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1  Introduction
Large-scale MIMO system which uses over tens antennas at both transmitter and 
receiver, promises to offer high data rates and has been identified as one of key tech-
niques in modern wireless communications [1, 2]. Meanwhile, MIMO is also an emerg-
ing technology for supporting communications between enormous devices in IoT 
environments [3]. However, the multi-antenna interference brings the fundamental lim-
iting characteristic for MIMO systems [5]. Therefore, for downlink multiuser MIMO 
systems, transmission technologies such as quadrature spatial modulation (QSM) [4] 
can be considered for reducing the interference for large-scale MIMO systems. While 
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for uplink multiuser MIMO systems, the multiuser detection plays an important role for 
mitigating the multi-antenna interference.

A review of various detection techniques for uplink multiuser MIMO was provided in 
[6]. The optimal nonlinear detectors, for example, the maximum a posterior (MAP) or 
maximum-likelihood (ML) detector, performs an exhaustive search in the whole solu-
tion space, and thus is practically prohibitive because its large computational complexity 
which usually exponentially increases with respect to the number of antennas in MIMO 
systems. On the contrary, the linear detectors, such as the minimum-mean-square-
error (MMSE) and zero-forcing (ZF) detectors have very low complexity but their per-
formances are generally far from the performance bound, in particular for large-scale 
MIMO systems. Hence, it is desired to develop new multiuser detection methods for 
achieving a  better tradeoff between the performance and complexity for large-scale 
MIMO systems.

Recently, numerous sparse-aware (SA) detectors in term of sparse signal processing, 
have been presented for uplink multiuser MIMO systems [7–10]. The SA detectors 
utilized the hidden sparsity of a residual error vector to refine the results achieved by 
a low-complexity linear detector (e.g., ZF or MMSE). More specifically, at the receiver 
with the channel matrix H being known, the transmitted signal vector x is first 
detected by using ZF or MMSE associated with a slicing function. By letting the origi-
nal received signals ( y = Hx + n ) minus the product of the detected symbol vector x̂ 
and the channel matrix (i.e., ŷ = y −Hx̂ = He+ n where e = x − x̂ and n represents 
a noise vector), we can achieve a sparse MIMO system with the residual error vec-
tor e being the inputs. Note that the residual error vector e is usually sparse because 
the symbol error rates (SERs) achieved by the underlying linear detector is gener-
ally small for practical SNR regimes, and then a SA detector is employed to acquire 
ê which is used in refining x̂ . The entire process is illustrated in Fig.  1. Intuitively, 
we may consider to apply compressive sensing (CS) based techniques for detecting 
the sparse residual error vector e . For example, in [7], a multipath matching pursuit 
(MMP) method [14] was considered to detect the residual error vector. [8] first iden-
tified the support of the sparse error vector using a CS based method [11]. Then, a 
very over-determined MIMO system is created by removing the detected supports. 
In the resultant system, the number of transmit dimensions is much less than the 
number of receive dimensions, such that a low-complexity linear detector (e.g., ZF 
or MMSE) is able to detect the remaining non-zero error symbols. Simulation results 

Fig. 1  The generic architecture of SA detectors
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demonstrated that those CS-based SA detectors were efficient for improving the per-
formance of the underlying linear detectors. However, most of the CS based methods 
were originally proposed for under-determined systems where the number of receive 
dimensions (or antennas) is much less than that of transmit dimensions (or antennas) 
and an iterative detecting process is usually required [12, 13], but MIMO systems, 
in particular uplink MIMO systems, are generally overdetermined, which refers that 
the number of transmit antennas is smaller than that of receive antennas. Therefore, 
the CS-based SA detectors are not appropriate for the overdetermined MIMO sys-
tems in sense of power consumption, execution time etc., especially in ultra-reliable 
low-latency communication (URLLC) service in 5G communication [15]. Taking the 
issue into account, a linear sparse-aware detector, named SA-MMSE, was presented 
in [9, 10], and has achieved attractive performance with a comparable complex-
ity. Leveraging the hidden equality between the pseudo norm ( ‖.‖0 ) and the second 
norm ( ‖.‖2 ) when a lower-order modulation BPSK was considered, the conventional 
non-convex optimization problem on detecting the residual error vector e was con-
verted into a convex one after relaxing the finite-alphabet constraints. An extension 
of the SA-MMSE for higher-order modulations was presented in [10]. After relaxing 
the finite-alphabet constraints of the residual error vector, a closed-form solution on 
the estimation of the residual error vector was achieved. Then, a well-designed slic-
ing function was employed to map the estimations into the finite alphabet for achiev-
ing final decisions. Like the conventional ZF and MMSE detectors, the SA-MMSE 
detector follows a linear execution manner resulting in low computational complex-
ity. However, this also renders the performance of SA-MMSE is sub-optimal because 
it relaxed the finite-alphabet constrains as the ZF/MMSE does, and its performance 
heavily depends on how precise the threshold of the slicing function is. In practi-
cal, it is extremely difficult to acquire the exactly accurate threshold due to a lot of 
unexpected dynamics of wireless channels. As SNR increases, the SA-MMSE detec-
tor probably suffers an error-floor. If the SA-MMSE detector takes the finite-alphabet 
constraints into account, its detection complexity will exponentially increase as the 
size of the finite alphabet again.

Therefore, in this paper, we aim at designing a novel detection scheme which not 
only adheres to the finite alphabet constraints for achieving better performance but 
also costs a comparable computational complexity. In the development of the pro-
posed method, we can consider to utilize the QR decomposition to convert a mul-
tiple-dimensional search into a single-dimensional search as MIMO systems are 
generally overdetermined. Meanwhile, the unfavourable matrix inversion, required in 
the SA-MMSE detector proposed in [9], can also be avoided. Therefore, we can guar-
antee low computational complexity of the proposed method. Since we only need to 
do search in a single dimension, it is not necessary to relax the finite-alphabet con-
straints. Thus, no information will be lost due to the relaxation. Accordingly, we can 
expect that the performance of the proposed method should be better than the SA-
MMSE detector. We verify through simulations that the proposed method achieves 
relatively better tradeoff between the complexity and performance compared to other 
existing detectors. The key contributions of this paper are summarized as follows. 
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1.	 We consider the same sparse MIMO system as that defined in [9] after applying a 
underlying detector (ZF or MMSE) and propose the SDSB-SA detector. Compared 
with several linear detectors, including the conventional ZF, MMSE and the SA-
MMSE proposed in [9], our proposed SDSB-SA detector has superiority in terms of 
performance while costing a comparable computational complexity.

2.	 The QR decomposition is utilized to in the development of the SDSB-SA detector, 
which circumvents the matrix inversion operation required in the SA-MMSE detec-
tor and converts joint multi-dimensional search into a single-dimensional search 
in order to keep low computational complexity. Meanwhile, the single-dimensional 
search can preserve the finite-alphabet constraints for achieving better performance.

3.	 In order to avoid the possible error propagation for higher-order modulations, the 
layered SDSB-SA detector is developed by leveraging the hierarchical structure of the 
residual error vector.

This rest of paper is organized as follows. Section  2 describes the system model for an 
uplink MIMO transmission system and briefly overviews the main idea of SA-MMSE. The 
proposed single-dimensional search-based SA detector is presented in section 3. Simula-
tion results and discussion are illustrated to verify the efficiency of the proposed detection 
methods in Sect. 4. Conclusion is given in Sect. 5.

1.1 � Notation
The uppercase and lowercase boldface letters represent matrices and vectors, respec-
tively. Im(x) and Re (x) state the imaginary and real parts of a complex-valued vector x, 
respectively. XT represents the complex conjugate transpose of the matrix X . C and R 
represent the entire complex and real domains, respectively.

2 � System model
In this section, we first introduce an uplink multiuser MIMO system, and then briefly 
overview the main idea of SA detection.

2.1 � Uplink multiuser MIMO

An uplink multiuser MIMO system is considered, as illustrated in Fig. 2, in which there 
is one base station (BS) with M antennas and the BS can service K single-antenna users 
(UEs) simultaneously. We define x ∈ C

K  as the symbol vector transmitted by the K UEs 
with all entries being selected from the same finite constellation set A (chosen accord-
ing to a modulation scheme used in the system). At the BS, the received signal vector, 
denoted by ȳ ∈ C

M , is expressed as

where H̄ ∈ C
M×K  is the channel matrix whose elements are assumed to be independent 

and identically distributed with zero mean and unit variance over a rich-scattering com-
munication environment as in [16], and n̄ ∈ C

M is the additive noise whose entries are 
drawn from the complex-valued circularly-symmetric Gaussian distribution CN(0, σ 2) . 
In this paper, we assume the channel matrix H̄ is perfectly known at the BS.

(1)ȳ = H̄x̄ + n̄,
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For the ease of representation and accommodating to the requirement of the proposed 
algorithm, we rewrite the complex input-output relationship in (1) into an equivalent 
real representation as,

where y = [Re(ȳ) Im(ȳ)]T , x = [Re(x̄) Im(x̄)]T , n = [Re(n̄) Im(n̄)]T and

This real system representation will be used in the sequel.

2.1.1 � The sparse‑aware detecting

In this section, we briefly overview the methodology of the sparse-aware detectors. 
Given the received vector y , the low-complexity underlying detector (e.g., ZF or MMSE) 
is first employed to detect the outputs as

where Q(.) refers to a slicing function and W is the weighted matrix of the underly-
ing detector. The sparse MIMO system is achieved by taking the difference from the 
received signal to the product of the channel matrix and the output vector of the under-
lying detector, i.e.,

where e = x − x̂ , named a residual error vector (or symbol error vector). Note that the 
conventional ZF (or MMSE) detector associated with the symbol quantization can suc-
cessively detect symbols with a certain possibility, namely, the detected symbol vector 
may be closed to but not always the same as the original transmit vector. Consequently, 
the residual error vector is sparse since the most of entries in e should be zeros with 
an overwhelming possibility in practical communication systems. Therefore, the sparse 
error vector e can be detected via the following optimization problem

(2)y = Hx + n

H =

[

Re(H̄) − Im(H̄)

Im(H̄) Re(H̄)

]

∈ R
2M×2K

(3)x̂ = Q(Wy)

(4)ŷ = y −Hx̂ = He+ n

Fig. 2  The diagram of uplink multiuser MIMO systems
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where Â represents the finite alphabet for symbol errors ei , (e.g., Â = {±2, 0} for BPSK), 
� is a regularization factor related to the sparsity of the symbol error vector which is 
determined in term of the bit or symbol error rate achieved by the underlying linear 
detector. The theoretical analysis of ZF or MMSE on error rates is available in [17, 18] 
and can be used to calculate the value of � . Finally, ‖e‖0 states the pseudo-norm of e 
returning the number of non-zero entries of e.

It is extremely difficult to tackle (5) since it is a non-convex function. Therefore, [7] 
and [8] had relaxed the l0 norm to the l1 norm and removed the finite-alphabet con-
straints. Then, a greedy iterative algorithm was employed to estimate the symbol error 
vector with the attendant high power and time consumption, which in turn preclude 
their practical implementation. In [9], when BPSK is considered, the mathmatical equal-
ity that �e�0 = 1

4�e�
2
2 holds. Therefore, the above optimization problem can be equiva-

lently rewritten as

By relaxing the finite-alphabet constraints e ∈ Â2K  , the estimation of e , named ẽ can be 
achieved via

which is named SA-MMSE as it has a similar form as MMSE does except that � repre-
sents the sparsity level of e rather than the noise variance. Finally, the detection of e is 
acquired via ê = Qθ (ẽ) where Qθ (.) is a slicing function with θ being a threshold. Similar 
to the ZF and MMSE detectors, the SA-MMSE detector follows a linear manner guaran-
teeing low computational complexity. However, it is also sub-optimal in sense of perfor-
mance as the finite-alphabet constraints are relaxed. Therefore, in this paper, we develop 
a novel sparse-aware detector which not only adheres to the finite-alphabet constraints 
for better performance but also has low computational complexity.

3 � Method of single‑dimensional search‑based sparse‑aware (SDSB‑SA) 
detector

In this section, we propose the single-dimensional search-based sparse-aware detector 
for large-scale uplink MIMO systems. First, we consider the case of lower-order modu-
lation schemes. Then, we propose a layered SDSB-SA detector for higher-order modula-
tion schemes in order to mitigate the possible effect of error propagation.

3.1 � SDSB‑SA for lower‑order modulation schemes

Recall the sparse MIMO system model given in (4)

(5)ê = arg min
e∈Â2K

1

2
�ŷ −He�22 + ��e�0,

(6)ê = arg min
e∈Â2K

1

2
�ŷ −He�22 +

�

4
�e�22,

(7)ẽ =

(

HTH+
�

2
I

)−1

HT ŷ

(8)ŷ = He+ n.
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Note that the channel matrix H is a tall matrix since the number of receive dimensions 
is larger than that of transmit dimensions for an uplink multiuser MIMO system. There-
fore, the QR decomposition is implementable for the channel matrix H resulting in 
H = QR where R is a 2K × 2K  upper triangular matrix and Q is an 2M × 2K  unitary 
matrix [19].

Let (8) be multiplied by QT at both sides, and we can achieve the following expression

Since the unitary matrix Q does not change the Gaussian noise distribution, the ñ still 
satisfies Gaussian distribution with zero mean and covariance matrix σ 2IM . Conse-
quently, the independence between the symbol error vector e and the noise vector ñ 
is preserved. By following the similar processes given in [9], the MAP detector can be 
equivalently rewritten as

Let ỹk and rk ,i represent the k-th element of ỹ and the element at the k-th row and i-th 
column of R , respectively. Then, by taking use of the triangular structure of R , (10) can 
be equivalently represented as

From the above equation, we can observe that, the upper triangular form of R enables to 
successively detect ek following a reversed order. Therefore, the original detection prob-
lem given in (10), which requires a multi-dimensional search in the finite alphabet Â , 
can be equivalently decoupled into a set of single-dimensional search-based sub-prob-
lems. Specifically, given the detected symbols {êi}2Ki=k+1 , the k− th symbol can be detected 
via

This minimization problem entails only one scalar variable taking one of ( 2× 2n − 1 ) 
possible elements in Â . However, since R usually is not a diagonal matrix, the proposed 
SDSB algorithm in (12) possibly suffers from error propagation, in particular, when a 
higher-order modulation scheme is employed. As a compromise, a layered single-
dimensional search-based method is developed next, to further improve performance by 
adhering to the finite-alphabet constraints, at the price of slightly increased complexity 
compared to (12).

(9)
ỹ = QT ŷ

= QTHe−QTn

= Re+ ñ

(10)ê = arg min
e∈Â2K

1

2
�ỹ − Re�22 + ��e�0.

(11)ê = arg min
e∈Â2K

K
�

k=1







1

2

�

ỹk −

K
�

i=k

rk ,iei

�2

+ �|ei|0







.

(12)êk = arg min
ek∈Â

1

2



ỹk −

K
�

i=k+1

rk ,iêi − rk ,kek





2

+ �|ek |0
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3.2 � Layered SDSB‑SA for higher‑order modulation schemes

We consider a 22n-order QAM constellation (e.g., 16QAM, 64QAM etc) which 
results in that the residual error vector takes value from the finite alphabet 
A = {0,±2,±4, · · · ± 2i, · · · ± 2(2n − 1) . The proposed layered SDSB-SA detector is 
inspired by the hierarchical structure of the residual error vector, according to which, 
the residual error vector can be decomposed into a set of orthogonal sub-error vectors, 
i.e.,

where vi ∈ A2K
i  with Ai = {±2i, 0}2K  for i ∈ {1, ..., 2n − 1} . Note that 

Â = A1 ∪A2 · · · ∪Ai · · · ∪A2n−1 , and the sub-symbol error vectors vi are orthogonal 
to each other, i.e., vivTj = 0 when i  = j.

Therefore,

(a) comes from that vivTj = 0 for i  = j and �ỹ�22 is known and regarded as a constant, add-
ing this term to (15) will not affect the final result of (15). Consequently, the detection 
problem given in (10) is equivalent to

With the relaxation on the orthogonality constraint, the objective function associated 
with vi is given as

(13)e = v1 + v2 + · · · + v2n−1,

(14)arg min
e∈Â2K

1

2
�QT ŷ − Re�22 + ��e�0

(15)

= arg min
e∈Â2K

1

2
�ỹ −

2n−1
∑

i=1

Rvi�
2
2 + ��

2n−1
∑

i=1

vi�0

=(a) arg min
e∈Â2K

1

2

2n−1
∑

i=1

(

�ỹ�22 − ỹ(Rvi)
T − Rvi(ỹ)

T + �Rvi�
2
2

)

+ �

2n−1
∑

i=1

�vi�0

=

2n−1
∑

i=1

arg min
vi∈A

2K
i

�ỹ − Rvi�
2
2 + ��vi�0

ê = arg min
v1∈A

2K
1

�ỹ − Rv1�
2
2 + ��v1�0

+ arg min
v2∈A

2K
2

�ỹ − Rv2�
2
2 + ��v2�0

...

+ arg min
v2n−1∈A

2K
2n−1

�ỹ − Rv2n−1�
2
2 + ��v2n−1�0

subject to viv
T
j = 0, i �= j.

(16)v̂i = arg min
vi∈A

2K
i

1

2
�ỹ − Rvi�

2
2 + ��vi�0.
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Similarly, the k-th entry of the sub-error vector vi can be detected as

Define

Then, the optimization problem in (16) can be simplified as

1 � Remark 1

The main difference between (12) and (19) is that the former one entails one scalar vari-
able taking one of possible (2× 2n − 1) values in a full finite alphabet set Â , whereas the 
later one only considers one of

three values in a subset Ai.

A two-layer reserved successive execution fashion is required to realize the entire 
detection processes. The inner-layer successive execution is to detect the sub-symbol 
errors vi via (19) following a reversed order. Once the estimation v̂i is achieved, it is used 
to update the sparse system (4) via

Then, the resulting sparse system (20) is used in detecting the sub-symbol error vector 
vi−1 in the outer layer through (19) again. The outer layer reversed successive fashion can 
guarantee that the detected sub-symbol error vector v̂i and v̂i−1 can be orthogonal to 
each other as all previous sub-symbol error vectors do not effect on the detection of vi−1 . 
Moreover, it may reduce the effect of error propagation by letting the sub-symbol error 
vector with a larger power level be detected first. That is because according to the results 
on probability of error for M-ary PAM or QAM in [20], the sub-symbol error vector 
with a larger power level has a smaller error probability than the sub-symbol error vec-
tor with a smaller power level. Thus, detecting the sub-symbol error vector with a larger 
power level first can reduce the effect of error propagation for the following sub-symbol 
error vector detection.

The proposed layered SDSB-SA detector for MIMO systems is officially summarized 
in Algorithm I given in Table 1.

(17)v̂ik = arg min
vik∈Ai

1

2



ỹk −

K
�

j=k+1

rk ,j v̂
i
j − rk ,kv

i
k





2

+ �|vik |0.

(18)v̄ik =



ỹk −

2K
�

j=k+1

Rk ,j v̂
i
j



/Rk ,k ,

(19)v̂ik = arg min
vik∈Ai

1

2

(

v̄ik − vik

)2
+

�

r2k ,k
|vik |0.

(20)ŷ = y −H(x̂ + v̂i).
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4 � Numerical results and discussion
In this section, the performances of the proposed SDSB-SA detector is evaluated for 
uplink multiuser MIMO systems. The conventional MMSE and ZF detectors are used as 
the underlying detectors providing the initialization for the SA-MMSE and the proposed 
SDSB-SA detectors, and also provides one of baselines for performance comparison. 
Another baseline is provided by the SA-MMSE detector.

In Fig.  3, we consider an overdetermined uplink MIMO system where M = 32 , 
K = 20 and 4-QAM is applied.We compared the bit error rates (BERs) of the con-
ventional ZF/MMSE detectors, the SA-MMSE with ZF/MMSE initialization and the 

Table 1  Layered single-dimensional search-based sparse-aware multiuser detection

Agorithm I Layered SDSB-SA multiuser detection

Step 1: Use ZF/MMSE detectors to achieve x̂

Step 2: Reconstruct a sparse system via ŷ = y − Hx̂

Step 3: Apply QR decomposition, i.e., ỹ = QT ŷ

Step 4: Initializations: �

Step 5: for i = 2n − 1, (2n − 1)− 1, . . . , 1 do
   for k = 2K , 2K − 1, . . . , 1 do

   1. Compute v̄ i
k
 via (17)

   2. Map v̄ i
k
 into Ai via (19)

   end for
   3. Update the sparse system via 

ŷ = ȳ − H̄(x̂ + v̂i)

end for
Step 6: Attain the detected symbol error vector ê =

∑2n−1
i=1 v̂i

Step 7: Refine the detected vector through x̂ = x̂ + ê

Fig. 3  Performance comparison of MMSE/ZF, MMSE/ZF+SA-MMSE and MMSE/ZF+SDSB-SA for 32x20 MIMO 
system, QPSK
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proposed SDSB-SA detector with ZF/MMSE initialization. Since the modulation order 
is small (i.e., n = 1 ), we only consider to employ the proposed SDSB-SA detector given 
in (12). Simulation results demonstrate that the proposed SDSB-SA detector greatly 
improves the performance compared with the ZF and MMSE detectors. In particular, 
at BER = 10−3 , the SDSB-SA detector using either ZF or MMSE initialization achieves 
a 2 dB gain over the conventional ZF and MMSE detectors. Furthermore, the proposed 
SDSB-SA detector with the MMSE initialization performs as the same as the SA-MMSE 
with the same MMSE initialization in low SNR regimes, but becomes superior to the 
SA-MMSE detector in high SNR regimes. That is because the proposed SDSB-SA detec-
tor counts for the finite-alphabet constraints of error symbols. The similar results are 
also observed in the comparison with the SA-MMSE with the ZF initialization that the 
SDSB-SA detector with the ZF initialization performs the same as the SA-MMSE in low 
SNR regime and becomes better in high SNR regime. When the MIMO system becomes 
further overdetermined, i.e., M ≫ K  , as illustrated in Fig. 4, where M = 32 and K = 8 , 
the conventional SA-MMSE detector performs even worse than the conventional 
MMSE/ZF when SNR is over 10 dB. That is because, for a very overdetermined MIMO 
system, the underlying MMSE or ZF detector can provide acceptable performances 
resulting in that the residual error vector is extremely sparse. Therefore, the SA-MMSE 
detector become more sensitive to the threshold used in the slicing function, and thus 
might be severally degraded by the sub-optimality caused by the relaxation of finite-
alphabet constraints. Whereas, the proposed SDSB-SA detector provides much better 
performance than either the MMSE detector or the SA-MMSE detector since it adheres 
to the finite-alphabet constraints. In particular, the proposed SDSB-SA detector with 
either MMSE or ZF initialization, at BER = 10−3 , achieves around 1.2 dB gain over the 
SA-MMSE detector, and around 0.8 dB gain over the conventional ZF/MMSE detectors.

Fig. 4  Performance comparison of MMSE/ZF, MMSE/ZF+SA-MMSE and MMSE/ZF+SDSB-SA for 32× 8 
MIMO system, QPSK
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Consider a higher-order modulation scheme, e.g.,16QAM, for the uplink MIMO sys-
tem with M = 32 and K = 20 . In this case, we only used the MMSE detector for the 
underlying detector providing the initialization for the SDSB-SA as the MMSE and ZF 
performs almost identically in an overdetermined MIMO system. We used SERs as the 
performance measurement for the comparison of the conventional MMSE detector, the 
SA-MMSE and the proposed SDSB-SA detector. From simulation results illustrated in 
Fig. 4, we still can observe that the proposed SDSB-SA detector given in (12) achieves 
better performance than the conventional MMSE detector, but becomes inferior to the 
SA-MMSE detector as SNR increases. That is because it may suffer from severe error 
propagation. Whereas, the proposed layered SDSB-SA detector given in (19) performs 
the best among all the existing detectors since it reduces the effects of error propaga-
tion by decomposing the residual error vector into a set of orthogonal sub-error vectors. 
More specifically, the proposed layered SDSB-SA detector achieves around 1.2 dB gain 
over the conventional MMSE detector, 0.8 dB over the SA-MMSE detector and 1 dB over 
the SDSB-SA detector given in (17). Moreover, the total O(64 × 3× 3) number of com-
plexities are required for the proposed layered SDSB-SA detector in (19) which is slightly 
increased compared with O(64 × 7) required for the non-layered SDSB-SA detector in 
(12). The increment of computation cost is negligible. For reference, the complexities 
required by either the conventional MMSE/ZF or SA-MMSE are O(64 × 1600).

The similar results can be also observed for a 32× 8 MIMO system in Fig. 5. The pro-
posed SDSB-SA detector performs better than the conventional MMSE detector but 
worse than the SA-MMSE detector due to the possible error propagation. The proposed 
layered SDSB-SA detector outperforms both the conventional MMSE and SA-MMSE 
detectors as it utilizes the residual error vector decomposition to mitigate the possible 
error propagation. Furthermore, its computational complexities ( O(64 × 3× 3) ) are 

Fig. 5  Performance comparison of MMSE, SA-MMSE and Layered SDSB-SA detector for 32× 20 MIMO 
system, 16QAM
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much less than the complexities ( O(64 × 256) ) cost by either the MMSE or SA-MMSE 
detector (Fig. 6).

Finally, the complexity comparison of the conventional ZF/MMSE, the SA-MMSE and 
the proposed SDSB-SA detectors are officially summarized in Table 2.

5 � Conclusion
In this paper, we exploit the sparsity of the residual error vector to develop a novel 
SDSB-SA detector for Large-scale MIMO systems. By utilizing the QR decomposi-
tion, the unfavourable matrix inversion which is required by the conventional MMSE 
and SA-MMSE detector is avoided. Meanwhile, the multiple-dimensional search-
based detection problem is converted into the single-dimensional search-based 
one, so the computational complexity of the proposed SDSB-SA is modest com-
pared to that of the MMSE and SA-MMSE detectors. Simulation results show that 
when lower-order modulations are considered, the proposed SDSB-SA outperforms 
the MMSA and SA-MMSE detectors because it takes the finite-alphabet constraints 

Fig. 6  Performance comparison of MMSE, SA-MMSE and Layered SDSB-SA detector for 32× 8 MIMO system, 
16QAM

Table 2  Computation Complexity Comparison

Detection method Iteration number Computation cost per 
iteration

Total

ML/MAP 1 O((22n)K ) O((22n)K )

MMSE/ZF 1 O((2M)(2K)2) O((2M)(2K)2)

SA-MMSE 1 O((2M)(2K)2)) O((2M)(2K)2))

Non-layered SDSB-SA (12) O(2K) O((2× 2n − 1)) O(2K × (2× 2n − 1))

Layered SDSB-SA (19) O(2K) O(3× (2n − 1)) O(2K × (3× (2n − 1)))
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into account. When higher-order modulations are considered, the proposed layered 
SDSB-SA detector achieves better performance than the MMSE and SA-MMSE as it 
not only adheres to the finite-alphabet constraints and also utilizes the hierarchical 
structure of the residual error vector to mitigate the possible error propagation.

As an extension of this work, we will consider the more practical factors that chan-
nel is imperfect or spatially correlated, and the application of the SDSB-SA detector 
for downlink multiuser MIMO systems.
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