
sensors

Article

Optimization-Based Resource Management Algorithms with
Considerations of Client Satisfaction and High Availability in
Elastic 5G Network Slices

Chiu-Han Hsiao 1,*,†,‡ , Frank Yeong-Sung Lin 2,‡, Evana Szu-Han Fang 2 , Yu-Fang Chen 2, Yean-Fu Wen 3,
Yennun Huang 1, Yang-Che Su 1, Ya-Syuan Wu 2 and Hsin-Yi Kuo 1

����������
�������

Citation: Hsiao, C.-H.; Lin, F.Y.-S.;

Fang, E.S.-Z.; Chen, Y.-F.; Wen, Y.-F.;

Huang, Y.; Su, Y.-C.; Wu, Y.-S.;

Kuo, H.-Y. Optimization-Based

Resource Management Algorithms

with Considerations of Client

Satisfaction and High Availability in

Elastic 5G Network Slices. Sensors

2021, 21, 1882. https://doi.org/

10.3390/s21051882

Academic Editor:

Peter Han Joo Chong

Received: 2 February 2021

Accepted: 1 March 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan;
yennunhuang@citi.sinica.edu.tw (Y.H.); R06725052@ntu.edu.tw (Y.-C.S.); R05725060@ntu.edu.tw (H.-Y.K.)

2 Department of Information Management, National Taiwan University, Taipei 10617, Taiwan;
flin@ntu.edu.tw (F.Y.-S.L.); D06725003@ntu.edu.tw (E.S.-H.F.); D09725003@ntu.edu.tw (Y.-F.C.);
R06725016@ntu.edu.tw (Y.-S.W.)

3 Graduate Institute of Information Management, National Taipei University, New Taipei City 23799, Taiwan;
yeanfu@mail.ntpu.edu.tw

* Correspondence: chiuhanhsiao@citi.sinica.edu.tw
† Current address: 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
‡ These authors contributed equally to this work.

Abstract: A combined edge and core cloud computing environment is a novel solution in 5G network
slices. The clients’ high availability requirement is a challenge because it limits the possible admission
control in front of the edge cloud. This work proposes an orchestrator with a mathematical program-
ming model in a global viewpoint to solve resource management problems and satisfying the clients’
high availability requirements. The proposed Lagrangian relaxation-based approach is adopted
to solve the problems at a near-optimal level for increasing the system revenue. A promising and
straightforward resource management approach and several experimental cases are used to evaluate
the efficiency and effectiveness. Preliminary results are presented as performance evaluations to
verify the proposed approach’s suitability for edge and core cloud computing environments. The
proposed orchestrator significantly enables the network slicing services and efficiently enhances the
clients’ satisfaction of high availability.

Keywords: network slicing; resource allocation; load balancing; admission control; high availability;
Lagrangian relaxation (LR)

1. Introduction

Novel applications of 5G services are cataloged with three kinds of quality of ser-
vice (QoS) features: massive machine-type communication (mMTC), enhanced mobile
broadband (eMBB), and ultra-reliable low-latency communication (uRLLC) in 5G cellular
networks [1]. Two system architectures have been proposed for ensuring the scalability
and flexibility of resource allocation and scheduling for the diverse QoS requirements.
The first highly acceptable approach is the cloud radio access network (C-RAN). The
baseband processing and networking functions are virtually centralized in a resource pool
for resource scalability and flexibility [2]. The other one is mobile edge computing (MEC).
It supports interactive and real-time applications associated with nearby cloud hosts to
obtain the required latency for addressing urgent and distributed requirements [3]. To
implement C-RAN and MEC, software-defined networking (SDN) and network function
virtualization (NFV) have been integrated to develop network slicing technologies in 5G [4].
Network slices are end-to-end (E2E) mutually separate sets of programmable infrastructure
resources with independent control. A slice is a logical network adapted for particular
applications regarding the diverse QoS requirements [1].

Sensors 2021, 21, 1882. https://doi.org/10.3390/s21051882 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8475-7400
https://orcid.org/0000-0002-1907-2691
https://doi.org/10.3390/s21051882
https://doi.org/10.3390/s21051882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051882
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1882?type=check_update&version=2

Sensors 2021, 21, 1882 2 of 22

However, SDN and NFV have paved the way for employing the slicing concept.
The network slice-as-a-service (NSaaS) strategy has several problems and challenges [4,5].
Furthermore, the failure of virtualized network functions (VNFs) may impact the QoS for
service provisioning of the control plane (e.g., MME) and the data plane (e.g., S-GWsor
PDN-GWs), respectively [4]. The related factors would be addressed and collected to design
an orchestrator with the resource management efficiently and effectively for the VNFs, such
as resource allocation, load balancing, and high availability (HA) for building up a high
performance and robust slicing network.

Furthermore, HA is considered a high stringency requirement for providing a sustain-
able business with emergency response applications to support a reliable performance with
zero downtime and costs. Some technologies can be adopted by the redundant array of
independent discs, the replication of nodes, or master-slave database redundancy to offer
data protection in an HA-equipped system [6–8]. From the network operator perspective,
5G network slices’ resources are limited for simultaneous profit maximization. Load balanc-
ing is typically adopted by an orchestrator to achieve resource planning and provisioning
and enhance performance [4,9].

In this paper, the efficient elastic mechanisms of resource management in virtual
machines (VMs) with VNFs are proposed to integrate admission control, load balancing,
resource allocation, and HA arrangement in 5G network slices. The system architecture is
shown in Figure 1. An integer programming problem is formulated to maximize system
utilization, subject to the quality of services, resource requirements, and HA constraints.
The resource allocation problem is combined with knapsack and bin-packing problems.
Generally, the VNFs or called tasks with various amounts of resource requirements em-
ulated as VMs should be packed into a finite number of servers. A few servers in active
status and then stepping forward servers by increasing demands are possible to reduce
the operating costs in a bin-packing problem. A set of tasks for applications with diverse
weights and values is selected for inclusion to remain within the resource limit and reach the
maximum benefit, a well-known knapsack problem. Furthermore, the knapsack problem is
the aforementioned combinatorial nondeterministic polynomial time (NP) hard problem.
One possible solution is adopted by the Lagrangian relaxation (LR) method efficiently and
effectively. Near-optimal solutions provide practical methods to overcome the bottleneck
within limited computing resources of slices. The virtualization, parallel computing, and
mathematical programming techniques are also developed in this paper to make near-
optimal decisions from an NSaaS service provider’s perspective. The proposed resource
management algorithms ensure that computing resources are equitably distributed in the
slices of cloudlets and core clouds. The computation in the edge and core clouds is per-
formed to achieve maximum resource utilization with HA and minimal cost. Moreover,
the admission control scheme with the additional HA requirements is devised to admit the
maximum number of jobs. Each job requires various types of resources.

Core Cloud
Edge Cloud/ Cloudlet

(Regional MEC)
Enterprise-B

Enterprise-A

Internet

Applications for

Enterprise-A

Applications for

Enterprise-B

Slice A

Slice B

sServer

n

sB

, , , s s s sE M H V

cB

1sServer + s nServer +

Orchestrator

Base

Station
VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

VM

VNF

Figure 1. Network topology in slicing networks.

Sensors 2021, 21, 1882 3 of 22

The remainder of this paper is organized as follows: Section 2 reviews related works.
Section 3 introduces the mathematical model and problem description. The LR-based
solution approach is developed, as shown in Section 4. Section 5 presents computational
experiments. Conclusions are drawn in Section 6.

2. Literature Review

A cloud computing environment in 5G network slices supports share-based services
in a pay-as-you-go approach. It provides operators with a flexible architecture from the per-
spective of a network operator. Resource management with complex on-demand traffic in
the share-based cloud computing environment is a considerable challenge. Inappropriately
designed resource management solutions might lead to the network’s increasing costs.
This is related to unsatisfactory quality of services (QoS) and system reliability regarding
the penalty of user experience and call-blocking probability due to the virtualized network
function failure. Tables 1–3 compare the resource management problems investigated with
those investigated in related studies in terms of (i) resource allocation, (ii) load balancing,
and (iii) admission control.

2.1. Resource Allocation

For the maximization of the benefits of the cloud system and service quality enhance-
ment, Liu et al. [10] developed a joint multi-resource allocation model based on a semi-
Markov decision process (SMDP). They solved the optimization problem using linear
programming to attain wireless resource allocation and near-optimal decisions in cloud
computing. However, cloud service providers fulfill individual requirements to achieve a
win-win situation for both parties in terms of computational efficiency, budget balance, and
truthfulness. Jin et al. [11] designed an incentive-compatible auction mechanism to appro-
priately allocate matching among cloud resources and user demands. In this auction model,
the buyers are mobile devices, and the sellers are cloudlets. The nearest control center can
adopt the role of the auctioneer to reduce transmission costs and latency. Furthermore, by
assuming that all cloudlets can provide the same resources with distinct rewards, Liu and
Fan [12] presented a two-stage optimization strategy to achieve optimal cloudlet selection
in a multi-cloudlet environment and optimal resource allocation in response to the request
in the cloudlet. Studies on resource allocation in a cloud computing environment are shown
in Table 1. Resource allocation and scheduling algorithms have been proposed in numerous
research areas, such as transportation management, industrial management, operational
research, computer science, and particularly in real-time operating systems [13,14]. For in-
stance, the earliest deadline first (EDF) is a dynamic scheduling algorithm used in real-time
operating systems to allocate computing resources in central processing units (CPUs) using
a priority queue. The queue searches for the task with the closest deadline; if a job cannot
be completed within its time frame, the operating system must release the job. The main
idea is to maximize resource use for several competing interests while balancing the load. A
weighted priority for each data flow can be assigned inversely proportional to the respective
flow’s anticipated resource consumption [15,16]. Ding et al. [17] proposed a Linux schedul-
ing policy with a priority queue rather than a first-in-first-out (FIFO) queue to improve
kernel-based virtual machine performance. Zhao et al. [18] proposed online VM placement
algorithms to cost efficiently allocate resources to VMs to increase revenues in a managed
server farm. First-fit (FF), FF migration (FFM), least reliable first (LRF), and decreased
density greedy (DDG) algorithms are packing strategies relevant to task optimization for
achieving desirable performance.

Based on the analysis of the previous studies, this paper regards offloading tasks as
virtual machines with distinct rewards with various levels of demands in the cloudlets and
core clouds. The Lagrangian relaxation-based approach is proposed to maximize system
revenue, subject to constraints such as computing capacity, assignments, and quality of
service requirements. The approach is adopted by considering finding the optimal solutions
other than SMDP within limited states or constraints. The objective is to maximize the total

Sensors 2021, 21, 1882 4 of 22

value of tasks using proposed heuristics in polynomial time. It also appropriately rearranges
resources using the next-fit algorithm to allocate tasks and satisfy application requirements.

Table 1. Resource allocation comparisons with existing methods. SMDP, semi-Markov decision process;
EDF, earliest deadline first; FF, First-fit; FFM, FF migration; LRF, least reliable first; DDG, decreased
density greedy.

Classification Objective Strategy Related Studies Proposed Methods

Resource
allocation

Maximizing
revenue and
satisfying QoS

SMDP; auction;
EDF; FIFO; FF;
FFM; LRF; DDG

[10–18] LR and next-fit are
adopted

Comparison with related studies

This paper regards offloading tasks as virtual machines with distinct rewards with various levels of
demands in the cloudlet and core cloud environment. The Lagrangian relaxation-based approach
is proposed to maximize system revenue, subject to constraints such as computing capacity,
assignments, and quality of service requirements. The objective is to maximize the total value
of tasks by using proposed heuristics to appropriately rearrange resources using the next-fit
algorithm to allocate tasks and satisfy application requirements.

2.2. Load Balancing

Load balancing is a crucial technology that optimizes mobile application performance.
Several studies have proposed cloudlet technology solutions [19] to achieve load balancing
for mobile devices (Table 2). Jia et al. [19] devised a load-balancing algorithm to balance the
workload among multiple cloudlets in wireless metropolitan area networks. A redirection
scheme shortened the average offload task response time and improved user experience.
Yao et al. [20] studied load balancing for cloudlet nodes. The task allocation problem was
formulated as an integer linear problem. A two-step centralized appointment-driven strat-
egy was used to obtain a solution with minimal average response time and a balanced load.
From a network operator perspective, time-varying and periodically changing demands
are challenges in providing on-demand services. Furthermore, cloud service providers
face load-balancing problems in cloud computing environments. The system availability
of on-demand access should be considered using an adjustable resource assignment mech-
anism to satisfy QoS. If resource demands are stochastic, their accurate forecast is severe.
Historical data are measured for estimating usage data to determine the load distribution
and evaluate the proposed algorithm [21].

Table 2. Load balancing comparisons with existing methods.

Classification Objective Strategy Related Studies Proposed Methods

Load balance Maximum system
availability

Bin packing;
0/1 knapsack [19–21]

Based on the system
utilization in
global view

Comparison with related studies

In general, as many tasks as possible are admitted to maximize total revenue; however, the supply
and demand for resources are unbalanced during peak traffic hours. This study determines
which tasks are selected and dispatched to achieve maximum objective values subject to task
assignment and limited capacity. The problems are classified as bin-packing and 0/1 knapsack
problems. Herein, the assignment decisions are based on resource utilization functions, including
a central processing unit, random access memory, hard drive, and bandwidth for each server
type. The assignment strategies are designed to fit the QoS requirements, such as those of
computing and transmission in variant traffic loads in a global view adopted by the heuristics of
bin-packing strategies.

In general, as many tasks as possible are admitted to maximize total revenue; however,
the supply and demand for resources are unbalanced during peak traffic hours. This study

Sensors 2021, 21, 1882 5 of 22

determines the orchestrator’s decisions for which tasks are selected and dispatched to
achieve the maximum objective values subject to task assignment and limited capacity. The
problems are classified as the bin-packing and 0/1 knapsack combined problems. Herein,
the orchestrator’s decisions are based on resource utilization functions, including a central
processing unit, random access memory, hard drive, and bandwidth for each server type.
The orchestrator’s objective is also designed for that assignment strategy fitting the QoS
requirements, such as those of computing and transmission in variant traffic loads in a
global view adopted by the heuristics of bin-packing strategies.

2.3. Admission Control

Preventing server overload and ensuring application performance are the goals of
admission control [22]. This mechanism decides whether to admit a particular service
request to the server. It is implemented for meeting QoS requirements and achieving service
providers’ expected revenue [23]. Hoang et al. [24] developed a semi-Markov decision
process (SMDP)-based optimization model for mobile cloud computing that considers
constraints such as resources, bandwidth, and QoS to perform admission control tasks. This
framework ensures QoS performance and maximizes the reward. Xia et al. [25] aimed to
optimize cloud system throughput. An effective admission algorithm based on the proposed
resource cost paradigm to model various resource consumptions was devised according to
the online request following the current workload. Table 3 presents the comparison of the
admission control methods.

Table 3. Admission control comparisons with existing methods.

Classification Objective Strategy Related Studies Proposed Methods

Admission
control

Maximum QoS
and throughput

SMDP; priority;
no-priority; 0/1
knapsack

[22–25]

Non-priority and
Lagrangian
multipliers
are adopted

Comparison with related studies

The semi-Markov decision process (SMDP) approach relies on partial data, such as resources,
bandwidth, and quality of service (QoS), to decide whether to accept or reject a task. SMDP
computing time is inefficient for jobs with time constraints, such as delay and delay tolerance
sensitive applications. The priority of user information is unknown for decision making under a
computing time constraint. In this paper, call admission control mechanisms within the conditions
with non-priority and QoS constraints are jointly considered. The Lagrangian relaxation-based
approach is proposed to maximize system revenue combined with the proposed resource allocation
methods to admit tasks and satisfy application requirements appropriately.

The SMDP-based approach relies on partial data. The computing time is also inefficient
for jobs with time constraints, such as delay and delay tolerance sensitive applications.
The priority of user information is unknown for decision making under a computing time
constraint. In this paper, call admission control mechanisms within the conditions with
non-priority and QoS constraints are jointly considered. The Lagrangian relaxation-based
approach is proposed to maximize system revenue combined with the proposed resource
allocation methods to appropriately admit tasks and satisfy application requirements.

2.4. Research Scope

This research focuses on resource management in various scenarios in 5G network
slices. An optimization-based approach (LR) is used to solve the mathematical program-
ming problem to maximize system revenue. In our proposed cloud computing framework
(cloudlets and core clouds) in 5G network slices, two primary research questions are consid-
ered. What is the most efficient algorithm for resource allocation within admission control,
resource scheduling, and load-balancing policies in a limited-resource cloud computing
environment? Is the HA of VMs considerably influenced in the system?

Sensors 2021, 21, 1882 6 of 22

Additionally, the problem is addressed under rapidly increasing data traffic conditions
and a limited resource pool to obtain near-optimal policies using a combination of LR
approaches. The solutions satisfy the QoS-related constraints in transmission and stand on
computation perspectives to fulfill the throughput, delay, and delay jitter requirements. They
are compared with other resource management schemes for efficiency and effectiveness.

3. Mathematical Formulation

A mathematical model is proposed to manage an optimization programming problem.
It focuses on developing a well-designed algorithm in a parallel computing environment
for admission control, resource scheduling, and an HA arrangement to maximize cloud
service provider profits in 5G network slices. Based on the combined cloudlet and core cloud
network architecture (Figure 1), VMs with VNFs are requested by various applications and
require specific resources. They should be allocated to the server k with computation and
transmission capacities concerning CPU, RAM, storage, and internal or shared bandwidth,
expressed as Pk, Mk, Hk, Bn

k , and Bc, respectively, in cloudlets and core clouds. The proposed
model in the orchestrator supports network resource management in front of the cloudlet
and core cloud environments when assuming that resource management strategies are
followed when facing a batch of requests. Tables 4 and 5 present lists of the given parameters
and decision variables.

Table 4. Given parameters.

Notation Description

S Index set of physical servers in the cloud computing system (cloudlets and core clouds),
where S = {1, 2, . . . , s, . . . , |S|}.

I Index set of applications on the cloud computing system, where I = {1, 2, . . . , i, . . . , |I|}.

W Index set of standard VMs, W =
⋃I

i=1 Wi and Wi = {1, 2, . . . , j, . . . , |Wi |}, where Wi is also an
index set of standard VMs required by application i, where i ∈ I.

T Index set of VMs with high availability (HA), T =
⋃I

i=1 Ti and Ti = {1, 2, . . . , `, . . . , |Ti |}, where
Ti is also an index set of VMs with HA required by application i, where i ∈ I.

N Set of total VMs, N =
⋃I

i=1 Ni and Ni = Wi
⋃

Ti , where Ni is the total number of standard VMs
and VMs with HA required by application i, where i ∈ I.

r Dual-rate; represents the ratio between the number of standard VMs and the VMs with HA,
formulated as Ti = d|Wi | × re, where i ∈ I.

Bn
s Internal transmission bandwidth of server s, where s ∈ S.

Bc Shared transmission bandwidth within the cloud computing system (cloudlets and core clouds).

Es Processing capability of each central processing unit (CPU) core in server s, where s ∈ S.

Ms Total random access memory (RAM) capacity in server s, where s ∈ S.

Hs Total storage capacity in server s, where s ∈ S.

Vs Maximum number of VMs allowable on server s, where s ∈ S.

βs Cost rate for opening server s, where s ∈ S.

Ri
Reward of admitting application i (application i can be admitted only if the demands on all types
of resources are fully satisfied), where i ∈ I.

Pi
Penalty of rejecting application i (application i is rejected only if all of the types of resource
requirements are not fully satisfied), where i ∈ I.

Dij Total CPU processing capability on VM j required by application i, where i ∈ I, j ∈Wi .

Gij Total RAM capability required by application i on VM j, where i ∈ I, j ∈Wi .

Qij Total storage capability required by application i on VM j, where i ∈ I, j ∈Wi .

Xij`
Total transmission channel capacity required by application i between VMs j and `, where i ∈ I,
j ∈Wi , ` ∈ Ti .

Sensors 2021, 21, 1882 7 of 22

Table 5. Decision variables.

Notation Description

yi
Binary variable, 1 if the application i is completely allocated to and served in the computing
system, and 0 otherwise, where i ∈ I.

aijs

Binary variable used for task admission control and assignment, 1 if the standard VM j of
application i is admitted in the cloud computing networks and allocated to server s, and 0
otherwise, where i ∈ I, j ∈Wi , s ∈ S.

bi`s

Binary variable used for task admission control and assignment, 1 if the VM with HA ` of
application i is admitted in the cloud computing networks and allocated to server s, and 0
otherwise, where i ∈ I, ` ∈ Ti , s ∈ S.

fij`s
Binary variable used for exclusive setting, 1 if VMs j and ` of application i are allocated to server
s, and 0 otherwise, where i ∈ I, j ∈Wi , ` ∈ Ti , s ∈ S.

zs
Binary variable for server power-on or power-off status, 1 if server s is turned on, and 0
otherwise, where s ∈ S.

The system’s profit is the combination of the rewards of admitting applications, the
penalties of rejecting the other applications, and the cost for turning on the servers.

The objective function ZIP is shown in Equation (1), and its goal is to maximize system
profits among all VMs requested by the applications.

ZIP = ∑
i∈I

Riyi −∑
i∈I

Pi(1− yi)−∑
s∈S

βszs (1)

To acquire the highest revenue, the optimization problem is shown as:

Objective function:

max ZIP = min−ZIP

subject to:

C1: (|Wi|+ |Ti|)yi ≤ ∑
j∈Wi

∑
s∈S

aijs + ∑
`∈Ti

∑
s∈S

bi`s, ∀i ∈ I,

C2: ∑
s∈S

aijs ≤ 1, ∀i ∈ I, ∀j ∈Wi,

C3: ∑
s∈S

bi`s ≤ 1, ∀i ∈ I, ∀` ∈ Ti,

C4: ∑
i∈I

∑
j∈Wi

aijs + ∑
i∈I

∑
`∈Ti

bi`s ≤ Vs, ∀s ∈ S,

C5: ∑
i∈I

∑
j∈Wi

Dijaijs + ∑
i∈I

∑
`∈Ti

Di`bi`s ≤ Es, ∀s ∈ S,

C6: ∑
i∈I

∑
j∈Wi

Gijaijs + ∑
i∈I

∑
`∈Ti

Gi`bi`s ≤ Ms, ∀s ∈ S,

C7: ∑
i∈I

∑
j∈Wi

Qijaijs + ∑
i∈I

∑
`∈Ti

Qi`bi`s ≤ Hs, ∀s ∈ S,

C8: ∑
i∈I

∑
j∈Wi

∑
`∈Ti

Xij` fij`s ≤ Bn
s , ∀s ∈ S,

C9: ∑
i∈I

∑
j∈Wi

∑
`∈Ti

Xij`(1− fij`s) ≤ Bc, ∀s ∈ S,

C10: aijs ≤ zs, ∀i ∈ I, ∀j ∈Wi, ∀s ∈ S,

C11: bi`s ≤ zs, ∀i ∈ I, ∀` ∈ Ti, ∀s ∈ S,

C12: aijs + bi`s ≤ fij`s + 1, ∀i ∈ I, ∀j ∈Wi, ∀` ∈ Ti, ∀s ∈ S.

where C1–C3 belong to the admission control and assignment constraints, C4–C9 belong to
the capacity constraints, and C10–C12 belong to the HA constraints.

For admission control and assignment constraints, (|Wi|+ |Ti|) is the total number
of standard or additional HA VMs required by an application, in which the VMs are in

Sensors 2021, 21, 1882 8 of 22

disjoint sets, where Wi
⋂

Ti = ∅ in constraint C1. ∑s∈S aijs is the number of standard VMs
that must be admitted and allocated into servers. ∑s∈S bi`s is the number of admitted and
allocated HA VMs. The total number of allocated HA and standard VMs should be greater
than or equal to the requirement, as shown in constraint C1. That is, while application i is
completely served, the summation of aijs and bi`s should be greater than and equal to the
demand on the right-hand side of constraint C1.

∑s∈S aijs and ∑s∈S bi`s are shown in the constraints C2 and C3, which means when the
value of ∑s∈S aijs or ∑s∈S bi`s is less than or equal to one, the VMs are inseparably assigned
to servers. In other words, a virtual machine is not partially allocated to servers.

For capacity constraints, the resources offered by a server are defined as a set of four
factors: the maximum number of VMs in the server s (Vs), the processing capacity of each
CPU core (Es), the RAM capacity (Ms), and the storage capacity (Hs). The total resources
required by VMs for each server cannot exceed its available resources as formulated in the
constraints C4–C7.

We also set the internal bandwidth rate (Bn
s) in the server s for internal transmission

between VMs. For example, two applications, i and i + 1, and their index sets of VMs are
Wi = {1i, 2i}, Ti = {3i}, Wi+1 = {1i+1, 2i+1}, and Ti+1 = {3i+1}, as shown in Figure 2.
The link between VM 3i and VM 2i+1 represents the internal bandwidth required by VM
3i to connect to VM 2i+1 in server s. The constraint C8 indicates that the total bandwidth
required by all the VMs should not exceed the internal bandwidth Bn

s in server s. The
external bandwidth rate (Bc) is set for the transmission between servers in the cloud
computing environment (cloudlets and core clouds), as illustrated in Figure 2. The link
between server s− 1 and server s represents the bandwidth requested by VM 1i to connect
to VM 3i. The constraint C9 indicates that the total bandwidth required by all VMs accepted
by servers in a cloud should not exceed the external bandwidth.

VM

3i+1

VM 2iVM 1i

VM 1i+1

VM 3i

VM 2i+1

Server s-1 Server s Server s+1

1

n

sB −

n

sB

cB

Figure 2. Representation of internal and external transmissions between VMs in servers.

In this work, we assume two kinds of VMs, standard VMs and VMs with HA, of
the same application, cannot be assigned to the same server, as shown in Figure 2. In
the beginning, all servers contain no VMs; then, for example: application i comes in and
needs two standard VMs and one VM with HA, as mentioned in the previous paragraph.
First, we put two standard VMs, VM 1i and VM 2i, in server s− 1, while the two kinds of
VMs cannot be assigned to the same server, then VM 3i has to be assigned to server s. To
continue, the next application i + 1 comes in, and we put its standard VMs 1i+1 and 2i+1
in server s− 1 and server s, respectively, while server s− 1 and server s have no residual
capacity to handle one more VM. Meanwhile, the VM with HA, VM 3i+1, cannot be put
in server s− 1 or server s due to our exclusive assumption. Thus, VM 3i+1 is assigned to
server s + 1.

For HA configuration constraints, the decision variable fij`s for application i is set for
the VM assignments. The index sets j and ` for different kinds of VMs must be collocated
to server s and separated into different servers, where j ∈Wi and ` ∈ Ti. The relationships

Sensors 2021, 21, 1882 9 of 22

are expressed as the constraint C12. The constraints C10 and C11 indicate the server power
status. If any VM is admitted and assigned to server s, server s must be powered on, and
zs should be set to one. The constraint C12 assures that when VMs j and ` are assigned to
the same server s, which means that aijs and bi`s are both set to one, the exclusive setting
fij`s must also be one. In other words, the standard VM and the HA VM requested from
the same application cannot be allocated to the same server s.

4. Lagrangian Relaxation-Based Solution Processes

The Lagrangian relaxation method is proposed for solving large-scale mathematical
programming problems, including optimization problems with linear, integer, and nonlin-
ear programming problems in many practical applications [26]. The key idea is to relax
complicated constraints into a primal optimization problem and extend feasible solution
regions to simplify the primal problem. Based on the relaxation, the primal problem is
transformed into an LR problem associated with Lagrangian multipliers [27–29]. Figure 3
illustrates the six procedural steps in the LR method.

Lagrangian Relaxation Problem

(Find minimum)

Dual Problem

(Find maximum)

Subproblem 1

(SUB1)

Adjust

Multiplier

Relax

Constraints

Subproblem n

(SUBn)

Decomposition

Primal Problem

 (Find minimum)

Optimal Solutions

(SUB1)

Optimal Solutions

(SUBn)

Optimal solving by each

subproblem individually

Updated LR

iteratively

Drop-and-Add

Obtaining Primal Feasible

Solution (Updated iteratively)

Figure 3. Lagrangian relaxation-based solution process flow.

4.1. Procedures of Step 1: Relaxation

To separate the feasible region of the primal problem into several subproblems with
an independent set of decision variables, the primal problem is transformed into an LR
problem. The relaxation method associated with Lagrangian multipliers is applied to the
constraints C1 and C4–C13 in Step 1, as presented in Figure 3. Then, the constraints C1 and
C4–C12 with the multipliers are added to the primal problem Equation (1), as shown in
Equation (2) and denoted as ZLR.

Sensors 2021, 21, 1882 10 of 22

ZLR =−∑
i∈I

Riyi + ∑
i∈I

Pi(1− yi) + ∑
s∈S

βszs

+ ∑
i∈I

µ1
i [(|Wi|+ |Ti|)yi − ∑

j∈Wi

∑
s∈S

aijs − ∑
`∈Ti

∑
s∈S

bi`s]

+ ∑
s∈S

µ2
s [∑

i∈I
∑

j∈Wi

aijs + ∑
i∈I

∑
`∈Ti

bi`s −Vs]

+ ∑
s∈S

µ3
s [∑

i∈I
∑

j∈Wi

Dijaijs + ∑
i∈I

∑
`∈Ti

Di`bi`s − Es]

+ ∑
s∈S

µ4
s [∑

i∈I
∑

j∈Wi

Gijaijs + ∑
i∈I

∑
`∈Ti

Gi`bi`s −Ms]

+ ∑
s∈S

µ5
s [∑

i∈I
∑

j∈Wi

Qijaijs + ∑
i∈I

∑
`∈Ti

Qi`bi`s − Hs]

+ ∑
s∈S

µ6
s [∑

i∈I
∑

j∈Wi

∑
`∈Ti

Xij` fij`s − Bn
s]

+ ∑
s∈S

µ7
s [∑

i∈I
∑

j∈Wi

∑
`∈Ti

Xij`(1− fij`s)− Bc]

+ ∑
i∈I

∑
j∈Wi

∑
s∈S

µ8
ijs[aijs − zs]

+ ∑
i∈I

∑
`∈Ti

∑
s∈S

µ9
i`s[bi`s − zs]

+ ∑
i∈I

∑
j∈Wi

∑
`∈Ti

∑
s∈S

µ10
ij`s[aijs + bi`s − fij`s − 1]

(2)

Then, the optimization problem can be reformulated as:

Objective function:

min ZLR

subject to: C2, C3,

where yi ∈ {0, 1}, aijs ∈ {0, 1}, bi`s ∈ {0, 1}, fij`s ∈ {0, 1}, and zs ∈ {0, 1}.

4.2. Procedures of Steps 2 and 3: Decomposition and Solving Subproblems

The LR problem can be decomposed into several independent subproblems, with
their related decision variables. The divide-and-conquer approach is used to solve the
subproblems correspondingly.

4.2.1. Subproblem 1 (Related to yi)

By extracting items with decision variable yi, the optimization problem of Subproblem
1 can be developed as:

Objective function:

min ∑
i∈I

(−Ri − Pi + µ1
i |Wi|+ µ1

i |Ti|)yi

subject to: yi ∈ {0, 1}.

(3)

Equation (3) can be divided into |I| independent subproblems. For each application
i, where i ∈ I, the decision variable yi is set to one when the coefficient (−Ri − Pi +
µ1

i |Wi|+ µ1
i |Ti|) is less than zero. Otherwise, yi is set to zero. The run time is O(|I|), and

the pseudocode is illustrated in Algorithm 1.

Sensors 2021, 21, 1882 11 of 22

Algorithm 1 Subproblem 1.
Input: Given parameters R, P, W, T and Lagrangian

multipliers µ1.
Output: Decision variable y.
Initialize: yi ← 0, ∀i ∈ I
for i = 0 to (|I| − 1) do

c← −Ri − Pi + µ1
i |Wi|+ µ1

i |Ti|
if c < 0 then

yi ← 1
end if

end for

4.2.2. Subproblem 2 (Related to aijs)

By extracting items with decision variable aijs, the optimization problem of Subprob-
lem 2 can be developed as:

Objective function:

min ∑
i∈I

∑
j∈Wi

∑
s∈S

(−µ1
i + µ2

s + µ3
s Dij + µ4

s Gij + µ5
s Qij

+ µ8
ijs + ∑

`∈Ti

µ10
ij`s)aijs

subject to C2: ∑
s∈S

aijs ≤ 1, ∀i ∈ I, ∀j ∈Wi,

aijs ∈ {0, 1}.

(4)

Equation (4) can be divided into |I||Wi||S| cases. The decision variable aijs is set to one,
and the minimum coefficient (−µ1

i + µ2
s + µ3

s Dij + µ4
s Gij + µ5

s Qij + µ8
ijs + ∑`∈Ti

µ10
ij`s) is less

than zero and corresponds to alliance subindices i, j, and s. To satisfy the constraint C2, the
decision variable should be set to one only if the minimum coefficient with subindex s is a
required sorting processes. Otherwise, aijs is set to zero. The run time is O(|I||Wi||S||Ti|).
The pseudocode is illustrated in Algorithm 2.

Algorithm 2 Subproblem 2.
Input: Given parameters D, G, Q and Lagrangian

multipliers µ1, µ2, µ3, µ4, µ5, µ8, µ10.
Output: Decision variable a.
Initialize: aijs ← 0, ∀i ∈ I, ∀j ∈Wi, ∀s ∈ S
for i = 0 to (|I| − 1) do

for j = 0 to (|Wi| − 1) do
for s = 0 to (|S| − 1) do

cs ← −µ1
i + µ2

s + µ3
s Dij + µ4

s Gij + µ5
s Qij

+µ8
ijs + ∑`∈Ti

µ10
ij`s

end for
Find the index m that cm has the minimum value
in c.
if cm < 0 then

aijm ← 1
end if

end for
end for

Sensors 2021, 21, 1882 12 of 22

4.2.3. Subproblem 3 (Related to bi`s)

By extracting items with decision variable bi`s, the optimization problem of Subprob-
lem 3 can be developed as:

Objective function:

min ∑
i∈I

∑
`∈Ti

∑
s∈S

(−µ1
i + µ2

s + µ3
s Di` + µ4

s Gi` + µ5
s Qi`

+ µ9
i`s + ∑

j∈Wi

µ10
ij`s)bi`s

subject to C3: ∑
s∈S

bi`s ≤ 1, ∀i ∈ I, ∀` ∈ Ti,

bi`s ∈ {0, 1}.

(5)

The solution process of Equation (5) is similar to that of Equation (4) and can be
also divided into |I||Ti||S| subproblems. The decision variable bi`s is set to one when the
minimum coefficient (−µ1

i + µ2
s + µ3

s Di` + µ4
s Gi` + µ5

s Qi` + µ9
i`s + ∑j∈Wi

µ10
ij`s) is less than

zero and corresponds to alliance subindices i, `, and s. Otherwise, bi`s is set to zero. The run
time of this subproblem is O(|I||Ti||S||Wi|). The pseudocode is illustrated in Algorithm 3.

Algorithm 3 Subproblem 3.
Input: Given parameters D, G, Q and Lagrangian

multipliers µ1, µ2, µ3, µ4, µ5, µ9, µ10.
Output: Decision variable b.
Initialize: bi`s ← 0, ∀i ∈ I, ∀` ∈ Ti, ∀s ∈ S
for i = 0 to (|I| − 1) do

for ` = 0 to (|Ti| − 1) do
for s = 0 to (|S| − 1) do

cs ← −µ1
i + µ2

s + µ3
s Di` + µ4

s Gi` + µ5
s Qi`

+µ9
i`s + ∑j∈Wi

µ10
ij`s

end for
Find the index m that cm has the minimum value
in c.
if cm < 0 then

bi`m ← 1
end if

end for
end for

4.2.4. Subproblem 4 (Related to fij`s)

By extracting items with decision variable fij`s, the optimization problem of Subprob-
lem 4 can be developed as:

Objective function:

min ∑
i∈I

∑
j∈Wi

∑
`∈Ti

∑
s∈S

(µ6
s Xij` − µ7

s Xij` − µ10
ij`s) fij`s

subject to: fij`s ∈ {0, 1}.

(6)

Equation (6) can be divided into |I||Wi||S||Ti| cases. For the alliance subindices i, j, `,
and s, the decision variable fij`s is set to one when the coefficient (µ6

s Xij` − µ7
s Xij` − µ10

ij`s)

is less than zero. Otherwise, fij`s is set to zero. The run time is O(|I||Wi||S||Ti|). The
pseudocode is illustrated in Algorithm 4.

Sensors 2021, 21, 1882 13 of 22

Algorithm 4 Subproblem 4.
Input: Given parameters X and Lagrangian multipliers

µ6, µ7, µ10.
Output: Decision variable f.
Initialize: fij`s ← 0, ∀i ∈ I, ∀j ∈Wi, ∀` ∈ Ti, ∀s ∈ S
for i = 0 to (|I| − 1) do

for j = 0 to (|Wi| − 1) do
for ` = 0 to (|Ti| − 1) do

for s = 0 to (|S| − 1) do
c← µ6

s Xij` − µ7
s Xij` − µ10

ij`s
if c < 0 then

fij`s ← 1
end if

end for
end for

end for
end for

4.2.5. Subproblem 5 (Related to zs)

By extracting items with decision variable zs, the optimization problem of Subproblem
5 can be developed as:

Objective function:

min ∑
s∈S

[βs −∑
i∈I

(∑
j∈Wi

µ8
ijs + ∑

`∈Ti

µ9
i`s)]zs

subject to: zs ∈ {0, 1}.

(7)

Equation (7) can be divided into |S||I||Wi| or |S||I||Ti| cases. In each case with subindex
s, the decision variable zs is set to one when the coefficient [βs−∑i∈I(∑j∈Wi

µ8
ijs +∑`∈Ti

µ9
i`s)],

which corresponds to alliance subindex s, is less than zero. Otherwise, zs is set to zero. The
run time is O(|S||I||Wi|) or O(|S||I||Ti|), and the pseudocode is illustrated in Algorithm 5.

Algorithm 5 Subproblem 5.
Input: Given parameters β and Lagrangian multipliers

µ8, µ9.
Output: Decision variable z.
Initialize: zs ← 0, ∀s ∈ S
for s = 0 to (|S| − 1) do

c← 0
for i = 0 to (|I| − 1) do

for j = 0 to (|Wi| − 1) do
c← c + µ8

ijs
end for
for ` = 0 to (|Ti| − 1) do

c← c + µ9
i`s

end for
end for
if βs − c < 0 then

zs ← 1
end if

end for

4.3. Procedure of Step 4: Dual Problem and the Subgradient Method

According to the weak Lagrangian duality theorem [30], the objective values of the
LR problem ZLR are the lower bounds (LBs) of the primal problem ZIP with multiples

Sensors 2021, 21, 1882 14 of 22

µ1
i , µ2

s , µ3
s , µ4

s , µ5
s , µ6

s , µ7
s , µ8

ijs, µ9
i`s, µ10

ij`s ≥ 0, ∀i ∈ I, ∀j ∈ Wi, ∀` ∈ Ti, ∀s ∈ S. The formula-
tion of the dual problem (D) is constructed to calculate the tightest LB (max ZD), where
max ZD = minZLR. Then, the dual problem can be formulated as:

Objective function:

max ZD

subject to: µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0, µ5 ≥ 0,

µ6 ≥ 0, µ7 ≥ 0, µ8 ≥ 0, µ9 ≥ 0, µ10 ≥ 0.

The subgradient method is commonly used for solving the dual problem by iteratively
updating the Lagrangian multipliers [26,31,32].

First, let vector S be a subgradient of ZD. In the qth iteration of the subgradient optimiza-
tion procedure, the multiplier vector πq = (µ1,q, µ2,q, µ3,q, µ4,q, µ5,q, µ6,q, µ7,q, µ8,q, µ9,q, µ10,q)

is updated by πq+1 = πq + tqSq . The step size tq is determined by equation tq = λ
(Zh

IP−ZD(π
q))

‖Sq‖2 .
The denominator Sq is the sum of relaxed constraints concerning to the decision variable
values based on the qth iteration. Zh

IP is the primal objective value in the hth iteration. ZD(π
q)

is the objective value of the dual problem in the qth iteration. λ is a constant, where 0 ≤ λ ≤ 2.
Accordingly, the optimal objective value of the dual problem is obtained iteratively.

4.4. Procedure of Step 5: Obtaining the Primal Feasible Solutions

Applying the LR and the subgradient methods to solve the LR and dual problems
determines a theoretical LB from the primal feasible solution. Crucial information regarding
the primal feasible solution can be identified [28]. The feasible region of a mathematical
programming problem defined by the solutions must be satisfied by all constraints. A set
of primal feasible solutions to ZIP is a subset of the infeasible region solutions to ZLR or
ZD. Several alternative methods can be used sophisticatedly to obtain the primal feasible
solutions from the observations of the infeasible region. For example, Figure 4 presents an
experimental case. The green curve represents the process of obtaining the primal feasible
solutions iteratively. The objective is to identify the minimum value of the primal problem
(Zh

IP). Then, the LBs are determined using the subgradient method to iteratively obtain the
tightest LB (max ZD), represented by the purple line. The proposed resource management
approach for obtaining primal feasible solutions is called the drop-and-add algorithm. It is
a heuristic-based allocation mechanism for optimizing the objective function. It searches
for a solution that satisfies not only all the user demands, but also the constraints. The
initial solution is adopted using next-fit (NF) or first-fit (FF) as baselines for evaluating
solution quality [33]. The proposed algorithm, FF, and NF are simultaneously implemented
for result comparison.

4.5. Procedure of Step 6: Drop-and-Add Algorithm

Lagrangian multipliers determined from the dual problem have significant values
for evaluating the sensitivity of objective value improvement [26,28,30,32]. Through the
subproblems, the integrated weighting factor of applications is represented in (3) as
(−Ri − Pi + µ1

i |Wi|+ µ1
i |Ti|); therefore, the sum of the values can be used as an index

to interpret the application’s significance of i. The corresponding multipliers determine
the ordering set of admitting, assigning, and scheduling decision variables. The other
decision variables aijs or bi`s and the assignment of indices j, `, and s can be regarded as two
bin-packing problems. The VM j can be packed into the server s. The VM ` can be packed
into servers except server s to comply with the HA conditions for bi`s. For performance
evaluation, NF is adopted for sequentially performing the algorithm of assignment for aijs
and then bi`s. The flowchart of the drop-and-add algorithm is shown in Figure 5.

Sensors 2021, 21, 1882 15 of 22

−75,000

−70,000

−65,000

−60,000

−55,000

−50,000

−45,000

−40,000

1

2
7

5
3

7
9

1
0
5

1
3
1

1
5
7

1
8
3

2
0
9

2
3
5

2
6
1

2
8
7

3
1
3

3
3
9

3
6
5

3
9
1

4
1
7

4
4
3

4
6
9

4
9
5

5
2
1

5
4
7

5
7
3

5
9
9

6
2
5

6
5
1

6
7
7

7
0
3

7
2
9

7
5
5

7
8
1

8
0
7

8
3
3

8
5
9

8
8
5

9
1
1

9
3
7

9
6
3

9
8
9

O
b

je
ct

iv
e

V
al

u
e

Iteration

LB

Obtaining Primal Feasible Solutions

-> min (𝑍𝐼𝑃
ℎ , Z*)

The Tightest LB

-> max(ZD, LB)

𝑍𝐼𝑃
ℎ

Initial Value-> min(NF, FF)

Figure 4. Obtaining primal feasible solutions and the tightest lower bound (LB). NF, next-fit.

Start

Sort users by their

weighted factors

obtained from Sub1

in ascending order

Assign the sorted users into two

lists, according to their

corresponding yi value obtained

from Sub 1. If users’yi value is 1,

assign to priority1; otherwise

assign to priority2

End

Can all users

in priority1 be

allocated to

the system?

Drop the first

user in priority1

Put all users in

priority1 to the

confirmed list

Is the system

still sufficient

for the first user

in priority 2 to

be add ed?

Remove the first

user in priority2

and add it to the

confirmed list

Allocate all users in

confirmed list to

system

Yes

No

Yes

No

Figure 5. Flowchart of the drop-and-add algorithm.

5. Computational Experiments

A cloud service provider’s resource parameters and the applications’ demand at-
tributes were simulated in a cloud computing experimental environment and are presented
in Table 6. U(x, y) means a number uniform distributed between the parameters of x and y.

Sensors 2021, 21, 1882 16 of 22

Table 6. Given parameters for the experiments.

Given Parameter Value

Number of servers, |S| 56–84

Number of applications, |I| 24–52

Dual-rate, r 0.5

Number of standard VMs for application i, |Wi | |Wi | ∼ U(1, 10), ∀i ∈ I

Number of VMs with HA for application i, |Ti | Ti = d|Wi | × re, ∀i ∈ I

Total number of VMs for application i, |Ni | |Ni | = |Wi |+ |Ti |, ∀i ∈ I

Host internal bandwidth capacity, Bn
s (Mbps) 120–225

Shared transmission bandwidth within the cloud
computing system, Bc (Mbps) 1000

Host CPU processing capacity, Es (GHz) 480–900

Host memory capacity, Ms (GB) 120–225

Host storage capacity, Hs (GB) 1200–2250

The maximum number of VMs allowable on server s, Vs 8–15

Cost rate for opening server s, βs βs = (Es + Ms + Hs + Vs)/40,000

Reward rate of each application, Ri Ri ∼ ∑
j
(

Dij
50), ∀i ∈ I

Penalty rate of each application, Pi Pi ∼ ∑
j
(

Dij
100), ∀i ∈ I

CPU requests of a task, Dij (GHz) Dij ∼ U(1, 120), ∀i ∈ I, ∀j ∈Wi

Memory requests of a task, Gij (GB) Gij ∼ U(1, 30), ∀i ∈ I, ∀j ∈Wi

Storage requests of a task, Qij (TB) Qij ∼ U(1, 300), ∀i ∈ I, ∀j ∈Wi

Total transmission channel capacity, Xij` (Mbps) Xij` ∼ U(0, 30), ∀i ∈ I, ∀j ∈Wi , ∀` ∈ Ti

Bandwidth requests of a task, Cijs (Mbps) Cijs ∼ U(1, 2000), ∀i ∈ I, ∀j ∈Wi , s ∀s ∈ S

The algorithms were constructed and implemented to analyze solution quality and
improvement ratios (IRs) in several simulation cases. Solution quality is defined as the
objective value gap (denoted as GAP) between the proposed algorithm and the LR problem,

which is expressed as GAP =
|VDrop&Add−VLR|

|max(VDrop&Add,VLR)|
× 100%, where VDrop&Add is the objective

value of applying the drop-and-add algorithm and VLR is the objective value of the LR

problem. IRNF is expressed as IRNF =
VDrop&Add−VNextFit

|max(VNextFit,VDrop&Add)|
× 100%. IRFF is expressed as

IRFF =
VDrop&Add−VFirstFit

|max(VFirstFit,VDrop&Add)|
× 100%, where VNextFit and VFirstFit are the objective values of

employing the NF algorithm or FF algorithm, respectively. The experiments were devel-
oped in Python and implemented in a VM on a workstation with a quad-core CPU, 8 GB
RAM, and Ubuntu 14.04. The traffic loads of tasks and arrival time intervals were randomly
generated. The experimental environment was initialized for a data center including edge
and core clouds. VMs were requested by applications to represent computing requirements.
Based on resource admission control strategies and scheduling models, the VMs were
packed into the corresponding servers in the cloud computing environments.

5.1. Performance Evaluation Case: Traffic Load

This experiment was designed to analyze VMs requested by applications in a time
slot, which can be interpreted as a snapshot of the system loading. First, the trend of the
objective function with the number of applications as the control variable was examined.
The result in Figure 6 indicates that the objective value of (IP)increases with the number
of applications. The drop-and-add and LB values were almost the same in some cases
(20∼80), indicating that the optimal solution was determined when the GAP was less than
0.80% (the minimized one was 0.60%). Table 7 compares drop-and-add with NF or FF
(higher values are preferable) in the primal problem. The maximum IR was 89.48%, with

Sensors 2021, 21, 1882 17 of 22

180 applications in both FF and NF. The penalty of unsatisfied applications significantly
increased the objective value for indicating when arriving applications exceeded system
capacity with the NF or FF algorithm in the cases of the number of applications being over
100. Otherwise, the drop-and-add algorithm can select valuable applications to pack into
servers, which results in a higher objective value than NF or FF in the cases of the number
of applications being over 100.

0

200

400

600

800

1000

1200

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

O
b

je
ct

iv
e

V
al

u
es

 (
Z

IP
)

Number of Applications

FF

NF

Drop-and-Add

LB

Figure 6. Objective value by the number of applications.

Table 7. Comparison of solution qualities under different number of applications.

Number of Applications Drop-And-Add LB Gap (%) NF FF IRNF (%) IRFF (%)

20 123.743 124.760 0.80 123.687 123.687 0.05 0.05

40 337.910 340.080 0.64 337.910 337.910 0.00 0.00

60 506.729 509.780 0.60 506.729 506.729 0.00 0.00

80 623.692 627.760 0.65 623.523 623.523 0.02 0.02

100 772.445 780.680 1.06 736.595 736.595 4.87 4.87

120 934.295 987.845 5.73 670.535 670.535 39.33 39.33

140 916.985 1099.91 19.94 593.945 593.945 54.39 54.39

160 886.925 1110.70 25.23 537.905 537.905 64.89 64.89

180 860.705 1112.32 29.23 454.235 454.235 89.48 89.48

In some cases (20∼80), the lower bound (LB) value is extremely close to, but not equal to that of the drop-and-add algorithm. In other cases,
the drop-and-add algorithm has a significant improvement rate compared with NF or FF.

5.2. Performance Evaluation Case: Number of Servers

The cost function is emulated as the capital expenditure (CAPEX) of the cloudlets and
core clouds related to network infrastructure deployment of appropriate levels of servers,
where the budget is a significant constraint. The cost difference between high- and low-end
servers is also typically significant. Service providers generally conduct a comprehensive
system analysis to determine the methods of how to manage, control, and operate a system
appropriately. The plans, such as turning servers on or off, provide sufficient QoS to
applications efficiently and effectively. Furthermore, the servers purchased were deployed
at four levels with different capacities in this experiment. Nonhomogeneous servers were
deployed under the same limited budget. The rapid increases in data traffic are represented
as traffic loads to determine which method delivered superior QoS for applications at
affordable costs and preserved revenue. The following are the experimental scenarios
tested. Figure 7 and Table 8 present the results of the proposed methods (drop-and-add,

Sensors 2021, 21, 1882 18 of 22

LB, NF, and FF). The drop-and-add algorithm attained the most practical objective value
(higher is preferable) compared with NF and FF in the case of 40.

−200

−100

0

100

200

300

400

500

600

700

800

2 0 4 0 6 0 8 0 1 0 0

O
b

je
ct

iv
e

V
al

u
es

 (
Z

IP
)

Number of Servers

FF

NF

Drop-and-Add

LB

Figure 7. Objective value by the number of servers.

Table 8. Comparison of solution qualities under different number of servers.

Number of Servers Drop-And-Add LB Gap (%) NF FF IRNF (%) IRFF (%)

20 34.439 137.926 300.5 −75.601 −75.601 145.55 145.55

40 291.198 421.117 44.62 99.138 99.138 193.73 193.73

60 291.880 498.201 70.69 108.01 108.01 170.23 170.23

80 312.825 528.898 69.07 116.41 116.41 168.73 168.73

100 307.056 540.088 75.89 113.894 113.894 169.6 169.6

Regarding the GAP, some values in the other situations were calculated to determine
the difference in rate value between drop-and-add and LB. The GAP values indicate that the
minimum value (44.62%) was determined in one of the cases with numerous servers (40).
A data center has sufficient resource space in servers with the drop-and-add, NF, and FF
algorithms. The maximum improvement ratio is represented by the ratio of improvement
of feasible solutions and was 193.73% in numerous servers (i.e., 40). The result reveals that
the resource allocation algorithm has a significant impact on system performance with a
limited resource constraint.

5.3. Performance Evaluation Case: Effect of HA

As far as crucial business requirements are concerned, cloud service providers should
offer high quality, excellent availability, good performance, and reliable services. In this
case, the applications are divided into levels by using VM replication for HA requests. The
VMs requesting to be in the Ti set with HA by the application i asking for VM placement
must be mutually and exclusively allocated into different physical servers. The level of
exclusivity is called the dual-rate. In the subsequent experiment, the dual-rate was the
parameter configured for HA VMs. Moreover, a dual-rate of 0.5 indicates that the HA VMs,
|Ti|, requested by half of |Wi| for application i are allocated to different servers. The dual-
rate equals 0.3, which indicates 30% of standard VMs required for application i with HA
capability. In Figure 8, it is evident that the dual-rate significantly affected the application
satisfaction rate. Thus, the drop-and-add algorithm offers more benefits (higher values
are preferable) than NF or FF in the dual-rate cases. The improvement ratios increased
significantly when the dual-rate was higher than 0.3, and the maximum IR was 608.39%.
The drop-and-add algorithm achieved flexibility and efficiency and could sufficiently obtain

Sensors 2021, 21, 1882 19 of 22

the maximum objective value to deal with HA requests. As observed in Table 9, FF and
NF performed poorly when the dual-rate was beyond 0.3. The tasks were not assigned to
appropriate servers with HA. This resulted in turning on more servers, which corresponded
to cost generation.

0

100

200

300

400

500

600

0 .1 0 .2 0 .3 0 .4 0 .5 0 .6

O
b

je
ct

iv
e

V
al

u
es

 (
Z

IP
)

Dual-Rate

FF

NF

Drop-and-Add

LB

Figure 8. Objective value when scaling the dual-rate.

Table 9. Comparison of solution qualities under different the dual-rate.

Dual-Rate Drop-and-Add LB Gap (%) NF FF IRNF (%) IRFF (%)

0.1 384.827 387.200 0.61 384.827 384.827 0.00 0.00

0.2 416.531 419.040 0.60 416.531 416.531 0.00 0.00

0.3 441.730 452.618 2.46 351.926 351.926 25.52 25.52

0.4 438.900 480.493 9.48 202.224 202.224 117.04 117.04

0.5 383.708 492.960 28.47 158.026 158.026 142.81 142.81

0.6 269.938 315.366 16.83 38.106 38.106 608.39 608.39

5.4. Performance Evaluation Case: Time complexity comparison

Table 10 shows the time complexity of the LR-based solution for resource management
in a sliced network. We added an existing scheme, brute force, for comparison in Table 10.
The time complexity of this scheme was higher than the proposed LR-based algorithm.
Furthermore, the corresponding explanations were included to support our statements.
The time complexity of the proposed LR-based solutions was O(N|I||Wi||Ti||S|). Table 10
shows the time complexity of the LR-based solution. The Lagrange dual solution was
determined by Sub-problems (4)–(6), which were solved using the minimum algorithm with
|S| servers. Each sub-problem required O(|I||Wi||Ti|) time minimum coefficient among
servers. Since the sub-problems were solved individually by divide-and-conquer algorithms,
the time complexity for each of the sub-problems was constant. Thus, the worst case of
time complexity among these subproblems was considered significant in each iteration.
The Lagrange dual solutions for the sub-problems could be obtained after a maximum
number of iterations N, and the time complexity was O(N|I||Wi||Ti||S|). The number of
iterations pre-defined to converge was about 600 based on the experiment results shown in
Figure 4. Fortunately, all given parameters and multipliers for the solution did not need the
same initial values. The convergence was achieved in a small number of iterations with the
previous execution results. Furthermore, the proposed algorithms can be set as the output
results at any complete iteration. Thus, the time can be controlled in practice.

Sensors 2021, 21, 1882 20 of 22

Table 10. Time complexity comparison between the proposed LR-based approach and other schemes.

Algorithm Time Complexity Annotation

Equation (3) O(|I|) |I| subproblems determine the value of the decision
variable for each application i.

Equation (4) O(|I||Wi ||S||Ti |)
|I||Wi | subproblems with summation of ` ∈ Ti , where i ∈ I,
determine the binary decision variable aijs that the
coefficient is minimized among |S|.

Equation (5) O(|I||Ti ||S||Wi |)
|I||Ti | subproblems with summation of j ∈Wi , where i ∈ I
determine the binary decision variable bi`s that the
coefficient is minimized among |S|.

Equation (6) O(|I||Wi ||S||Ti |)
|I||Wi ||S||Ti | subproblems determine decision variable
fij`s.

Equation (7) O(|S||I||Wi |) or
O(|S||I||Ti |)

|S| subproblems with summation µ8
ijs or µ9

i`s determine
decision variable zs.

Dual problem (D) O(N|I||Wi ||Ti ||S|)
N times of the maximum complexity by the sub-problems,
(4)–(6).

Drop-and-add
algorithm O(N|I||Wi ||Ti ||S|)

The algorithm adjusts the values of decision variables yi ,
aijs, bi`s, fij`s, and zs based on the dual problems. The
complexity is the worst case determined by the decision
variables of the subproblems.

FF O(|I||Wi ||Ti ||S|) The resource allocation.

NF O(|I||Wi ||Ti ||S|) The resource allocation.

Brute force O(2|I|
4 |Wi |2 |Ti |2 |S|4) The total combination of decision variables.

5.5. Discussion

To test the proposed algorithm, we designed three experiments involving changes in
application demands, the cost of servers, and dual-rates for HA with application requests, as
shown in Table 11. The research problem was formulated as a mathematical programming
problem to determine both admission control and resource scheduling problems from a
service provider perspective. Overall, the drop-and-add algorithm is the most effective
for obtaining the optimal solution in the fewest iterations. The optimization-based energy-
efficient admission control and resource allocation algorithms have significant benefits in
cloud computing systems. The significance of applications was inspired by the coefficient
of (3), which sorts applications by a composition of application weights, client satisfaction,
and high availability. Therefore, using the LR-based solution approach with multipliers to
obtain the primal feasible solutions was suitable for allocating VMs to servers efficiently
and effectively. The mathematical formulation was decomposed into five subproblems.
It was solved optimally using parallel computation techniques to reduce computation
time substantially. Furthermore, the experimental results reveal and confirm that the
drop-and-add algorithm was active in a few minutes by the most significant in the sliced
network stages shown in Tables 7–11. The following suggested problems and limitations
of this paper can be further studied and solved: QoS requirements can be classified into
more categories. Resource sharing between multiple service providers is a new research
problem that necessitates considering related issues, such as the sharing economy, from
multiple network service provider perspectives. Hence, operator pricing policies could be a
worthwhile topic.

Sensors 2021, 21, 1882 21 of 22

Table 11. Execution time in the experiments.

Traffic load (number of servers: 80, dual-rate: 0.5)

Number of applications 60 120 180

min (FF, NF) 0.0418 s. 0.0826 s. 0.1067 s.

Proposed method 373 s. 744 s. 1117 s.

Number of servers (number of users: 80, dual-rate: 0.5)

Number of servers 40 80 100

min (FF, NF) 0.213 s. 0.159 s. 0.269 s.

Proposed method 236 s. 478 s. 604 s.

Effect of HA (number of applications: 80, number of servers: 80)

Dual-rate 0.2 0.4 0.6

min (FF, NF) 0.059 s. 0.246 s. 0.430 s.

Proposed method 284 s. 437 s. 583 s.

6. Summary and Conclusions

A mathematical programming model is used to develop resource management by
simulating the cloud service provider role in this paper’s cloud computing systems in
5G network slices. The mathematical model is solved using an LR-based approach. The
proposed algorithm increases the cloud computing network infrastructure’s flexibility,
including cloudlets, and core clouds, to maximize rewards by admitting as many applica-
tions as possible. The gaps between upper bounds and lower bounds in the computational
experiments demonstrate the drop-and-add heuristic optimal solution qualities. The main
contribution is demonstrating that the orchestrator designed the resource management
algorithm significantly determined using Lagrangian multipliers to indicate task signif-
icance. A promising and straightforward resource allocation approach is proposed to
combine client satisfaction and high availability for network planning in a sliced network.
The developed optimization-based efficient admission control and resource allocation
algorithms are confirmed through various experimental cases. The proposed method has
excellent effectiveness and efficiency compared with the LB, FF, and NF solutions based
on the experimental results. The resource management mechanisms enables the slicing
network as services to efficiently and maximize system revenue in 5G networks.

Author Contributions: Conceptualization, C.-H.H. and F.Y.-S.L.; Formal analysis, C.-H.H. and F.Y.-
S.L.; Methodology, C.-H.H., F.Y.-S.L., Y.-C.S., Y.-S.W. and H.-Y.K.; Supervision, F.Y.-S.L., Y.-F.W. and
Y.H.; Visualization, C.-H.H. and Y.-F.C.; Writing review and editing, C.-H.H., E.S.-H.F., Y.-F.C. and
Y.-F.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by Ministry of Science and Technology (MOST), Taiwan,
under Grant Number MOST 109-2221-E-002-144 and MOST 110-2222-E-001-002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV:

Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [CrossRef]
2. Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.S.; Dittmann, L. Cloud RAN for Mobile Networks—A

Technology Overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [CrossRef]
3. Chen, M.; Hao, Y. Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network. IEEE J. Sel. Areas

Commun. 2018, 36, 587–597. [CrossRef]

http://doi.org/10.1109/MCOM.2017.1600935
http://dx.doi.org/10.1109/COMST.2014.2355255
http://dx.doi.org/10.1109/JSAC.2018.2815360

Sensors 2021, 21, 1882 22 of 22

4. Taleb, T.; Ksentini, A.; Sericola, B. On Service Resilience in Cloud-Native 5G Mobile Systems. IEEE J. Sel. Areas Commun. 2016,
34, 483–496. [CrossRef]

5. Li, X.; Samaka, M.; Chan, H.A.; Bhamare, D.; Gupta, L.; Guo, C.; Jain, R. Network Slicing for 5G: Challenges and Opportunities.
IEEE Internet Comput. 2017, 21, 20–27. [CrossRef]

6. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

7. AWS Marketplace. High Availability. Available online: https://aws.amazon.com/marketplace/solutions/infrastructure-software/
high-availability (accessed on 2 February 2021).

8. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

9. Sotiriadis, S.; Bessis, N.; Amza, C.; Buyya, R. Elastic Load Balancing for Dynamic Virtual Machine Reconfiguration Based on
Vertical and Horizontal Scaling. IEEE Trans. Serv. Comput. 2019, 12, 319–334. [CrossRef]

10. Liu, Y.; Lee, M.J.; Zheng, Y. Adaptive Multi-Resource Allocation for Cloudlet-Based Mobile Cloud Computing System. IEEE
Trans. Mob. Comput. 2016, 15, 2398–2410. [CrossRef]

11. Jin, A.; Song, W.; Zhuang, W. Auction-Based Resource Allocation for Sharing Cloudlets in Mobile Cloud Computing. IEEE Trans.
Emerg. Top. Comput. 2018, 6, 45–57. [CrossRef]

12. Liu, L.; Fan, Q. Resource Allocation Optimization Based on Mixed Integer Linear Programming in the Multi-Cloudlet Environment.
IEEE Access 2018, 6, 24533–24542. [CrossRef]

13. Ahmad, A.; Arshad, R.; Mahmud, S.A.; Khan, G.M.; Al-Raweshidy, H.S. Earliest-Deadline-Based Scheduling to Reduce Urban
Traffic Congestion. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1510–1526. [CrossRef]

14. Meneguette, R.I.; Boukerche, A.; Pimenta, A.H.M. AVARAC: An Availability-Based Resource Allocation Scheme for Vehicular
Cloud. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3688–3699. [CrossRef]

15. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: San Francisco,
CA, USA, 1990.

16. Hou, I.; Gupta, P. Proportionally Fair Distributed Resource Allocation in Multiband Wireless Systems. IEEE/ACM Trans. Netw.
2014, 22, 1819–1830. [CrossRef]

17. Ding, T.; Hao, Q.; Zhang, B.; Zhang, T.; Huai, L. Scheduling Policy Optimization in Kernel-Based Virtual Machine. In Proceedings of
the International Conference on Computational Intelligence and Software Engineering (CiSE), Wuhan, China, 10–12 December 2010;
pp. 1–4.

18. Zhao, L.; Lu, L.; Jin, Z.; Yu, C. Online Virtual Machine Placement for Increasing Cloud Provider’s Revenue. IEEE Trans. Serv.
Comput. 2017, 10, 273–285. [CrossRef]

19. Jia, M.; Liang, W.; Xu, Z.; Huang, M. Cloudlet Load Balancing in Wireless Metropolitan Area Networks. In Proceedings of the IEEE
International Conference on Computer Communications (IEEE INFOCOM), San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

20. Yao, D.; Gui, L.; Hou, F.; Sun, F.; Mo, D.; Shan, H. Load Balancing Oriented Computation Offloading in Mobile Cloudlet. In
Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–6.

21. Nguyen, D.D.; Nguyen, H.X.; White, L.B. Reinforcement Learning With Network-Assisted Feedback for Heterogeneous RAT
Selection. IEEE Trans. Wirel. Commun. 2017, 16, 6062–6076. [CrossRef]

22. Yuan, H.; Bi, J.; Tan, W.; Li, B.H. CAWSAC: Cost-Aware Workload Scheduling and Admission Control for Distributed Cloud Data
Centers. IEEE Trans. Autom. Sci. Eng. 2016, 13, 976–985. [CrossRef]

23. Bashar, A. BN-Based Approach for Predictive Admission Control of Cloud Services. In Proceedings of the IEEE International
Advance Computing Conference (IACC), Hyderabad, India, 5–7 January 2017; pp. 59–64.

24. Hoang, D.T.; Niyato, D.; Wang, P. Optimal Admission Control Policy for Mobile Cloud Computing Hotspot with Cloudlet. In
Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012;
pp. 3145–3149.

25. Xia, Q.; Liang, W.; Xu, W. Throughput Maximization for Online Request Admissions in Mobile Cloudlets. In Proceedings of the
IEEE Conference on Local Computer Networks (LCN), Sydney, NSW, Australia, 21–24 October 2013; pp. 589–596.

26. Geoffrion, A. Lagrangian Relaxation and its Uses in Integer Programming. Math. Program. 1974, 2, 82–114.
27. Bertsekas, D.P. Multiplier Methods: A Survey. Automatica 1976, 12, 133–145. [CrossRef]
28. Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods; Academic Press: Cambridge, MA, USA, 1982.
29. Hestenes, M.R. Multiplier and Gradient Methods. J. Optim. Theory Appl. 1969, 4, 303–320. [CrossRef]
30. Fisher, M.L. The Lagrangian Relaxation Method for Solving Integer Programming Problems. Manag. Sci. 2004, 50, 1861–1871.

[CrossRef]
31. Rockafellar, R.T. A Dual Approach to Solving Nonlinear Programming Problems by Unconstrained Optimization. Math. Program.

1973, 5, 354–373. [CrossRef]
32. Fisher, M.L. An Applications Oriented Guide to Lagrangian Relaxation. Interfaces 1985, 15, 10–21. [CrossRef]
33. Xu, X.; Zhang, J.; Ji, Y.; Li, H.; Gu, R.; Yu, H.; Zhang, J. BBU Aggregation for Maximizing the Resource Utilization in Optical-

Enabled Cloud Radio Access Networks. In Proceedings of the International Conference on Optical Communications and Networks
(ICOCN), Hangzhou, China, 24–27 September 2016; pp. 1–3.

http://dx.doi.org/10.1109/JSAC.2016.2525342
http://dx.doi.org/10.1109/MIC.2017.3481355
http://dx.doi.org/10.1109/COMST.2015.2444095
https://aws.amazon.com/marketplace/solutions/infrastructure-software/high-availability
https://aws.amazon.com/marketplace/solutions/infrastructure-software/high-availability
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TSC.2016.2634024
http://dx.doi.org/10.1109/TMC.2015.2504091
http://dx.doi.org/10.1109/TETC.2015.2487865
http://dx.doi.org/10.1109/ACCESS.2018.2830639
http://dx.doi.org/10.1109/TITS.2014.2300693
http://dx.doi.org/10.1109/TITS.2018.2880298
http://dx.doi.org/10.1109/TNET.2013.2284494
http://dx.doi.org/10.1109/TSC.2015.2447550
http://dx.doi.org/10.1109/TWC.2017.2718526
http://dx.doi.org/10.1109/TASE.2015.2427234
http://dx.doi.org/10.1016/0005-1098(76)90077-7
http://dx.doi.org/10.1007/BF00927673
http://dx.doi.org/10.1287/mnsc.1040.0263
http://dx.doi.org/10.1007/BF01580138
http://dx.doi.org/10.1287/inte.15.2.10

	Introduction
	Literature Review
	Resource Allocation
	Load Balancing
	Admission Control
	Research Scope

	Mathematical Formulation
	Lagrangian Relaxation-Based Solution Processes
	Procedures of Step 1: Relaxation
	Procedures of Steps 2 and 3: Decomposition and Solving Subproblems
	Subproblem 1 (Related to yi)
	Subproblem 2 (Related to aijs)
	Subproblem 3 (Related to bis)
	Subproblem 4 (Related to fijs)
	Subproblem 5 (Related to zs)

	Procedure of Step 4: Dual Problem and the Subgradient Method
	Procedure of Step 5: Obtaining the Primal Feasible Solutions
	Procedure of Step 6: Drop-and-Add Algorithm

	Computational Experiments
	Performance Evaluation Case: Traffic Load
	Performance Evaluation Case: Number of Servers
	Performance Evaluation Case: Effect of HA
	Performance Evaluation Case: Time complexity comparison
	Discussion

	Summary and Conclusions
	References

