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ABSTRACT Visual defect inspection and classification are significant steps of most manufacturing 

processes in the semiconductor and electronics industries. Known and unknown defects on wafer maps tend 

to cluster, and these spatial patterns provide valuable process information for supporting manufacturing in 

determining the root causes of abnormal processes. In previous studies, data augmentation-based deep 

learning (DL) techniques were most commonly used for the identification of wafer map defect patterns 

(WMDP). Data augmentation is an effective technique for improving the accuracy of modern image 

classifiers. However, current data augmentation implementations were manually designed for the WMDP 

problem. In this study, we propose a DL-based method with automatic data augmentation for the WMDP 

task. Basically, it focuses on learning effective discriminative features, from wafer maps, through a deep 

network structure. The network consists of a convolution-based variational autoencoder (CVAE) 

sequentially. First, we pre-trained the CVAE on large training data in an unsupervised manner. Second, we 

fine-tuned the encoder of the CVAE, which was followed by a neural network (NN) classifier, in a supervised 

manner. Additionally, we describe a simple procedure for automatically searching for improved data 

augmentation policies. The policy mainly consists of five image processing functions: rotation, flipping, 

shifting, shearing range, and zooming. The effectiveness of the proposed method was demonstrated through 

experimental results obtained from a simulation dataset and a real-world wafer map dataset (WM-811K). 

This study provides guidance for the application of deep learning in semiconductor manufacturing processes 

to improve product quality and yield. 

INDEX TERMS Classification, convolutional variational autoencoder, deep learning, imbalanced data, 

neural network, unsupervised pre-training, variational autoencoder, wafer map defect patterns. 

I. INTRODUCTION 

In conjunction with the fourth industrial revolution, the 

semiconductor market has been expanding rapidly [1–3]. 

Semiconductor demand has been exploding in areas such as 

smartphones, virtual reality, automobiles, wearable devices, 

internet of things (IoT), and robotics [4–6]. Many diverse 

products are in demand. Semiconductor lines have become 

diverse, and the semiconductor fabrication process is 

complicated. Semiconductor manufacturers can produce 

semiconductor products with high yields and high quality to 

ensure market competitiveness. Semiconductor processes 

increase productivity through facility diagnosis, process 

control, stabilization of yield rate, and so on. In addition, the 

semiconductor fabrication process has been continually 

refined, and design complexity has increased to enhance 

productivity and semiconductor accumulation [7–9]. 

Semiconductor fabrication is conducted in two processes, 

from wafer fabrication to manufacturing the finished 

product. The first is the fabrication process of the integrated 
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circuits on the wafer surface. The second is the testing 

process of the wafer map, processed by a unit die or chip 

after fabrication. As the fabrication process becomes more 

challenging and complicated, the number of defects increase. 

The processed wafer was tested using the fabrication 

process, detailed later on, and subsequently assisted in 

identifying several defects [10–12]. As semiconductor 

manufacturing becomes complicated, and the difficulty of 

the refined process techniques increases, a new type of wafer 

defect map appears. This is because the generating 

mechanism according to the defect pattern of the wafer map 

is different. It is crucial to classify wafer maps automatically 

to eliminate the cause of defects. 

Most of the steps used in semiconductor fabrication are 

conducted using a wafer map. If there are some abnormalities 

in the manufacturing process, defects will occur on the 

wafer. There are various types of defect patterns based on the 

manufacturing methods or features of abnormal unit 

processes. These defect patterns can be detected using wafer-

map data from the test step of a wafer. To determine the 

abnormality process, causing wafer defects, at an early stage 

and to take steps to recover the yield rate, it is necessary to 

analyze the wafer map [13]. The process of sorting defective 

items among semiconductor fabrication processes involves 

electrical die sorting (EDS) [14]. It also tests the electrical 

motion state of each semiconductor chip generated on a 

wafer. To improve the yield rate of processing, engineers 

define and classify the forms of a defective wafer, and 

identify a wafer map, resulting in the EDS test [15]. Fig 1 

shows an example of a wafer map. A large circle indicates a 

wafer, and small rectangles inside represent each die. The 

white color indicates that the die passed all the tests without 

any error, and other colors indicate that the die did not pass 

the test. 

 

 

FIGURE 1. Example of a wafer map. 

In ordinary semiconductor manufacturing companies, 

skilled experts classify and analyze defective patterns of 

wafer maps manually. However, when using this method, the 

classification performance of wafer map defect patterns can 

differ depending on the ability of the experts. Additionally, 

when production increases, it is difficult to cope utilizing 

only experts according to the growth of semiconductor 

demand [16]. Correspondingly, it is necessary to gain extra 

capacity to enable the system to cope during high 

productivity. The use of machine learning model, that learns 

the knowledge of experts, is one solution to increase 

capacity. Therefore, there is much research on handling these 

issues using machine learning or deep learning techniques. 

However, previous research faced some limitations. For 

example, there was a problem with classifying only defect 

patterns that were already recognized in the learning step. 

Also common problem in many data-oriented real-world 

semiconductor applications is class-imbalance [17]. 

Additionally, when the fabrication is refined and more 

complicated, the defect patterns of the wafer maps will vary. 

Therefore, it is necessary to develop a model that recognizes 

a new types of defective wafer map pattern. 

In this study, we consider the data imbalance problem by 

developing a deep learning-based method. It automatically 

classifies wafer map defect patterns without manual data 

augmentation or feature extraction. We employed a 

convolutional neural network (CNN) to extract visual 

features from the wafer map images. A generative variational 

autoencoder (VAE) was used to learn the data distribution 

and sample augmented data. The data augmentation function 

includes transformations such as rotation, flipping, shifting, 

shearing range, and zooming. First, we pre-trained the 

convolutional variational autoencoder to learn training 

samples and generate augmented data. Then, we fine-tuned 

only the encoder part, followed by the neural network (NN) 

classifier for the classification of wafer map defect patterns. 

The contributions of this paper are summarized as 

follows: 

1. We proposed an automatic classification method 

that employs deep learning techniques, such as 

CNN and VAE, for wafer map defect patterns 

without manual data augmentation and feature 

engineering. 

2. We designed a convolutional variational 

autoencoder (CVAE) that learns the distributions of 

visual data. Then, it also samples various data 

transformations to solve data imbalance problems. 

3. We automated the process of finding an effective 

data-augmentation policy for a wafer map dataset. 

Each policy expresses several choices and orders of 

possible augmentation functions, such as rotation, 

flipping, shifting, shearing range, and zooming. 

4. Comprehensive experiments demonstrate that the 

proposed method can obtain good results for 

identifying wafer map defect patterns. By 

combining convolutional operations and a 

generative model, we can obtain competitive results 

with other state-of-the-art deep learning methods. 

Additionally, we generated wafer map images with 

various transformations for each non-defect and 

defect class. 
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The remainder of this paper is organized as follows. We first 

review related works in Section II. In Section III, we introduce 

the proposed method in detail. Section IV reports the 

experimental settings and results and provides a discussion 

and analysis. Finally, conclusions and future work are 

provided in Section V. 

 
II.  RELATED WORKS 

Research has been conducted to classify defective wafers 

into each pattern using wafer map information. In this 

section, we review some recently published research that 

uses machine learning and deep learning. 

In the early stages, research has been conducted to extract 

features from wafer maps and classify defective patterns 

using machine learning techniques. Machine learning 

classification algorithms classify the defective patterns based 

on the pre-defined visual features from the wafer map [18-

26].  

Recently, various techniques have been proposed for the 

identification of wafer map defect patterns by taking 

advantage of deep learning. For example, without feature 

extraction of wafer maps or spatial filtering, research has 

been conducted widely using CNN, which applies intact 

original images. In CNNs, a wafer map was constructed 

according to 22 defective patterns, defined in advance, and 

then using the map, the patterns were classified into 

convolutional neural networks and applied for image 

retrieval. Even though the classification model showed an 

accuracy of 98% for the artificial data, some patterns 

extracted from the real data showed an accuracy of 68%. 

This demonstrates the limitations of artificial data [27]. 

Moreover, Kyeong and Kim [28] proposed a CNN-based 

classification model to classify mixed-type defect patterns in 

wafer bin maps separately for each pattern circle, ring, 

scratch, and zone. Cheon et al. [29] proposed an automatic 

defect classification method based on deep learning that was 

designed to achieve high classification performance for 

known defect classes and also classify unknown defects. Jin 

et al. [30] proposed a clustering-based defect pattern 

detection and classification framework, based on the density-

based spatial clustering of applications with noise. Ishida et 

al. [31] proposed a deep learning-based failure pattern 

recognition framework that only uses data augmentation 

techniques with noise reduction, without accessing a large 

amount of training data. Shen and Yu [32] integrated wafer 

map defect recognition with deep transfer learning, which 

reduces the training time and improves the feature learning 

performance. It also addresses the problem of class 

imbalance. Wang and Chen [33] used extracted features 

based on three types of masks: polar masks, line masks, and 

arc masks. These masks extract rotation-invariant features 

for classifying defect patterns. Yu [34] proposed an 

enhanced stacked denoising autoencoder with manifold 

regularization techniques to generate discriminative features 

from wafer maps. Yuan-Fu [35] used automatic optical 

inspection to visualize defect patterns and identify the root 

causes of die failures. Then, CNN and extreme gradient 

boosting methods are employed for wafer map retrieval and 

defect pattern classification. Shawon et al. [36] also modified 

the CNN architecture to improve the classification 

performance and used data augmentation techniques to solve 

the data imbalance problem. Nakazawa and Kulkarni [37] 

proposed a deep convolutional encoder-decoder neural 

network architecture for detecting wafer map defect patterns, 

as well as segmentation. Yu et al. [38] proposed a stacked 

convolutional sparse denoising auto-encoder for wafer map 

pattern recognition and a feature learning method to learn 

discriminative features from wafer maps. Yu and Liu [39] 

proposed a deep neural network, which is a two-dimensional 

PCA-based convolutional auto-encoder for wafer map defect 

recognition. Alawieh et al. [40] used a deep selective 

learning technique and featured an integrated reject option 

where the model chooses to abstain from predicting a class 

label when the misclassification risk is high. Thus, there is a 

FIGURE 2. Overview of the proposed method. 
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trade-off between the prediction coverage and the risk of 

misclassification. Jang et al. [41] proposed an ensemble 

model of a one-versus-one method that uses a CNN as the 

base classifier for wafer map classification, and then 

examined the open set recognition problem, in which wafer 

maps must be classified using major defect patterns. Tsai and 

Lee [42] proposed a CNN encoder-decoder-based data 

augmentation and depth-wise separable convolution-based 

defect classification. They also developed a classifier with a 

reduced-weight architecture based on depth-wise separable 

convolutions [43]. Yu et al. [44] addressed the problem of 

insufficient labeled images with various defects. They 

proposed a semi-supervised deep-learning-based transfer 

learning algorithm by joining features and labels in an 

adversarial network. Jin et al. [45] presented an image-based 

classification method for wafer map defect patterns without 

any specific preprocessing. They extracted high-level 

features from a CNN fed to a combination of error-correcting 

output codes and support vector machines for the 

classification of wafer map defect patterns. Wang and Chen 

[46] used polar mapping before training the CNN. Then, the 

circular wafer map was transformed into a matrix. They also 

applied a data augmentation technique to eliminate the 

effects of rotation. Saqlain et al. [47] addressed the data 

imbalance and irrelevant features problem using data 

augmentation techniques such as rotation, flipping, shifting, 

shearing range, and zooming of an image to the original data. 

Owing to the limitations of previous studies, we developed 

a novel classification technique by modifying the CVAE. The 

modified CVAE automatically performs data augmentation 

without manual rules or large data generation. In addition, 

pseudo-data are generated from the distribution of each class 

label. The experimental results demonstrate the efficiency of 

the proposed method. 

III.  PROPOSED METHOD 

In this section, we discuss the basic structure of the proposed 

method in detail. We also provide the training procedure and 

hyperparameter settings. 

A. ARCHITECTURE 

Wafer maps provide important information when 

represented as images for engineers to identify the root 

causes of die failures during semiconductor manufacturing 

processes. In computer vision, CNN is a deep learning-based 

technique commonly applied to analyzing visual imagery. In 

real-world problems, data imbalance is a critical issue. As we 

discussed, CNN is the basic technique adopted in the 

identification tasks of wafer map defect patterns, and data 

augmentation techniques are generally used for data 

imbalance problems. In this study, we employed CNN as our 

base feature learner. Instead of using manual data 

augmentation, generative models generate samples for high-

dimensional datasets, learns the data distribution, and 

generates new samples from the learned distribution. We 

designed a CVAE that is improvised with image operations 

such as rotation, flipping, shifting, shearing range, and 

zooming for more effective image generation. We then used 

the basic NN technique for the classification of defect 

patterns. It calculates the probability distribution for each 

class label, and the maximum value is chosen for the final 

prediction. First, we pre-train the CVAE model by 

minimizing the reconstruction loss, and the mean square 

error was also used. Second, we train the NN classifier by 

minimizing cross-entropy loss. An overview of the proposed 

method is presented in Fig 2. As shown, we input wafer map 

images to the proposed method and identify whether they are 

defective or not. The common defect patterns are edge ring, 

edge local, center, local, scratch, random, donut, and near-

full. In the following sections, we explain the proposed 

method in detail. 

 

1) CONVOLUTIONAL NEURAL NETWORK 

A CNN is a type of deep neural network with the capability 

of extracting useful features by utilizing several 

convolutional operators. It is particularly suitable for two-

dimensional data structures; therefore, it is a popular pattern 

recognition classifier in image processing. 

In a CNN, as a weighted kernel 𝐾  slides over every 

position of input data 𝑥 , the convolution operation of the 

input data and kernel is triggered, resulting in a feature map: 

 

𝑆(𝑖, 𝑗) = (𝑋 ∗ 𝐾) (𝑖, 𝑗) (1) 

 = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝑊(𝑚, 𝑛)
𝑛𝑚

 
(2) 

 

where S is the feature map resulting from input data 𝑥 and 

kernel 𝐾, and * denotes the convolution operation. 

Typically, the kernel size is smaller than the input data 

size, but with greater depth. This means that several different 

kernels are applied to the input data at the same time, 

resulting in the same number of feature maps. The weights 

of the kernels were adjusted during the training. 

Although CNNs are mostly applied for the identification 

of wafer map defect patterns, they have also been 

successfully explored in fault classification and diagnosis in 

semiconductor manufacturing processes [48]. Because wafer 

map defect patterns have the same 2-dimensional data 

structures as images, the CNN for analyzing images is 

suitable for identification. 

 

2) VARIATIONAL AUTOENCODER 

VAE, an important generative model, has a similar network 

frame as an autoencoder, which consists of two parts: an 

encoder and a decoder. In the autoencoder, the encoder 

defines a mapping from input data 𝑥 ∈ ℝ𝑑𝑥  to a latent 

variable 𝑧 ∈ ℝ𝑑𝑧, while the decoder defines a mapping back 

from the latent variable 𝑧 to the input space, which outputs 

the reconstructed 𝑥̂ . The training objective of the 

autoencoder is to make the reconstructed term 𝑥̂ as close as 

the original one 𝑥, forcing autoencoders to learn the latent 

features of normal data. In VAE, the latent variable 𝑧  is 

constrained to be distributed according to a prior 

distribution  𝑝𝜃(𝑧) , usually a multivariate unit Gaussian 
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𝑁(0, 𝐼), forcing the model to learn the distribution of input 

data. However, when mapping from the input data 𝑥 to the 

latent variable 𝑧 , according to Equation (3), 𝑝𝜃(𝑧|𝑥)  is 

usually intractable because 𝑝𝜃(𝑥) is also intractable.  

 

𝑝𝜃(𝑧|𝑥) =
𝑝𝜃(𝑥, 𝑧)

𝑝𝜃(𝑥)
 

(3) 

 

Hence, variational inference techniques are used to solve 

this problem in a tractable manner by finding an 

approximation posterior 𝑞𝜙(𝑧|𝑥) . 

 

𝑞𝜙(𝑧|𝑥) = 𝑁(𝜇𝑧 , 𝜎𝑧
2𝐼) (4) 

 

where the mean 𝜇𝑧  and standard deviation 𝑞𝑧  of the 

approximation posterior 𝑞𝜙(𝑧|𝑥) are derived by the encoder. 

Given an inference model 𝑞𝜙(𝑧|𝑥), the evidence lower 

bound (ELBO) can be derived as follows: 

 

log 𝑝𝜃(𝑥) = 𝐸𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥)] (5) 

 
= 𝐸𝑞𝜙(𝑧|𝑥)[log

𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)

𝑝𝜃(𝑧|𝑥)
] 

(6) 

 
= 𝐸𝑞𝜙(𝑧|𝑥)[log

𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)

𝑝𝜃(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)

𝑞𝜙(𝑧|𝑥)
] 

(7) 

 = 𝐸𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧) + 𝑝𝜃(𝑧)

− log 𝑞𝜙(𝑧|𝑥)]

+ 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧|𝑥)) 

(8) 

 

In Equation (8), the first term is ELBO, and the second 

term is the Kullback-Leibler (KL) divergence of the 

approximate 𝑞𝜙(𝑧|𝑥)  from the true posterior 𝑝𝜃(𝑧|𝑥) . To 

ensure 𝑞𝜙(𝑧|𝑥) gets closer to 𝑝𝜃(𝑧|𝑥), the KL divergence 

term between them has to be minimized. According to the 

equation, minimizing KL divergence can be transformed into 

the task of maximizing ELBO. Therefore, the loss function 

of the VAE can be expressed as follows: 

 

𝐿𝑉𝐴𝐸(𝜃, 𝜙, 𝑥) = −𝐸𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧) 
(9) 

+ log 𝑝𝜃(𝑧) − log 𝑞𝜙(𝑧|𝑥)] 

 

The VAE has been successfully applied in different 

domains. With a sliding window, the VAE can be used for 

the clustering of wafer map patterns [49]. However, the 

standard VAE with CNN is not used to classify wafer map 

defect patterns. Hence, the standard VAE needs to be 

modified to identify wafer map defect patterns by addressing 

imbalanced data problems. 

 

3) POLICY SEARCH 

We formulate the problem of finding the best augmentation 

policy as a discrete search problem. The operations we 

searched were rotation (5, 10, 15, 20, 25, 30, 35, 40, 45), 

flipping (horizontal and vertical), shifting (width and height), 

shearing range (horizontal and vertical), and zooming (1%-

20%). In total, we have 46 operations in the search space. 

The search algorithm used in our experiment uses 

Reinforcement Learning, inspired by [50–54]. The search 

algorithm has two components: a controller, which is a 

recurrent neural network, and a training algorithm, which is 

a proximal policy optimization algorithm [55]. At each step, 

the controller predicts a decision produced by a softmax, and 

the prediction is then fed into the next step as an embedment. 

In total, the controller has 46 softmax predictions to predict 

policies, each requiring an operation type and probability. 

The controller is trained with a reward signal, which is how 

good the policy is in improving the generalization of a “child 

model” (a neural network trained as part of the search 

process). In our experiments, we set aside a validation set to 

measure the generalization of the child model. A child model 

is trained using the augmented data generated by applying 

the policies on the training set. For each example in the mini-

batch, one of the policies was chosen randomly to augment 

the image. The child model was used as a reward signal to 

train the recurrent network controller. As shown in Fig 3, the 

RNN controller predicts an augmentation policy from the 

search space. A child network with a fixed architecture was 

trained to attain convergence, achieving accuracy. The 

reward is used, with the policy gradient method, to update 

the controller so that it can generate better policies over time. 

 

 

FIGURE 3. Overview of policy search. 

4) NEURAL NETWORK CLASSIFIER 

To establish a predictive model, we employ a simple NN 

classifier followed by the downstream of the CVAE, which 

fine-tunes the CVAE encoder part ( 𝑓𝐶𝑉𝐴𝐸(𝑒𝑛𝑐𝑜𝑑𝑒𝑟) ) and 

feature extraction layers in an end-to-end manner for the 

identification task of wafer map defect patterns. The 

predictor function (𝑓𝑁𝑁 ) can be summarized in Equation 

(10) as follows: 

 

𝑦′ = 𝑓𝑁𝑁(𝑓𝐶𝑉𝐴𝐸(𝑒𝑛𝑐𝑜𝑑𝑒𝑟)(𝑥)) (10) 
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The objective function of the NN classifier is to predict 

the true class labels to minimize the cross-entropy loss 

between the approximate distribution and the ground truth 

distribution. The objective function of the predictor network 

(classification loss) is summarized as shown in Equation 

(11): 

 

𝐿𝑁𝑁(𝑥) = ∑ 𝑦 log 𝑦′ (11) 

 

where 𝑦  is the ground truth value, and predicted 𝑦′ is the 

predicted value. 

The supervised NN classifier network provides 

predictions of wafer map defect patterns as any of the given 

defect patterns or non-defects. 

B. TRAINING 

To train a CNN model directly, we need large-scale image 

data such as the WM-811K dataset [56], which contains 

more than a hundred thousand images, but it is highly 

imbalanced. If large-scale training data are required, the 

applicable problems of a CNN are very limited. To avoid 

such situations and to make a CNN effective even for small-

scale data, two important steps have been performed 

sequentially. The first step is to pre-train the generative 

models and replay the data samples for downstream tasks. 

The second step is to fine-tune the encoder of the pre-trained 

model, followed by a supervised classifier to perform the 

prediction. 

 

1) GENERATIVE PRE-TRAINING 

During training, the gradients of the loss function are 

required for the optimization of the ELBO. However, it is not 

easy to differentiate the loss with respect to the variational 

parameters 𝜙  because the gradients cannot be back 

propagated through the latent variable 𝑧 . Hence, the re-

parameterization trick, following the work in [57], is applied 

to overcome this problem. 

The latent variable 𝑧  is assumed to be a deterministic 

function of 𝑥 and a random variable  ε sampled from a fixed 

distribution, 𝑁(0,1). Hence, the non-differentiable random 

variable 𝑧 is converted to a differentiable function of 𝑥 and a 

random 𝜀. 

 

𝑧 = 𝜇𝑧 + 𝜎𝑧 ⨀ 𝜀 , 𝜀~𝑁(0,1)  (12) 

 

where 𝜇𝑧 and 𝜎𝑧 are the variational parameters derived from 

the encoder. The sampling number 𝐿 during the training was 

set to 1 because one sample was already sufficient. With 

model loss, the negative ELBO, we trained the model using 

the Adam optimizer [58] to update the weightings of the 

model. 

 

2) FINE-TUNING FOR CLASSIFICATION 

Fine-tuning involves tuning the parameters pre-trained with 

large-scale data using small-scale data. We fine-tuned the 

encoder of the pre-trained CVAE, pre-trained with an 

imbalanced large amount of data. We added a supervised NN 

classifier after the encoder of the CVAE, ignoring the 

decoder part. With model loss and cross-entropy, we also 

trained the model using the Adam optimizer [58] to update 

the weightings of the model. 

C. HYPERPARAMETERS 

In this study, we constructed a CNN-based VAE model for 

WMDP, which has an encoder and decoder, each consisting 

of one input layer, eight convolution layers each with batch 

normalization, padding, and rectified linear unit (ReLU) 

activation, and five pooling layers (four stacking pairs of 

convolution-pooling-convolution). The supervised 

classification layer has one dropout layer, two fully 

connected layers, and one output layer. For a fair 

comparison, we used the same convolution-based neural 

network architecture for all the methods. In this model, each 

convolution and pooling layer consists of subsampling filters 

of size 3×3 and 2×2, respectively. 

The first convolution layer extracts the features from the 

input training wafer images of size 224×224 pixels. Each 

convolution layer contained a set of learnable filters to 

extract unique feature maps. The number of filters increases 

with increasing depth of the convolution layer, and thus the 

number of feature maps also increases. However, feature 

maps become smaller and more complex due to the pooling 

layer in a deeper network. The proposed CNN-WDI model 

adopts 16, 32, 64, and 128 feature maps for the first, second, 

third, and fourth stacking pairs, respectively. The model 

parameters used in this study are listed in Table 1. 

TABLE 1. Model parameters. 

Layer Input Size Input 

Channel 

Filter size 

Input 224x224 1 - 

Conv2D 222x222 16 3x3 

MaxPool 111x111 16 2x2 

Conv2D 111x111 16 3x3 

Conv2D 111x111 32 3x3 

MaxPool 55x55 32 2x2 

Conv2D 55x55 32 3x3 

Conv2D 55x55 64 3x3 

MaxPool 27x27 64 2x2 

Conv2D 27x27 64 3x3 

Conv2D 27x27 128 3x3 

MaxPool 13x13 128 2x2 

Conv2D 13x13 128 3x3 

Mean 1x1 512 - 

Std.Dev 1x1 512 - 

Dense 1x1 512 - 

Transformation 1x1 512 - 

Dense 1x1 512 - 

Dense 1x1 512 - 

Dropout 1x1 512 - 

Softmax 1x1 9 - 
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Zero padding was applied to all convolutional layers to 

ensure that the dimensions of the input and output feature 

maps were the same. The Softmax activation function was 

applied to the output layer of the model. In addition, the 

Adam optimization method, which combines the concepts of 

Momentum optimization and root mean squared prop 

(RMSProp), was selected as the optimizer. This optimizer 

helps achieve a higher accuracy and improves the training 

process. In addition, after many attempts, other parameters 

such as batch size, learning rate, and number of pre-training 

and training epochs were assigned as 128, 0.001, 500, and 

20, respectively. A smaller batch size improves the 

generalization ability by computing an approximation of the 

gradient value and then updating the other parameters. 

IV.  EXPERIMENTS 

In this section, we first describe the experimental dataset 

used in this study. Then, we show the metrics used for 

evaluating all the methods. Finally, we provide the 

comprehensive experimental results. 

A. DATASET 

The WM-811K dataset is a semiconductor dataset consisting 

of 811,457 real wafer map images [56]. The wafer images 

were collected from 46,293 lots in a circuit probe test of the 

semiconductor fabrication process. A single lot contains 25 

wafer maps, so there should be 1,157,325 wafer maps in total 

(i.e., 46,293 lots × 25 wafer/lot). Not all lots have exactly 25 

WMs, due to sensor faults or other unknown reasons, and 

they were pruned from the dataset. The dataset also contains 

additional information about each wafer map, such as lot 

name, die size, wafer index number, failure type, and training 

and test labels. This is the largest publicly available wafer 

map dataset that can be accessed on the Multimedia 

Information Retrieval (MIR) laboratory website [59]. 

Different sizes of wafer images exist because of their two-

dimensional nature and different pixel values along the 

length and width of the image. We found a total of 632 wafer 

images of various sizes ranging from 6×21 to 300×202. 

Domain experts were responsible for defining nine 

different defect classes of wafer maps and assigning manual 

labels to 172,950 (21.3%) wafer maps in the entire dataset. 

Unfortunately, the labeled dataset is highly imbalanced, and 

only the no-defect class occupies 147,431 (85.2%) wafer 

maps of the labeled dataset. The other eight defect classes, 

that contain 25,519 (14.8%) wafer maps of the labeled 

dataset in total, are given as Edge-Ring: 9680 (5.6%), Edge-

Local: 5189 (3.0%), Center: 4294 (2.5%), Local: 3593 

(2.1%), Scratch: 1193 (0.7%), Random: 866 (0.5%), Donut: 

555 (0.3%), and Near-full: 149 (0.1%). Fig 4 shows the 

randomly selected wafer defect images from each class. 

We split the experimental dataset into training, validation, 

and testing sets, as shown in Table 2. 

 

 

FIGURE 4. Typical examples of nine wafer defect classes. 

TABLE 2. Experimental dataset. 

 Train Val Test Total 

None 106,074 11,760 29,597 147,431 

Edge-Ring 7,043 787 1,850 9,680 

Edge-Local 3,796 414 979 5,189 

Center 3,064 374 856 4,294 

Local 2,557 274 762 3,593 

Scratch 819 116 258 1,193 

Donut 419 37 99 555 

Random 647 64 155 866 

Near-Full 105 10 34 149 

B. EVALUATION MEASURES 

The measurements obtained from the confusion matrix were 

compared with the classification achievements, obtained 

from sentiment classification in similar studies, to 

demonstrate the accuracy of the method. Accuracy, 

precision, recall, and F1 measurement values were obtained 

from the confusion matrix. 

The abbreviations TP (true positive), FP (false positive), 

FN (false negative), and TN (true negative) in the confusion 

matrix in Table 1 have the following meanings: 

The accuracy, precision, recall, and F1 measurement were 

calculated according to the confusion matrix in Table 1. The 

accuracy was calculated according to Equation (13). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(13) 

 

Precision is the total estimate of class labels accurately 

predicted for each class. The precision was calculated using 

Equation (14). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(14) 

 

The recall value is the weighted average of the correct 

labels that are correctly classified for each class. This value 

was calculated according to Equation (15):  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(15) 

 

Other metrics, F1, were used to combine the precision and 

recall values in a single measurement. The value of this 

measurement is between 0 and 1, and if the classifier 

correctly classifies all samples, it takes the value of 1. The 

F1 measure is given in Equation (16), and the F1 value is 

close to 1 for good classification success. 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(16) 

 

All experiments were executed on an Intel Xeon E5-2698 

v4 @ 2.20GHz, 256GB (CPU), NVIDIA Tesla V100 32GB 

(GPU), and Ubuntu 18.04 operation system. We also used 

the Scikit-Learn and Pytorch libraries with the Python 

programming language for all analyses. 

C. RESULTS AND DISCUSSIONS 

In this section, we present some experimental results, 

including a feature analysis that is selected by the CVAE. 

We then discuss a comparative analysis with other baseline 

methods and the efficiency of the proposed method. 

 

1) GENERATION OF DEFECT PATTERNS 

First, we pre-trained the unsupervised CVAE model on the 

entire training set and corroborated it using the validation set, 

as discussed previously. A CNN was used to extract visual 

features, and VAE was used to learn the distribution of each 

class label. We attempted to minimize the reconstruction loss 

(mean squared error) during training on the training set. The 

reconstruction error for 500 epochs in the training set is 

shown in Fig 5. It constantly decreases, and it shows the 

learning capability of our pre-trained model. The mean 

squared error was used as the reconstruction error in our 

experiment.  

 

 

FIGURE 5. Reconstruction loss. 

During training, we also tried to find the optimal 

augmentation policy, composed of several image processing 

operations such as rotation, flipping, shifting, shearing range, 

and zooming. As shown in Fig 6, we illustrated the examples 

of each operation applied to the generated samples. 

 

 

FIGURE 6. Generation of defect patterns. 

As shown in the figure, the generated images were 

automatically transformed by image processing operations 

instead of using manual data augmentation. We used the 

rotation range from 5 to 45 degree and horizontal and vertical 

flipping. These transformations do not change the size of the 

generated images. In contrast, the other transformations such 

as shifting, shearing, and zooming change the size of 

generated images. For example, we used the zooming by 

between 1% and 20%. The hybrid method sequentially 

integrated image generation and various transformations can 

also address the data imbalance problem efficiently. 

 

2) PERFORMANCE EVALUATION 

Secondly, we fine-tuned the only encoder part followed by a 

simple neural network classifier for the identification task of 

WMDP. We trained the supervised classifier on the training 

dataset and evaluated it on the validation set. We attempted 

to minimize cross-entropy loss during training. During 
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training, the classification loss was constantly decreasing 

among all 20 epochs. 

 

FIGURE 7. Accuracy of our proposed method on the validation set. 

 

FIGURE 8. Precision of our proposed method on the validation set. 

 

FIGURE 9. Recall of our proposed method on the validation set. 

 

FIGURE 10. F1-score of our proposed method on the validation set. 

We evaluated the proposed method on the validation set 

using standard measures such as accuracy, precision, recall, 

and f1-score. The classification performances on the 

validation set is shown in Fig 7-10, respectively. We 

achieved satisfying results in the first ten epochs. We 

highlighted the first ten and last ten epochs as solid pink and 

dashed black lines, respectively. We could not get clear 

information from the accuracy (Fig 7) for the imbalanced 

dataset. As you can see, we achieved the highest precision of 

98.05% at the 5th epoch (Fig 8) and the highest recall of 

96.83% at the 8th epoch (Fig 9). Our model has been satisfied 

at the 9th epoch by achieving the F1-score of 95.82% (Fig 

10). 

We compared the proposed methods to the other baseline 

methods such as SVM [60], ANN [61], VGG-16 [62], and 

CNN-WDI [47] algorithms. For fair comparison on the 

different split of the testing dataset. In the previous works, 

CNN-WDI [47] shows the highest performance results. We 

re-implemented the CNN-WDI method that achieved the 

comparative results as shown in Table 3. As shown in this 

table, the methods with manual data augmentation show high 

results. In this paper, we develop an automatic WMDP 

identification method without any manual augmentation. 

Because manual data augmentation is very time-consuming, 

non-memory efficient, and it needs much human effort. Our 

hybrid method with the generative model and automatic 

image transformation operations can reduce the memory 

usages and much human efforts. Firstly, we developed the 

CVAE method without any image transformation by only 

generating data samples. It improved the classification 

performance by 6%. Secondly, we applied automatic image 

transformation with policy search strategy, to the CVAE 

method. It shows the highest classification performance 

without manual data augmentation and comparative results 

with manual data augmentation techniques. As conclude, the 

experimental results shown in Table 3 highlights the 

efficiency of our proposed method. As shown, Saqlain et al. 

[47] achieved the F1-score of 87.7% on the original 

imbalanced data and achieved the F1-score of 96.2% on the 

manually balanced data. Our proposed method, CVAE with 

automatic image transformation with policy search strategy, 
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achieved the F1-score of 95.1% without any human efforts. 

Surprisingly, the proposed CVAE method achieves the 

highest recall of 96.9%. It is very comparative to the manual 

augmentation methods in terms of predictive performance 

and can reduce much human effort. 

TABLE 3. Performance comparison. 

 Precision Recall F1 

Original imbalanced data 

CNN-WDI [47]  90.3 86.4 87.7 

Manually augmented balanced data 

SVM [60] 87.5 91.0 88.0 

ANN [61] 95.2 95.9 95.4 

VGG-16 [62] 80.3 80.1 79.9 

CNN-SD [47] 94.8 94.8 94.8 

CNN-BN [47] 95.6 95.6 95.6 

CNN-D [47] 95.2 95.2 95.2 

CNN-WDI [47] 96.2 96.2 96.2 

Automatically augmented  balanced data 

CVAE (no image 

transformation) 

91.7 94.4 93.3 

CVAE (with image 

transformation) 

93.6 96.9 95.1 

 

As shown in Table 4, the confusion matrix performed by 

our proposed method CVAE with image transformation is 

provided. As you can see, we achieved high accuracy results 

higher than 90% except for Donut defect pattern. 

In this paper, we addressed the issue of manual data 

augmentation; it requires much human effort. Instead of 

manually transforming training data, we automatically 

generated fake data similar to original images and added an 

image transformation function with a policy search strategy. 

For a fair comparison, we selected the same image 

transformation techniques used in the previous works. It 

reduces many preprocessing steps and immensely scalable to 

add more image transformation techniques. As shown in Table 

3, the proposed method CVAE is lower than the performance 

of the highest manually augmented method. However, we can 

quickly improve it by adding other image transformation 

techniques. The policy search algorithm is very efficient in 

finding the best augmentation policy from many possible 

states even there are many transformation techniques. May it 

increases the computation time and memory usage. But it is 

not critical in this research, and we can reduce it at the 

application level for real-world scenarios. 

V. CONCLUSION 

In this study, we developed a DL-based method, that is, 

CVAE for WMDP, which employs CNN as a feature 

extractor, and CVAE exploits the full connection between 

the features and the subsequent convolved images in an 

unsupervised manner. A simple NN classifier was used to 

identify the defect patterns from input images in a supervised 

manner. The robust and discriminative features from the 

wafer map through this network can be extracted to identify 

the WMDP improvement. Additionally, an automatic policy 

search procedure was defined for improved data 

augmentation, instead of using manual functions. CVAE 

achieves better recognition results on real-world wafer map 

datasets than traditional WMDP methods and other DL 

models. The comprehensive experimental results verify that 

the CVAE is capable of learning effective features from 

wafer maps. This study provides a new method for the 

identification of WMDP using generative DL models, with 

an automatic data augmentation procedure, in semiconductor 

manufacturing process control. It addresses the problem of 

data imbalance and limited training data, which leads to 

overfitting of DL-based methods. 

The limitations of the proposed method are described as 

follows. In the general research of wafer map defect pattern, 

most methods utilized the limited dataset publicly available. 

More challenging data is necessary to this semiconductor 

manufacturing research field. We proposed automatic 

techniques such as generative model and image 

transformation with the policy search strategy to reduce 

human efforts. However, it improves the computational cost, 

but it can be reduced. We only considered the five 

transformations in the image transformation phase, such as 

rotation, flipping, shifting, shearing range, and zooming. 

There is also not exact value of augmented data size for 

training. 

In the future, we will discover more data that covers more 

challenging issues in this research field. Also, we will carry 

out further research on other generative models, that is, 

generative adversarial networks and improved deep network 

architecture to disclose the properties of CVAE. Additionally, 

fast and adaptive algorithms for searching data augmentation 

policies will be considered. We will improve the proposed 

method in terms of both computational cost and predictive 

performance for developing real-world applications. To 

increase the capability, we will employ more image 

transformation techniques and discover augmented data 

characteristics. 
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(99.19%) 
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Local 
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3 4 0 4 3 0 
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(98.48%) 

1 0 3 4 1 

Local 0 3 2 1 748 

(98.16%) 
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Scratch 0 0 2 1 0 249 
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3 1 2 
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