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With the emergence of deep learning, computer vision has witnessed extensive advancement and has seen immense applications in
multiple domains. Specifically, image captioning has become an attractive focal direction for most machine learning experts, which
includes the prerequisite of object identification, location, and semantic understanding. In this paper, semantic segmentation and image
captioning are comprehensively investigated based on traditional and state-of-the-art methodologies. In this survey, we deliberate on the
use of deep learning techniques on the segmentation analysis of both 2D and 3D images using a fully convolutional network and other
high-level hierarchical feature extraction methods. First, each domain’s preliminaries and concept are described, and then semantic
segmentation is discussed alongside its relevant features, available datasets, and evaluation criteria. Also, the semantic information
capturing of objects and their attributes is presented in relation to their annotation generation. Finally, analysis of the existing methods,
their contributions, and relevance are highlighted, informing the importance of these methods and illuminating a possible research
continuation for the application of semantic image segmentation and image captioning approaches.

1. Introduction

-e data of optical perception are becoming increasingly
available in large volume nowadays, creating a crucial use in
several real-world applications such as quality assurance,
medical analysis, surveillance, autonomous vehicles, face
recognition, forensic and biometrics, and 3D reconstruction
[1–4]. -is upsurge in the bulk of digital images and video
has directed the creation of computer vision (CV), a branch
of computer science (CS). From a general overview, com-
puter vision relates to the use of the computer to gain a high-
level understanding of images and videos [5]. Rather than
manual operations, it encompasses the automatic acquisi-
tion, processing, and analyzing of large data for the sole

purpose of extracting patterns and intuition. In most cases,
computer vision seeks to apply artificial intelligence (AI)
theory, equations, tools, frameworks, and algorithms for
accomplishing the task of helping computers to see and also
understand the content of both digital and analog world
through the mimicking of the human visual system [6].
Although seeing and understanding seems a trivial task or
very easy for humans, it is nevertheless a complex problem
for computers partly because of our limited understanding
of how the human brain works and how it processes things
[7]. However, through years of research and technological
advancement, some feats have been achieved, and computer
vision has extensively evolved [8–11]. Today, semantic
segmentation remains a huge challenge in the scope of image
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and video understanding alongside image captioning which
combines computer vision with another branch of artificial
intelligence called natural language processing (NLP) to
derive sentence description of an image [12]. Notwith-
standing, as with all other AI-related tasks, a modern subset
of machine learning (ML), namely, deep learning (DL), has
been the evolution of machine learning, producing state-of-
the-art results in almost all of the tasks compared to other
traditional algorithms such as decision trees, naive Bayes,
support vector machines (SVMs), ensembles, and clustering
algorithms [13–16].

Deep learning, as a branch of machine learning, uses
layers of artificial neural networks to imitate the human
neural networks in decoding intuition from a large amount
of data automatically [17] and is unlike other machine
learning algorithms which rely heavily on feature engi-
neering, utilizing domain knowledge in the creation of
feature extractors [18]. -e stacked layer of neural networks
represents feature hierarchy as simple features at the initial
layers are reconstructed from one layer to another in
forming complex features [19]. As a result, the deeper
networks are computationally intensive to model and train,
leading to the manufacture of more advanced computational
chips, including Graphical Processing Units (GPUs) and
Tensor Processing Units (TPUs) [20, 21]. Presently, several
deep learning models exist, and some of the most popular
ones include recurrent neural networks (RNNs), autoen-
coders, convolutional neural network (CNN), deep belief
networks (DBNs), and deep Boltzmann machine (DBM)
[22–25]. Among the most common deep learning algo-
rithms, the convolutional neural network is themost suitable
for analyzing visual imagery because of its shift and space
invariant characteristics, taking advantage of hierarchical
learning in combining simpler patterns to form complex
patterns and structures [26]. Using the shared weights ar-
chitectural pattern of filters [27–29], each filter represents
different features of the input data which when summed can
yield more complex structures [30–32].

In this paper, our prime motivation is fixating on the
recent deep learning segmentation techniques of both 2D
and 3D images using fully convolutional network and
other high-level hierarchical feature extraction methods
as an integral component of computer vision. -is is
further expanded into the generation of captions for
images, emerging as a subset of artificial intelligence’s
natural language processing. Furthermore, we review the
discussed models’ accomplishments by comparing their
evaluation, which indicates the most effective and effi-
cient approaches for different tasks and challenges en-
countered. -is, we believe, is enlightening as it provides
insight for the further evolution of practical model
design.

-is paper is organized as follows: it introduces seg-
mentation, popular segmentation algorithms, characteris-
tics, datasets, and evaluation in Section 2. An introduction of
captioning and its various models are followed in Section 3
alongside available datasets, evaluation metrics, and a
comparative discussion of the models. Finally, Section 4
concludes the paper with the overall summary of the typical

problems, solutions, and possible directions in semantic
segmentation and image captioning.

2. Semantic Segmentation

Semantic segmentation relates to the process of pixel-level
classification of images such that each pixel in an image is
classified into a distinguished class cluster [33]. Since the
inception of deep learning, semantic segmentation has been
a pivotal area of image processing and computer vision
which has seen major research and application in several
domains [34]. Image segmentation recognizes boundaries
between objects in an image by using line and curve seg-
ments to categorize such objects, while instance segmen-
tation, however, classifies instances of all the available classes
in an image such that all objects are identified as a separate
entity. All the same, semantic segmentation differs from
ordinary segmentation which, on the one hand, only ex-
presses the partitioning of an image into clusters without a
tangible intuitive attempt at understanding the partitioned
clusters or relating them with one another [35]. Semantic
segmentation, on the other hand, as the name implies, tries
to describe semantically meaningful objects in an image
based on their well-defined association and understanding
[36]; these differences are well depicted in Figure 1.

2.1. Methods and Approaches

2.1.1. Traditional Methods. During the pre-ANN era, most
segmentation and semantic segmentation approaches were
predominantly thresholding and clustering algorithms
which are largely unsupervised methods. In most cases,
traditional semantic segmentation methods consume less
time for model computation. Also, most of the approaches
require less data than the modern-day era of artificial neural
networks and deep learning. -e simplest, by all means, is
the thresholding techniques which apply pixel intensity as
the criteria for distribution. For binary segmentation, a
single threshold value is required, and pixels on both sides of
the threshold are classified separately into two distinct
classes. -ere are also advance forms of thresholding in-
volving more classes, and they are often grouped as histo-
gram shape-based, entropy-based, object attribute-based,
and spatial-based [37].

K-means clustering uses a predefined number of cen-
troids to determine the number of clusters in which objects
are to be categorized. -e centroids are randomly selected at
the beginning and then are iteratively adjusted by computing
the distance apart from other points in the dataset, assigning
each point to the closest centroid [38]. Fuzzy C-means
(FCM), a technically advanced form of K-means, allows
classification of data points into many label classes based on
the level of membership [39]. -is is of advantage in situ-
ations where dataset texture overlaps or does not have a well-
defined cluster [40]. Gaussian mixture model (GMM) is also
often used for both hard clustering and soft clustering by
assigning the pixel to the component having the highest
posterior probability [41]. GMM assumes that the data’s
Gaussian distributions represent the number of clusters
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available in the data, and it uses the expectation-maximi-
zation (EM) algorithm to determine missing latent variables
[42]. Random forest [43], naive Bayes [44], ensemble
modeling [45], Markov random network (MRF) [46], and
support vector machines (SVMs) [47] are also techniques
that are useful for several tasks, especially classification and
regression [48].

2.1.2. Region-Based Models. In the region-based semantic
segmentation design, regions are first extracted in an image
and described based on their constituent features [49]. -en,
a region classifier that has been trained is used to label pixels
per region with which it has the highest occurrence. -e
region-based approaches use the divide and conquer method
such that many features are captured using multiscale fea-
tures and then combined to form a whole. In cases where
objects overlap on several regions, the classifier either de-
termines the most suitable region or the model is set to select
the region with the maximum value [50]. -is often causes
pixel mismatch, but a postprocessing operation is mostly
used to reduce the effects [51].

Region CNN (R-CNN) uses a bounding box to identify
and classify objects in an image by proposing several boxes
convolving an image and identifying if they correspond to an
object [52, 53]. -e process of selective search is used in
creating boundary boxes of varying window sizes for region
proposal, and each of the boxes classifies objects based on
different properties, making the algorithm quite impressive
but slow [54]. To overcome the drawbacks of the R-CNN,
Fast R-CNN [55] was proposed which eliminates the re-
dundancy in the proposed region, thereby lessening the
computational requirements. -e R-CNN model was
replaced with a single CNN per image whose computation
would be shared among the proposals, using the region of
interest pooling technique and training all the models in-
cluding the use of convolutional neural network to classify
the images, and bounding boxes regressor as a single entity.
-e Faster R-CNN [56] uses a region proposal network
(RPN) to obtain a proposal from the network instead, while
the Mask R-CNN [57] was extended to include a pixel-level
segmentation. Technically, the Mask R-CNN replaces the
region of interest pooling module in the Faster R-CNN with
another which has an accurate alignment module. Also, it
includes an additional parallel branch for segmentation
mask prediction [58].

2.1.3. Fully Convolutional Network-Based Models. Fully
convolutional network (FCN) models do not have dense
layers, such as in other traditional CNNs; they are composed
of 1× 1 convolutions that achieve the task of dense layers or
fully connected layers. Also, fully convolutional network
(FCN), as displayed in Figure 2, takes images of arbitrary
sizes as the input and returns outputs of corresponding
spatial dimensions. -is model principally builds on the
encoder-decoder model to classify pixels in an image into
predefined classes by using a convolution network in the
encoder to extract features, thereby reducing the feature
maps’ dimensionality before being upsampled by the de-
coder (SegNet) [60]. During convolutional neural network
computation, input images are downsized, resulting in a
smaller output with reduced spatial features. -is problem is
solved via the upsample technique, which transposes the
downsized images to a larger size, making pixelwise com-
parison efficient and effective. Some upsampling methods
such as transpose convolutions are learned, thus increasing
model complexity and computation, while several others
exclude learning including nearest neighbor, the bed of nails,
and max unpooling [61]. -e fully convolutional network is
majorly trained as an end-to-end model to compute pix-
elwise loss and trained using the backpropagation approach.
-e FCN was firstly inspired by Long et al. [59] using the
popular AlexNet CNN architecture in the encoder and
transpose convolution layers in the decoder to upsample the
feature to the desired dimension. A variant FCN having skip
connections from previous layers in the network was pro-
posed named UNet [62]. UNet intends to compliment the
learned features with fine-grain details from contracting
paths to capture the context and enhance classification
accuracy.

Residual blocks were introduced with shorter skip
connections between the encoder and decoder, granting
faster convergence of deeper models during training [63].
Multiscale induction in the dense blocks conveys low-level
features across layers to ones with high-level features,
resulting in feature reuse [64]. -is makes the model easier
to train and improve the performance as well. An archi-
tecture having two-stream CNN uses its gates to process the
image shape in different branches, then connected and fused
at a later stage. -e model also proposed a new loss function
that aligns segmentation prediction with the ground truth
boundaries [65]. An end-to-end single-pass model applying
dense decoder shortcut connections extracts semantics from
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Figure 1: Illustration of differences in segmentation: (a) object detection, (b) semantic segmentation, and (c) instance segmentation [36].
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high-level features such that propagation of information
from one block to another combines multiple-level features
[66]. -e model designed based on the ResNeXt’s residual
building blocks helps it to aggregate blocks of feature
captures which are fused as output resolutions [67].

ExFuse aims to connect the gap between low- and high-
level features in convolutional networks by introducing
semantic information at the lower-level features as well as
high resolutions into the high-level features. -is was
achieved by proposing two fusion methods named explicit
channel resolution embedding and densely adjacent pre-
diction [68]. Contrary to most models, a balance between
model accuracy and speed was achieved in ICNet which
consolidates several multiresolution branches by introduc-
ing an image cascade network that allows real-time infer-
ence. -e network cascade image inputs into different
segments as low, medium, and high resolution before being
trained with this label guidance [69].

2.1.4. Refinement Network. Because of the resolution re-
duction caused by the encoder models in the typical FCN-
based model, the decoder has inherent problems of pro-
ducing fine-grained segmentation, especially at the
boundaries and edges [70]. -ough this problem has been
tackled by incorporating skip connections, adding global
information, and others means, the problem is by no means
solved, and some algorithms have involved several features
or, in some cases, certain postprocessing functions to find
alternative solutions [71]. DeepLab1 [72] combines ideas
from the deep convolutional neural network and probabi-
listic graphical models to achieve pixel-level classification.
-e localization problem of the neural network output layer
was remedied using a fully connected conditional random
field (CRF) as a means of performing segmentation with
controlled signal extermination. DeepLab1 applied atrous
convolutions instead of the regular convolutions which
accomplish the learning of aggregate multiscale contextual
features. Visible in Figure 3, DeepLab1 allows the expansion
of kernel window sizes without increasing the number of
weights. -e multiscale atrous convolutions help to over-
come the problem of insensitivity to fine details by other

models and decrease output blurriness. -is could result in
additional complexity in computation and time depending
on the postprocessing network’s computational processes.

-e ResNet deep convolutional network architecture was
applied in DeepLab2 which enables the training of various
distinct layers while preserving the performance [73]. Be-
sides, DeepLab2 uses atrous spatial pyramid pooling (ASPP)
to capture long-range context. -e existence of objects at
different scales and the reduced feature resolution problems
of semantic segmentation are tackled by designing a cascade
of atrous convolutions which could run in parallel to capture
various scales of context information alongside global av-
erage pooling (GAP) to embed context information features
[74]. FastFCN implements joint pyramid upsampling which
substitutes atrous convolutions to free up memory and
lessen computations. Using a fully connected network
framework, the joint pyramid upsampling technique ex-
tracts feature maps of high resolution into a joint upsam-
pling problem. -e models used atrous spatial pyramid
pooling to extract the last three-layer output features and a
global context module to map out the final predictions [75].
-e atrous spatial pyramid pooling limitation of lack of
dense feature resolution scale is attempted by concatenating
multiple branches of atrous-convolved features at different
rates which are later fused into a final representation,
resulting in dense multiscale features [76].

2.1.5. Weakly Supervised and Semisupervised Approaches.
-ough most models depend on a large number of images
and their annotated label, the process of manually anno-
tating labels is quite daunting and time-consuming, so se-
mantic segmentation models have been attempted with
weakly supervised approaches. Given weakly annotated data
at the image level, the model was trained to assign higher
weights to pixels corresponding with the class label. Trained
on a subset of the ImageNet dataset, during training, the
networks focus on recognizing important pixels relating to a
prior labeled single-class object and matching them to the
class through inference [77]. Bounding box annotation is
used to train semantic labeling of image segmentation which
accomplishes 95% quality of fully supervised models. -e
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Figure 2: Illustration of fully convolutional networks for semantic segmentation [59].
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bounding box and information of the constituent object
were used prior to training [78]. A model combining both
labeled and weakly annotated images with a clue of the
presence or absence of a semantic class was developed using
the deep convolutional neural network and expectation-
maximization (EM) algorithm [79].

BoxSup iteratively generates automatic region proposals
while training convolutional networks to obtain segmen-
tation masks and as well as improve the model’s ability to
classify objects in an image. -e network uses bounding box
annotations as a substitute for supervised learning such that
regions are proposed during training to determine candidate
masks, overtime improving the confidence of the segmen-
tation masks [80]. A variant of generative adversarial
learning approach which constitutes a generator and dis-
criminator was used to design a semisupervised semantic
segmentation model. -e model was first trained using full
labeled data which enable the model’s generator to learn the
domain sample space of the dataset which is leveraged to
supervise unlabeled data. Alongside the cross-entropy loss,
an adversarial loss was proposed to optimize the objective
function of tutoring the generator to generate images as
close as possible to the image labels [81].

2.2.Datasets. Deep learning requires an extensive amount of
training data to comprehensively learn patterns and fine-
tune the number of parameters needed for its gradient
convergence. Accordingly, there are several available data-
sets specifically designed for the task of semantic segmen-
tation which are as follows:

PASCAL VOC: PASCAL Visual Object Classes (VOC)
[82] is arguably the most popular semantic segmentation
dataset with 21 classes of predefined object labels, back-
ground included. -e dataset contains images and anno-
tations which could be used for detection, classification,
action classification, person layout, and segmentation tasks.
-e dataset’s training, validation, and test set has 1464, 1449,
and 1456 images, respectively. Yearly, the dataset has been
used for public competitions since 2005.

MS COCO: Microsoft Common Objects in Context [83]
was created to push the computer vision state of the art with

standard images, annotation, and evaluation. Its object
detection task dataset uses either instance/object annotated
features or a bounding box. In total, it has 80 object cate-
gories with over 800,000 available images for its training,
test, and validation sets, as well as over 500,000 object in-
stances that are segmented.

Cityscapes: Cityscapes dataset [84] has a huge amount of
images taken from 50 cites during different seasons and
times of the year. It was initially a video recording, and the
frames were extracted as images. It has 30 label classes in
about 5000 densely annotated images and 20,000 weakly
annotated images which have been categorized into 8 groups
of humans, vehicles, flat surfaces, constructions, objects,
void, nature, and sky. It was primarily designed for urban
scene segmentation and understanding.

ADE20K: ADE20K dataset [85] has 20,210 training
images, 2000 validation images, and 3000 test images which
are well suited for scene parsing and object detection.
Alongside the 3-channel images, the dataset contains seg-
mentation masks, part segmentation masks, and a text file
that contains information about the object classes, identi-
fication of instances of the same class, and the description of
each image’s content.

CamVid: CamVid [86] is also a video sequence of scenes
which have been extracted into images of high resolution for
segmentation tasks. It consists of 101 images of 960 ∗ 720
dimension and their annotations which have been classified
into 32 object classes including void, indicating areas which
do not belong to a proper object class. -e dataset RGB class
values are also available, ranging from 0 to 255.

KITTI: KITTI [87] is popularly used for robotics and
autonomous car training, focusing extensively on 3D
tracking, stereo, optical flow, 3D object detection, and visual
odometry. -e images were obtained through two high-
resolution cameras attached to a car driving around the city
of Karlsruhe, Germany, while their annotations were done
by a Velodyne laser scanner. -e data aim to reduce bias in
existing benchmarks with a standard evaluation metric and
website.

SYNTHIA: SYNTHetic [88] Collection of Imagery and
Annotations (SYNTHIA) is a compilation of imaginary
images from a virtual city that has a high pixel-level
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Figure 3: DeepLab framework with fully connected CRFs [72].
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resolution. -e dataset has 13 predefined label classes
consisting of road, sidewalk, fence, sky, building, sign, pe-
destrian, vegetation, pole, and car. It has a total of 13,407
training images.

2.3. Evaluation Metrics. -e performance of segmentation
models is computed mostly in the supervised scope whereby
the model’s prediction is compared with the ground truth at
the pixel level. -e common evaluation metrics are pixel
accuracy (PA) and intersection over union (IoU). Pixel
accuracy refers to the ratio of all the pixels classified in their
correct classes to the total amount of pixels in the image.
Pixel accuracy is trivial and suffers from class imbalance such
that certain classes immensely dominate other classes.

Accuracy �
TP + TN

TP + TN + FP + FN
,

PA �
􏽐inii

􏽐iti

,

(1)

where nc is represented as the number of classes and nii is
also represented as the number of pixels of class i which are
predicted to class i, while nij represents the number of pixels
of class i which are predicted as class j with the total number
of pixels of a particular class i represented as ti � 􏽐jnij.

Mean pixel accuracy (mPA) improves pixel accuracy
slightly; it computes the accuracy of the images per class
instead of a global computation of all the classes. -e mean
of the class accuracies is then computed to the overall
number of classes.

mPA �
1
nc

􏽘
i

nii

ti

. (2)

Intersection over union (IoU) metric, which is also re-
ferred to as the Jaccard index, measures the percentage
overlap of the ground truth to the model prediction at the
pixel level, thereby computing the amount of pixels common
with the ground truth label and mask prediction [89].

mIoU �
1
nc

􏽐inii

􏽐jnij + 􏽐jnji − nii

. (3)

2.4. Discussion. Different machine learning and deep
learning algorithms and backbones yield different results
based on the models’ ability to learn mappings from input
images to the label. In tasks involving images, CNN-based
approaches are by far the most expedient. Although they can
be computationally expensive compared to other simpler
models, suchmodels occupy a bulk of the present state of the
art. Traditional machine learning algorithms such as random
forest, naive Bayes, ensemble modeling, Markov random
field (MRF), and support vector machines (SVMs) are too
simple and rely heavily on domain feature understanding or
handcrafted feature engineering, and in some cases, they are
not easy to fine-tune. Also, clustering algorithms such as K-
means and fuzzy C-means mostly require that the number of

clusters is specified beforehand, and they are not very ef-
fective with multiple boundaries.

Because of the CNN’s invariant property, it is very ef-
fective for spatial data and object detection and localization.
Besides, the modern backbone of the fully convolutional
network has informed several methods of improving seg-
mentation localization. First, the decoder uses upsampling
techniques to increase the features' resolution, and then skip
connections are added to achieve the transfer of fine-grain
features to the other layers. Furthermore, postprocessing
operations as well as the context and attention networks
have been exploited.

-e supervised learning approach still remains the
dormant technique as there have been many options for
generating datasets as displayed in Table 1. Data augmen-
tation involving operations such as scaling, flipping, rotat-
ing, scaling, cropping, and translating has made
multiplication of data possible. Also, the application of the
generative adversarial network (GAN) has played a major
role in the replication of images and annotations.

3. Image Captioning

Image captioning relates to the general idea of automatically
generating the textual description of an image, and it is often
also referred to as image annotation. It involves the appli-
cation of both computer vision and natural language pro-
cessing tools to achieve the transformation of imagery
depiction into a textual composition [111]. Tasks such as
captioning were almost impossible prior to the advent of
deep learning, and with advances in sophisticated algo-
rithms, multimodal techniques, efficient hardware, and a
large bulk of datasets, such tasks are becoming easy to ac-
complish [112]. Image captioning has several applications to
solving some real-world problems including providing aid to
the blind, autonomous cars, academic bot, and military
purposes. To a large extent, the majority of image captioning
success so far has been from the supervised domain whereby
huge amounts of data consisting of images and about two to
five label captions describing the actions of the images are
provided [113].-is way, the network is tasked with learning
the images’ feature presentation and mapping them to a
language model such that the end goal of a captioning
network is to generate a textual representation of an image’s
depiction [114].

-ough characterizing an image in the form of text
seems trivial and straightforward for humans, it is by no
means simple to be replicated in an artificial system and
requires advanced techniques to extract the features from
the images as well as map the features to the corresponding
language model. Generally, a convolutional neural network
(CNN) is tasked with feature extraction, while a recurrent
neural network (RNN) relies upon to translate the training
annotations with the image features [115]. Aside from de-
termining and extracting salient and intricate details in an
image, it is equally important to extract the interactions and
semantic relationship between such objects and how to il-
lustrate them in the right manner using appropriate tenses
and sentence structures [116]. Also, because the training
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labels which are texts are different from the features obtained
from the images, language model techniques are required to
analyze the form, meaning, and context of a sequence of
words. -is becomes even more complex as keywords are
required to be identified for emphasizing the action or scene
being described [117].

Visual features: deep convolutional neural network
(DCNN) is often used as the feature extractor for images and
videos because of the CNN’s invariance property [118] such
that it is able to recognize objects regardless of variation in
appearances such as size, illumination, translation, or ro-
tation as displayed in Figure 4. -e distortion in pixel ar-
rangement has less impact on the architecture’s ability to
learn essential patterns in the identification and localization
of the crucial features. Essential feature extraction is para-
mount, and this is easily achieved via the CNN’s operation of
convolving filters over images, subsequently generating
feature maps from the receptive fields from which the filters
are applied. Using backpropagation techniques, the filter
weights are updated to minimize the loss of the model’s
prediction compared to the ground truth [119]. -ere have
been several evolutions over the years, and this has ushered
considerate architectural development in the extraction

methodology. Recently, the use of a pretrained model has
been explored with the advantage of reducing time and
computational cost while preserving efficiency. -ese
extracted features are passed along to other models such as
the language decoder in the visual space-basedmethods or to
a shared model as in the multimodal space for image cap-
tioning training [120].

Captioning: image caption or annotation is an inde-
pendent scope of artificial intelligence, and it mostly com-
bines two models consisting of a feature extractor as the
encoder and a recurrent decoder model. While the extractor
obtains salient features in the images, the decoder model
which is similar in pattern to the language model utilizes a
recurrent neural network to learn sequential information
[121]. Most captioning tasks are undertaken in a supervised
manner whereby the image features act as the input which
are learned and mapped to a textual label [122]. -e label
captions are first transformed into a word vector and are
combined with the feature vector to generate a new textual
description. Most captioning architectures follow the partial
caption technique whereby part of the label vector is
combined with the image vector to predict the next word in
the sequence [123]. -en, the prior words are all combined
to predict the next word and continued till an end token is
reached. In most cases, to infuse semantics and intuitive
representation into the label vector, a pretrained word
embedding is used to map the dimensional representation of
the embeddings into the word vector, enriching its content
and generalization [124].

3.1. Image Captioning Techniques

3.1.1. Retrieval-Based Captioning. Early works in image
captioning were based on caption retrieval. Using this
technique, the caption to a target image is generated by
retrieving the descriptive sentence of such an image from a
set of predefined caption databases. In some cases, the newly
generated caption would be one of the existing retrieved
sentences or, in other cases, could be made up of several
existing retrieved sentences [125]. Initially, the features of an
image are compared to the available candidate captions or
achieved by tagging the image property in a query. Certain
properties such as color, texture, shape, and size were used
for similarity computation between a target image and
predefined images [126]. Captioning via the retrieval method
can be retrieved through the visual and multimodal space,
and these approaches produce good results generally but are
overdependent on the predefined captions [127].

Specific details such as the object in an image or the action
or scene depicted were used to connect images to the corre-
sponding captions. -is was computed by finding the ratio of
similarity between such information to the available sentences
[128]. Using the kernel canonical correlation analysis tech-
nique, images and related sentences were ranked based on their
cosine similarities after which the most similar ones were
selected as the suitable labels [129], while the image features
were used for reranking the ratio of image-text correlation
[130].-e edges and contours of images were utilized to obtain

Table 1: Class pixel label distribution in the CamVid dataset.

Dataset Method mIoU

CamVid

ApesNet [90] 48.0
ENet [91] 51.3
SegNet [60] 55.6
LinkNet [92] 55.8
FCN8 [59] 57.0

AttentionM [93] 60.1
DeepLab-LFOV [72] 61.6

Dilation8 [66] 65.3
BiseNet [94] 68.7
PSPNet [60] 69.1

DenseDecoder [67] 70.9
AGNet [95] 75.2

PASCAL VOC

Wails [96] 55.9
FCN8 [59] 62.2

PSP-CRF [97] 65.4
Zoom Out [98] 69.6

DCU [99] 71.7
DeepLab1 [72] 71.6
DeConvNet [61] 72.5
GCRF [100] 73.2
DPN [101] 74.1

Piecewise [102] 75.3

Cityscapes

FCN8 [59] 65.3
DPN [101] 66.8

Dilation10 [103] 67.1
LRR [104] 69.7

DeepLab2 [73] 70.4
FRRN [105] 71.8

RefineNet [106] 73.6
GEM [107] 73.69
PEARL [108] 75.4
TuSimple [109] 77.6
PSPNet [110] 78.4
SPP-DCU [99] 78.9
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pattern and sketches such that they were used as a query for
image retrieval, whereby the generated sketches and the
original images were structured into a database [131]. Building
on the logic of the original image and its sketch, more images
were dynamically included alongside their sketches to enhance
learning [132]. Furthermore, deep learning models were ap-
plied to retrieval-based captioning by using convolutional
neural networks (CNNs) to extract features from different
regions in an image [133].

3.1.2. Template-Based Captioning. Another common ap-
proach of image annotation is template-based which in-
volves the identification of certain attributes such as object
type, shape, actions, and scenes in an image, which are then
used in forming sentences in a prestructured template [134].
In this method, the predetermined template has a constant
number of slots such that all the detected attributes are then
positioned in the slots to make up a sentence. In this case, the
words representing the detected features make up the
caption and are arranged such that they are syntactically and
semantically related, thus generating grammatically correct
representations [135]. -e fixed template problem of the
template-based approach was overcome by incorporating a
parsed language model [136], giving the network higher
flexibility and ability to generate better captions.

-e underlying nouns, scenes, verbs, and prepositions
determining the main idea of a sentence were explored and

trained using a language model to obtain the probability
distribution of such parameters [137]. Certain human
postures and orientation which do not involve the move-
ment of the hands such as walking, standing, and seeing and
the position of the head were used to generate captions of an
image [138]. Furthermore, the postures were extended to
describe human behavior and interactions by incorporating
motion features and associating them with the corre-
sponding action [139]. Each body part and the action it is
undergoing are identified, and then this is compiled and
integrated to form a description of the complete human
body. Human posture, position, and direction of the head
and position of the hands were selected as geometric in-
formation for network modeling.

3.1.3. Neural Network-Based Captioning. Compared to other
machine learning algorithms or preexisting approaches, deep
learning has achieved astonishing heights in image captioning,
setting new benchmarks with almost all of the datasets in all of
the evaluation metrics. -ese deep learning approaches are
mostly in the supervised setting which requires a huge amount
of training data including both images and their corresponding
caption labels. Several models have been applied such as ar-
tificial neural network (ANN), convolutional neural network
(CNN), recurrent neural network (RNN), autoencoder, gen-
erative adversarial network (GAN), and even a combination of
one or more of them.

A female tennis player in
action on the court.

(a)

A group of young men playing
a game of soccer.

(b)

A man riding a wave on top
of a surfboard.

(c)

A baseball game in progress 
with the batter up to plate.

(d)

A brown bear standing on top
of a lush green field.

(e)

A person holding a cell
phone in their hand.

(f )

A close up of a person
brushing his teeth.

(g)

A women laying on a bed in
a bed-room.

(h)

A black and white cat is 
sitting on a chair.

(i)

A large clock mounted to the
side of a building.

(j)

A bunch of fruits that are
sitting on a table

(k)

A toothbrush holder sitting 
on top of a white sink.

(l)

Figure 4: Sample images and their corresponding captions [112].
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Dense captioning: dense captioning emerges as a branch
of computer vision whereby pictorial features are densely
annotated depending on the object, object’s motion, and its
interaction. -e concept depends on the identification of
features as well as their localization and finally expressing
such features with short descriptive phrases [140]. -is idea
is drawn from the understanding that providing a single
description for a whole picture can be complex or sometimes
bias; therefore, a couple of annotations are generated re-
lating to different recognized salient features of the image.
-e training data of a dense caption in comparison to a
global caption are different in that various labels are given
for individual features identified by bounding boxes,
whereby a general description is given in the global cap-
tioning without a need for placing bounding boxes on the
images [141]. Visible in Figure 5, a phrase is generated from
each region in the image, and these regions could be
compiled to form a complete caption of the image. Gen-
erally, dense captioning models face a huge challenge as
most of the target regions in the images overlap which makes
accurate localization challenging and daunting [143].

-e intermodal alignment of the text and images was
investigated on region-level annotations which pioneers a
new approach for captioning, leveraging the alignment
between the feature embedding and the word vector se-
mantic embedding [144]. A fully convolutional localization
network (FCLN) was developed to determine important
regions of interest in an image. -e model combines a re-
current neural network language model and a convolutional
neural network to enforce the logic of object detection and
image description. -e designed network uses dense lo-
calization layer and convolution anchors built on the Faster
R-CNN technique to predict region proposal from the input
features [142]. A contextual information model that com-
bines previous and future features of a video spanning up to
two minutes achieved dense captioning by transforming the
video input into slices of frames. With this, an event pro-
posal module helps to extract the context from the frames
which are fed into a long short-term memory (LSTM) unit,
enabling it to generate different proposals at different time
steps [145]. Also, a framework having separate detection
network and localization captioning network accomplished
improved dense captioning with faster speed by directly
producing detected features rather than via the common use
of the region proposal network (RPN) [146].

Encoder-decoder framework: most image captioning
tasks are built on the encoder-decoder structure whereby the
images and texts are managed as separate entities by dif-
ferent models. In most cases, a convolutional neural network
is presented as the encoder which acts as a feature extractor,
while a recurrent neural network is presented as the decoder
which serves as a language model to process the extracted
features in parallel with the text label, consequently gen-
erating predicted captions for the input images [147]. CNN
helps to identify and localize objects and their interaction,
and then this insight is combined with long-term depen-
dencies from a recurrent network cell to predict a word at a
time, depending on the image context vector and previously
generated words [148]. Multiple CNN-based encoders were

proposed to provide a more comprehensive and robust
capturing of objects and their interaction from images. -e
idea of applying multiple encoders is suggested to com-
plement each unit of the encoder to obtain better feature
extraction. -ese interactions are then translated to a novel
recurrent fusion network (RFNet) which could fuse and
embed the semantics from the multiple encoders to generate
meaningful textual representations and descriptions [149].

Laid out in Figure 6, a combination of two CNN models
as both encoder and decoder was explored to speed up
computational time for image captioning tasks. Because
RNN’s long-range information is computed step by step, this
causes very expensive computation and is solved by stacking
layers of convolution to mimic tree structure learning of the
sentences [150]. -ree distinct levels of features which are
regional, visual, and semantic features were encoded in a
model to represent different analyses of the input image, and
then this is fed into a two-layer LSTM decoder for generating
well-defined captions [151]. A concept-based sentence
reranking technique was incorporated into the CNN-LSTM
model such that concept detectors are added to the un-
derlying sentence generation model for better image de-
scription with minimal manual annotation [152].
Furthermore, the generative adversarial network (GAN) was
conditioned on a binary vector for captioning. -e binary
vector represented some form of sentiment which the image
portrays and then was used to train the adversarial model.
-e model took both images and an adjective or adjective-
noun pair as the input to determine if the network could
generate a caption describing the intended sentimental
stance [153].

Attention-guided captioning: attention has become in-
creasingly paramount, and it has driven better benchmarks
in several tasks such as machine translation, language
modeling, and other natural language processing tasks, as
well as computer vision tasks. In fact, attention has proven to
correlate the meaning between features, and this helps to
understand how such a feature relates to one another [154].
Incorporating this into a neural network, it encourages the
model to focus on salient and relevant features and pay less
consideration to other noisy aspects of the data space dis-
tribution [155]. To estimate the concept of attention in image
annotation, a model is trained to concentrate its compu-
tation on the identified salient regions while generating
captions using both soft and hard attention [156]. -e de-
terministic soft attention which is trainable via standard
backpropagation is learned by weighting the annotated
vector of the image features, while the stochastic hard at-
tention is trained via maximizing a variational lower bound,
setting it to 1 when the feature is salient [157].

Following the where and what analysis of what the model
should concentrate on, adaptive attention used a hierarchical
structure to fuse both high-level semantic information and
visual information from an image to form intuitive repre-
sentation [120]. -e top-down and bottom-up approaches are
fused using semantic attention which first defines attribute
detectors that dynamically enable it to switch between con-
cepts. -is empowers the detectors to determine suitable
candidates for attention computation based on the specified
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inputs [158]. -e limitation of long-distance dependency and
inference speed in medical image captioning was tackled using
a hierarchical transformer. -e model includes an image en-
coder that extracts features with the support of a bottom-up
attention mechanism to capture and extract top-down visual
features, as well as a nonrecurrent transformer captioning
decoder which helps to compile the generated medical illus-
tration [159]. Salient regions in an image are also extracted
using a convolutional model as region features were repre-
sented as pooled feature vector. -ese intraimage region
vectors are appropriately attended to obtain suitable weights
describing their influence before they are fed into a recurrent
model that learns their semantic correlation. -e corre-
sponding sequence of the correlated features is transformed
into representations which are illustrated as sentences de-
scribing the features’ interactions [160].

3.1.4. Unsupervised or Semisupervised Captioning.
Supervised captioning has so far been productive and
successful partly due to the availability of sophisticated deep
learning algorithms and an increasing outpour of data.
-rough the supervised deep learning techniques, a com-
bination of models and frameworks which learn the joint
distribution of images and labels has displayed a very in-
tuitive and meaningful illustration of images even similar to
humans. However, despite the achievement, the process of
completely creating a captioning training set is quite
daunting, and the manual effort required to annotate the
myriad of images is very challenging. As a result, other
means which are free of excessive training data are explored.
An unsupervised captioning approach that combines two
steps of query and retrieval was researched in [161]. First,
several target images are obtained from the internet as well

Input image

Flow of 
gradients

ResNet +
fasterRCNN

Feature
extractor

Speaker
network

Φ

A brown
cat

standing
on two red
suitcases

Compare
with

natural
language

Naturalness
loss A large brown cat on

top of red luggage
Standing on a
red suitcaseNatural

description of the image

Discriminability
loss

Target and
distractors

Listener
network

θGreen modules are trained.
Black modules are fixed.

Figure 6: Sample architecture of a multimodal image captioning network [111].

Whole image Image regions Label density

DetectionClassification

Cat

Single
label Cat

Skateboard

Sequence

Label
complexity

Captioning

A cat
riding a

skateboard

Dense captioning

Orange spotted cat

Skateboard with
red wheels

Cat riding a
skateboard

Brown hardwood
flooring

Figure 5: Dense captioning illustrating multiple annotations with a single forward pass [142].
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as a huge database of words describing such images. For any
chosen image, words representing its visual display are used
to query captions from a reference dataset of sentences. -is
strategy helps to eliminate manual annotation and also uses
multimodal textual-visual information to reduce the effect of
noisy words in the vocabulary dataset.

Transfer learning which has seen increasing application
in other deep learning domains, especially in computer
vision, was applied to image captioning. First, the model is
trained on a standard dataset in a supervised manner, and
then the knowledge from the supervised model is transferred
and applied on a different dataset whose sentences and
images are not paired. For this purpose, two autoencoders
were designed to train on the textual and visual dataset,
respectively, using the distribution of the learned supervised
embedding space to infer the unstructured dataset [162].
Also, the process of manual annotation of the training set
was semiautomated by evaluating an image into several
feature spaces which are individually estimated by an un-
supervised clustering algorithm. -e centers of the clustered
groups are then manually labeled and compiled into a
sentence through a voting scheme which compiles all the
opinions suggested from each cluster [163]. A set of näıve
Bayes model with AdaBoost was used for automatic image
annotation by first using a Bayesian classifier to identify
unlabeled images and then labeled by a succeeding classifier
based on the confidence measurement of the prior classifier
[164]. A combination of keywords which have been asso-
ciated with both labeled and unlabeled images was trained
using a graph model. -e semantic consistency of the un-
labeled images is computed and compared to the labeled
images. -is is continued until all the unlabeled images are
successfully annotated [165].

3.1.5. Difference Captioning. As presented in Figure 7, a
spot-the-difference task which describes the differences
between two similar images using advance deep learning
technique was first investigated in [166]. -eir model used a
latent variable to capture visual salience in an image pair by
aligning pixels which differ in both images. -eir work
included different model designs such as nearest neighbor
matching scheme, captioning masked model, and Difference
Description with Latent Alignment uniform for obtaining
difference captioning. -e Difference Description with La-
tent Alignment (DDLA) compares both input images at a
pixel level via a masked L2 distance function.

Furthermore, the Siamese Difference Captioning Model
(SDCM) also combined techniques from deep Siamese
convolutional neural network, soft attention mechanism,
word embedding, and bidirectional long short-term mem-
ory [167]. -e features in each image input are computed
using the Siamese network, and their differences are ob-
tained using a weighted L1 distance function. Different
features are then recursively translated into text using a
recurrent neural network and an attention network which
focuses on the relevant region on the images. -e idea of the
Siamese Difference Captioning Model was extended by
converting the Siamese encoder into a Fully Convolutional

CaptionNet (FCC) through a fully convolutional network
[168]. -is helps to transform the extracted features into a
larger dimension of the input images whichmakes difference
computation more efficient. Also, a word embedding pre-
trained model was used to embed semantics into the text
dataset and beam search technique to ensure multiple op-
tions for robustness.

3.2. Datasets. -ere are several publicly available datasets
which are useful for training image captioning tasks. -e
most popular datasets include Flickr8k [169], Flickr30k
[170], MS COCO dataset [83], Visual Genome dataset [171],
Instagram dataset [172], and MIT-Adobe FiveK dataset
[173].

Flickr30K dataset: it has about 30,000 images from Flickr
and about 158,000 captions describing the content of the
images. Because of the huge volume of the data, users are
able to determine their preferred split size for using the data.

Flickr8K dataset: it has a total of 8,000 images which are
divided as 6,000, 1,000, and 1,000 for the training, test, and
validation set, respectively. All the images have 5 label
captions which are used as a supervised setting for training
the images.

Microsoft COCO dataset: it is perhaps the largest cap-
tioning dataset, and it also includes training data for object
recognition and image segmentation tasks, respectively. -e
dataset contains around 300,000 images with 5 captions for
each image.

3.3. Evaluation Metrics. -e automatically generated cap-
tions are evaluated to confirm their correctness in describing
the given image. In machine learning, some of the common
image captioning evaluation measures are as follows.

BLEU (BiLingual Evaluation Understudy) [174]: as a
metric, it counts the number of matching n-grams in the
model’s prediction compared to the ground truth. With this,
precision is calculated based on the mean n-grams com-
puted, and the recall is computed via the introduction of a
brevity penalty in the caption label.

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) [175]: it is useful for summary evaluation and is
calculated as the overlap of either 1-gram or bigrams be-
tween the referenced caption and the predicted sequence.
Using the longest sequence available, the co-occurrence F-
score mean of the predicted sequence’s recall and prediction
is obtained.

METEOR (Metric for Evaluation of Translation with
Explicit Ordering) [176]: it addresses the drawback of BLEU,
and it is based on a weighted F-score computation as well as
a penalty function meant to check the order of the candidate
sequence. It adopts synonyms matching in the detection of
similarity between sentences.

CIDEr (Consensus-based Image Description Evalua-
tion) [177]: it determines the consensus between a reference
sequence and a predicted sequence via cosine similarity,
stemming, and TF-IDF weighting.-e predicted sequence is
compared to the combination of all available reference
sequences.
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SPICE (Semantic Propositional Image Caption Evalua-
tion) [178]: it is a relatively new caption metric which relates
with the semantic interrelationship between the generated
and referenced sequence. Its graph-based methodology uses
a scene graph of semantic representations to indicate details
of objects and their interaction to describe their textual
illustrations.

3.4. Discussion. With an increase in the generation of data,
production of sophisticated computing hardware, and

complex machine learning algorithms, a lot of achievements
have been accomplished in the field of image captioning.
-ough there have been several implementations, the best
results in almost all of the metrics have been recorded
through the use of deep learning models. In most cases, the
common implementation has been the encoder-decoder
architecture which has a feature extractor as the encoder and
a language model as the decoder.

Compared to other approaches, this has proven useful as
it has become the backbone for more recent designs. To
achieve better feature computation, attention mechanism

(a) (b)

Figure 7: Image pair difference annotations of the Spot-the-Diff dataset [166]. (a)-e blue truck is no longer there. (b) A car is approaching
the parking lot from the right.

Table 2: Class pixel label distribution in the CamVid dataset.

Dataset Method B-1 B-2 B-3 B-4 M C

MS COCO

LSTM-A-2 [179] 0.734 0.567 0.430 0.326 0.254 1.00
Att-Reg [180] 0.740 0.560 0.420 0.310 0.260 —

Attend-tell [156] 0.707 0.492 0.344 0.243 0.239 —
SGC [181] 67.1 48.8 34.3 23.9 21.8 73.3

phi-LSTM [182] 66.6 48.9 35.5 25.8 23.1 82.1
COMIC [183] 70.6 53.4 39.5 29.2 23.7 88.1
TBVA [184] 69.5 52.1 38.6 28.7 24.1 91.9
SCN [185] 0.741 0.578 0.444 0.341 0.261 1.041

CLGRU [186] 0.720 0.550 0.410 0.300 0.240 0.960
A-Penalty [187] 72.1 55.1 41.5 31.4 24.7 95.6
VD-SAN [188] 73.4 56.6 42.8 32.2 25.4 99.9
ATT-CNN [189] 73.9 57.1 43.3 33 26 101.6
RTAN [190] 73.5 56.9 43.3 32.9 25.4 103.3
Adaptive [191] 0.742 0.580 0.439 0.332 0.266 1.085
Full-SL [192] 0.713 0.539 0.403 0.304 0.251 0.937

Flickr30K

hLSTMat [193] 73.8 55.1 40.3 29.4 23 66.6
SGC [181] 61.5 42.1 28.6 19.3 18.2 39.9

RA+ SF [194] 0.649 0.462 0.324 0.224 0.194 0.472
gLSTM [195] 0.646 0.446 0.305 0.206 0.179 —

Multi-Mod [196] 0.600 0.380 0.254 0.171 0.169 —
TBVA [184] 66.6 48.4 34.6 24.7 20.2 52.4

Attend-tell [156] 0.669 0.439 0.296 0.199 0.185 —
ATT-FCN [158] 0.647 0.460 0.324 0.230 0.189 —

VQA [197] 0.730 0.550 0.400 0.280 — —
Align-Mod [144] 0.573 0.369 0.240 0.157 — —
m-RNN [198] 0.600 0.410 0.280 0.190 — —
LRCN [112] 0.587 0.391 0.251 0.165 — —
NIC [141] 0.670 0.450 0.300 — — —
RTAN [190] 67.1 48.7 34.9 23.9 20.1 53.3
3-gated [199] 69.4 45.7 33.2 22.6 23 —
VD-SAN [188] 65.2 47.1 33.6 23.9 19.9 —
ATT-CNN [189] 66.1 47.2 33.4 23.2 19.4 —
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concepts have been applied to help in focusing on the salient
section of images and their features, thereby improving
feature-text capturing and translation. In the same manner,
other approaches such as generative adversarial network and
autoencoders have been thriving in achieving concise image
annotation, and to this end, such idea has been incorporated
with other unsupervised concepts for captioning purposes as
well. For example, reinforced learning technique also gen-
erated sequences which are able to succinctly describe im-
ages in a timely manner. Furthermore, analyses of several
model designs and their results are displayed in Table 2,
depicting their efficiency and effectiveness in the BLEU,
METEOR, ROUGE-L, CIDEr, and SPICE metrics.

4. Conclusion

In this survey, the state-of-the-art advances in semantic seg-
mentation and image captioning have been discussed. -e
characteristics and effectiveness of the important techniques
have been considered, as well as their process of achieving both
tasks. Some of the methods which have accomplished out-
standing results have been illustrated including the extraction,
identification, and localization of objects in semantic seg-
mentation. Also, the process of feature extraction and trans-
formation into a language model has been studied in the image
captioning section. In our estimation, we believe that because of
the daunting task of manually segmenting images into se-
mantic classes, as well as the human annotation of images
involved in segmentation and captioning, future research
would move in the direction of an unsupervised setting of
accomplishing this task. -is would ensure more energy, and
focus is invested solely in the development of complexmachine
learning algorithms and mathematical models which could
improve the present state of the art.
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