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Abstract 

 
With the development of mobile edge computing (MEC), some late-model application 

technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as 

the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud 

computing solutions are difficult to meet the requirement of growing smart cars (SCs) with 

computing-intensive applications. Hence, this paper studies an efficient offloading decision 

and resource allocation scheme in collaborative vehicular edge computing networks with 

multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, 

we propose a context-aware offloading strategy based on differential evolution algorithm (DE) 

by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this 

basis, an autoregressive integrated moving average (ARIMA) model is employed to predict 

idle computing resources according to the base station traffic in different periods. Simulation 

results demonstrate that the practical performance of the context-aware vehicular task 

offloading (CAVTO) optimization scheme could reduce the system delay significantly. 

 
 

Keywords: Differential Evolution, Mobile Edge Computing, Machine Learning, 

Computing Offloading, Context-aware 
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1. Introduction 

The emergence of cloud computing and 5G communication technology have caused the 

transformation of the automotive industry. The Internet of Vehicles (IoV) [1] devices have 

further computational and service capability. Specifically, they can provide wireless 

communication services for vehicle terminals, roadside units (RSUs), and pedestrians in 

intelligent transportation systems, realizing vehicle to vehicle (V2V), vehicle to infrastructure 

(V2I), vehicle to person (V2P), and vehicle to network (V2N) communication modes [2].  
Nevertheless, the drawbacks of cloud computing are gradually exposed with the explosive 

growth of vehicles and vehicle equipment. The traditional cloud computing solutions [3, 4] 

with high latency and low-reliability are difficult to meet users’ higher requirements for 

transmission bandwidth and data processing delay in terms of real-time and security. It is easy 

to cause frequent traffic jams and traffic accidents. Also, due to the limited computing 

capability of automobile terminal, the increasing vehicle data has become an essential factor 

in restricting the development of intelligent transportation.  

To cope with this disturbing problem, the emerging technique, i.e., mobile edge computing 

(MEC) [5-7], is applied to support delay-critical services and compute-intensive applications. 

The fusion of MEC and IoV technologies has developed into vehicular edge computing (VEC). 

Driven by VEC technology [8, 9], computing resources have been pushed to the edge of RSUs. 

The task generated during vehicle driving can be executed locally or offloaded to MEC, 

making up for the shortcomings of considerable transmission delay and unstable connection 

of traditional centralized IoV network [10, 11]. 

Computing offloading of VEC is a current research hotspot [12-16]. However, there are 

some deficiencies hidden in the existing works. First of all, existing models did not consider 

the priority of processing when multiple tasks are concurrent, i.e., the priority of driverless 

cars is definitely higher than that of human-crewed vehicles. This is because driverless cars 

have stricter requirements for data processing delay and safe driving. Furthermore, current 

research ignored the limitation of MEC server resources and MEC server clusters’ load 

balancing [17, 18]. 

To address the above problems and further reduce the task offloading delay to guarantee 

driving safety and traffic efficiency. This paper proposes a context-aware vehicular task 

offloading (CAVTO) optimization scheme to solve computation and communication resources 

allocation problem in a delay-sensitive VEC system. The main contributions in this paper are 

summarized as follows.  

● A context-aware task offloading framework based on software defined network (SDN) 

and network function virtualization (NFV) technology are modeled in a collaborative VEC 

system. Furthermore, the optimization function of delay minimization is formulated as an NP-

hard problem.  

● A differential evolution (DE) is proposed to solve the joint optimization problem of 

offloading decision and resource allocation. The ARIMA model is used to predict idle 

computing resources to cooperate vehicular task offloading, improve resource utilization, and 

reduce system delay.  

● The performance of the context-aware vehicular task offloading  (CAVTO) optimization 

scheme is evaluated by comparing it with other baseline algorithms. Simulation results show 

that the CAVTO scheme could generate an allocation strategy close to the optimal. 

This paper is organized as follows: An overview of the related work is summarized in 

Section 2. Section 3 presents the offloading framework and formulates the system model. 
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Problem solution and algorithm proposal in Section 4. Experiment and simulation in Section 

5. At last, a summary of this paper is presented in Section 6. 

2. Related Works 

The computing offloading of VEC is a research hotspot. The current computing offloading 

strategies can be divided into the following aspects: delay minimization, energy consumption 

minimization, weighing energy consumption and delay. According to different models, design 

one or multiple optimization goals and then use appropriate algorithms to solve them. 

From the perspective of offloading architecture design. Sun et al. [19] considered offloading 

tasks to service vehicles with the same moving direction within a specific communication 

range. An ALTO algorithm based on MAB theory was proposed to achieve offloading delay 

minimization. Research [20, 21] employed vehicle cloud and remote cloud collaborative 

offloading method, the task is offloaded to vehicle cloud preferentially, and then offloaded to 

the remote cloud when computing resources are insufficient, [21] consider the heterogeneity 

of vehicle based on [20]. Zhu et al. [22] deployed base stations in different regions, vehicles 

entering and leaving must be reported to the base stations, and the base stations are responsible 

for task scheduling. Huang et al. [23] creatively proposed a PVEC algorithm that utilized 

parked vehicles as idle edge computing nodes and formulated a resource scheduling 

optimization problem. 

From the perspective of offloading strategy optimization goal. Sun et al. [24] formulated a 

mixed-integer nonlinear programming problem to maximize the system’s offloading utility 

with the joint optimization of offloading decision and task scheduling. Zhang et al. [25] 

proposed an offloading framework by considering the heterogeneous and the mobility of 

vehicles. The optimization goal is to minimize the total cost of vehicle task offloading under 

the constraints delay. Dai et al. [26] divided the offloading problem into two sub-problems: 

specifically, the optimal selection of VEC servers and joint optimization of load balancing and 

offloading decisions. Tang et al. [27] minimized the system delay under the condition of 

energy constraints. A decision tree algorithm is proposed to solve the task deployment sub-

problem, and a dynamic programming technique is proposed to solve the delayed offloading 

sub-problem. Guo et al. [28] proposed a novel resource allocation mechanism for edge 

computing resource providers, which performs task offloading under the condition of 

observing the resource constraints on the edge server, takes the supplier's income as the 

optimization target, and then formulates the resource allocation problem. 

From the perspective of the offloading algorithm. Liu et al. [29] used a semi-Markov 

decision process and linear programming to solve the optimal multi-resource allocation 

problem. Klaimi et al. [30] proposed a dynamic resource allocation algorithm based on game 

theory, which minimized CPU resource and energy consumption from the aspects of delay and 

request blocking probability. Finally, the existence of Nash equilibrium was proved. Feng et 

al. [31] adopted an ant colony optimization to solve the task scheduling problem in the AVE 

framework. Tham et al. [32] designed a load balancing optimization method based on a convex 

optimization algorithm, which improved the convergence speed and optimized the average 

system utilization. Wei et al. [33] combined Q-learning with DNN to optimize the problem of 

computing offloading in wireless cellular networks. Li et al. [34] adopted the ADMM method 

to study how to perform regression analysis when training samples are kept secret on the 

source device. 

    In the above research scheme, the impact of idle resources on the overall computing 

offloading performance has been ignored. In addition, the edge servers’ load balance is not 
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considered on the premise of guaranteeing user service quality to improve the system operation 

efficiency from the perspective of the service provider. Finally, the communication resources, 

computing resources, and storage capacity of the vehicular edge computing network are 

limited, and if ignore the reasonable allocation of such resources, it will not be able to deal 

with the enormous data generated by the vehicle equipment. 

3. System Architecture and Problem Formulation 

In this section, a context-aware task offloading framework based on SDN and NFV technology 

is modeled in the collaborative VEC system. Furthermore, the delay minimization problem is 

formulated by optimizing MEC server resource allocation and vehicle task offloading 

decisions. 

3.1 System Architecture 

As illustrated in Fig. 1, a vehicular task offloading framework with multiple SCs and multiple 

RSUs has been considered in this paper. The MEC servers are deployed within the range of 

RSUs to provide computing services for resource-constrained vehicles. The RSUs can 

communicate with multiple vehicles simultaneously through massive multiple-input multiple-

output (MIMO) [35, 36] technology. The virtual machine is deployed on each MEC server to 

facilitate centralized management of the network environment to realize real-time data 

perception and rapid response. 

 

 
Fig. 1.  System model of CAVTO architecture 
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In order to further improve system resource utilization, SDN and NFV technology are used 

to support VEC system architecture. SDN is a new type of network design concept [37] that 

uses a layered idea to separate the data plane from the control plane, realizes openness and 

programmability, and breaks the closure of traditional network equipment. NFV [38] builds 

many types of network equipment (such as servers, switches, storage, etc.) into a data center 

network and forms a virtual machine (VM) [39] by borrowing IT virtualization technology to 

make it run on standard server virtualization software so that it can be installed anywhere in 

the network without the need to deploy new hardware devices.  

Overall, the SDN/NFV-based architecture can be divided into three parts. The bottom is 

Data Plane, which comprises date collection from vehicle ad-hoc network (VANET), RSUs, 

and MEC servers. The middle layer is Control Plane, and the SDN controller uniformly 

manages the vehicle and road information collected by RSUs. The top layer is the core network 

layer, supporting information sharing and service migration scheduling between MEC servers. 

 

 
Fig. 2.  Context-aware task offloading decision model 

 

The Fig. 2 shows the detailed function modules in the control plane. It is made up of three 

main components, namely, Information Collection, Context-Aware, and Decision Model. 

● Information Collection: this module is mainly responsible for the extraction and collection 

of information, includes the speed, direction, and driving attributes of the vehicle. It also 

perceives information such as the accessible RSU within the vehicle communication range, as 

well as the computing resources and communication resources of the attached MEC services. 

● Context-Aware: as the core part of the entire computing offloading framework, this module 

provides load balancing, real-time monitoring, resource awareness, and prediction services. 

The load balancer can improve server performance and effectively prevent data packet loss, 

processing speed limit or even collapse caused by server overload. The monitoring service 

provides real-time monitoring of devices’ operation in the edge network. In addition, the 

ARIMA algorithm is employed in this module to learn the MEC servers’ load changes and 

predict idle computing resources to achieve resource scheduling. 

● Decision Model: according to the results of context-aware, make corresponding resource 

allocation strategy, offloading strategy and scheduling strategy, and send them to RSUs and 

vehicles for execution. 
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3.2 Offloading Model 

Table 1. Model parameters 

Parameters Definition 

ij
Task  The  j-th computation task of i-th SC 

ij
X  =1ijX  if the k-th task of j-th SC is offloaded to MEC server. Otherwise, =0ijX  

b  The data size of the computing task 

w  The priority of task processing 
limit

t  The delay constraint   

mr  The coverage of RSU 

ml  The vertical distance from RSU to the roadside 

mf  The computing capability of the MEC server. 
local

ijT  Local processing tasks delay 
stay

ijT  The time from entry to departure within the coverage of RSU 

up
r  The uplink transmission rate 

up

ijT  The uplink transmission delay 
com

ijT  The computing delay of task processing 

down
r  The downlink transmission rate 

down

ijT  The downlink transmission delay 

 

Table 1 shows some important parameters in the vehicular edge computing model, we assume 

that there are n SCs driving on the road. Each SC has k tasks to handle, the j-th computation 

task of i-th SC is denoted by ijTask ,where i N , {1,2, , }N n=  and j K , {1,2, , }K k= . 

For each ijTask , it can be represented by a tuple { , , }limitb w t , where b represents the data size 

of the computing task, w represents the priority of task processing, the purpose is to distinguish 

this task as a traditional computing task or a safety-oriented computing task, limitt is the delay 

constraint. There are also m RSUs evenly distributed on the side of the road. Each RSU 

equipped with a MEC server can be regarded as a service node. The heterogeneity of RSU and 

MEC servers enables service nodes to have different coverage and computing capabilities. For 

each service nodes 
mS , it can be represented by a tuple { , , }m m mr l f , in which 

mr  is the coverage 

of RSU, 
ml  is the vertical distance from RSU to the roadside, and 

mf  is the computing 

capability of the MEC server.    

Due to the limited computing resources of the vehicle itself, it is not enough to support the 

completion of the entire computing task locally. Offloading tasks to nearby RSUs with MEC 

servers is an effective solution. For each independent subtask ijTask , its offloading strategy 

can be expressed as:  

 

 {0,1}ijX =   (1) 

 

where 0ijX =  denotes the task will be executed locally, and 1ijX = denotes the task will be 

offloaded to RSUs for processing. 

The entire offloading process is divided into three stages. First, the SCs upload the 
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computation task to the RSUs through the V2I communication method. Then, RSUs transfer 

the task to the MEC servers and take advantage of powerful computing resources to process 

the task. Finally, the computation result will be returned to SCs. Therefore, the delay in the 

entire offloading process is mainly caused by the task upload delay, the computing delay on 

MEC servers, and the result return delay. Since RSUs and MEC servers are connected by 

optical fiber, the transmission delay is negligible. 

3.2.1 Local Computing Model  

When the subtask ijTask  of the vehicle is executed locally, the local computing delay can be 

expressed as : 

 

 
(1 ) local

ij ijlocal

ij local

i

X b C
T

f

−  
=   (2) 

 

where ijb  is the date size of  ijTask , localC  means CPU cycles per bit of vehicle, and 
local

if   is 

the computing capacity of i-th SC.  

3.2.2 MEC Computing Model  

According to the scene shown in Fig. 3, the vehicle 
iC  travels at a constant speed at the speed 

of 
iV . Due to the mobility of the vehicle, the distance between the vehicle and the center of 

RSU is constantly changing. The 
stay

iT  is the time from entry to the departure of the vehicle 

iC  within the coverage of RSU, which can be specifically expressed as: 

 

 
2 22stay

i

i

r l
T

v

−
=   (3) 

 

When the vehicle reaches the coverage area of the RSUs, the SCs communicate with RSUs 

through LTE-V2I mode. According to the Shannon formula, the uplink transmission rate can 

be calculated as: 

 

 2log (1 )up i i
ij

ij

p h
r B

B N


=  +


  (4) 

 

where ijB   denotes allocated channel bandwidth, 
iP  is the transmit power of i-th SC, and 

ih   

means channel gain. 
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Fig. 3.  Driving map of the vehicle within the coverage of RSU 

 

The transmission delay of the uplink can be expressed as: 

 

 
ij ijup

ij up

d X
T

r


=   (5)  

 

After the vehicular task is uploaded to the RSU, computing resources are provided through 

the attached MEC server. Therefore, the computing delay of task processing can be expressed 

as: 

 

 

mec

ij ijcom

ij mec

m

d X C
T

f

 
=   (6) 

 

where mecC  implies the number of CPU cycles of unit data in the MEC system and
mec

mf

represents computing resource allocated by m-th MEC server. 

Finally, after the task has been processed, the MEC servers return the computing result to 

SCs. The downlink transmission delay is: 

 

 
ij ijdown

ij down

d X
T

r

  
=   (7) 

 

where   is the ratio of the size of the upload task and the returned computing result.  

It is worth noting that the MEC servers can only start processing the task after the server 

has received the task of WDs completely, and the MEC servers can only start sending back 

the computing results at the end of completing the entire computing task. 

In summary, the total computing offloading delay of processing ijTask can be expressed as: 

 

 mec up com down

ij ij ij ijT T T T= + +   (8) 

 

3.3 Problem Formulation 

Based on the above-mentioned offloading model, the goal of this article is to minimize the 

average task processing delay of the vehicles through the joint optimization of computing 

resource allocation and transmission bandwidth allocation. An objective function Obj  is 
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introduced, which can be expressed as: 

 

 1 1

( + )
n k

local mec

ij ij

i j

T T

Obj
nk

= =
=


  (9) 

 

The final computing offloading problem model can be established as: 

 

 min ( , , , )mec

ij ij m iObj X B f w    

s.t．
1 : {0,1}ijC X =  

       
2

1

: 0
n

ij total

i

C B B
=

   

          
3

1

: 0
m

mec

m total

m

C f f
=

    (10) 

4 : mec stay

i iC T T  

5

1

: max
n

i

i

C w
=

   

 

where constraint 
1C  is the offloading decision of vehicle, constraint 

2C means the allocated 

bandwidth cannot exceed the total bandwidth, constraint 
3C means the allocated computing 

resource cannot exceed the total resource of MEC servers, constraint 
4C is set to ensure that 

the task processing will not be interrupted, the computing task is required to be completed 

before the vehicle leaves the range of the RSU, constraint 
5C  is to maximize the weight, that 

is, to deal with the higher priority security tasks preferentially. 

4. Proposed Scheme 

In this section, we propose a CAVTO optimization scheme to solve the above optimization 

problem. The CAVTO optimization scheme is mainly divided into two parts. Firstly, a 

differential evolution algorithm (DE) is proposed to optimize offloading decision and resource 

allocation in collaborative vehicular edge computing networks to minimize the average delay.  

Secondly, the ARIMA-based machine learning algorithms are used to predict idle computing 

resources to ensure MEC server load balance and improve utilization efficiency. The specific 

expression is as follows. 

4.1 Latency Optimization 

The optimization problem of the above equation (10) is an NP-hard problem. We consider 

adopting the DE algorithm to get the optimal solution. DE algorithm is a heuristic search 

algorithm based on the biological evolution process. Simulate the problem to be solved as a 

biological evolution process, and find the optimal solution through evolution. DE algorithms 

usually start with a set of possible potential solutions, which are composed of genetically 

encoded individuals. After fitness calculation, selection, crossover, and mutation, these 

individuals evolve from generation to generation to produce better approximate solutions. 

Algorithm 1 shows detailed steps. 
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Algorithm 1  Latency Optimization Based on Differential Evolution Algorithm 

Input:    Population size: N ,Dimension: M , Max iteration: G , Number of SCs: n ,  

Number of tasks: k ,Total bandwidth: 
totalB , Total computing resources:

Mf . 

Output: The optimal solution: 
* { , , }mec

ij ij ij mS X B f=  

               The minimal delay: 
*Obj  

1 0g =   

2 for 1i =  to N  do 

3      for 1j =  to M  do 

4             Initialize population (0)ijS  

5      end 

6 end  

7 while ( )g G  do 

8      for 1i =  to N  do 

9            for 1j =  to M  do 

10                   Mutation according to Eq. (14); 

11                   Crossover according to Eq. (15); 

12            end 

13            Selection according to Eq. (13); 

14      end 

15     1g g= +   

16 End 

17 return 
*

ijS ,
*Obj  

 

 

     The floating-point encoding is employed to replace traditional binary encoding, which can 

effectively reduce storage space and reduce algorithm complexity. The chromosome coding 

method is shown in Fig. 4, the total number of computing tasks for all vehicles is set to the 

chromosome length, each gene represents a computing task ijTask , and the value of the 

corresponding gene ijS represents offloading strategy ijX , bandwidth allocation strategy ijB  

computing resource allocation strategy mec

mf  and task processing priority
i

w , whose strategy 

set can be expressed as: 

 

 { , , }mec

ij ij ij mS X B f=   (11) 

 

 
Fig. 4.  Chromosome encoding 
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After the population coding is completed, the fitness needs to be set. The greater the fitness, 

the more chance it will be inherited to the next generation. Since the objective function is to 

minimize the average delay of vehicular offloading, the fitness is set as: 

 

 
1

Fit
Obj

=   (12) 

 

The principle of selection is that the higher fitness, the more likely to be selected. According 

to the roulette wheel selection, the selection probability is expressed as:  

 

 

1

( )
( )

( )
N

i

Fit i
P i

Fit i
=

=


  (13) 

 

The mutation operation is to change the gene position, so that the algorithm has the ability 

of local random search and avoid premature convergence. Randomly select three different 

individuals 
1 2 3( ), ( ), ( )r r rS g S g S g  in the strategy set, the produced intermediate expressed as: 

 

 
1 2 3( 1) ( ) ( ( ) ( ))i r r rI g S g F S g S g+ = +  −   (14) 

 

where F is the scaling factor. 

    The purpose of crossover operation is to increase the diversity of solutions, The result of 

crossover between ( )iS g  and ( 1)iI g + is:  

 

 
( 1) (0,1)

( 1)
( )

i

i

i

I g rand CR
H g

S g otherwise

+ 
+ = 


  (15) 

 

where CR is crossover probability. 

Through the above steps, the solution set of the strategy { , , }mec

ij ij ij mS X B f= evolves from 

generation to generation, producing better and better approximate solutions. Finally, record 

the optimal solution *S , and calculate the minimum average delay 
*Obj . 

4.2 Resource Prediction 

In context-aware collaborative vehicular edge computing networks, the SDN controller can 

monitor MEC servers load changes in real time. In different regions, the traffic flow at different 

time periods is very different, which leads to server load unbalanced. In order to improve 

resource utilization, adaptively learning the load changes of the server and realizing resource 

prediction and scheduling is an effective way to improve traffic conditions. Therefore, the 

ARIMA model is applied to predict the number of vehicles arriving in the area in the next time 

period based on the historical data of traffic flow. 

The basic idea of the ARIMA model [40] is that the time-varying data sequence is a random 

sequence, which can be described by a certain mathematical model to predict the future value 

from the past value and the current value of the time series. The ARIMA ( , , )p d q  model can 

be expressed as: 
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1 1

p q

T i T i T i T ii i
y Y y   − −= =
= + + +    (16) 

 

where p  is the autoregressive order, d  denotes the difference times and q  is the average 

moving order.       

Suppose there are R  regions in the vehicular edge network, which can be represented by 

set {1,2, , }r R . ( )T

rP A is the traffic flow of region 
rA in period T . According to the traffic 

flow over the past T periods 
1 2( ), ( ), , ( )T

r r rP A P A P A , the traffic flow in period 1T + can be 

predicted. The greater the traffic flow in a period of time, the higher the server load in the area. 

After the prediction is completed, the sequence 
1 1 1

1 2( ), ( ), , ( )T T T

rP A P A P A+ + +
can be get. In 

descending order according to traffic flow, take out the top H  regions and bottom L  regions. 

Dispatch the computing resources in the L  regions to the H  regions, and cooperate to 

complete the computing offloading. 

The resource prediction based on ARIMA model mainly consists of 4 steps. 

Step 1: Check whether the data sequence over the past T periods 
1 2( ), ( ), , ( )T

r r rP A P A P A

is stationary. If the series is nonstationary, perform d  order difference operation until a 

stationary sequence is obtained. 

Step 2: Determine ARIMA model parameters p and q according to sequence characteristics. 

Step 3: Calculate the autocorrelation function and partial correlation function of the time 

series, check whether the ARIMA model ( , , )p d q  is satisfied. 

Step 4: If satisfied, forecast the traffic flow 
1( )T

rP A+
 in period 1T + . Otherwise, repeat 

Step 2 and Step 3. 

Step 5: Sort sequence 
1 1 1

1 2( ), ( ), , ( )T T T

rP A P A P A+ + +
 in descending order to implement 

resource scheduling. 

4.3 CAVTO Optimization Scheme 

Combining the DE-based delay optimization algorithm and ARIMA-based resource prediction 

algorithm, the CATVO optimization scheme is proposed in Algorithm 2. First, based on 

historical data, the traffic flow of different areas in the next time period can be predicted. The 

traffic flow indirectly reflects the load condition of the server in this region. Then, low-load 

MEC servers assists in performing computing offloading for high-load MEC servers. Finally,  

the DE algorithm is adopted to jointly optimize resource allocation and offloading decisions. 

The result shows that the CATVO optimization scheme not only effectively reduces the 

offloading delay, but also improves resource utilization. 
 

Algorithm 2  CAVTO optimization scheme 

Input:    Population size: N ,Dimension: M , Max iteration: G , Number of SCs: n ,  

Number of tasks: k ,Total bandwidth: totalB , Total computing resources:
Mf . 

Data of traffic flow
1 2( ), ( ), , ( )T

r r rP A P A P A  

Output: The optimal solution: 
* ( 1) { , , }mec

ij ij ij mS T X B f+ =  

               The minimal delay: 
*( 1)Obj T +  

1 Predict 
1 1 1

1 2( ), ( ), , ( )T T T

rP A P A P A+ + +
 according to ARIMA algorithm 
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2 Sort sequence 
1 1 1

1 2( ), ( ), , ( )T T T

rP A P A P A+ + +
 in descending order 

3 Scheduling  the computing resources from L  regions to the H  regions 

4 Adopt algorithm.1 

5 Return 
* ( 1)ijS T +  and 

*( 1)Obj T +  

 

5. Simulation Results and Analysis 

In this section, we set the environmental parameters of the simulation experiment and evaluate 

the performance of the CAVTO optimization scheme by comparing other baseline algorithms.  

The specific details are shown as follows. 

5.1 Parameters Settings 

The scenario assumed in this article is on a one-way traffic road. The task of the driving vehicle 

can be executed locally or offloaded to the RSUs. Due to the heterogeneity of vehicles, assume 

that the number of computing tasks for the vehicle is 5-10. The computing capability of each 

vehicle is randomly distributed as 4 × 106~ 2 × 107cycles/s, and each car travels at a certain 

speed. The specific simulation parameters are shown in Table 2. 

 
Table 2. Simulation parameters 

Parameters                                                                                Value 

 

RSU coverage radius                                                                     100~200/m 

Vertical distance from RSU to road                                               30~50/m 

Transmission bandwidth                                                                5 MHz 

Vehicle computing capability                                                        4 × 106~ 2 × 107cycles/s 

Vehicle transmission power                                                           1.3 W 

Gaussian white noise power                                                           3 × 10−13 W 

Channel gain                                                                                   4 

Number of tasks unit vehicle                                                          5~10 

MEC server computing capability                                                  8 × 107~ 2 × 108 cycles/s 

Task weight coefficient                                                                   0~3 

Data size of vehicular task                                                              100 kb 

Task computing capability                                                              50 cycles/bit 

5.2 Experiment Results 

Suppose there are five vehicles driving RSU in the same time period. In order to allocate 

resources reasonably, make wise offloading decisions. The DE algorithm is employed to 

minimize the average system delay. As shown in Fig. 5, we initialize the population size to 

100, evolution algebra is set as 150, and reorganization probability is 0.1. The experimental 

results show that the optimal objective function value gets the minimum 1806 ms after 140 

iterations. The detailed allocation strategy of the DE algorithm is shown in Fig. 6. 
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Fig. 5.  The DE offloading scheme   

 
Fig. 6.  Allocation strategy of DE algorithm 

 
In terms of idle resource prediction, we use the ARIMA model to predict the traffic flow 

in the next period. The data set is provided by the Korea Expressway Corporation [41], the 

data format is shown in Fig. 7. This data records the hourly traffic flow on a certain highway. 
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Fig. 7.  Traffic flow data set 

 

 
Fig. 8.  Model sequence diagram  

 

After initial processing of the data, we calculate the characteristic of standardized residual, 

histogram plus estimated density, autocorrelation function, and partial correlation function, 

etc. The purpose is to analyze the reliability and periodicity of the data, and check whether the 

data obey the normal distribution. The result is as shown in Fig. 8. The calculation shows that 

the data set has good stationarity and is suitable for the ARIMA model. 

Fig. 9 presents the traffic flow prediction based on the ARIMA model. According to the 

traffic flow in the past six days, predict the traffic flow situation within 24 hours. Set the time 

node with less traffic as the idle resource node of this region, and dispatch computing resources 

to other regions to improve offloading efficiency. 
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Fig. 9.  Traffic flow prediction based on ARIMA model 

 

5.3 Algorithm Performance Evaluation 

In order to further evaluate the performance of the CAVTO optimization scheme, compare 

CAVTO with the following offloading schemes: 1) Local Execution (LE): all the computing 

tasks of vehicle execute locally. 2) MEC Execution (ME): all the computing tasks will be 

offloaded to RSUs for execution. 3) Differential Evolution algorithm (DE): which without 

considering resource forecast and schedule. 

 
Fig. 10.  The average delay of tasks processing with the increasing of vehicles 
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The Fig. 10 reveals the relationship between the number of vehicles and the average delay. 

It can be seen from the diagram, as the number of vehicles increases, the CAVTO scheme and 

DE algorithm show a slow upward trend; the DE algorithm is inferior to CATVO in average 

delay because there is no prediction and scheduling of idle resources. The ME strategy offloads 

all computing tasks to RSUs. In the beginning, the delay optimization performed well. 

However, as the number of vehicles increased, channel congestion was caused, and the supply 

of resources exceeded demand, which causes a large delay. In summary, CAVTO is superior 

to the other three algorithms and reduces the average delay by up to 16% compared with the 

DE strategy. 

Furthermore, in order to study the number of vehicular tasks with different priorities, the 

total weight (
1

n

ii
w

= ) of task completion under different offloading schemes has been 

researched through repeated experiments. 

 
Fig. 11.  The total weight of tasks completion under different offloading schemes 

 

It can be seen from Fig. 11, the total weight of the CAVTO optimization scheme is the 

largest, which explains that the strategy pays more attention to priority processing of high-

priority tasks. Compared with DE, ME, LE strategies that do not consider priority, the CAVTO 

optimization scheme has increased by 20%, 31%, and 52%, respectively. 

6. Conclusion 

In this paper, an effective CAVTO optimization scheme is proposed in a vehicular edge 

computing system with multiple SCs and multiple MEC servers. Technologically, an 

improved differential evolution algorithm is designed to figure out the joint optimization 

problem of offloading decision and resource allocation. Furthermore, the ARIMA-based 

machine learning algorithms are used to predict idle computing resources to ensure MEC 

server load balance and improve utilization efficiency. The experimental results demonstrate 

that the CAVTO optimization scheme could generate a near-best resource allocation strategy 

by comparing baseline algorithms and reduce the system delay significantly. 
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