
order proximity of nodes, we design a graph deconvolution
component (GDC). We first take the output Z(k) of the k

(multiple) stacked convolution neural layers as the input of
the GDC.*en, analogous to the definition of deconvolution
in the field of computer vision, according to equation (5), a
graph deconvolution layer with a deconvolution kernelΘd is
defined as

􏽥Z � 􏽥D− (1/2) 􏽥A 􏽥D(1/2)Z(k)Θd, (6)

where A is an adjacency matrix, A ∈ RN×N, 􏽥A � A + IN
􏽥D is a

degree matrix, and 􏽥Dii � 􏽐jAij. *e embedding of nodes
􏽥Z(k) is an output of the k-th layer of the graph deconvolution
neural network.

4.1.3. Intralayer Embedding Loss. In this initialization of the
GDC, the input matrix 􏽥Z(1) is Z(k), where k is the number of
graph convolution layers, and Z(k) is a final node embedding
matrix according to equation (5). To separate the structure
information from the input by the deconvolution kernel, we
propose an intralayer embedding loss formula. We use a
symmetric structure containing k convolution layers and k

deconvolution layers as our graph convolution-deconvo-
lution component (SGCD). *e reconstruction loss formula
of SGCD is

Lintra � 􏽘

(K/2)

j�1

􏽥Z(j)
− Z(K− j)

�����

�����
2

2
. (7)

We assume the input Z(1) of the GCC is the node at-
tributes X so that the output 􏽥Z(k) of the GDC is a recon-
struction matrix in respect ofX. *is reconstruction process
is significant for Section 4.3.

4.1.4. Node Representation Learning. In order to preserve
the attribute and structural information of the node in each
layer, we need to aggregate the embedding hl

i (l ∈ L) of node
i in each layer to obtain a more complementary global node
embedding hi. We use a sum function to integrate the
embeddings of node i in each layer:

hi � 􏽘
l∈L
hl

i. (8)

*en, the final embedding of nodes in multiplex net-
works is

H � 􏽘
l∈L
Zl

. (9)

*e final embedding hl
i ∈ Z

l of node i in layer l obtained
by the GCC, where Zl ∈RN×d and hl

i ∈R
1×d, is a row of Zl.

4.2. Preserving Interlayer Dependence

4.2.1. Interlayer Structure Complementary Information
Estimation. To capture the interlayer dependence between
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layers, we introduce how to get the true sample (l′, l, i),
which indicates layer l′ is complementary for i in l. *is
complementary information computing can effectively
measure the interlayer dependence property. *e basic idea
is that the more dissimilar the local structures in two layers,
the more reason to believe complementary information
exists between these two layers. So, we utilize the structural
similarity between two layers to produce true samples. Let
Ptrue(· | i, l) denote the true underlying connecting distri-
bution of node i in layer l, and we can estimate it as

p(j | i, l) �
e

l
i,j

􏽐v∈Ve
l
i,v

. (10)

*en, the locally topological structural similarity of node
i between layers l′ and l can be calculated by Jensen–
Shannon distance between Pl′ ,i � P(· | i, l′) and
Pl,i � P(· | i, l) as

DJS Pl′ ,i Pl,i

����􏼐 􏼑 �
1
2

DKL Pl,i‖M􏼐 􏼑 + DKL Pl′,i‖M􏼐 􏼑􏽨 􏽩, (11)

where M � ((Pl,i + Pl′,i)/2) and DKL is the Kullback–Leibler
divergence:

DKL(P‖Q) � 􏽘
v

P(v)log
P(v)

Q(v)
. (12)

Note that when the locally topological structures of node
i between layers l′ and l are identical, DJS(Pl′ ,i

����Pl,i) � 0;
otherwise, DJS(Pl′ ,i

����Pl,i) � 1. So, we get Sstruc(l′, l | i) � 1 −

DJS(Pl′,i

����Pl,i) as the locally topological structural similarity
between layers l′ and l regarding node i. Finally, we can
estimate Ptrue(· | l, i) and sample true layers according to the
distribution:

Ptrue(· | l, i) � Δ
l′∈L

Sstruc l′, l | i( 􏼁

􏽐r∈LSstruc(r, l | i)
, l′ ∈ L, (13)

where Δ denotes a function that can concatenate each el-
ement successively. Actually, this structure complementary
information estimation can be served as the similarity of
node i in layer l with respect to the topology of the layer
where the node is located.

4.2.2. =e Interlayer Dependence Estimation of Nodes. In
order to realize the interlayer dependence property, inspired
by the idea of Deep Infomax in [53], we regard the mem-
bership of node i in layer l for layer l′ as a measure of the
interlayer local dependency of node i.*erefore, a layer-level
embeddingHl of layer l in multiplex networks is computed
by employing a readout function Readout: Rn×d⟶Rd.

H
l

� Readout Zl
􏼐 􏼑 � σ

1
N

􏽘

N

i�1
hl

i
⎛⎝ ⎞⎠, (14)

where Zl is a final embedding matrix of layer l in the graph
convolution component, hl

i is an embedding of node i of the l

layer, and σ is a logistic sigmoid nonlinearity function.

Based on the layer-level embedding and the embedding
of each node in this layer, we calculate the measure of the
interlayer dependence property of node i in layer l on layer
l′. In this paper, we apply a simple bilinear scoring function
as it empirically performs the best in our experiments:

Score l′ | l, i( 􏼁 � Score hl
i,H

l′
􏼒 􏼓 � σ hl

iWH
l′

􏼒 􏼓, (15)

where σ is the logistic sigmoid nonlinearity andW ∈Rd×d is
a trainable scoring matrix. We can estimate the interlayer
local dependence measure of the nodes by calculating the
scores of the nodes’ embedding in each layer and the global
embedding of each layer:

Ppred(· | l, i) � Δ
l′∈L

Score l′ | l, i( 􏼁, (16)

where Ppred(· | l, i) denotes a vector of interlayer dependence
of node i in layer l in respect of the duplication of node i in
each layer and Δ denotes a function that can concatenate
each element successively.

4.2.3. Interlayer Dependence Loss. Comparing equation (13)
with (16), we have designed an objective function with
BCELoss loss function for saving the node interlayer de-
pendence property:

Linter �
1
N

􏽘
i∈V

􏽘

L

l′�1

− Ptrue l′ | l, i( 􏼁log􏽥Ppred l′ | l, i( 􏼁􏽨

+ 1 − Ptrue l′ | l, i( 􏼁( 􏼁log 1 − 􏽥Ppred l′ | l, i( 􏼁􏼐 􏼑􏽩.

(17)

4.3. Preserving Dependence between Attributes and Topology.
In order to preserve the dependence between attributes and
the topology of each layer, the original attributes of nodes are
fed into the GCC. We perform GCC and GDC processes to
disentangle the attributes of nodes as different semantic
representations. We believe that the GCC can strengthen the
attribute value related to the layer’s semantic in the node
attributes. GDC can disentangle the attributes of nodes with
structure information of nodes. *is is the main advantage
of our GCD (intralayer embedding) method compared with
the graph autoencoder and variational autoencoder.*en, in
the final graph deconvolution network phase, each final
output embedding of the GDC for each layer of multiplex
networks is aggregated by a concatenate function. A linear
layer is used to reconstruct the original attributes xi, which
makes the overall model framework designed as an
autoencoder architecture. Based on the embedding of node i

in layer l and the embedding of node i in other layers, we
construct a simple nonlinear fusion method to obtain the
reconstruction attributes 􏽥xi of node i:

􏽥xi � σ WΔL
l′�1

􏽥Zl′
i􏼒 􏼓, (18)

where σ is a sigmoid nonlinearity activation function, W is

the trainable parameters, and 􏽥Zl′
i is the output of the GDC of

i node in the l′ layer network. *en, we also utilize the
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BCELoss function to calculate the loss between original
attributes xi and reconstruction attributes 􏽥xi of node i:

Lattr �
1
N

􏽘
i∈V

􏽘
l∈L

− xilog􏽥x
l
i + 1 − xi( 􏼁log 1 − 􏽥x

l
i􏼐 􏼑􏼐 􏼑􏼐 􏼑, (19)

where L is the layer number of multiplex networks and xi is
the attributes of the i node.

Finally, the global loss function of HMNE also considers
the loss of different components. *erefore, we simply sum
all the loss functions as the loss of the entire model and use
Adam optimizer for backpropagation and parameter
learning. *e loss function of HMNE is

L � Linter + Lintra + Lattr. (20)

4.4.=e Optimization and Time Complexity. We present the
node representation learning process (HMNE) for multiplex
networks in Algorithm 1. *e total time complexity of
HMNE is O(TNE|L|2) where T is the number of iterations,
N is the number of nodes in each layer, E is the number of
edges of the multiplex network, and |L| is the number of
layers.

5. Experiment Analysis

In this section, we study the performance of HMNE in
different real-world datasets. We use cross-domain link
prediction and shared community detection tasks to verify
the performance of HMNE.

5.1. Datasets. For our experiments, we conduct HMNE and
compare baseline methods on each of the following mul-
tiplex networks. *ese datasets contain two categories:
public datasets and private dataset. Public datasets are
composed of five multiplex network benchmark datasets
involving social, biological, and transportation. Private
dataset is an interesting semantic network dataset that we
construct. *is dataset is a network of acknowledgment
relationships extracted from the acknowledgment part of
dissertation data and the coauthor network of corresponding
entities from AMiner (https://www.aminer.cn/).*e specific
information about public and private datasets is shown in
Table 2.

5.1.1. Public Datasets. *ese multinetwork datasets were
collected on M. De Domenico’s homepage (https://
comunelab.fbk.eu/manlio/index.php), and the processed
datasets are available (https://github.com/Brian-ning/
HMNE/).

Vickers classroom social multiplex network: this dataset
was collected by Vickers from 29 seventh-grade students in a
school in Victoria, Australia. Students were asked to
nominate their classmates on a number of relations (class,
best friend, and work).

CS-Aarhus social multiplex network: this dataset con-
sists of five kinds of online and offline relationships
(Facebook, leisure, work, coauthorship, and lunch) between

the employees of the computer science department at
Aarhus. *ese variables cover different types of relations
between the actors based on their interactions.

London multiplex transport network: this dataset was
collected in 2013 from the official website of Transport for
London and manually cross-checked. Nodes are train sta-
tions in London, and edges encode existing routes between
stations. Tube, overground, and DLR stations are
considered.

CKM physicians’ innovation multiplex network: this
dataset was collected by Coleman, Katz, and Menzel on
medical innovation, considering physicians in four towns in
Illinois: Peoria, Bloomington, Quincy, and Galesburg. *ey
were concerned with the impact of network ties on the
physicians’ adoption of a new drug, tetracycline.*ese views
are advice, discussion, and friend.

Celegans multiplex connectome network: this dataset
considered different types of genetic interactions for or-
ganisms in the Biological General Repository for Interaction
Datasets (BioGRID, thebiogrid.org), a public database that
archives and disseminates genetic and protein interaction
(ElectrJ, MonoSyn, and PolySyn) data from humans and
model organisms.

*ese networks have been used as benchmark datasets for
evaluating multiplex network analysis methods. In addition,
the CKM dataset has ground-truth information about the
community label of nodes. *erefore, HMNE performs
performance testing of the cross-domain link prediction task
on all datasets and performs performance testing of the shared
community detection task on the CKM dataset.

5.1.2. Private Dataset. *is dataset is a two-layer network
constructed from two views, one of which is a coauthor
network constructed in the form of author co-occurrence
from common paper data (fromAMiner). Another view is to
take the author of the dissertation as the central node from
each acknowledgment chapter of the dissertation data, the
named entity (including tutor, teacher, classmate, or family
member) identified in the acknowledgment text as the
neighbor node, and the co-occurrence of the entity as the
edge constructed from the center network (ego network).
Based on the acknowledgment text of the dissertation and
paper data, the acknowledgment layer network and coauthor
layer network of the Ack-co-author dataset are constructed,
respectively.

5.2. BaselineMethods. In these experiments, we test 14 other
comparison algorithms: 11 baseline methods with the same
parameters and dimensions and 3 traditional methods. *e
explanations of these baseline methods are as follows. Some
of these methods can be used to test two tasks simulta-
neously. Other methods can only be suited for one of two
tasks. *e details of baseline methods are as follows:

(i) CN (common neighbor): it captures the notion
that two nodes that have a common neighbor may
be introduced by that neighbor. It has the effect of
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“closing a triangle” in the graph and likes a
common mechanism in real life.

(ii) JC (Jaccard coefficient): it is a measure used for
gauging the similarity and diversity of sample sets
and is defined as the size of the intersection divided
by the size of the union of the sample sets.

(iii) AA (Adamic/Adar): it is a measure to predict links,
according to the number of shared links between
two nodes. It is defined as the sum of the inverse
logarithmic degree centrality of the neighbors
shared by the two nodes.

(iv) AAMT [54]: it is a link prediction method for
multiplex networks based on the Adamic/Adar
coefficient neighbor similarity, which considers the
intensity and structural overlap of multiplex links
simultaneously.

(v) Node2vec [33]: it adds a pair of parameters to
achieve BFS and DFS sampling process on the
single-layer network. It makes it better for cap-
turing the role of nodes, such as hubs or tail users.

(vi) OhmNet [18]: it is a node embedding method for
multiplex networks, where hierarchy information
is used to model dependencies between the layers.

(vii) PMNE [17]: it has threemethods of node embedding,
each of which generates a common embedding of
each node by merging multiple networks. We
compare these three models with other baseline
methods.We denote “network aggregation,” “results’
aggregation,” and “coanalysis model” as PMNE(n),
PMNE(r), and PMNE(c), respectively.

(viii) MNE [24]: it is a scalable multiplex network
embedding. It contains one high-dimensional
common embedding and a lower-dimensional
additional embedding for each type of relations.
*en, multiple relations can be learned jointly
based on a unified network embedding model.

(ix) MELL [26]: it is a novel embedding method for
multiplex networks, which incorporates an idea of
layer vector that captures and characterizes each
layer’s connectivity. *is method exploits the

Input: graph G � 〈V,E, L,X〉; neural layer number K≥ 3 for GCC and GDC, graph convolution/deconvolution kernel Θ, Θd,
iteration times T.
Output: H: the node embeddings of multiplex network G

(1) begin
(2) Initialize all parameters for GCC and GDC with K neural layers, respectively.
(3) t � 1
(4) while t≥T or not converge do
(5) for l in L do
(6) Sample nodes and calculate P(l,·) in layer l based on equation (15).
(7) Generate convolution embedding Zl using χ and Gl by equation (5)
(8) Readout the embedding Hl of layer l by equation (14)
(9) Generate disentangled embedding 􏽥Zl using Zl and Gl by equation (6).
(10) end
(11) Calculate Ptrue by equations (11) and (13).
(12) Calculate Ppred by equation (16).
(13) Update Θ and Θd by minimizing equations (7) and (17).
(14) Generate the reconstruction attributes 􏽥χ by 􏽥Zl and equation (18).
(15) Update Θ, Θd, and W by minimizing equation (19).
(16) t+ � 1
(17) end
(18) Incorporate node embedding H by equation (9).
(19) end
(20) return the node representation H.

ALGORITHM 1: HMNE model.

Table 2: Basic statistics about different multiplex networks used in this study.

Name Nodes Edges Layers Description
Vickers 29 740 3 Class: 316; best friend: 226; work: 198
CS-Aarhus 61 620 5 Facebook: 193; leisure: 124; work: 21; coauthor: 87; lunch: 195
London 369 441 3 Tube: 312; overground: 82; DLR: 46
CKM 246 1551 3 Advice: 480; discussion: 565; friend: 506
Celegans 279 5863 3 ElectrJ: 1031; MonoSyn: 1639; PolySyn: 3193
Ack-co-author 3383 29128 2 Acknowledgment: 1733; coauthor: 1285
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overall structure effectively and embeds both di-
rected and undirected multiplex networks, whether
their layer structures are similar or complementary.

(x) GraphSAGE [38]: it is a graph neural network
framework for inductive representation learning
on graphs. GraphSAGE is used to generate low-
dimensional vector representations for nodes and
is especially useful for graphs that have rich node
attribute information. We use an unsupervised
learning version of GraphSAGE to serve as a
baseline method of the link prediction task.

(xi) GATNE-T [9]: it considers the network structure and
uses base embeddings and edge embeddings to
capture the influential factors between different edge
types. *e attention mechanism is used to capture
the influential factors between different edge types.

(xii) DMGI [10]: it is a simple yet effective unsupervised
network embedding method for the attributed
multiplex network, inspired by Deep Graph
Infomax (DGI), which maximizes the mutual in-
formation between local patches of a graph and the
global representation of the entire graph.

(xiii) MV-ACM [45]: it is a novel multiview adversarial
completion model (MV-ACM). Each relation
space is characterized in a single viewpoint, en-
abling them to use the topological structural in-
formation in each view.

(xiv) GenLouvain [55]: it is a modularity-based multi-
plex network community detection algorithm. *e
algorithm not only considers the modularity
within the layer but also considers the modularity
between layers. By maximizing the modularity
metrics, the algorithm completes the community
detection task. We only use this algorithm as a
baseline method for the node clustering task.

In this paper, we only apply CN, JC, AA, node2Vec, and
GraphSAGE to link prediction tasks at the single layer where test
edges are located at. For OhmNet, we construct a hierarchy
describing relationships between different layers randomly. We
regard the common embedding in the MNE algorithm as the
global embedding of nodes. For MELL, we add layer-level
embedding as the global-level embedding and then add it to the
node-level embedding of the test node. AAMT uses the mul-
tiplexity property of nodes (interlayer information) and simi-
larity between nodes (intralayer information) to predict the
probability of link. For GATNE-T and MV-ACM, we only use
the homogeneous skip-gram model for node representation
learning.*e categoricalmultislice networkmodel is selected for
GenLouvain. Besides the same walk length, walk times and
embedded dimensions are set as the same parameters ofHMNE,
and we also set other experimental baseline methods using the
default parameters, such as PMNE, MELL, and DMGI.

5.3. Experimental Setup. For implementing the network fea-
ture extraction module, we use representation learning of nodes
to extract the feature of each layer. In these datasets we use, if

nodes in these datasets have no attributes, we use the adjacency
matrix of merged multiplex networks as the attribute infor-
mation of nodes in compared experiments.*e definition of the
matrix is the adjacencymatrix of themultilayer network after the
multilayer network is aggregated or flattened (that is, the union
of edges for each layer). *e matrix can reflect that the topology
of nodes in different networks depends on the network topology.
In other words, neighbor nodes (denote node attributes) are
dependent on the formation of the node topology under dif-
ferent semantics.We set p=2 and q=1 as default parameters in
the biased sample process of the node2vec method. We set the
number of walks to 20 and walk length to 30 for OhmNet,
node2vec, PMNE (n, r, c), MNE, MELL, GraphSAGE (unsu-
pervised vision), GATNE-T, and MV-ACM. *e dimension of
embedding is set to 128 for all methods. For GATNE-T, DMGI,
MV-ACM, and our HMNE, the optimizer of the model is
Adam, the learning rate is selected from {0.0001, 0.002}, and the
batch size is 50 (except for the Vickers dataset). For three
heterogeneous embedding network methods, an edge is usually
input into the model as a meta-path for training. All the ex-
periments are conducted on a Linux server with sixteen logical
CPUs on Intel Xeon E5 CPU and four GTX 1080Ti GPUs.
Notice that, in the community detection task, we uniformly
remove the community label in the node attributes for repre-
sentation learning. Although our model can alleviate the
oversmoothing problem of the current graph neural network
algorithm, to verify this feature of our model, we show the effect
of different layers of the neural network on the model perfor-
mance. According to the experiment results, it is a tradeoff
between the performance and complexity of the model to use a
2-layer graph neural network in both compared experiments.

5.4. Cross-Domain Link Prediction. In this section, we
perform the cross-domain link prediction task on these
multiplex networks. We refer to the experimental settings of
the multiplex networks of literature [45]. For the cross-
domain link prediction task, we remove 20% of edges of each
layer in the original network and use the area under the
curve (AUC) score and adjusted mutual information (AMI)
score to evaluate the performance of these algorithms for
predicting missing edges in each layer. We use the residual
(80%) edges of each layer for training and the 20% of edges
randomly selected from each layer for testing. *ese node
pairs in edge sets of the test set are regarded as positive
examples. *en, we randomly sample an equal number of
node pairs from the test set, in which no edge connecting
node pairs are served as negative examples. AUC is the area
under the receiver operating characteristic (ROC) curve,
which is equal to the probability that a classifier ranks a
randomly chosen positive example higher than a randomly
chosen negative one. With Pos positive examples and Neg
negative examples, AUC can be calculated by

AUC �
􏽐i∈+ranki − (Pos(1 + Pos)/2)

Pos × Neg
. (21)

Mutual information (MI) is also used to measure the
degree of agreement between the two data distributions.
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Assuming that U and Y are the distribution of N sample
labels, the entropy of the two distributions is

P(i) �
Ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
,

􏽥P(j) �
Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

N
,

H(U) � 􏽘

|U|

i�1
P(i)log(P(i)),

􏽥H(Y) � 􏽘

|Y|

j�1

􏽥P(j)log(􏽥P(j)),

MI(U, Y) � 􏽘

|U|

i�1
􏽘

|Y|

j�1
P(i, j)log

􏽥P(i, j)

􏽥P(i)􏽥P(j)
􏼠 􏼡,

AMI �
MI − E[MI]

max(H(U), H(V)) − E[MI]
,

(22)

where E[MI] is an expected value of mutual information.
*e range of AMI values is [− 1, 1], and its value is larger,
which means that the result is more consistent with the real
situation.

We calculate the similarity between nodes by CN, JC,
and AA metrics in the layer where the test node pair is
located. For other single-layer network embedding methods,
we train a separate embedding for each relation type of the
network to predict links on the corresponding edges. It
means that they do not have information from other layers
of multiplex networks. We aim to verify the interlayer de-
pendence can provide complementary structure information
from other layers. In terms of node embedding methods, we
use the cosine function of vectors as a similarity metric. *e
larger the similarity scores are, the more likely there exists a
link between them.

From Table 3 and Figure 3, we can know that HMNE is
significantly better than other comparison algorithms. Our
model shows better performance on multiplex network
datasets than single-layer methods such as CN, JC, AA,
node2vec, and GraphSAGE, which directly proves that
fusing different structural information by preserving the
interlayer dependence property can improve the accuracy
of the cross-domain link prediction task. *is property of
the multiplex network can provide critical complementary
information from other layers. We regard OhmNet, PMNE,
MNE, MELL, GATNE-T, DMGI, and HMNE as compar-
ative experimental groups. *ese compared algorithms are
the latest multiplex network representation learning
methods to learn multiplex network representation.
OhmNet and PMNE are extensions of the traditional
single-layer network embedding method, but there is no
direct consideration of the interlayer dependence property
in the final embeddings. It leads to an inevitable loss of
information in the embedding process, so the comple-
mentary information of the interlayer cannot be well
preserving. For MNE and MELL methods, the common (or
layer) embedding is considered based on the assumption

that nodes have similar local structures in different layers.
In fact, this assumption is rare, and it also affects the
generalization ability of the algorithm. *is process of
interlayer node embedding based on common embedding
can lead to distortion and inaccuracy of information.
GATNE-T, DMGI, and MV-ACM are specially designed to
handle such a scenario that the nodes have different types
and attributes in each layer, so they cannot show excellent
performance in the problem we are trying to solve.
Moreover, these three methods ignore the dependence
property between node attributes and the topology of the
layer where the node is located. For our model, HMNE
simultaneously considers intralayer, interlayer, and attri-
bute dependence properties of nodes in the node embed-
ding process.

5.5. Shared Community Detection. Shared community de-
tection task aims to group similar nodes so that nodes in the
same group are more similar to each other than those in
different groups. In other words, each node in a multiplex
network has different relations/views and only belongs to a
unique community. In the CKM dataset, nodes have the
global community label. For this dataset, this task is usually
called a shared community detection task, which is a sig-
nificant mining task in multiplex network analysis. *ere-
fore, we treat the CKM dataset as the benchmark dataset of
the shared community detection task. For these methods
based on node representation learning, we use K-means++
algorithm to calculate the cluster of the final embedding of
nodes. In order to evaluate fairness, we set the number of
communities (clusters) to 2.

5.5.1. Evaluation Metrics. Given the ground-truth com-
munity in the real-world datasets, we use normalized mutual
information (NMI) to evaluate the performance of the
methods:

NMI(X | Y) � 1 −
H(X | Y) + H(Y | X)

2
, (23)

where X and Y denote two partitions of the network and
H(X | Y) denotes the normalized conditional entropy of
partition X with respect to Y shown in the following
equation:

H(X | Y) �
1

|C|
􏽘
k

H Xk | Y( 􏼁

H Xk( 􏼁
, (24)

where |C| denotes the number of communities. *e larger
the NMI is, the better the result is. *e value of NMI takes
from 0 to 1. It is equal to 1 meaning two partitions match
perfectly and is equal to 0 on the contrary.

In the domain of node clustering, the chance-corrected
version of this measure is adjusted Rand index (ARI). It is
known to be less sensitive to the number of parts. It is
possible to say that two elements of Y, i.e., (x, x′), are paired
in P if they belong to the same cluster. Let Q and U be two
partitions of the object set Y. A formally formulation of the
adjusted Rand index is
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ARI �
2(ad − bc)

b
2

+ c
2

+ 2ad + (a + d)(c + b)
, (25)

where a is the number of pairs (y, y′) ∈ Y that are paired in
Q and in U; b is the number of pairs (y, y′) ∈ Y that are
paired in Q but not paired in U; c is the number of pairs
(y, y′) ∈ Y that are not paired inQ but paired in U; and d is
the number of pairs (y, y′) ∈ Y that are neither paired in Q
nor inU. *is index has an upper bound of 1 and takes value
0 when the Rand index is equal to its expected value.

5.5.2. Result Analysis. As shown in Table 4, HMNE shows
excellent performance in the shared community detection
task. Among them, HMNE has obtained the largest NMI and
ARI scores. In terms of other methods, MNE and MELL
learn a representation of a node separately in each layer. We
sum the representations in different layers of nodes as the
global embedding of nodes and compare them with our
model. *erefore, the performance of MNE and MELL in
this task shows that this kind of join representation learning
algorithm cannot well preserve the shared community in-
formation of nodes. Compared with MV-ACM, GATNE-T,
and DMGI that can handle heterogeneous networks, our
model can show more excellent performance in the shared
community detection task. *e comparison with methods
GATNE-T, MV-ACM, and DMGI that can handle het-
erogeneous networks shows that our model also has good
performance. Unlike them, HMNE takes into account the
high-order proximity property of nodes. *e property en-
courages node embeddings for an identical community is
similar. It should be noted that due to the use of the iterative
strategy of maximizing modularity, GenLouvain shows
competitive performance. However, GenLouvain only
considers the topology of the multiplex network. HMNE can
capture fine-grained semantic information by preserving the
dependence property between node attributes and the

topology of each layer. Compared with other algorithms, it is
verified in the shared community detection task that our
model can preserve the global mesoscale information of the
multiplex network more effectively. We further validate that
our model can more fully consider multiple properties of
networks. *e execution time of MV-ACM is more than 24
hours, so it does not show the final results on Celegans and
Ack-co-author datasets. In general, the results of cross-
domain link prediction and shared community detection
tasks prove the effectiveness of our model. For the cross-
domain link prediction task, the graph convolution-
deconvolution component of HMNE guarantees that our
model can save high-order proximity information. When
there is a lack of available information within the layer, the
interlayer dependence component of HMNE can provide
more abundant information. For the shared community
detection task, the component preserving dependence be-
tween node attributes and the topology of the layer where the
node is located can obtain more fine-grained semantic in-
formation related to the layer’s topology by disentangling the
original attribute information.

5.6. Performance Analysis. In this section, we analyze the
results of parameter analysis experiments on the CKM
dataset that affect the performance of the model, mainly (1)
the impact of the number of convolution (deconvolution)
neural network layers on the performance of our model and
(2) the impact of the embedding dimension on the per-
formance of HMNE.

5.6.1. Effect of the Neural Layers’ Number. It can be seen
from the illustration in Figures 4(a) and 4(b) that HMNE can
avoid the smooth transition problem caused by the increase
of the number of convolution layers. For AUC and AMI
scores, it clearly reveals that the performance of HMNE first
increases with the increase of the number of network layers

Table 3: Cross-domain link prediction task. All the results are the averaged AUC scores.

Node type Network type Algorithm
Datasets

Celegans CKM CS-
Aarhus London Vickers Ack-co-

author

Homogeneous network

Single layer

CN 0.7467 0.6517 0.8855 0.5054 0.7932 0.5104
JC 0.7330 0.6526 0.8883 0.5054 0.7864 0.5102
AA 0.7524 0.6523 0.8962 0.5054 0.8145 0.6968

Node2vec 0.7847 0.8021 0.8997 0.6816 0.6667 0.5097
GraphSAGE 0.7629 0.8521 0.7023 0.5160 0.7571 0.3991

Multiple
layers

AAMT 0.8604 0.8239 0.9232 0.5266 0.7389 0.6968
OhmNet 0.8427 0.8576 0.8826 0.3580 0.7841 0.8060
PMNE(n) 0.5012 0.4773 0.5154 0.4993 0.5013 0.4981
PMNE(r) 0.4945 0.5043 0.5205 0.4782 0.5002 0.5076
PMNE(c) 0.5003 0.4757 0.5047 0.5043 0.4955 0.4983
MNE 0.6313 0.7902 0.8842 0.4526 0.7048 0.7093
MELL 0.8085 0.7599 0.9014 0.4991 0.7923 0.7227

Heterogeneous network MV-ACM — 0.8538 0.7966 0.7630 0.7810 —
GATNE-T 0.8142 0.8605 0.8897 0.6631 0.8165 0.8152

Homogeneous and heterogeneous
network DMGI 0.8557 0.8535 0.9275 0.7501 0.8028 0.8203

Homogeneous network HMNE 0.8730 0.8669 0.9252 0.7785 0.8178 0.8223
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Table 4: *e ARI and NMI scores’ performance of our HMNE and baseline methods on the CKM multiplex network dataset.

Algorithm ARI NMI
OhmNet 0.7920 0.7885
PMNE(n) 0.1733 0.1574
PMNE(r) 0.0376 0.0228
PMNE(c) 0.1582 0.1679
MNE 0.1504 0.1550
MELL 0.1728 0.1805
MV-ACM 0.8942 0.7903
GATNE-T 0.8221 0.8196
DMGI 0.8507 0.8519
GenLouvain 0.9750 0.9742
HMNE 0.9790 0.9771
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Figure 4: Impact of different experimental settings on our model’s performance in the link prediction task: (a) the effect of layer’s number
on the AUC value, (b) the effect of layer’s number on the AMI value, and (c) the effect of dimension on the AUC value.
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and then tends to stabilize. In other words, HMNE does not
appear to be oversmoothing as the number of layers in-
creases like other methods [56] based on graph neural
networks. *erefore, our proposed HMNE can not only
preserve the high-level proximity information of nodes but
also avoid oversmoothing problems caused by stacking
multiple neural layers.

5.6.2. Effect of the Embedding Dimension. Figure 4(c) il-
lustrates that AUC scores of HMNE also first increase with
the increase of the number of embedding dimensions and
then tend to stabilize. When the embedding dimension
reaches a certain level, HMNE can capture enough key
information. In a certain embedding range, node embedding
already contains most of the important information that is
needed by some tasks. If the embedding dimension con-
tinues to increase, it will learn higher-order or more abstract
information. *erefore, its performance can show a certain
stable state in an interval. In this state, owing to that HMNE
has similar self-supervised and autocoder structure, we
believe that, with the further increase of dimensions, the
objective function designed by our model will purify the
original information, filter somemeaningless and redundant
information, and preserve fine-grained features. *erefore,
as the dimension increases, the performance of the model
will not show an increasing trend again in a certain di-
mension range.

5.7. Ablation Experiment. In this section, we will verify the
effectiveness of the two properties separately by ablating the
constraints of the corresponding loss function from HMNE.
(1) HMNE-Inter: to verify the effect of the interlayer de-
pendence property on HMNE, we only ablate loss function
equation (17). (2) HMNE-Attr: to verify the dependence
between node attributes and the topology of each layer on
HMNE, we only ablate loss function equation (19). *e
experimental results are shown in Figure 5.

5.7.1. =e Effectiveness of the Interlayer Dependence Property.
As can be seen from Figure 5(a), the interlayer dependence
property is critical for link prediction tasks. After removing
loss function equation (17) (called HMNE-Inter), the per-
formance of HMNE in the cross-domain link prediction task
decreases more significantly than the decrease in the com-
munity detection task. *e reason is that the structure in-
formation of other layers provides effective complementary
information for the node pair prediction of the target layer.

5.7.2. =e Effectiveness of Dependence between Node Attri-
butes and the Topology of Each Layer. After removing loss
function equation (19) (called HMNE-Attr), Figure 5(b)
illustrates that HMNE-Attr decreases significantly in the
community detection task. In the shared community de-
tection task, we believe the performance of HMNE is more
dependent on the attribute information of the node.
However, in the link prediction task, the information pro-
vided by the dependence between node attributes and the
topology of each layer is limited.

6. Conclusion

In this paper, we propose an unsupervised node embedding
model for multiplex networks, called HMNE. HMNE first
addresses the problem of preserving of high-order proximity
information of nodes through the symmetric graph convolu-
tion-deconvolution component (SGCD). SGCD utilizes the
designed graph deconvolution component (GDC) to recon-
struct the input of the graph convolution component (GCC)
with multiple graph convolution neural layers. It can effectively
avoid the oversmoothing problem. Secondly, HMNE preserves
the interlayer dependence property with interlayer comple-
mentary information of multiplex networks by our designed
interlayer dependence component. When there is a lack of
available information within the layer, the interlayer depen-
dence component of HMNE can provide more abundant in-
formation from other layers (e.g., cross-domain link prediction
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Figure 5: *e effectiveness of different dependence properties in cross-domain link prediction and shared community detection tasks:
(a) the effectiveness comparison in cross-domain link prediction; (b) the effectiveness comparison in the shared community detection task.
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scenario). Finally, HMNE preserves the dependence between
the node attributes and the topology of each layer through
disentangled representation of attributes of nodes. It enables
HMNE to have more fine-grained attributes with different
semantic information of nodes associated with each layer
structure. *e final representation of nodes with fine-grained
attribute information can perform better in downstream tasks
(e.g., shared community detection scenario). Systematical ex-
periments on six real-world networks show the excellent per-
formance of HMNE on two downstream tasks compared with
the state-of-the-art baselines. Experiments on large-scale net-
work data based on HMNE will be our future research focus.

Data Availability
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