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Computer vision is widely used in manufacturing, sports, medical diagnosis, and other fields. In this article, a multifeature fusion
error action expression method based on silhouette and optical flow information is proposed to overcome the shortcomings in the
effectiveness of a single error action expression method based on the fusion of features for human body error action recognition.
We analyse and discuss the human error action recognition method based on the idea of template matching to analyse the key
issues that affect the overall expression of the error action sequences, and then, we propose a motion energy model based on the
direct motion energy decomposition of the video clips of human error actions in the 3 Deron action sequence space through the
filter group. The method can avoid preprocessing operations such as target localization and segmentation; then, we use MET
features and combine with SVM to test the human body error database and compare the experimental results obtained by using
different feature reduction and classification methods, and the results show that the method has the obvious comparative

advantage in the recognition rate and is suitable for other dynamic scenes.

1. Introduction

According to the different states of human motion, human
shape capture research can be divided into two categories:
static human shape capture and dynamic human shape
capture. Early human shape capture research was mainly
based on the construction of static human body models
based on images, researchers proposed to use three or four
orthogonal photographs, using automatic or semiautomatic
methods to construct a simple human body shape, the
system cost is low, and the resulting human body shape is
coarse [1]. The problem of capturing static human shapes
can also be treated as a special case in the field of three-
dimensional reconstruction, where the technique for re-
covering shapes is called Shape from Xin computer vision,
and it was a cue for contour, stereovision, motion, texture,
shadow, focus, etc. In the case of monocular cameras, it is
very difficult to reconstruct the shape of an object because
there are no good constraints between the available cues, and
there is no perfect solution to the problem of 3D recon-
struction for monocular cameras [2]. In the case of

multicamera, since the cues obtained between the cameras
can form better constraints, including the reconstruction of
the 3D model from the contour with volume intersection or
with multicamera stereo vision techniques, generalists ap-
plying sophisticated 3D scanning devices or 3D recon-
struction algorithms can capture fine human shapes, often
with millimeter-level accuracy [3]. The study of dynamic
human form capture is aimed at capturing both the skin
deformation of the human body and the effect of the gar-
ment shaking due to the movement of the body.

Existing human motion capture technology, from the
principle of this paper, can be divided into mechanical,
electromagnetic, acoustic, inertial, and optical motion
capture. Mechanical, electromagnetic, acoustic, and inertial
motion capture equipment used in different principles of
different sensors have their advantages and disadvantages,
generally, from the following aspects of evaluation: wood,
capture accuracy, ease of use, applicable range, real-time,
anti-interference, and so on [4, 5]. Most of the optical
motion capture is based on the principle of computer vision,
for a point in three-dimensional space, if it can be two or
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more cameras at the same time for the two or more cameras
to see, according to the same moment the camera to obtain
the image and its calibration parameters, you can calculate
the three-dimensional coordinates of the point [6]. When
the cameras record certain frame rates continuously, the
motion path of the point can be obtained from the image
sequence. The typical optical action capture system generally
uses 4-8 cameras arranged around the scene. The over-
lapping field of view of the camera is to capture the
movement of the object area [7]. In practical research,
motion capture is usually divided into marked motion
capture and unmarked motion capture according to whether
logos or luminescent dots are used. Marker-based systems
usually require the object to be labeled with a marker on key
parts of the body, such as the head, indigo, and joints. The
vision system analyzes and processes the input image se-
quence, identifies the marker points, and then calculates the
spatial position of the marker on each frame to obtain the
trajectory of the movement. Many marker-based motion
capture systems have been successfully commercialized, but
they still have shortcomings and deficiencies [8]. Marking
points are very time-consuming to affix and wearing
clothing with marking points or sensors may make the
subject feel uncomfortable and may lead to distortion of
some movements. The second is the environmental re-
quirements, such as lighting conditions and clothing limi-
tations for outdoor or natural environments. It requires
manual user interaction when the tracked marker is missing.
Nonlabeled motion capture estimates body posture from
images or videos and captures objects without labeling them.
Compared to a marked motion capture system, unmarked
motion capture is still a challenging problem [9].

For model-based human motion capture, there is an
important relationship between the accuracy of the model
initialization and the quality of the next tracking step.
Automatic initialization will undoubtedly improve the ac-
curacy of tracking, and automatic initialization methods
may have some limitations, such as the need for a specific
post- or predefined motion [10]. Over the past decade, there
have been many research efforts on the automatic initiali-
zation of human models in multiocular images. To improve
the accuracy of tracking, these methods reconstruct a model
of a joint structure that is like the tracked object. Due to the
limited number of cameras, it is difficult to obtain accurate
information about the human body size, and the shape of
different tracked objects varies. In previous studies, simple
models such as sticks were used, which required users to
manually adjust the length and posture of the limbs to match
the tracked objects [11]. Due to the complexity of the human
body, the use of simple models such as stocks can lead to
problems such as lack of accuracy in capturing the posture.
With the continuous improvement of computer processing
power, model-based methods are increasingly used by re-
search scholars, and the geometric representation of the
model from simple to complex, the more realistic the model
is, the better the degree of approximation with the captured
object and the higher the accuracy can be achieved [12]. The
best initialization results can be achieved if the 3D scan
model of the captured object is used in this paper. However,
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most of the three-dimensional scanned models of the human
body are expensive and require a long time to do post-
processing, . Since there is no joint structure information,
the initial model can be obtained from the scan. Before pose
estimation, the bone structure needs to be set to suit its skin
and so on. This increases the initial model to a certain extent
and the complexity of the initialization process to some
extent [13, 14]. As shown in Figure 1, we study and discuss
the key issues in the construction of logo-free motion
capture based on the human body model against the
background of the application needs of human motion
capture in the cultural and creative industries.

2. Three-Dimensional Human Error Motion
Shape Capture Based on Computer Vision

2.1. Human Rigid False Motion Posture Matching. The
construction of human models and their motion control has
been one of the most tedious tasks faced by human ani-
mators. We construct a realistic three-dimensional human
body model close to the geometric surface of the human
body. At present, the construction method of the human
body model can be roughly divided into three categories:
creation, reconstruction, and interpolation. The capture of
the human body shape can be classified as static and dy-
namic. Static mannequins depict the human body shape in a
particular posture, usually a standing posture. The main
problems associated with static mannequins include shape
reconstruction, body depiction, alignment, filling of mesh
holes, and body size differentiation. Although 3D scanners
are capable of reconstructing human models with high
accuracy, they are expensive and have limitations, such as
the environment in which they can be used, as well as the
need for postprocessing and other tedious steps. Recon-
struction of the human body from the images can be seen as
a special case in the field of three-dimensional recon-
struction. The study of three-dimensional reconstruction of
static scenes has a long history, and algorithms in this field
include shape from stereoscopic vision, etc. In the case of a
multicamera and a clear outline of the limb without its
occlusion, better reconstruction results can be obtained, and
the quality of the reconstruction is also related to the number
of cameras and their angles. In the case of human movement,
the body parts are prone to block each other; if the re-
construction is carried out frame by frame, it will lead to
some wrong frame reconstruction results, due to the lack of
depth information of the human body posture which is
prone to the problem of adhesion of the body parts [15].
Three-dimensional objects are usually represented by
polygons that do not contain vertices and faces. The po-
lygonal mesh matches the image data by moving the position
of its vertices. Usually, the smooth deformation of the mesh
surface is achieved by ensuring that it is within the Laplace
mesh editing framework. The final human body shape is
achieved by optimizing a linear system that constrains the
mesh vertices to correspond to the image pixels. Most mesh
models can be smoothly constrained to achieve good de-
formation results. As shown in Figure 2, the challenge is to
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find the correct correspondence between the mesh vertices
and the pixels in the image.

2.2. False Motion Recognition and Visual Algorithm Matching.
For model-based human motion capture, there is an im-
portant relationship between the accuracy of the model
initialization and the quality of the next tracking step.
Automatic initialization will undoubtedly improve the ac-
curacy of tracking, and automatic initialization methods
may have some limitations, such as the need for a specifi-
cation or a predefined motion. Over the past decade, there
have been many research efforts on the automatic initiali-
zation of human models in multicolor images. To improve
the accuracy of tracking, these methods reconstruct a model
of a joint structure that is like the tracked object. Due to the
limited number of cameras, it is difficult to obtain accurate
information about the human body size, and the shape of
different tracked objects varies [16]. In previous studies,
simple models such as sticks were used, which required users
to manually adjust the length and posture of the limbs to
match the tracked objects. Due to the complexity of the
human body, the use of simple models such as stocks can
lead to problems such as lack of accuracy in capturing the
posture. With the continuous improvement of computer
processing power, model-based methods are used by more
and more research scholars, and the geometric represen-
tation of the model is from simple to complex. The more
realistic the model is, the better the approximation with the
captured object and the higher the accuracy can be achieved.
The best initialization results can be achieved if the 3D scan
model of the captured object is used in this paper. As shown
in Figure 3, most of the three-dimensional scanned models
of the human body are expensive and require a long time to
do postprocessing, and the initial model obtained from the
scan because there is no joint structure information, in the
posture estimation before the need to set the skeletal
structure, for its skin, etc. This increases the initial model to a
certain extent [17]. This increases the complexity of the
initialization process to a certain extent.

The goal of human motion capture is to recover human
motion information from monocular or multicamera im-
ages. Estimating human pose from observed images, even
with multiple cameras and simple backgrounds, it remains a
complex optimization problem due to model-to-image
matching ambiguities, ambiguities in image depth infor-
mation, and high-dimensional state space. Local optimiza-
tion algorithms are fast due to their reliance on individual
pose assumptions, but once a frame fails to be tracked due to
occlusion, etc., it is difficult for the system to recover the
correct pose for tracking. To accurately describe the motion
of the human body, at least 30 degrees of freedom (DOF)
pose information that needs to be captured, and it is very
difficult to search all the pose parameters (DOFs) simulta-
neously in the high-dimensional pose space [18].

The pinhole camera model is a widely used perspective
projection camera model and the relationship between the
camera coordinate system and the world coordinate system
can be described by the translation vector and the rotation
matrix R:
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The parameter [R] provides a transformation of the
perspective, converting the coordinates (X, Y, Z, 1) of point
X in the world coordinate system into camera coordinates
(X, Yo Z,, 1)T. The process of estimating the values of the
inner and outer parameters of a single or more camera is
known as camera calibration.

The vertices on the model are multiplied by this matrix to
get the new coordinates of the vertices. Rotations in 3D space
can be the X-, Y-, or Z-axis, and each rotation can be
represented by their matrix.

3. Parametric Human False Motion
Recognition Model

3.1. Computer Vision-Based Initialization of Athlete Error
Motion Shapes and Postures. A model-based human motion
capture system can be divided into four steps, namely,
initialization, tracking, pose estimation, and recognition.
The initialization involves two aspects: posture and model
representation. The initialization of vision-based human
motion capture often requires defining a human model that
is similar to the shape and joint structure of the captured
object, and the initial pose of the model should be consistent
with the pose of the tracked object. In most 3D pose esti-
mation algorithms, the user has to manually initialize a
generic model so that its limb length as well as its post is
consistent with the tracked object. For model-based human
motion capture, the accuracy of the model initialization has
an important relationship with the quality of the next
tracking step.

Automatic initialization will undoubtedly improve the
accuracy of tracking, and automatic initialization methods
can have some limitations, such as the need for a specific
post- or a predefined motion [19]. This is a hotspot, and,
there have been many studies of automatic initialization of
human models in multiocular images. To improve the ac-
curacy of tracking, these methods reconstruct a model of a
joint structure that is close to the tracked object. Due to the
limited number of cameras, it is difficult to obtain accurate
information about the human body size, and the shape of the
body varies from one tracking object to another.
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For a given tracking body, the results of the initiali- 80

zation can be used as a priori knowledge to constrain the
next step of tracking and attitude estimation. Manual
initialization often finds it difficult to obtain good ini-
tialization results due to visual errors. This paper aims to
obtain detailed human shape and pose information quickly
and accurately. Estimating human body shape from
monocular or multiocular images requires projecting a 3D
model onto a 2D observation image, constructing a cost
function for the distance between the projected model and
the 2D contour, and minimizing this cost function. The
popular parametric model SCAPE (Shape Completion and
Animation for People) is a data-driven method for con-
structing models of the human body with different postures
and body shapes. As shown in Figure 4, the SCAPE model
has been extended to generate a special model, which is
matched to a visual hulls sequence for each body part using
a contour and nearest point iteration- (ICP-) based
method.

The SCAPE model is matched to the observed contour to
capture the detailed human body deformation. The SCAPE
model is used as a three-dimensional to two-dimensional
conversion to achieve the deformation of the human body in
the image, and good results are obtained [20]. Discrimi-
native models based on hybrid experts were used to estimate
the parameters of the SCAPE model from monocular or
multiocular image contours. A matching error is considered
to have occurred when the application of a local optimi-
zation algorithm appears to match the limb portion of the
model with the observed contour with an error greater than
a given error mean. For the experiments in this paper, this
paper sets the error mean value of 500 mm, and when the
matching error of a limb part is greater than 500 mm, this
paper applies the global optimization algorithm to it for
postrepair. Global optimization is the application of a certain
number of party sets and number of iterations to estimate
the human body pose; the number of particles represents the
number of particles applied in the search space; the number
of iterations determines the time required for the global
optimization process. This paper can effectively reduce the
number of particles used and the number of iterations after
applying a constrained weighted energy function to the
particles, as shown in Figure 5.

Error (mm)

30

20 1 1 1 1 1 1 1
10 15 20 25 30 35

Number

40

—— With constraint
-~ Without constraint

FiGure 4: Comparison of algorithm-bound particle data and
number of iterations.

3.2. Parametric Human Error Motion Recognition Shape
Estimation. In human motion capture, the use of models
close to the human body not only improves the realism of
the model but also helps to improve the performance of
unmarked motion capture systems. In an unmarked motion
capture system, there is often a need for capturing objects of
varying height and body types. In a motion capture system,
this kind of human model is usually built for a human body,
and the processing function method is also built around this
human body, and the whole process relies on this human
body which is difficult to be universal. Considering that most
of the motion capture systems require the capture object to
wear tight clothing to obtain accurate human motion
postures and, in this section, combining the parametric
human body model and the initialization needs of motion
capture systems, this paper proposes a deformable model-
based human body size and posture estimation method. The
3D model compares it with the 3D scan model data to obtain
good reconstruction results. In this paper, we adopt the
framework of prostate-specific membrane antigen (PSMA)
for stepwise estimation of human posture and shape pro-
posed, use the algorithm for stepwise estimation of human
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posture and body shape parameters using the SCAPE model
to first obtain the human posture from the reconstructed
visual hull mesh model, and then define the contour
matching cost function to estimate the human body shape
and fine-tune the posture.

As shown in Figure 6, the mean error of the athlete’s
erroneous movements in SCAPE is between —11.14 mm and
12.05 mm, with a standard deviation of 16.16 mm, where the
red part indicates a large difference, and it can be seen that
the estimated human body model is very similar to the
scanned model except for the hand part, which is not very
important for most applications. Once there is an error in a
frame, this error will persist throughout the tracking se-
quence leading to an incorrect estimate for all remaining
frames. In this paper, the human model is divided into 15
parts as defined by the joint tree, and the contour-matching
errors are counted separately for each part of the human
model.

As shown in Figure 7, when a matching error occurs
from frame 29, the remaining estimates are incorrect, so the
local optimization algorithm cannot automatically recover
from the incorrect estimates. Although the local optimiza-
tion algorithm is prone to incorrect posture estimation
results, it can obtain correct position tracking results, and
the pelvic part of the human model is correctly matched, i.e.,
it can obtain global position and orientation information of
the erroneous notion of the human body.

3.3. Comparative Analyses of Human Error Motion Recog-
nition Model Algorithms. To discuss the effect of human
models of different fineness on pose estimation, this paper
uses the visual hull model obtained from images using the
Stepless Frequency Selection (SFS) method and the ap-
proximate stick model, respectively, for validation. This
study uses the mesh model obtained by the SFS method, uses
the same algorithm for its embedded skeleton for posture
estimation, and analyzes the results in the same perspective.
The visual hull model obtained by the SFS method is not very
accurate, and the obtained triangular mesh model is ir-
regular, especially in the treatment of the shoulder, and the
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embedded skeleton causes problems with shoulder defor-
mation when the human body is moving at a slower speed.
The problem is not obvious; as the human body moves faster,
the deformation of the shoulder becomes obvious. The same
algorithm with visual hull model will have errors, while the
initialization model will not have this problem.

In this paper, foreground segmentation is required for
each camera-recorded image sequence to obtain a binary
foreground contour. The projection matrix is used to project
the three-dimensional model onto the two-dimensional
image, define the relationship between the three-dimen-
sional model and the two-dimensional foreground contour,
use the local optimization algorithm to calculate the best
match between the body parts in the three-dimensional
model and the foreground contour, and obtain the pose
information of the human body under the local optimization
algorithm. When the estimation results obtained by the local
optimization algorithm are wrong, the global optimization
algorithm is used to re-estimate the posture of the wrongly
matched body parts. The global optimization algorithm
searches for the optimal posture in the entire state space,
which makes it very time-consuming since it searches the
entire state space. To overcome this drawback, the global
optimization method is used only when the local optimi-
zation algorithm makes an estimation error and only the
pose parameters of the limb part where the error occurs are
estimated. As shown in Figure 8, the global optimization
algorithm is constrained using prior knowledge of human
pose learned from a motion capture database to reduce the
number of particles and the number of iterations to optimize
the algorithm.

In solving real-world problems, a variety of different
factors may lead to multiple solutions, which are also known
as multimodal problems (multimodal). To find the best and
unique solution in a multimodal problem, a global opti-
mization approach is required. Unidentified motion capture
is a multimodal problem where global information is un-
known and there is no very efficient way to mine this in-
formation. This problem can be regarded as a black box
problem, which is usually solved using metaheuristic sto-
chastic optimization methods. Stochastic optimization
methods not only are very scalable but also overcome the
limitations of learning from samples in learning strategies.

In the unidentified motion capture problem, stochastic
optimization methods can represent and exploit multimodal
global information well, and the results obtained are also
characterized by accuracy and robustness. To clearly show its
capture results, this article looks at 8 viewpoints. As shown
in Figure 9, each row is the result of one camera viewpoint.
Column 1 is the input image, column 2 is the stick-like
model, column 3 is the projection of the stick-like model on
the image contour, column 4 is the 3D initialized model,
column 5 is the projection of the initial model on the image
contour, the green part of the figure indicates the contour
belonging to the original image, the Fuchsia part indicates
the contour belonging to the captured mannequin, and the
white part indicates the part where the two contours meet.
The estimates in this paper are relatively close to human
posture.
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FiGure 8: Performance of SFS and SCAPE models at different
bandwidths.

The local optimization algorithm, although running fast,
is prone to estimate wrong results due to blocking, or when
the action is fast. And, once an error occurs, it is difficult to
recover on its own. Global optimization algorithms such as
particle filtering represent the uncertainty in the pose space
through a Bayesian paradigm, and since depicting the hu-
man body pose requires at least 20 degrees of freedom of the
human model, an uncountable number of particles will be
required in such a high-dimensional pose space, and solving
it using particle filtering will be a very tedious problem. The
addition of a simulated annealing strategy greatly reduces
the number of particles and makes the problem solvable, but
still requires a long run time. A hybrid approach of local and
global optimization is used to estimate the human body
pose, the global optimization algorithm is only activated for
use when the local optimization algorithm has a matching
error, and the initial pose of the global optimization is based
on the results of the local algorithm estimation. This paper
adds a priori constraints on the human body pose, including
joint angle constraints and poses information learned from
the motion capture database as constraints on the particle
energy. The number of particles and the number of iterations
is greatly reduced, and the feasibility of the experimentally
confirmed algorithm is used to obtain correct attitude es-
timation results.

During local optimization, this paper divides the 3D-2D
matching into contour matching and texture matching.
Texture matching is the matching of SIFT feature points
between two adjacent frames, which need to be computed
for each frame of the image for each viewpoint. Although it
takes time to calculate texture matching, the additional
texture matching is faster than the pose estimation without
texture matching, which can improve the accuracy of local
optimization algorithm estimation and reduce the number
of joints initialized by the global optimization algorithm to
some extent, improving the overall efficiency. The texture
matching results are shown in Figure 10.

To verify the effect of the fineness of the model on
motion capture, experiments were performed in this paper
with the visual hull mesh model and the stick-like model
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In film and television, animation and computer games, and
other fields, three-dimensional character model shape design
and motion control have been the most time-consuming and
8 laborious work in these fields; motion capture technology has
g brought convenience for people to understand and use widely.
E With the conti[[parms resize(1),pos(50,50),size(200,200),
< bgcol(156)]] computer graphics processing technology, people
are no longer confined to obtaining information about human
postures, the deformation effects of human skin and clothes
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Figure 10: Visual hull model identification results for different
error motion dataset feature sizes.

obtained from multiocular images, respectively. Since the
visual hull model is not fine-grained enough, especially in
the shoulder and armpit areas, it can lead to incorrect de-
formation effects during the model movement, which can
affect the results of the posture estimation, whereas with a
stick-like model, although an approximation of the post can
be obtained, the capture accuracy is much lower than that in
a fine-grained model which is initialized. Therefore, the
accuracy of pose estimation can be better improved by using
a human model that is close to the captured object.

have also begun to attract scholars' attention. Obtaining hu-
man body shape and posture information from images is an
important branch in the field of computer vision research. In
addition to the abovementioned film and television animation,
games are widely used in many fields such as security, in-
dustrial design, sports training, and medical care.

This paper provides an in-depth discussion on the topic
of logo-free motion capture based on human body models,
focusing on three important topics: how to capture the 3D
human body shape in corresponding frames from image
sequences, how to construct parametric human body
models and use them to generate initialized models for
motion capture, and how to perform human motion
capture using local optimization and global optimization
algorithms based on fine 3D human body models. To solve
the problem of topological errors in the three-dimensional
human shape capture problem, the human body model
reconstructed by the application of stereoscopic vision
algorithm in this study has topological errors, and this
paper proposes a methodological framework for stepwise
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PSMA matching of human body pose and shape based on a
three-dimensional template model. The framework firstly
realizes the matching of the template model pose with the
human body pose in the target image and then the shape
matching of the template model, as the human body model
may cause slight changes in the human body pose when the
shape changes; it is necessary to optimize the human body
pose twice to get the optimal solution. The three-dimen-
sional template model is taken from the first frame of each
part of the body outline showing clear images, which can
be generated by three-dimensional scanning or three-di-
mensional reconstruction algorithm, the transformation
of the pose is realized by the embedded skeleton, and the
shape matching is realized by the Laplace deformation
technique, which applies to scenes in which the human
body wears ordinary or loose clothes, and its feasibility is
confirmed by experiments.

This paper implements the human body parametric
model SCAPE and proposes a method to use the SCAPE
model to obtain the human body model pose parameters and
body shape parameters in multicamera images. The SCAPE
model is applied to the PSMA framework to generate an
initialized model for human motion capture, the human
body pose transformation is also achieved by the embedded
skeleton, the human body shape is matched using the
matching error between the projected contour of the human
body model and the image contour, and the human body
shape parameters and pose parameters are estimated
according to the pixel distance function and verified ex-
perimentally. The effectiveness of the method is demon-
strated by comparing the generated 3D human body model
with the model obtained from real 3D body scans or 3D
reconstruction algorithms.

This paper also presents a particle energy function based
on the a priori knowledge constraint of the human body
poses. Based on this function, a combination of the local and
global optimization algorithm is used for the accurate es-
timation of the human body pose. The method improves the
accuracy of the local optimization algorithm by using not
only the human body contour matching but also the texture
matching of adjacent image frames. The energy function is
used to constrain the particle states used in the global op-
timization algorithm, which effectively reduces the number
of particles used and the number of running iterations and
improves the efficiency of the algorithm. At the same time, a
fine-grained human body model has a higher capture ac-
curacy than the one using a coarse stick model, and it is
verified with experiments for comparison.
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