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Abstract

UNDERSTANDING human behavioural signals is one of the key ingredients of
an effective human-human and human-computer interaction (HCI). In such re-
spect, non verbal communication plays a key role and is composed by a variety

of modalities acting jointly to convey a common message. In particular, cues like ges-
ture, facial expression, prosody etc. have the same importance as spoken words. Gaze
behaviour makes no exception, being one of the most common, yet unobtrusive ways
of communicating.

To this aim, many computational models of visual attention allocation have been
proposed; although such models were primarily conceived in the psychological field,
in the last couple of decades, the problem of predicting attention allocation on a vi-
sual stimuli has started to catch the interest of the computer vision and pattern recog-
nition community, pushed by the fast growing number of possible applications (e.g.
autonomous driving, image/video compression, robotics).

In this renaissance of attention modelling, some of the key features characterizing
eye movements were at best overlooked; in particular the explicit unrolling in time of
eye movements (i.e. their dynamics) has been seldom taken into account. Moreover, the
vast majority of the proposed models are only able to deal with static stimuli (images),
with few notable exceptions.

The main contribution of this work is a novel computational model of attentive eye
guidance which derives gaze dynamics in a principled way, by reformulating attention
deployment as a stochastic foraging problem. We show how treating a virtual observer
attending to a video as a stochastic composite forager searching for valuable patches in
a multi-modal landscape, leads to simulated gaze trajectories that are not statistically
distinguishable from the ones performed by humans while free-viewing the same scene.

Model simulation and experiments are carried out on a publicly available dataset of
eye-tracked subjects displaying conversations and social interactions between humans.
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Estratto

LA comprensione dei segnali comportamentali umani è uno dei fattori principali
di una efficiente interazione uomo-uomo e uomo-macchina. Da questo punto di
vista, la comunicazione non verbale gioca un ruolo fondamentale ed è composta

da una varietà di modalità che agiscono congiuntamente con l’obiettivo di veicolare un
messaggio comune. Nello specifico, segnali come la gestualità, l’espressione facciale,
la prosodia ecc, hanno la stessa importanza del parlato. Il comportamento dello sguardo
non fa eccezione, essendo uno dei meccanismi più comuni sebbene uno dei più discreti
per comunicare.

Questa è la finalità principale che ha portato allo sviluppo di diversi modelli com-
putazionali di allocazione dell’attenzione visiva; sebbene questi siano stati originari-
amente di interesse strettamente relativo all’area psicologica, negli ultimi vent’anni il
problema relativo alla predizione dell’attenzione su uno stimolo visivo, ha iniziato ad
attrarre l’interesse delle comunità della visione artificiale e del riconoscimento dei pat-
tern, spinte dal crescente numero di possibili applicazioni (dalla guida autonoma alla
compressione di immagini e video, fino alla robotica).

In questo rinascimento della modellazione dell’attenzione, alcune caratteristiche
fondamentali tipiche dei movimenti oculari sono state, nel migliore dei casi, trascu-
rate; in particolare, la definizione della dinamica temporale dei movimenti oculari è
stata raramente presa in considerazione. Inoltre, la stragrande maggioranza dei mod-
elli proposti in letteratura, si limita all’analisi di stimoli statici (immagini), con rare
eccezioni.

Il contributo principale di questo lavoro è un nuovo modello computazionale di at-
tenzione visiva che deriva la dinamica dello sguardo da fermi principi. Il problema
dell’allocazione attentiva viene quindi riformulato come un problema di foraging sto-
castico. Viene altresì mostrato come, trattare un generico osservatore come un forager
composito stocastico alla ricerca di zone ricche all’interno di un ambiente multimodale,
permetta di simulare delle traiettorie dello sguardo che non sono distinguibili a livello
statistico da quelle compiute da umani che osservano la medesima scena. Simulazioni
del modello proposto e relativi esperimenti, sono eseguiti su un dataset pubblico conte-
nente il tracciamento oculare di soggetti che osservano interazioni sociali tra persone.
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CHAPTER1
Introduction

AS humans, we are immersed in a multitude of sensory data delivered to our
senses as auditory, visual, tactile signals etc. Such amount of information is
too large to be entirely processed at any time; as a consequence most valuable

information must be spotted and prioritized. Evolution has solved this problem by
equipping us with the mechanism of selective attention; we are able to circumscribe the
kind of information we are interested in, in order to reduce the perceived complexity of
the surrounding environment. This ability exists for each of our senses. For example,
in the field of auditory attention it’s worth mentioning the well known cocktail party
effect: in a room full of different voices and sounds, we are able to focus on a particular
voice of a certain person (Cherry, 1953).

Likewise, visual attention has its own way of being "selective". The fovea, the center
of the retina, is the region with the highest resolution of the eye. Our oculomotor system
allows us to continuously move our eyes in order to keep inside the fovea the region
of the visual landscape with the highest interest to the observer, thus automatically
attributing less "descriptive power" to the remaining part of the stimuli. This fact has
been revealed by various experiments on change blindness (Simons and Levin, 1997)
in which significant changes in the scene are not noticed by observers (observers are
"blind" for such changes).

In order to provide the impression of retaining a rich representation of the surround-
ing world, phases of visual intake (fixations) are followed large relocations (saccades)
towards other regions of the stimuli. Such pattern has been referred to as a “saccade and
fixate” strategy (Land, 2006). Saccades are the fast movements that redirect the eye to a
new part of the surroundings, and fixational movements occur within intervals between
saccades, in which gaze is held almost stationary. In dynamic scenes, or ones including
observer’s movement, fixations are either replaced by or augmented with the smooth
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Chapter 1. Introduction

pursuit eye movement to keep on the fovea the objects of interest that are moving.
However, the sequence of eye movements directing the focus of attention to a spe-

cific region of interest only tell a part of the story; it has been known since Von Helmholtz
(1867) about the ability of attending a particular location of the visual field without per-
forming any eye movement:

"I found myself able to choose in advance which part of the dark field off
to the side of the constantly fixated pinhole I wanted to perceive by indirect
vision"

Such ability is called covert attention in contrast to the explicit selection of specific
regions of the visual landscape through eye movements called overt attention. Cru-
cially, there has been given evidence (Deubel et al., 1996) that both such mechanisms
work together in order to perform complex vision tasks.

Interestingly enough, the information coming from different senses may be com-
bined in order to have a more effective selection mechanism. Mutual influence be-
tween speech and visual perception, markedly, face perception, is a long debated and
well known issue. The link between perceiving speech and perceiving faces has been
demonstrated in both behavioural and physiological experiments, e.g., (McGurk and
MacDonald, 1976; Sumby and Pollack, 1954; Ross et al., 2007; Calvert et al., 1997;
Kriegstein et al., 2005).

The McGurk effect (McGurk and MacDonald, 1976) is one celebrated example of
audio-visual speech perception, where visual inputs can even override the veridical
inputs of the auditory system. Another example is the way people routinely use infor-
mation provided by the speaker’s lip movements to help understand speech in a noisy
environment (Sumby and Pollack, 1954; Ross et al., 2007). Watching the lips move in
silent video clips activates areas in the auditory cortex that are activated when people
are perceiving speech (Calvert et al., 1997); conversely, when listeners pay attention to
a voice that they associate with a specific person (Kriegstein et al., 2005), this activates
areas not only for perceiving speech but also for perceiving faces (face fusiform area,
FFA). Van der Burg et al. (2008) provided evidence that that audio-visual synchrony
guides attention in an exogenous manner in adults.

It has been argued that similarities between auditory and visual perception in com-
plex scenes suggest that common neural mechanisms control attention across modali-
ties (Shinn-Cunningham, 2008). However, it remains unclear how multimodal scenes
are represented in the brain (Kondo et al., 2017) and there is no comprehensive frame-
work to explain our abilities in multimodal attention.

At this point a series of questions may arise: "what’s the kind of mechanism that
drives our attention towards a particular region of the audio-visual landscape?" or
"How much time do we need to spend looking at that region before directing the gaze to
the next one?", "How do I decide where to look next?" and "Can this process be even-
tually rigorously described?" In essence, all these queries denote a quest for describing
the dynamics of the audio-visual attentive process. This is the chief intent of the present
work, in which such account is made by means of the development of a computational
model of visual attention.

We rely our investigation on videos displaying conversations and social interactions
between people. Indeed, conversational videos have the ecological virtue of displaying
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real people embedded in a dynamic situation while being relatively controlled stimuli.
Besides that, this kind of data is, nowadays, ubiquitous due to the recent rise of ded-
icated channels (Truong and Agrawala, 2019; Pires and Simon, 2015). Therefore, it
will be used (together with recordings of eye movements of observers attending at such
stimuli) as a test-bed to validate the modelling assumptions.

Throughout the dissertation, a stochastic foraging perspective on eye movements
will be presented and adopted not only as an informing metaphor, but rather as a sound
framework for modelling gaze deployment to audio-visual dynamic stimuli. Indeed,
animals searching for food in a patchy landscape and eyes wandering on a visual stimuli
tend to yield similar patterns (Brockmann and Geisel, 2000). Interestingly enough,
Ecological literature has developed a theoretical basis to answer most of the questions
listed above, in the context of foraging animals. For instance, it has been shown that
the dynamics of animal movement can be modelled by stochastic processes of the Lèvy
type (Viswanathan et al., 1996). However, later developments have argued that the
same behaviour is well described by a mixture of classical brownian walks (Benhamou,
2007). In this work, we take advantage of such body of knowledge in order to formulate
an explainable model of human’s visual attention mechanisms. As a natural outgrowth,
stochastic processes will be employed in order to provide a rigorous description of eye
movements. Results, obtained on a publicly available dataset, prove the efficacy of such
simile.

The thesis is organized as follows:

Chapter 2 gives a broad overview of the early approaches to computational modelling
of attentive eye guidance, together with most recent developments, mainly broad
by the computer vision community. In the same chapter, a criticism to some mod-
ern modelling practices is made and a novel model for the prediction of sequences
of eye movements on static images is presented.

Chapter 3 lays the basis of stochastic processes for the description of eye movements,
introduces the foraging perspective and how it can be applied to model human’s
oculomotor behaviour.

Chapter 4 presents a novel computational model of gaze deployment to audio visual
stimuli of social interactions, inspired by ecological models of foraging animals.
In particular the human observer is modeled as a stochastic composite forager
searching for valuable informative patches in a dynamic visual landscape. The
patch choice and residence times are derived from principles of Optimal Foraging
Theory. The dynamics of eye movements is described at the tiniest scale via a
Stochastic Differential Equation (SDE) with switching parameters.

Chapter 5 provides simulations, and an in depth statistical assessment of results. In
particular an ablation study of the proposed model is conducted in order to vali-
date the modelling assumptions, together with a comparison with state of the art
gaze control models. Remarkably, evidence is given of the non-discernibility be-
tween model simulated gaze data and real eye movements as recorded from eye
trackers, in a statistical sense.

Chapter 6 summarizes the key contributions of the thesis and presents some conclud-
ing remarks.
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CHAPTER2
Computational Models of Attentive Eye Guidance

ACCORDING to the braod definition of attention given by Corbetta (1998): "At-
tention defines the mental ability to select stimuli, responses, memories, or
thoughts that are behaviorally relevant among the many others that are behav-

iorally irrelevant". Crucially, such definition in the realm of visual attention, poses the
necessity of bringing into the game the concept of relevance of cues under specific tasks
or goals of the observer (behavioral relevance) . In other words, the attention allocation
does not uniquely depends on the stimuli, but it’s rather influenced by the internal state
of the subject.

As stated previously, this relentless information picking is accomplished through a
sequence of eye movements (overt attention). Such behaviour is conditioned by a covert
attentive selection mechanism based on task knowledge and goals of the observer in
order to enhance the perception process. It has been given evidence that covert attentive
mechanisms play an important role in guiding overt orienting based on eye movements
(Hoffman, 1998). It appears that explicit eye movements towards a specific region are
preceded by shifts of attention to the same location.

Moreover this coupling persists regardless of whether the eye movement is triggered
by bottom-up factors (sudden movements) or top-down influences like endogenous con-
trol, instructions or expectations (Hoffman, 1998). In other words, if the overt attention
mechanisms entail the explicit action of selecting a particular region of interest, the def-
inition of which regions of the stimuli can be marked as interesting is entrusted to the
covert attention mechanisms that are mediated by the goals (either internal or external)
of the observer.

Early approaches to modelling the gaze shift behaviour have their roots in the pio-
neering work on active vision (Aloimonos et al., 1988; Ballard, 1991) which integrate
the problem of of vision into an action-perception loop in which the sensory apparatus
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Chapter 2. Computational Models of Attentive Eye Guidance

of the organism acts actively on the environment, for instance by manipulating the view
point of the camera (action), in order to efficiently sample it (perception).

Such approaches as remarked by Rothenstein and Tsotsos (2008) overlooked the
link between gaze shifts (overt attention) and covert attention defined as the ability of
selection based on task knowledge and observer’s goals. The latter aspects, according
to Rothenstein and Tsotsos (2008) accounts the observer to a powerful heuristic to limit
search and make the overall problem of "search for information" tractable in terms of
computational complexity.

Under such rationale, a sound computational model of visual attention should take
into account both the eye movements and all such mechanisms of attentive selection
based on task knowledge that are practically carried out in pre-attentive computations.
These involve saliency, plans, objects and values (Schütz et al., 2011).

Such mechanisms require a distinction between so called bottom-up (saliency) and
top-down (plans, objects, values) attentional cues. Bottom-up factors are derived solely
from the visual scene in the form of features that induce a "reaction" of the observer
(sudden movements or sounds, high contrast regions etc...); such areas of the stimuli
are called salient and are usually represented spatially through saliency maps.

On the other hand, top-down attention is driven by cognitive factors such as knowl-
edge, expectations and current goals; Early evidence for top-down attentional control
where given by Yarbus (1967) which showed that, for the same scene, observers with
different tasks ("estimate age of people" vs. "estimate the material circumstances of
people" or simply "look freely") would produce very different eye movements.

All such attentional control mechanisms work jointly in order to define which parts
of the stimuli are important, thus telling where to look and in which order. Compu-
tational modelling of visual attention has to do with the explicit description of of this
complex machinery: covert and overt attention, bottom-up vs. top-down control, spatial
salience and the unfolding in time of eye movements.

The following sections aim at providing a general overview of the computational
models of attentive eye guidance that have been presented in the scientific literature.
Starting from the earliest approaches, mainly rooted in the computational psychology
field we will move to more recent ones tackled as computer vision and pattern recogni-
tion issues. Some of these models will be briefly described, discussing the main hurdles
concerning the modelling of gaze deployment together with some criticism; in this vein,
new experimental results will be provided.

2.1 Overview of early approaches

The problem of modeling visual attention has been initially tackled from the psycho-
logical point of view. Indeed, the psychological literature presents a variety of theo-
ries and models in this compound aiming at understanding human perception (Frintrop
et al., 2010).

In such vein, one of the most influential and known model is the Treisman’s Feature
Integration Theory (FIT) (Treisman and Gelade, 1980; Treisman, 1998); according to
FIT, different features are selected across the visual field in parallel at an early stage,
while objects are identified later and separately. Such features, are represented by dif-
ferent feature maps that are later fused to yield a master map which is the topographical
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2.1. Overview of early approaches
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Figure 2.1: General structure of a computational model of visual attention

representation of all the features.
Similarly to the Treisman’s model, Wolfe (1994) proposed the Guided Search Model,

another popular model which shares with the FIT many of the concepts and the archi-
tectural design.

Beside these approaches, there is a wide variety of psychophysical models on vi-
sual attention. Without wanting to be exhaustive, some notable example are the Biased
Competition Model by Desimone and Duncan (1995), the Koch and Ullman’s model
(Koch and Ullman, 1985) and Tsotsos’ Selective Tuning model (Tsotsos et al., 1995).
At a different level of explanation, other proposals have been conceived in terms of
connectionist models, such as MORSEL (Multiple Object Recognition and attentional
SELection, (Mozer, 1987)), SLAM (SeLective Attention Model, (Phaf et al., 1990)),
SERR (SEarch via Recursive Rejection, (Humphreys and Muller, 1993)), and SAIM
(Selective Attention for Identification Model by Heinke and Humphreys (2003)) subse-
quently refined in the Visual Search SAIM (VS-SAIM) (Heinke and Backhaus, 2011).

All such theoretical models, conceived in the psychological field, typically deal
with very simple stimuli like synthetical images. The goal of computational vision is to
deliver models that are eventually able to deal with more complex stimuli like natural
scenes. To this end, in the last 15-20 years a number of models of visual attention have
been proposed.

The general structure of all such models can be described as in Figure 2.1; despite
each system may vary in detail, most of them share such similar structure. A notable
example is the model by Itti et al. (1998), which is probably the most popular compu-
tational model of visual attention. Since its publication, the field flourished.

The model is the computational counterpart of the Koch and Ullman (1985) and
Treisman’s FIT models and relies on the computation of several features in parallel
that are then collected in maps that may be represented as gray scale images whose
brightness is proportional to the intensity of the feature at hand (color, intensity, orien-
tation) and are often called conspicuity maps. Such features are computed by a set of
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Chapter 2. Computational Models of Attentive Eye Guidance

Input	Image Conspicuity	Maps Saliency	'Master'	Map Gaze	Positions

Figure 2.2: Sample output of the model proposed by Itti et al. (1998)

linear center surround operations, mimicking the mechanism of visual receptive fields.
To this end, prior to feature computation, the input image is re-sampled at 8 different
scales via gaussian pyramids; center-surround is thus implemented as the difference
between fine and coarse scales. This allows detect locations which stand out from their
surround as happens in the retina, lateral geniculate nucleus, and primary visual cortex.

The conspicuity maps are then fused to a single saliency map (or Treisman’s master
map of location) via linear combination. The sequence of fixation location on the input
image is then determined by selecting the local maxima of the saliency map through a
winner-take-all (WTA) network, with transient inhibition of fixated locations to avoid
the model becoming stuck on the same portion of the stimuli, a mechanism usually
termed "inhibition of return" (IOR). Figure 2.2 depicts the output of such procedure on
a sample image.

This approach is strongly biologically motivated and shows how such a mechanism
might work in the human brain (Koch and Ullman, 1985).

Crucially, the sequential WTA selection mechanism allow the model produce the
sequence of fixation and saccades given a particular stimuli that mimic the overt atten-
tional control of humans’ visual system. Indeed, our oculomotor control mechanism
is in charge of deciding, at any time, which portion of the scene is worth choosing;
hence, in a crude summary, the aim of a computational model mimicking attentive eye
guidance boils down to answering the question: Where to look next?

By further abstracting the structure of the model given in Figure 2.1 one such ques-
tion can be practically addressed by providing an account of the mapping from visual
data of a natural scene, say I (raw image data representing either a static picture or a
stream of images), to a sequence of time-stamped gaze locations (rF1 , t1), (rF2 , t2), . . . ,
namely (Boccignone, 2016):
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2.2. Perceptual Representation: The Salience Conundrum

I→ {rF1 , t1; rF2 , t2; . . . } (2.1)

From the modelling standpoint, given a stimuli I, either static (image) or dynamic
(video) the only observations that are given are the sequence of locations of the scene
visited by the observer. In case of static stimuli the sequece of continuous eye move-
ments can be classified into the corresponding sequence of fixations and saccades; con-
versely, when dealing with videos, smooth pursuits should be taken into account. Here
we adopt the generic term of gaze shift to describe a sequence of either pursuits, sac-
cades or fixations. For the sake of notational simplicity, from now on, we will write
the time series {rF1 , t1; rF2 , t2; . . . } as {rF (1), rF (2), · · · }, thus adopting the compact
notation: (rFn , tn) = rF (n).

The common practice to derive the mapping 2.1, is to conceive it as a two step
approach:

(a) Compute the perceptual representation:

I→W (2.2)

(b) useW to generate the scanpath:

W → {rF (1), rF (2), · · · } (2.3)

Note how Figure 2.2 can be effectively described by this procedure.
By and large, recent literature in the field of computational modeling has been

mainly concerned with the first step, i.e. deriving a perceptual representation, typi-
cally in the form of a saliency map. This allowed to produce models able to answer the
question of where to look at on a given stimuli, thus putting aside the temporal dimen-
sion of the gaze deployment process. In the meanwhile, the second step answering the
question on How to look at it has been often overlooked. A deeper treatment of both
such questions is provided in the following sections.

2.2 Perceptual Representation: The Salience Conundrum

As stated earlier, building the perceptual representation of the stimuli, involves the
selection of Where to gaze at - features, objects, actions - and their location within
the scene. By and large (Tatler et al., 2011; Borji and Itti, 2013; Bruce et al., 2015;
Bylinskii et al., 2015), the computational modelling of visual attention has hitherto
been concerned with this particular aspect of the wider framework described earlier:
deriving a representationW . This is, in essence, the aim of the multitude of so called
saliency models.

2.2.1 Saliency Models

In a nutshell, saliency models are algorithms that take an image I(r) as input, and return
topographic mapsW(r) indicating the salience at each location r = (x, y) in the image
(the likelihood of fixating at r). This models are appealing since, apparently, they
represent a straightforward operational definition of visual attention - the allocation of
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Chapter 2. Computational Models of Attentive Eye Guidance

visual resources to the viewed scene (Bylinskii et al., 2015). As a consequence they
have gained currency for a variety of applications in computer vision, image and video
processing and compression, quality assessment (Nguyen et al., 2018). Indeed they put
the accent on the importance of particular cues inside the image/video, thus allowing
such models to deviate from the original role of tool employed to understand human
attentive behaviour (as conceived in the computational psychology field) but becoming
a way to process the image itself. This fact is particularly evident in modern deep
saliency models in which the black box nature of such architectures prevents the model
from any explanatory purpose.

In the celebrated model proposed by Itti et al. (1998), the mapping I → W was
performed via computation of a set of conspicuity maps, later fused into a saliency map,
by relying on simple features of the image (color, intensity and orientation computed
via gabor pyramids). Such approach can be easily recognized as a bottom-up one: it is
assumed that the attention of the observer is mainly captured by the low level cues of
the scene. At least in the early implementation, this model does not take into account
the top-down information.

There has been a long debated controversy concerning the bottom-up vs. top-down
nature of eye guidance control (Egeth and Yantis, 1997; Tatler et al., 2011), however
recent studies and empirical evidence, suggest that factors such as context (Torralba
et al., 2006), spatial biases (Tatler and Vincent, 2009), affect and personality (Cuculo
et al., 2018), dynamics of attention deployment (Tatler et al., 2005; Schütt et al., 2019)
are likely to play a key role and might contribute in subtle ways to effectiveness and
performance of saliency models (Tatler et al., 2011; Kummerer et al., 2017; Kong et al.,
2018; Schütt et al., 2019).

Nonetheless, up to this date, as stigmatised in many studies (Foulsham and Under-
wood, 2008; Einhäuser et al., 2008; Tatler et al., 2011; Borji and Itti, 2013; Bruce et al.,
2015; Bylinskii et al., 2015), the majority of computational models have retained a cen-
tral place for low-level visual conspicuity without referring to the semantic content of
the scene.

The weakness of the bottom-up approach has been largely weighed up in the visual
attention realm (Tatler et al., 2011; Foulsham and Underwood, 2008; Einhäuser et al.,
2008; Schütz et al., 2011); indeed, it has been argued that early salience has only an
indirect effect on attention by acting through recognized objects: observers attend to
interesting objects and salience contributes little extra information to fixation prediction
(Einhäuser et al., 2008). Moreover Schütz et al. (2011) argued on the plausibility of a
multitude on representational levels to account for: 1) salience, 2) objects, 3) values,
and 4) plans.

To overcome this pitfall, early saliency can be top-down tuned to improve its fixa-
tion prediction when dealing with objects, faces, text regions or contextual cues. In this
approaches, besides the bottom-up information (saliency), the set of objects of interest
at hand is determined; for example, Cerf et al. (2008) and Marat et al. (2013) used a
face detection module to investigate the role of human faces in the attention selection
mechanism. Same rationale has been used for generic objects by Chikkerur et al. (2010)
or text (Cerf et al., 2008; Clavelli et al., 2014). Remarkably Torralba (2003) showed
how the even gist of the scene, i.e. its semantic category, like "office" or "forest" guides
the eye movements.
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2.2. Perceptual Representation: The Salience Conundrum

To be precise, it’s worth remarking that the term saliency has been historically
conceived to describe the topographic representation of the occurrence of bottom-
up features. In the visual attention realm when top-down (relevance) and bottom-up
(saliency) mechanisms are combined for eye guidance, the resulting map is termed
priority map (Egeth and Yantis, 1997). However, in the "modern jargon", despite of
this heuristic addition of high-level processing capabilities, these are still referred to as
saliency models (Borji and Itti, 2013; Furnari et al., 2014; Bruce et al., 2015; Bylinskii
et al., 2015, 2016, 2019). Throughout the following discussions we will deliberately
use the term saliency or saliency map subsuming the latter meaning.

Interestingly enough, mixing bottom-up features and top-down information (mined
with the help face or object detectors and scene context) together with the adoption
of machine learning techniques to find the best combination of such features, allowed
the field of saliency prediction to become a really active subarea of computer vision.
Such view of the problem has paved the way to the definition of saliency models in
terms of predictors (either, classifiers or regressors), for which a number of learning
techniques were readily available. Kienzle et al. (2006) were the first who adopted
this approach by learning the discriminant function of patches of the images from eye
tracking data using a Support Vector Machine (SVM). A similar approach was then
adopted by Judd et al. (2009) who trained a linear SVM from human fixation data using
a set of low, middle and high level features to define salient locations. In a similar vein,
Yan et al. (2010); Lang et al. (2011); Jiang et al. (2015a) proposed methods relying
on sparse representation of "feature words" (atoms) encoded in salient and non-salient
dictionaries; these are either learned from local image patches or from eye tracking data
of training images. Approaching the problem of saliency prediction from this point of
view is appealing, since allows to asses the relevance of visual features in a data driven
way by means of optimal predictors (this fact is further exploited in the modern wave
of deep saliency models treated below). On the other hand, as remarked by Borji and
Itti (2013), this approach makes models "data-dependent, thus influencing fair model
comparison, slow, and to some extent, black-box". Indeed is misses the explanatory
base as it does not accounts for how attention adapts in humans.

2.2.2 Assessing the performance of saliency models

An issue that straightforwardly raises is how to measure and benchmark the perfor-
mance of a saliency model accounting for the map I 7→ W . The general idea is to
measure the capability of the model output, namely the saliency map W , to predict
fixations as if they were performed. The overall procedure of evaluation is depicted in
Figure 2.3.

In a nutshell, eye fixations {r(s,i)
F (1), r

(s,i)
F (2), · · · } are typically used as to derive the

ground-truth. These are collected in an eye-tracking experiment involving s = 1 · · ·NS

subjects on a chosen data set {Ii} of i = 1 · · ·NI images (or videos); first, raw data
is collected from human observers through eye trakers, which record eye gaze position
and trajectories. Next, such data is parsed and classified into a sequence of fixatons
(scanpaths). Finally, fixation positions are used to build the 2D empirical fixation map.
Some metrics use the original binary location map of fixations, sayMB. Alternatively,
the discrete fixations can be converted into a continuous distribution, a fixation map
(a.k.a heat map or attention map when fixations are weighted by fixation time), MD
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Chapter 2. Computational Models of Attentive Eye Guidance

Figure 2.3: Gaze data recording via eye-tracking and modelling. Given a stimulus (image I),
the observer’s gaze trajectory is sampled and recorded. Raw data are parsed and classified
in fixations sequences (scanpaths). Collecting fixations from all subjects the 2D empirical
fixation distributionMD is estimated. On the model side, for the same stimulus a saliency
map W is derived; if available, a gaze shift model can be exploited for sampling scan-
paths based on W . The overall model performance is routinely evaluated by comparing
either the model-generated saliency map S with the empirical MD map (light blue two-
head arrow) and/or, albeit less commonly, by confronting the model-generated scanpaths
{r̃F (1), r̃F (2), · · · }, with the actual ones {rF (1), rF (2), · · · } (red two-head arrow).

12



i
i

“main” — 2021/2/19 — 17:53 — page 13 — #33 i
i

i
i

i
i

2.2. Perceptual Representation: The Salience Conundrum

(Bylinskii et al., 2019). Precisely, for each stimulus Ii the map

{r(s,i)
F (1), r

(s,i)
F (2), · · · }NSs=1 7→ MD(i), (2.4)

is computed as an empirical fixation density (Kümmerer et al., 2015; Le Meur and
Baccino, 2013). Eventually, a metric is evaluated either in the form µ(W ,MB) or
µ(W ,MD), the result being a number assessing the similarity or dissimilarity between
W , and M. To this end a number of metrics have been proposed (Bylinskii et al.,
2019) together with benchmarking datasets (Judd et al., 2012; Borji et al., 2013; Borji
and Itti, 2015). This is the typical way of assessing saliency models, in particular is the
one adopted in the popular MIT Saliency Benchmark (Kümmerer et al., 2018; Bylinskii
et al., 2019; Judd et al., 2012).

Less commonly, a gaze shift model can be employed in order perform the mapping
W → {rF (1), rF (2), · · · } from the generated saliency map to a new sequence of fixa-
tions (model-based scanpath) which is then compared with the real ones (red arrow in
Figure 2.3).

The MIT Saliency Benchmark, by now, collects the results of more than 90 different
models which are compared in terms of 7 different metrics, namely:

• Information Gain (IG) (Kümmerer et al., 2015): is the difference in average log-
likelihood between the model’s predictions and an image-independent center-bias
prior distribution, measured in bits per fixation.

• Area Under the Curve (AUC) (Tatler et al., 2005): The saliency map is treated as a
binary classifier to separate positive from negative samples at various thresholds.
The true positive (tp) rate is the proportion of saliency map values above threshold
at fixation locations. The false positive (fp) rate is the proportion of saliency map
values above threshold at all pixels.

• Shuffled Area Under the Curve (sAUC) (Riche et al., 2013): is a version of the
Area Under ROC curve measure. The saliency map is treated as a binary classifier
to separate positive from negative samples at various thresholds. The true posi-
tive (tp) rate is the proportion of saliency map values above threshold at fixation
locations. The false positive (fp) rate is the proportion of saliency map values
above threshold at pixel locations that are fixated in OTHER IMAGES. In this
implementation, all sample values are used as thresholds.

• Normalized Scanpath Saliecy (NSS) (Peters et al., 2005): measures the mean
saliency value at fixated locations of the normalized (zero mean, unit variance)
saliency map.

• Correlation Coefficient (CC): is the linear correlation coefficient between a model
saliency map and an empirical saliency map gained from convolving the fixation
locations with a Gaussian kernel.

• Kullback-Leibler Divergence (KLDiv): the Kullback-Leibler divergence normal-
izes the model’s saliency map and an empirical saliency map to be densities by
dividing by the sum and then computes the Kullback-Leibler divergence between
these two distributions. It is a non-symmetric measure of the information lost
when the saliency map is used to estimate the empirical saliency map.
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• Similatiy (SIM): this similarity measure is also called histogram intersection and
measures the similarity between two different saliency maps when viewed as dis-
tributions. It is computed by first normalizing the model’s saliency map and an
empirical saliency map to be densities by dividing by the sum and then adding
the pixelwise minimums of both distributions.

All models are compared in terms of such metrics with a Gold Standard and a
Baseline model.

The Gold Standard model is defined as a Gaussian Kernel Density Estimate; there
are two versions of it: the crossvalidated performance is the leave-one-subject-out per-
formance where for each subject and image the fixations of all other subject on the
same image are used to construct a kernel density estimate that is then evaluated on the
remaining subject. The kernel size and the mixture weight of a uniform regularization
component are fitted by maximizing the cross-validated log-likelihood of the model.
In addition to this crossvalidated version of the model, we also report the performance
of a KDE model that uses all fixations on each image with the same parameters as the
cross-validated model. One can interpret the cross-validated performance as a lower
bound on the explainable performance and the joint performance as an upper bound.

The Baseline model is represented by a center bias: is again a Gaussian Kernel
Density Estimate. However, unlike the gold standard, it uses the fixations of all other
images to predict the fixations on any given image. Kernel size and the mixture weight
are again fitted by maximizing the model log-likelihood.

By scrolling on the results of the benchmark two particular facts can be noted: the
first one is that many models rank below the center bias baseline model. This list
includes the saliency map produced by the Itti et al. (1998) model, thus giving evidence
of the importance of top down information. The second thing that stands out, is that
the top ranking models mainly belong to the category of deep saliency models. Indeed,
after a short period of performance saturation around 2010 to 2014, saliency models
experienced a sudden burst of performance improvement mainly thanks to the advent
of deep learning and the release of large scale crowd sourced data (Jiang et al., 2015b).

2.2.3 The new wave of deep saliency models

Since Krizhevsky et al. (2012) won the ImageNet competition with the Deep Con-
volutional Neural Network called AlexNet, the field of Computer Vision was literally
revolutionized. Unavoidably, having become a subfield of Computer Vision, saliency
prediction was not immune to such significant shift. The success of CNNs on large scale
object recognition tasks, has given rise to a new wave of saliency models performing
sensibly better than traditional ones based on hand-crafted features.

The general idea of a deep saliency prediction model is to take advantage of deep
models pre-trained on various tasks (object recognition or detection, scene classifica-
tion) and fine tune them to predict saliency. The turning point in the field was reached
when the large scale dataset SALICON (Jiang et al., 2015b) was released, thus enabling
a proper fine-tuning even for deeper models. This contributed to a big progress of deep
saliency prediction model and several new effective architectures have been proposed
(for an exhaustive review of deep saliency models, the reader is redirected to the work
of Borji (2019)).
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The reason for such effectiveness lies in the possibility of exploiting the concepts
learned by the network’s convolutional filters for the saliency prediction task. Such
concepts may by high level (faces, objects, actions) or low level (orientation, colour,
ecc) depending on the position of the filter in the network hierarchy. The role of the
deep saliency model is thus to learn to combine the feature activation maps from differ-
ent layers in order to achieve the best mix of bottom-up and top-down features. Indeed,
leveraging the end to end nature of such architectures, these concepts can be learned
rather than hand-crafted. Crucially, the higher level concepts embedded in such deep
models are the reason for the big performance gap between early bottom-up approaches
and modern ones (Borji, 2019). This fact provides practical evidence of the usefulness
of high-level image features for prediction purposes (Bylinskii et al., 2016; Kummerer
et al., 2017).

The model proposed by Vig et al. (2014) was the first attempt to apply deep leaning
to saliency prediction: their approach basically consists in extracting a large set of
features from a pre-trained CNN. The optimal subset of such representations is then
found in a data driven way through an optimization procedure. The optimal features
are then used as predictors of a linear SVM model which learns the saliecy discriminant
function. This work paved the way to the birth of a plenty of new deep saliency models
(Borji, 2019).

One of the most known of such models is called DeepGaze I by Kümmerer et al.
(2014); this model is a pre-trained AlexNet whose outputs of the convolutional layers
were used to create and train a linear model to compute image salience. Remarkably,
this model reported results which beated the state of the art by a large margin, even
if comparing with Vig et al. (2014). More recently Kummerer et al. (2017) released
the DeepGaze II model; it further explores the unique contributions between low-level
and high-level features towards fixation prediction and exhibits better performances
than his ancestor DeepGaze I. It is built upon the more recent (and deeper) VGG-19
architecture (Simonyan and Zisserman, 2014), trained to identify objects in images. In
particular, the activations of a subset of the pre-trained VGG feature maps for a given
image are passed to a second neural network (the readout network) consisting of four
layers of 1 × 1 convolutions. The parameters of VGG are held fixed through training,
thus only the readout network learns about saliency prediction. This results in a final
saliency map, which is then blurred, combined with a center bias and converted into a
probability distribution by means of a softmax function. The computation of the center
bias, acting as a prior, is carried out by averaging all the fixations collected from real
observers on the training dataset (Kummerer et al., 2017).

2.2.4 A criticism to saliency maps

Crucially, saliency maps do not account for temporal dynamics. They are by and large
spatially evaluated across all fixations, precisely by comparing to mapsMB, orMD

derived from fixations accumulated in time after the stimulus onset until the end of the
trial (Eq. 2.4).

As a matter of fact, surmising that W is predictive of human fixations does not
entail an actual mechanism of fixation generation,Wi 7→ {r̃(s,i)

F (1), r̃
(s,i)
F (2), · · · } to be

compared against actual fixation sequences {r(s,i)
F (1), r

(s,i)
F (2), · · · }. The assessment of
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the predictive capability of a model is just to be understood as the indirect measurement
of any metric µ as introduced above. When using the mapping of Eq. 2.4, it is implicitly
assumed that fixations, once collected, are exchangeable with respect to time ordering
{1, · · · , n}, namely

{r(s,i)
F (1), r

(s,i)
F (2), · · · r(s,i)

F (n)} = {r(s,i)
F (π(1)), r

(s,i)
F (π(2)), · · · , r(s,i)

F (π(n))}, (2.5)

∀π ∈ Π(n) where Π(n) is the group of permutations of {1, · · · , n}. This assumption
implies that any dynamical law r̃

(s,i)
F (t) = f(r̃

(s,i)
F (t − 1),Wi) that takes as input the

perceptual representation of the i-th image and the previous fixation location (as a sys-
tem state) and returns the next location of fixation as its output is dismissed. However,
dynamics is important in many respects. For instance, there is evidence for the exis-
tence of systematic tendencies in oculomotor control (Tatler and Vincent, 2009): eyes
are not equally likely to move in any direction. Yet, apart from the well known center
bias (Tatler, 2007), motor biases can be actually taken into account only when scanpath
generation is performed.

In such perspective, Le Meur and Coutrot (2016) have proposed saccadic models as
a new framework to predict visual scanpaths of observers while they freely watch static
images. In such models the visual fixations are inferred from bottom-up saliency and
oculomotor biases (captured as saccade amplitudes and saccade orientations) that are
modeled using eye tracking data. Performance of these models can be evaluated either
by directly comparing the generated scanpaths to human scanpaths or by computing
new saliency maps, in the shape of densities from model generated fixations (red arrow
in Figure 2.3). There is a limited number of saccadic models available, see Le Meur
and Coutrot (2016) for a comprehensive review; generalisation to dynamic scenes have
been presented for instance in Boccignone and Ferraro (2014); Napoletano et al. (2015).
A remarkable result obtained by saccadic models is that by using simulated fixations
{r̃(s,i)

F (1), r̃
(s,i)
F (2), · · · } to generate a model-based fixation map, the latter has higher

predictive performance than the raw salience map W , in terms of similarity/dissimi-
larity µ with respect to human fixation maps. Beyond the improvement, it is worth
noting that even in this case the model-generated attention map is eventually obtained
a posteriori, as a 2-D spatial map of accumulated fixations. Such problem is somehow
attenuated when dynamic stimuli (videos) are taken into account, though, the temporal
unfolding as learned in a data-driven way presents complex albeit structured temporal
patterns (Boccignone et al., 2019b; Coutrot and Guyader, 2014b), that deserve being
taken into consideration.

2.3 The unfolding of visual attention (and gaze shifts)

Going back to the broader description of a computational model of attentive eye guid-
ance given in Eq. 2.1, if the fist step (Eq. 2.2) has received a lot of attention as witnessed
by the huge literature and the raise of benchmarking competitions, the second one (Eq.
2.3), has been much less noticed. This is surprising, given that the most cited work in
the field (Itti et al., 1998), explicitly addresses the problem of How to look at a picture
rather than just Where, albeit by means of a simple WTA procedure.

Answering the How question when dealing with visual attention brings with it some
hurdles; indeed this single statement hides a number of other related questions: How
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much time do I need to spend looking at a certain portion of the stimuli?, How do I
select which part of the scene is "interesting" at a given time? and How do I decide
where to look next?.

Giving an exact answer to each of these question is tricky, mainly due to the fact
that the attentive process is subject to a certain amount of randomness: as a matter of
fact two people looking at the same exact stimuli will surely produce different gaze
position sequences; indeed the same fact happens even in case the same person looks
at the same scene twice. This is probably likely to be originated from endogenous
stochastic variations that affect each stage between a sensory event and the motor re-
sponse: sensing, information processing, movement planning and executing (van Beers,
2007). Nonetheless, the study of eye movements revealed many systematic tendencies
and common biases as well as a structured dynamics (Tatler and Vincent, 2008; Schütt
et al., 2019). As a matter of fact, when dealing with gaze shifts a number of cues should
be taken into account, namely systematic tendencies, variability and dynamics.

2.3.1 Systematic tendencies and biases

It has been widely demonstrated that regardless of the visual stimuli, the gaze behavior
exhibits some systematic tendencies and biases; these can be thought of as regulari-
ties that persist across all instances of, and manipulations to, behavioural tasks (Tatler
and Vincent, 2008). There exists a good number of such tendencies that character-
ize gaze behavior. One remarkable example is the amplitude distribution of saccades
and microsaccades that typically exhibit a positively skewed, long-tailed shape (Tatler
et al., 2011; Dorr et al., 2010; Tatler and Vincent, 2008). This is shown in Figure
2.4b, where the empirical distribution of saccades amplitude collected on the MIT1003
dataset (Judd et al., 2009) is depicted. Other paradigmatic examples of systematic
tendencies in scene viewing are: initiating saccades in the horizontal and vertical di-
rections more frequently than in oblique directions; small amplitude saccades tending
to be followed by long amplitude ones and vice versa (Tatler and Vincent, 2008) or
the attraction of the observer towards the center of the image (Center Bias). The latter
is depicted in Figure 2.4a which shows the heatmap of all the fixation recorded from
human subjects on the different images of the MIT1003 dataset. Notably, most of the
fixation appear to be concentrated in the center of the image.

(a) Heatmap of all the fixations (b) Saccades amplitude distribution

Figure 2.4: Systematic tendencies on the MIT1003 dataset.
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This tendency is caused by a number of possible factors: displacement bias of an
image content (known as photographer bias), motor bias (related to the experiment pro-
tocol) as well as physical preferences in orbital position (Tseng et al., 2009; Rothkegel
et al., 2017). In a remarkable study, Tatler and Vincent (2009) provided striking evi-
dence that a model based solely on these biases and therefore blind to current visual
information can outperform salience-based approaches.

2.3.2 Variability

When looking at a scene, even though the attentional attractors may be the same and
despite the systematic tendencies, different subjects will look in different ways. In other
words, there is a small probability that two observers will fixate exactly the same loca-
tion at exactly the same time. This effect is observable either in free viewing conditions
or task specific ones (in the former case the effect being more marked). Such important
amount of variability can be noticed even when semantically rich objects like faces are
present; this fact can be appreciated by looking at Figure 2.5. It can be noted as the
5 different subjects (Figure 2.5(b) to Figure 2.5(f)), although spotting more or less the
same regions of the image (face, hands), have different exploration strategies.

Notably, consistency in fixation locations selected by observers decreases over the
course of the first few fixations after stimulus onset (Tatler et al., 2011) and can become
idiosyncratic. Nonetheless, variability is also exhibited by the same subject along dif-
ferent trials on equal stimuli.

In the literature, few works have addressed the problem of variability. The WTA
approach proposed by Itti et al. (1998), or variants such as the selection of the proto-
object with the highest attentional weight (Wischnewski et al., 2010) are themselves
deterministic procedures. Even when probabilistic frameworks are used to infer where
to look next, the final decision is often taken via the maximum a posteriori (MAP)
criterion which again is a deterministic procedure (Elazary and Itti, 2010; Boccignone,
2008; Najemnik and Geisler, 2005; Chernyak and Stark, 2001).

Figure 2.5(a) depicts the typical output of the Itti’s model (Itti et al., 1998), i.e. the
sequence of fixations produced by the WTA procedure. Setting aside the fact that the
lack of top down information prevents the model to correctly select the high level cues
of the scene (face, hands ecc.), the important thing to note here is that the WTA ap-
proach will produce the same output if ran multiple times. In other words, given the
stimulus I, the mapping W → {rF (1), rF (2), · · · } is a deterministic function. Con-
versely, the sequence of eye movements on a given stimuli should be conceived, in a
more realistic way, as a realization of a stochastic process.

2.3.3 Dynamics

In Section 2.2.4 we made a criticism on the use of saliency maps as a proxy for at-
tention deployment. Indeed in a plain saliency map the temporal information of each
of the fixations has been squeezed and the map shows the likelihood of fixating a par-
ticular region of the stimuli as “freezed” at the end of the viewing process (i.e, after
having collected all fixations on stimulus along an eye-tracking session). As a conse-
quence saliency maps are not able to describe the dynamic nature of visual attention.
It’s worth saying that such pitfall is somewhat mitigated when considering dynamic
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(a) Deterministic WTA mecha-
nism

(b) Subject 1 (c) Subject 2

(d) Subject 3 (e) Subject 4 (f) Subject 5

Figure 2.5: (a) Sequence of fixatons produced by the WTA procedure of Itti et al. (1998). (b)-(f)
Sequence of fixations for 5 different subjects from the MIT1003 dataset.

stimuli (videos), but is widely overlooked on static ones (images). Indeed, even static
stimuli yield an attention allocation with it’s own dynamics. This very fact has been
demonstrated by Schütt et al. (2019); in this recent work, the authors have for the first
time, considered the temporal evolution of the fixation density in the free viewing of
static scenes. They provide evidence for a fixation dynamics which unfolds into three
phases:

1. An initial orienting response towards the image center;

2. A brief exploration, which is characterized by a gradual broadening of the fixation
density, the observers looking at all parts of the image they are interested in;

3. A final equilibrium state, in which the fixation density has converged, and subjects
preferentially return to the same fixation locations they visited during the main
exploration.

Beyond the theoretical insights offered by their analyses, by monitoring the perfor-
mance of the empirical fixation density over time, they also pave the way to a more
subtle and principled approach to unveil the actual predictive performance of saliency
models (Schütt et al., 2019). It thus may be interesting to understand to what extent
the inclusion of the dynamics of gaze shifts when free viewing static images, brings
some benefits. At least from the theoretical point of view, neglecting such information,
by considering a static saliency map as per se predictive of overt attention may lead to
sub-optimal results.
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2.3.4 Gaze shift models

The operational description of all the aspects described thus far is accomplished via
Gaze Shift or Saccadic models. These are procedures that ingest a perceptual repre-
sentation of the stimuli W (whatever it may be) and produce a sequence of fixation
locations. In what follows, we give a brief overview of some of the saccadic mod-
els that have been proposed in the literature, highlighting the distinction between the
models conceived to deal with either static or dynamic stimuli. Unfortunately, only a
handful of models have been proposed for predicting gaze shift dynamics, and most of
these are conceived for processing static image input.

Gaze shift models on static stimuli

When dealing with static stimuli (images), the most celebrated example is of course
the Itti et al. (1998) model, the pioneering work of the field; as previously pointed
out, however, this model lacks some of the critical aspects of of gaze shifts, namely
variability and the modelling of systematic tendencies.

Some of these aspects where lately addressed, for instance by Le Meur and Liu
(2015) who proposed a model to predict observers’ scan paths on static images relying
on bottom-up saliency; most importantly, the oculomotor biases are taken into account
by sampling from empirical distributions of saccades amplitude and orientation com-
puted on publicly available datasets.

Wang et al. (2011) proposed a computational model of scanpath prediction based on
the principle of information maximization. The model integrates three related factors
as driven forces to guide eye movements sequentially - reference sensory responses,
fovea-periphery resolution discrepancy, and visual working memory.

Sun et al. (2014) presented a statistical framework for modelling both saccadic eye
movements and visual saliency which are modelled based on super-Gaussian compo-
nent (SGC) analysis.

Wloka et al. (2018) proposed STAR-FC, a model for saccades generation on static
stimuli based on the integration of high-level and object-based saliency and peripheral
lower-level feature-based saliency

More recently, solutions relying on deep networks have been proposed; Assens
et al. (2018a) proposed PathGAN, a deep neural network for visual scanpath predic-
tion trained on adversarial examples. The same authors presented a deep model called
SaltiNet (Assens et al., 2018b) to predict scanpaths and saliency on 360-degree images.

Xia et al. (2019) address the problem of saccadic scanpath prediction by introduc-
ing an iterative representation learning framework in which eye movements are the
outcome of the current representation which is then updated based to the gaze shift.
The fixation selection relies on a perceptual residual which is computed by means of a
an auto-encoder network. Xia and Quan (2020) used a similar iterative representation
model to predict human scanpaths of web pages. Bao and Chen (2020a) proposed a
deep convolutional saccadic model which simultaneously predicts the foveal saliency
maps and fixation durations, both aspects are handled by convolutional neural networks
(CNNs). Sun et al. (2019) proposed a recurrent mixture density network based frame-
work to predict human-like scanpaths on static images; the model predicts both the
sequence of fixations and their duration relying on both bottom up saliency and seman-
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tic features extracted by convolutional neural networks.
Of key interest for the forthcoming sections of the present chapter is the model

proposed by Boccignone and Ferraro (2004), named Constrained Lèvy Exploration
(CLE); briefly, the CLE considers the gaze motion as given by the stochastic dynamics
of a Lévy forager moving under the influence of an external force (which, in turn,
depends on a salience or attention potential field). Namely, at time t the transition from
the current position r(t) to a new position rnew(t), r(t)→ rnew(t), is given by:

rnew(t) = r(t) + g(W(r(t))) + η. (2.6)

The trajectory of the variable r is determined by a deterministic part g, the drift -
relying upon salience or fixation density -, and a stochastic part η, where η is a random
vector sampled from a heavy-tailed distribution, accounting for motor biases.

The Lévy forager’s dynamics formalised in Eq.2.6 can be written:

rnew(t) = r(t)−∇V + η, (2.7)

so that the new gaze position is determined by: a) the gradient of V , the external
force field shaped by the perceptual landscape, V (·, t) being defined as the time varying
scalar field

V (x, y, t) = exp(−τVW(x, y, t)), (2.8)

b) the stochastic vector η with components

ηx = l cos(θ), ηy = l sin(θ), (2.9)

where the angle θ represents the flight direction and l is the jump length. Direction and
length are sampled from the uniform and α-stable distribution, respectively:

θ ∼ Unif(0, 2π), (2.10)
l ∼ ϕ(W)f(l;α, β, γ, δ). (2.11)

Along the extensive stage, θ and l summarise the internal action choice of the for-
ager and the function ϕ(W) modifies the pure Levy flight, since the probability to move
from one site to the next site depends on the “strength” of a bond

ϕ(W) =
exp(−βP (W(r(t))−W(rnew(t))))∑
r
′
new

exp(−βP (s(r(t))−W(r′new(t))))
(2.12)

that exists between them. The shift proposal is weighed up according to an accep-
t/reject Metropolis rule that depends on the perceptual gain ∆W and on “temperature”
T . The values of T determine the amount of randomness in scanpath generation. If no
suitable shift r(t)new has been selected, the current fixation point r(t) is retained.
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Gaze shift models on dynamic stimuli

For what concerns gazes shift models conceived to deal with dynamic stimuli, only few
models have been proposed:

Boccignone and Ferraro (2014) proposed Ecological Sampling, a stochastic model of
eye guidance on videos, which assumes the gaze sequence to be generated by a stochas-
tic process. The gaze shift dynamics is implemented in terms of a stochastic differential
equation driven by α-stable noise, and grounds its motivation in the Lévy flight ap-
proaches to foraging displacements (Viswanathan et al., 2011; Wosniack et al., 2017).
The perceptual representation is formalised in terms of proto-objects, i.e. units of vi-
sual information that can be accessed by selective attention and subsequently validated
as actual objects. The eye guidance strategy consists of choosing where to look next
by sampling the appropriate motor behaviour (i.e., the action to be taken: fixating, pur-
suing or saccading), conditioned on the perceived world and on previous actions. The
overall control strategy is based on a complexity measure of the perceived time-varying
scene, while the behavioural state (i.e., the action to be taken: fixating, pursuing or sac-
cading) is obtained by a composite sampling strategy which depends on the complexity
of the perceived scene at a given time. Complexity is computed from interest points
that are stochastically sampled from the proto-object representation.

More recently, Zanca et al. (2019) proposed G-Eymol; the model generates gaze trajec-
tories via differential equations of motion derived through variational laws somehow
related to mechanics. The focus of attention is subject to a gravitational field. The
distributed virtual mass that drives eye movements is associated with the presence of
details and motion in the video. The inhibition of return (IOR, Itti and Koch (2001))
mechanism is employed to avoid the model being stuck in the same portions of the vi-
sual landscape. Unlike most current models, the proposed approach does not estimate
directly the saliency map, but the prediction of eye movements allows to integrate over
time the positions of interest. The process of inhibition-of-return is also supported in
the same dynamic model with the purpose of simulating fixations and saccades. The
differential equations of motion of the proposed model are numerically integrated to
simulate scanpaths on both images and videos.

The virtual masses are proportional to the amount of details and motion of the scene,
defined as the magnitude of the gradient and the magnitude of the optical flow, respec-
tively. A so defined model, clearly relies on a purely bottom-up approach. However,
authors suggest that top-down information can considered by defining object-based
gravitational attractors. The original implementation relies on the Haar cascade face
detection (Viola and Jones, 2004), that allows faces as additional masses. The G-Eymol
equation of motion are deterministic. However, the stochasticity requested to sample
different scan paths mimicking different observers can be achieved by perturbing the
initial conditions of the equations.

2.3.5 Evaluation of gaze shift models

Similarly to the saliency models, the assessment of gaze shift models raises the prob-
lem of defining a performance metric able to capture all the hurdles carried by a fixation
sequence. Unlike classic work on saliency estimation, where standard metrics are avail-
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able and widely adopted, here there is a lack of consensus about the most appropriate
evaluation metrics to be used (Le Meur and Baccino, 2013; Anderson et al., 2015).

The evaluation procedure of gaze shift models can be visually described by follow-
ing the red arrow in Figure 2.6. In particular, given the real scanpath recorded from the
s-th subject Rs and the u-th fixation sequence generated from the gaze shift model to
be evaluated Ru, a scanpath metric is the function µ(Rs,Ru) returning a number (or
a vector of values) representing the degree of similarity/dissimilarity between the two
fixation sequences.

In recent years, a number of measures have been proposed, each one able to deal
with specific aspects of scan path similarity; as a consequence, the choice of the ap-
propriate scanpath metric depends on the particular feature that one wants to measure.
Some of the most widely used metrics and their qualitative behaviour are briefly re-
capped below, but for an in-depth review and discussion see Anderson et al. (2015).

ScanMatch

One of the most successful ways of comparing scanpaths is based on the string edit
distance, normally used to compare sequences of characters. In particular, a set of
edits (insertions, deletions, substitutions) are preformed to transform one string into the
other. The similarity between the two sequences is given by the number of editing steps
required for the transformation. This method has been adopted for the comparison of
scanpaths (Brandt and Stark, 1997). In order to do so, the image is divided in cells
to which is assigned a unique character. Fixation sequences can thus be treated as
sequences of characters. This method has been later refined by Cristino et al. (2010)
who proposed the ScanMatch metric.

ScanMatch is based on the Needleman–Wunsch algorithm used in bioinformatics
to compare DNA sequences (Cristino et al., 2010). The two fixation sequences are first
spatially and temporally binned, then re-coded in order to obtain sequences of letters
that represent the spatial (position), temporal (duration) and order information. The
obtained letter sequences are then compared by maximizing the similarity score com-
puted from a substitution matrix that provides the score for all letter pair substitutions
and a penalty gap. The algorithm returns for each pair of scan paths a score in the
range [0, 1]. The main advantage of ScanMatch is that it can take into account spatial,
temporal, and sequential similarity between scanpaths, thus giving an overall summary
of the resemblance between two fixation sequences; on the other hand ScanMatch is
not able to provide a description of the performance w.r.t. the different dimensions of
gaze dynamics. Moreover it suffers from the quantization issues inherent to the spatial
and temporal binning process.

MultiMatch

The MultiMatch metric (Jarodzka et al., 2010; Dewhurst et al., 2012) is a multi-dimensional,
vector-based method to measure scanpath similarity. The algorithm ingests the two se-
quences to be compared, which may differ in length; both scanpaths are then simplified,
i.e. successive fixations are combined if they are within a given distance or within a
given directional threshold of each other. Subsequently, scanpaths are aligned based
on their shape using a dynamic programming approach. Finally, the method returns as
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output a 5-dimensional vector, each dimension describing the degree of similarity with
respect to different aspects of the scanpaths, namely:

• Shape: Is computed as the vector difference between aligned saccade pairs, nor-
malized by the screen diagonal. It is sensitive to spatial differences in fixation
position and measures the overall similarity in shape between the two fixation
sequences.

• Length: Is computes as the absolute difference in length between endpoints of
aligned saccade vectors, normalized by the screed diagonal. This measure is sen-
sitive specifically for the saccades amplitude and discards information related to
other aspects like direction, position or duration of fixations.

• Direction: Is the angular distance between aligned saccade vectors normalized
by π. This dimension gives precise insights on the similarity between saccades
direction, bt not on any other feature.

• Position: Is the Euclidean distance between aligned fixations, normalized by the
screen diagonal. This measure is also sensitive to saccades amplitude and direc-
tion.

• Duration: Is the absolute difference in fixation duration between aligned fixa-
tions, normalized by the maximum duration.

Each dimension is normalised in order to have values in the range [0, 1], higher
values meaning higher similarity (1− distance).

The main advantage of the MultiMatch method is that it provides several measures
to assess scanpath similarity, each measure capturing a unique aspect of scanpath re-
semblance. On the other hand, the scanpath simplification procedure makes unclear
how sensible is the metric with respect to variations (Anderson et al., 2015).

Recurrence Quantification Analysis (RQA)

Recurrence Quantification Analysis (RQA) is typically exploited to describe complex
dynamical systems. Recently (Anderson et al., 2013) it has been adopted to quantify
the similarity of a pair of fixation sequences by relying on a series of measures that are
found to be useful for characterizing cross-recurrent patterns (Anderson et al., 2015).
Given two fixation sequences, R1 and R2, RQA calculates the cross-recurrence for
each fixation of two scanpathsR1,i,R2,j (for scanpaths of different lengths, the longer
one is trimmed to the shortest), resulting in the construction of the so-called recurrence
plot: two fixations are cross-recurrent if they are close together in terms of their Eu-
clidean distance. Cross-recurrence cij between the i-th and j-th fixations of the two
scanpaths to be compared, can thus be defined as:

cij =

{
1, d (R1,i,R2,j) ≤ ρ

0, otherwise
(2.13)

Where d is the distance metric (typically Euclidean distance) and ρ is a given radius.
Cross-recurrence can be represented in a cross-recurrence diagram: if two fixations are
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2.4. Evidence of attention dynamics through gaze shift models

cross-recurrent, then (cij = 1), then a dot is plotted in position i, j. The measures that
have been found useful for characterizing cross-recurrent patterns are described in the
following:

Cross-recurrence Represents the percentage of fixations that match between the two
fixation sequences. Intuitively, this measure gives the degree of similarity in fixation
position between to scanpaths. The more similar the two fixation sequences, the higher
the number of ones in the cross-recurrence diagram. It is invariant to the order of
fixation.

Determinism Represents the percentage of fixation trajectories common to both scan-
paths. In other words, it quantifies the overlap of a specific sequence of fixations,
preserving their sequential information. Although two scanpaths may be quite dissim-
ilar in their overall shape or fixation positions, this measure may show whether certain
smaller sequences of those scanpaths may be shared.

Laminarity Measures how much the two fixation sequences cluster together. It rep-
resents locations that were fixated in detail in one of the fixation sequences, but only
fixated briefly in the other fixation sequence.

Center of recurrence mass Center of recurrent mass (CORM) indicates the dominant
lag of cross-recurrences. Small CORM values indicate that the same fixations in both
fixation sequences tend to occur close in time, whereas large CORM values indicate
that cross-recurrences tend to occur with either a large positive or negative lag.

2.4 Evidence of attention dynamics through gaze shift models

The previous section highlighted the fact that according to recent studies (Schütt et al.,
2019), attention allocation dynamics on static stimuli may exhibit a defined structure.
Based on such claim, we propose a complementary analysis that relies on model-
generated scanpaths, i.e. actual prediction. More precisely, we ask the following: do
model-generated scanpaths differ from human scanpaths in the free viewing of static
scenes when 1) the scanpath is generated by taking into account the time varying evo-
lution of attention (cfr. Section 2.3.3) as opposed to when 2) the scanpath is generated
by only taking into account the final fixation density?

The importance of modelling dynamics in gaze deployment can be proved by a
straightforward experiment (Boccignone et al., 2019a): a time-varying fixation density
is used as the attention map that moment-to-moment feeds the gaze shift dynamics. In
other words rather than freezing the map to final fixations we compute different empir-
ical fixation maps (computed for the specific scene from other observers’ behaviour) at
different time steps, in order to take into account the unfolding of attention dynamics as
described in Section 2.3.3. Using the empirical fixation map rather then a "predicted"
one, allows us to assess differences rising at the oculomotor behavior while being free
from any saliency model specific assumption. In brief we do the following:

Step 1 Compute three different empirical fixation density mapsMD(i)
k accounting for
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phases k = 1, 2, 3 above (cfr Section 2.3.3), by aggregating all the human fixa-
tions performed in the corresponding time window (first 3 images of Figure 2.6):

{r(s,i)
F (mk−1 + 1), · · · , r(s,i)

F (mk)}NSs=1 7→ M
D(i)
k , k = 1, 2, 3. (2.14)

Step 2. Generate “subject” fixations depending on the three-phase unfolding defined
above, by relying on a saccadic model r

(s,i)
F (n) = f(r

(s,i)
F (n− 1),W(k)i):

MD(i)
k 7→ {r̃(s,i)

F (mk−1 + 1), · · · , r̃(s,i)
F (mk)} = Rt(s,i)k , k = 1, 2, 3 (2.15)

withW(k)i =MD(i)
k being the phase-dependent perceptual representation of im-

age i, so to obtain the “time-aware” scanpathRt(s,i) = {Rt(s,i)1 ,Rt(s,i)2 ,Rt(s,i)3 }.

For comparison purposes, in the same way, but only by relying on the overall final
fixation mapMD(i), we perform the mappingMD(i) 7→ Rs(s,i), which represents the
typical output of a saccadic model.

It should be intuitively apparent that the evolution of the empirical fixation density
MD(i)

t within the time interval [t0, T ] from the onset of the stimulus i up to time T ,
provides a source of information which is richer than that derived by simply considering
its cumulative distribution function

∫ T
t0
MD(i)

t dt. Yet, this very fact is by and large
neglected in the saliency modelling practice. A so defined experiment would have the
virtue of relying on a generative approach taking into account the empirical findings
presented in Schütt et al. (2019), albeit needing a suitable operational definition of the
aforementioned three phases. This latter aspect will be covered in the next section.

Simulation The simulation procedure goes as follows: we generate four different at-
tention maps for each image Ii of the dataset presented in Judd et al. (2009). Three
of these are the temporal density fixation maps MD(i)

1 ,MD(i)
2 ,MD(i)

3 , with tm1 = 1,
tm2 = 2 and tm3 = 3 seconds (Eq. 2.14); the fourth is the classic, cumulativeMD(i)

map. Fig. 2.6 shows one example.

Figure 2.6: Example of different fixation density maps for a specific image. From left to right:
the three temporal distribution maps obtained from fixations collected at seconds 1, 2 and 3,
respectively, overlapped on the original stimulus; the standard fixation map resulting from
the aggregation of all fixations available at the end of the eye-tracking procedure. The latter
map is the one typically exploited in saliency modelling and benchmarking.

These were used to support the generation of NS = 15 scanpaths for both the
temporal (Eq. 2.15) and the classic approach, collected into the sets Rt(i) and Rs(i),
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2.4. Evidence of attention dynamics through gaze shift models

respectively. To such end we exploit the Constrained Levy Exploration (CLE) (Boc-
cignone and Ferraro, 2004)) saccadic model that has been widely used for evaluation
purposes (Le Meur and Coutrot, 2016; Xia et al., 2019).

Figure 2.7 shows CLE generated scanpaths, compared against the actual set of hu-
man scanpathsR(i) = {r(i)

F (1), · · · , r(i)
F (m3)}.

Figure 2.7: Scanpaths for the image in Fig. 2.6. Left to right: 15 model-generated scanpaths,
via Eq. 2.6 from the temporally unfolded fixation maps, 15 model-generated scanpaths from
the standard fixation map, 15 scanpaths from actual human fixation sequences (ground-
truth). Different colours encode different “observers”(artificial or human).

The example shows at a glance that when attention deployment is unfolded in time,
the predicted scanpaths more faithfully capture the dynamics of actual scanpaths than
the dynamics of those generated via the “freezed” map. To quantitatively support such
insight, the quality ofRt(i) andRs(i) has been evaluated on each image i of the dataset
by adopting metrics based on the ScanMatch (Cristino et al., 2010) and the recurrence
quantification analysis (RQA) (Anderson et al., 2013))1.

Results All the generated scanpaths belonging to Rt and Rs have been evaluated
against the human ones R for each image. Table 2.1 reports the average values over
all the “observers” related to the same images in the dataset. To quantify the intra-
human similarity, an additional measure resulting from the comparison ofR with itself
is provided. It can be noticed that the temporal approach outperforms the static one in
all the three adopted metrics, thus giving evidence of the benefits that may come from
modeling attention dynamics.

It’s worth noticing how the Determinism score for the Rt is actually greater for
the simulation than for the inter-observer comparison; this probably means that, for
this metric, the model simulated scanpaths lack some variability if compared with the
real ones. By recalling the definition of Determinism, this may suggest that the model
generated scanpaths present some sub-sequences that are highly similar to those of real
subjects. On the other hand, when comparing real observers, such sub-sequences may
exhibit less fixed patterns that are averaged out in the empirical fixation map computa-
tion.

1An implementation is provided at https://github.com/phuselab/RQAscanpath
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ScanMatch Determinism CORM
Rs vs. R 0.39 (0.08) 58.08 (11.18) 19.95 (5.90)
Rt vs. R 0.43 (0.05) 61.65 (8.51) 15.26 (3.58)
R vs. R 0.49 (0.05) 59.61 (7.71) 10.0 (2.09)

Table 2.1: Average values (standard deviations) of the considered metrics evaluated over all
the artificial and human “observers” related to the same images in the dataset.

2.4.1 A model for time-aware scanpath generation

So far we gave evidence of the existence of a temporal dynamics which affects the
gaze deployment to static stimuli by means of a straightforward procedure relying on
a time-aware empirical fixation density map. The main goal of this section is thus to
outline a model to substantiate such results. In essence, rather than relying on empirical
fixation maps, we propose a time-aware computational model to predict gaze shifts on
new images.

In brief, the scheme we propose consists of a three-stage processing where the dy-
namics described by Schütt et al. (2019) basically relies on:

1. a center-bias model for initial focusing;

2. a context/layout model accounting for the broad exploration to get the gist of the
scene;

3. an object-based model, to scrutinize objects that are likely to be located in such
context.

The output of each model is a specific map, guiding, at a that specific stage, the se-
quential sampling of a partial scanpath via the gaze shift model. The three-stage model
is outlined at a glance in Fig. 2.8. The “time-aware” scanpathRt(s,i) = {Rt(s,i)1 ,Rt(s,i)2 ,Rt(s,i)3 },
for each “artificial observer” s viewing the i-th stimulus, is obtained from the three par-
tial scanpaths. These are sampled by relying on the three maps computed via the center
bias, context and object models, respectively. Each modelm is activated at a delay time
Dm, while inhibiting the output of modelm−1, so that the gaze model operates sequen-
tially in time on one and only map. Empirical data collection is organised as outlined in
Figure 2.3. Here, the overall model performance is assessed by comparing the model-
generated scanpaths {r̃F (1), r̃F (2), · · · }, with the actual ones {rF (1), rF (2), · · · }.

The overall model dynamics can be described as follows. Given the i-th image
stimulus at onset time t0:

For all stages k = 1, 2, 3

Step 1 At time delay Dk, compute the model-based mapM(i)
k

Step 2. Based on M(i)
k , generate “subject” fixations via the gaze shift model

r
(s,i)
F (n) = f(r

(s,i)
F (n− 1),M(i)

k ):

M(i)
k 7→ {r̃

(s,i)
F (mk−1 + 1), · · · , r̃(s,i)

F (mk)} = Rt(s,i)k , (2.16)
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2.4. Evidence of attention dynamics through gaze shift models

Figure 2.8: The proposed three-stage model.

Eventually, collect the “time-aware” scanpathRt(s,i) = {Rt(s,i)1 ,Rt(s,i)2 ,Rt(s,i)3 }.

For what concerns scanpath sampling, we again exploit the CLE (Boccignone and
Ferraro, 2004) model.

More specifically we consider the following model components to compute the
mapsM(i)

k , k = 1, 2, 3:

1. Center bias Many studies (Tseng et al., 2009; Rothkegel et al., 2017) of atten-
tional selection in natural scenes have observed that the density of the first fixa-
tion shows a pronounced initial center bias; this is modelled with a bidimensional
Gaussian function located at the screen center with variance proportional to the
image size, as shown in the first column of Fig. 2.6.

2. Context model Behavioural experiments (Oliva and Torralba, 2006) on scene un-
derstanding demonstrated that humans are able to correctly identify the semantic
category of most real-world scenes even in case of fast and blurred presenta-
tions. Therefore, objects in a scene are not needed to be identified to understand
the meaning of a complex scene. The rationale presented in Oliva and Torralba
(2006), where a formal approach to the representation of scene gist understand-
ing is presented, was further developed in Zhou et al. (2017) addressing scene
classification via CNNs. The models were trained on the novel Places database
consisting of 10 million scene photographs labelled with environment categories.
In particular, we exploited the WideResNet (Zagoruyko and Komodakis, 2016)
model fine-tuned on a subset of the database consisting of 365 different scene cat-
egories. The context map, therefore, is the result of the top-1 predicted category
Class Activation Map (CAM) (Zhou et al., 2016). CAM indicates the discrimi-
native image regions used by the network to identify a particular category and, in
this work, simulates the exploration phase during which observers look at those
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(a) Scene, predicted as "bowling_alley" (b) Context map

Figure 2.9: Components of the context map. In (a) is shown the Class Activation Map of
a scene correctly identified as "bowling alley", while in (b) the corresponding considered
context map

portions of the image which are supposed to convey the relevant information for
the scene context understanding.

In Figure 2.9 is shown an example extracted from the dataset described in Judd
et al. (2009), where a bowling alley is correctly identified by the network when
focusing on the bowling lanes.

3. Object model The last stage to the realization of the final scanpath accounts for
the convergence of fixations on relevant objects.

It is worth noting that the relevance of an object is in principle strictly related
to a given task (Tatler et al., 2011). The study presented here relies on eye-
tracking data collected from subjects along a free-viewing (no external task) ex-
periment and the sub-model design reflects such scenario. However, even under
free-viewing conditions, it has been shown that at least faces and text significantly
capture the attention of an observer (Cerf et al., 2009). Clearly, when these kinds
of object are missing, other common objects that might be present within the
scene become relevant.

In order to obtain a realistic object map we exploited three different sub-frameworks
implementing face detection, text detection and generic object segmentation, re-
spectively. The output of each detector contributes, with different weight, to the
final object map.

More specifically, the face detection module relies on the HR-ResNet101 net-
work (Hu and Ramanan, 2017) that achieves state-of-the-art performance even in
presence of very small faces. This extracts canonical bounding box shapes that
identify the regions containing a face. An example of the face detection phase is
provided in Figure 2.10a.

The generic object detection component is implemented via Mask R-CNN (He
et al., 2017; Girshick et al., 2018). The latter capture objects in an image, while
simultaneously generating a high-quality segmentation mask for each instance.
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(a) Faces (0.5) (b) Objects (0.1) (c) Text (0.4)

(d) Object map

Figure 2.10: Components of the object map: (a) shows the result of the face detector module;
(b) the result of the object segmentation; (c) text detection result. In brackets, the weights of
each component, in terms of contribution to the final object map (d).

The CNN is trained on the COCO dataset (Lin et al., 2014), that consists of natu-
ral images that reflect everyday scene and provides contextual information. Mul-
tiple objects in the same image are annotated with different labels, among a set
of 80 possible object categories, and segmented properly. Figure 2.10b shows
an example, where all persons present in the image, as well as traffic lights and
cars are precisely identified and segmented. The text detection component is rep-
resented by a novel Progressive Scale Expansion Network (PSENet) (Li et al.,
2018), which can spot text with arbitrary shapes even in presence of closely adja-
cent text instances. An example of text detection result is shown in Figure 2.10c.

Simulation The evaluation procedure is eventually the following: we generated four
different maps for each image Ii of the dataset. Three of these are the results of the
adopted sub-models: center bias, context and object. The latter is obtained by combin-
ing the outputs of the three detectors: faces, text and common objects. The first two are
the most relevant cues (Cerf et al., 2009) and we empirically assigned weights 0.5 and
0.4, respectively, while weighting 0.1 the object segmentation result. The final object
map is later normalized. Such weighting allows to attribute more importance (saliency)
to a specific object w.r.t. the others. As a consequence, the objects with higher weights
will have higher probability of being chosen as candidates for a simulated fixation. The
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Center Bias Context Object DeepGaze II

Figure 2.11: Example of different maps generated for five images extracted from MIT1003
dataset. From left to right: the center bias, the context map and the object map, superim-
posed on the original stimulus; the saliency map resulting from saliency model DeepGaze
II.

adopted weights are those that yielded the best results empirically.
The comparison was carried out with the state-of-the-art static saliency model DeepGaze

II (Kummerer et al., 2017).
All the considered saliency maps are convolved with a Gaussian kernel with σ =

35px (corresponding to 1dva for the MIT1003 dataset). Fig. 2.11 shows examples of
the generated maps.

These were used to support the generation of NS = 15 scanpaths for both the
proposed and DeepGaze II approach, via the CLE gaze shift model (Boccignone and
Ferraro, 2004). The number of fixations generated for each subject is sampled from the
empirical distribution of the number of fixations performed by the human observer over
each stimulus. Furthermore, in the proposed model, the switching time from the center
bias map to the context map is set to 500 ms, while the permanence of the second map
is equal to 1000 ms and the sampling of fixations from the object map is done for 1500
ms. In terms of delay time Dm, each model m is activated at Dm = {0, 500, 1000}ms,
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ScanMatch Determinism CORM
DeepGazeII w/o CB 0.34 (0.10) 41.16 (16.23) 19.09 (6.21)
DeepGazeII w/ CB 0.41 (0.07) 50.34 (13.04) 16.39 (4.22)
Ours 0.36 (0.06) 54.47 (6.54) 13.75 (2.65)
Ground truth 0.45 (0.05) 59.72 (7.64) 10.02 (2.11)

Table 2.2: Average values (standard deviations) of the considered metrics evaluated over all
the artificial and human “observers” related to the same images in the dataset.

while inhibiting the output of model m− 1.
Figure 2.12 shows CLE generated scanpaths, compared against the actual set of

human scanpaths. The examples show how considering the context in the exploration
of a scene and the precise detection of salient high-level objects, leads to scanpaths
that are closer to those resulting from human gaze behaviour, than scanpaths generated
via the classic saliency map. In particular, the first two rows of Fig.2.12 show how
the contribution of the context map reflects the human exploration of the background,
rather than focusing only on faces. The third row shows an example where DeepGaze
II gives high relevance to low-level features that are not salient for human observers. In
the following row it can be noticed how during the exploration phase all the faces are
relevant, even when these are not faced towards the observer. Finally, as regards text,
the last example shows how the whole text region is relevant and not just individual
portions of it.

To quantitatively support such insights, the generated scanpaths have been evaluated
on each image of the dataset by adopting the same metrics used in the previous section,
namely ScanMatch and RQA.

Results All the generated scanpaths belonging to our approach and DeepGaze II have
been evaluated against human scanpaths for each image. Table 2.2 reports the average
values over all the “observers” related to the same images in the dataset. To quantify the
intra-human similarity, an additional measure resulting from the comparison of ground
truth scanpaths with themselves is provided.

It must be noted that, in case of DeepGaze II, the adopted model is fine-tuned ex-
actly on the same dataset adopted for testing. Although this clearly introduces bias on
the results, it can be seen how the proposed approach outperforms the model with-
out center bias in all three considered metrics. When comparing with the “center
bias-aware” model, the ScanMatch result of our approach is worse. In this case, the
DeepGaze II output benefits from the addition of a prior distribution estimated over all
fixations from the test dataset. On the other hand, our model has been created using a
principle driven approach that does not need to use this same dataset.

2.5 A glimpse through the lenses of probability

The previous sections put the accent on the fact that a proper model of eye guidance
must be able to account for the moment-to-moment relocation of gaze; in a nutshell it
should aim at answering the question Where to look next?. As shown earlier, answering
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Ours DeepGaze II Ground truth

Figure 2.12: Examples of scanpaths for the images considered in Fig. 2.11. Left to right:
15 model-generated scanpaths, from the proposed method, 15 model-generated scanpaths
from the DeepGaze II saliency map, 15 scanpaths from actual human fixation sequences
(ground-truth). Different colours encode different “observers”, either artificial or human.
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this question hides many hitches. The dynamic nature of gaze together with its random
components and the systematic tendencies make modelling gaze shifts a challenging
problem.

For all this reasons, a convenient way to phrase a model of attentive eye guid-
ance is in the language of probabilities. In this vein, Tatler and Vincent (2009) pro-
posed to re-define the process of gaze relocation in terms of the posterior probabil-
ity density function P (r|W), representing the probability of performing the gaze shift
r = rF (t)−rF (t−1) given the perceptual representationW , where rF (t) represents the
gaze position at time t. By means of the Bayes rule, this quantity can be decomposed
into simpler components:

P (r|W) =
P (W|r)

P (W)
P (r) (2.17)

Bayes rule, allows to break down the posterior into a likelihood P (W|r), a prior
distribution P (r) and the marginal likelihood or evidence P (W) =

∫
r
P (W|r)P (r).

Crucially, the likelihood describes how the perceptual representation W might be in-
volved in choice of the gaze shift r. This quantity is normalized by P (W), the evidence
of the perceptual representation. Intuitively, this rapport controls for the natural abun-
dance of a particular cue of the perceptual representation; for instance, as Tatler and
Vincent (2009) put it: "if yellow items are commonly fixated then one may initially in-
fer that yellow items predict fixations, but if yellow items are very common in the scene
then yellow is a less effective predictor of eliciting fixations".

Remarkably, this approach is a very general one; indeed P (W) can come from a
variety of data sources such as simple feature cues, derivations such as Itti’s definition
of salience, object-or other high-level sources.

The second term on the r.h.s. of Equation 2.17 is the pdf P (r) incorporating prior
knowledge on gaze shift execution. In other words, this quantity accounts for all such
properties of the gaze shifts that are independent from the stimuli, like the systematic
tendencies and biases described earlier.

Figure 2.13a shows the generative model behind Equation 2.17 in the form of a sim-
ple Probabilistic Graphical Model (PGM), while Figure 2.13b depicts the same PGM
unrolled in time. Note that now the arc rF (t)→ rF (t+1) makes explicit the dynamical
nature of gaze shifts.

(a) PGM describing Equation 2.17 (b) PGM describing Equation 2.17 unrolled in time

Figure 2.13: The generative models behind Equation 2.17

According to the model depicted in Figure 2.13, if all the probability distribution

35



i
i

“main” — 2021/2/19 — 17:53 — page 36 — #56 i
i

i
i

i
i

Chapter 2. Computational Models of Attentive Eye Guidance

are given, the attentive process can be simulated through ancestral sampling, namely:

1. Sample the gaze shift from the prior: r∗ ∼ P (r)

2. Sample the perceptual representation of the environment, given the gaze shift:
W∗ ∼ P (W | r∗)

Conversely, in the vein of a typical computational model, sampling a new gaze shift
given the perceptual representation is achieved by solving the Bayes’ rule (Equation
2.17).

2.5.1 The unifying view of the attentive process

As a matter of fact Equation 2.17 summarizes all the features of the prototypical com-
putational model of attentive eye guidance:

1. it handles the variability in a principled way by means of probabilities

2. it provides a rigorous definition of the systematic tendencies and biases of eye
movements through the bayesian prior

3. it defines gaze shifts as a dynamical process

As pointed out in previous sections this last issue has been often overlooked. As a
consequence, many models are more effectively spelled in the probabilistic framework
as follows:

P (rF | W) =
P (W | rF )

P (W)
P (rF ) (2.18)

Now the posterior P (rF | W) represents the probability of gazing at position rF
rather then the probability of performing the gaze shift r = rF (t) − rF (t − 1), hence
dynamics is not taken into account. In other words, two gaze position that follow one
another over time are assumed to be independent:

P (r) = P (rF (t)− rF (t− 1)) ' P (rF (t) | rF (t− 1)) = P (rF (t)) (2.19)

It is interesting to note that such definition encapsulate the vast majority of ap-
proaches relying on statistical machine learning and more in general all such techniques
belonging to the realm of saliency prediction as a sub-field of computer vision. In par-
ticular by substituting rF with a random variable L denoting a location in the scene and
W with F denoting features (of any kind), then Equation 2.18 boils down to:

P (L | F) =
P (F | L)

P (F)
P (L) (2.20)

If we consider L as a binary random variable taking values in [0, 1], then P (L =
1 | F) represents the probability for a particular location of the stimuli (either a pixel,
a super-pixel or a broader region) to be classified as salient given that the feature F has
been observed. If no prior knowledge about the saliency of the stimuli is assumed (i.e.
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2.6. Summary

P (L) is the uniform distribution), then P (L = 1 | F) ' P (F | L = 1) so that saliency
of L can be predicted by maximization of the likelihood function P (F | L = 1) which,
for instance, can be estimated through Kernel Density Estimation (Seo and Milanfar,
2009). More generally the ratio f(L) = P (L=1|F)

P (L=0|F)
can be considered, thus casting the

problem of saliency prediction as a classification one. A plenty of work proposed in the
literature follow this rationale (Kienzle et al., 2006; Judd et al., 2009; Yan et al., 2010;
Lang et al., 2012; Jiang et al., 2015a; Harel et al., 2007; Yu et al., 2014; Mathe and
Sminchisescu, 2015; Vig et al., 2014); this includes even more modern techniques based
on deep learning (Borji, 2019), which as a matter of fact do not bring any conceptual
novelty as to the use of Equation 2.20.

Interestingly enough, the model described in equation 2.20 can be further simplified
by setting the likelihood and prior terms to constants (P (F | L) = const and P (L) =
const), thus obtaining:

P (L | F) =
1

P (F)
(2.21)

This new minimal model (Eq. 2.21) now states that the probability of fixating a
location L, having observed features F is higher the more unlikely the feature F is (un-
likeliness defined as 1

P (F)
). To come back to the pictorial example given by Tatler and

Vincent (2009), if yellow items are very uncommon in the scene, once they are detected
suddenly capture attention, thus may be considered as good predictors of fixation loca-
tion. This is exactly what bottom-up saliency based models assume by detecting high
contrast regions (with respect to either luminance, color, texture or motion). In other
words the popular model by Itti et al. (1998) is well described probabilistically by Eq.
2.21.

Such probabilistic view of computational models allows to rephrase more rigor-
ously the criticism about the lack of dynamics in many models of attention. This is
particularly true for the most exploited aspect of this models: saliency prediction. As
a matter of fact, surmising the absence of dynamics in the attentive process is a strong
assumption that clearly overlooks the broader aspects of attention deployment that are,
instead, provided by the unfolding in time of eye movements. To sum up, the gaze de-
ployment process can be defined as a dynamical system, that is subject to stochasticity;
such definition clearly matches with that of a stochastic process. Under such rationale,
in the next chapter we provide a brief introduction to stochastic processes and their
application to modelling eye movements.

2.6 Summary

In this Chapter we give a general overview of the computational modelling of attentive
eye guidance. We start from a brief description of the early approaches, so to continue
with the more modern techniques mainly relying of machine learning and deep learn-
ing models. We advance a criticism to such late approaches grounded on the lack of
modelling of the dynamics of the attentive process. Consequently, a novel model of
time-aware scanpath generation on static stimuli is proposed. The Chapter ends with a
probabilistic description of visual attention models.
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CHAPTER3
Stochastic Processes, Eye Movements and

Ecology

WHEN it comes to the description of natural phenomena, one unavoidably has to
face the problem of randomness at some point. Indeed, many of the processes
pertaining nature are fluctuating ones, thus can be marked as carriers of some

degree of uncertainty.
For instance, one could think about some easily measurable quantities like the

hourly series for the temperature of a city during a week, the progress of stock markets
or the amplitude of a sound signal. These are all examples of fluctuating phenomena for
which we are able to build predictive models that forecast future values, but with a cer-
tain amount of error. We may ask, to what extent we are able to reduce such error. Is it
possible to obtain perfect future forecasts? Answering such question calls into play the
philosophical debate about the nature of these fluctuations; are they intrinsic properties
of the observed phenomena, or are our way, as scientists, to take into account what we
are not able to measure. In other words, is uncertainty part the generating process, or
it’s just an admission of ignorance?

According to the beliefs of science up to the nineteenth century, there is no particular
reason to talk about randomness associated to the quantity itself; rather, the value of any
given variable of interest is assigned by nature according to an extremely complex but
deterministic procedure. It this respect, we should be able to forecast the future values
of such variables with certainty, if we have access to all the relevant information. In
this deterministic picture of nature, what we consider noise, randomness or uncertainty
evolves from our ignorance of the boundary conditions. This is the gist of the scientific
determinism as interpreted by Pierre-Simon Laplace, who states the existence of an
"intellect" (later referred to as the Laplace’s daemon) that "at a certain moment would
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Chapter 3. Stochastic Processes, Eye Movements and Ecology

know all forces that set nature in motion" (marquis de Laplace, 1902).
This conception was later subverted by quantum theory on the one hand and chaos

theory on the other (a deterministic system can exhibit an unpredictable behavior as in
the butterfly effect) and we now know that the purely statistical element is an essential
basis of our world (Gardiner, 2011). The very same concept of Laplace’s daemon was
recently disproved by means of Turing machines under the assumption of free will
(Rukavicka, 2014).

The non determinism of nature is not a surprising thing; in fact the stochastic de-
scription of natural phenomena more easily meets our every day experience in which
quantities are predictable to some extent but not completely. Hence the modelling
of such fluctuating phenomena calls for a statistical explanation or, in other words,
stochastic models.

The beginning of stochastic modelling of natural phenomena, can be traced back to
the Einstein’s explanation of the theory of Brownian Motion (Einstein, 1905). Brow-
nian Motion is the name that was given to the animated and irregular state of motion
exhibited by small pollen grains suspended in water after the pioneering work of the
botanist Robert Brown in 1827. Brown was the first who performed a systematic inves-
tigation of the phenomena, but the first mathematical description of it was given almost
eighty years later by Einstein (1905) and Von Smoluchowski (1906).

As a byproduct, Einstein’s work laid down the basis for a bunch of "tools" that
were lately further developed in a more general and rigorous way and that nowadays
are considered the fundamental concepts of the theory of stochastic processes (many
of which will be treated in the present Chapter). Things like the Markov assumption,
the Chapman-Kolmogorov Equation (the central dynamical equation of all Markov pro-
cesses), or the diffusion equation describing the behaviour of an ensemble of particles
(later evolved in the Fokker-Planck Equation), are all reverberations of Einstein’s dis-
sertation.

Einstein’s seminal paper was of inspiration to a later work of Paul Langevin which
came up with a new way of deriving the same results presented in the Einstein’s work.
This led to the development of the renowned Langevin equation describing the dynam-
ics of a single particle, providing the first example of a Stochastic Differential Equation
(SDE). Langevin’s work was later improved and expanded by Ornstein and Uhlenbeck
(Uhlenbeck and Ornstein, 1930) who came up with the namesake process describing
the velocity of a Brownian particle.

Besides the description of the physical phenomena for which they were conceived,
stochastic processes turned out to be useful in a variety of different fields, from the
analysis of electrical circuits and radio wave propagation to the modelling of stock
markets in finance, (e.g. the Black-Scholes (Black and Scholes, 1973) or Vasicek (Va-
sicek, 1977) models). Moreover, stochastic processes were successfully used to model
biological systems, indeed the first account of Brown’s work was to find out if the
movements of the pollen particle where a manifestation of life (an hypothesis that was
promptly ruled out by experiments). Stochastic models of gene expression, models of
fluctuations in bacteria’s protein concentration and crucially models of animal move-
ments are all realizations of random phenomena.

Of key interest for the present thesis is the concept of super-diffusive processes,
which were firstly brought to the attention of the scientific community by the work of
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Richardson (1926), which presented data exhibiting a behaviour in contradiction with
normal diffusion that could be explained by a deviation of the statistic of fluctuation
from the Gaussian distribution. Such "anomalous diffusion" was then rediscovered in
many other fields like finance, biology and ecology mainly under the mathematical de-
scription of Lèvy Flights. Interestingly enough the latter were employed by Brockmann
and Geisel (2000) to describe the oculomotor behaviour of humans on images, while
establishing at the same time, a connection between eye movements and Ecology (cfr
Section 3.5.2).

Crucially, eye movements recorded from human subjects while watching a stim-
uli, can be conceived as different manifestations of the same fluctuating phenomena,
namely the result of visual attention allocation on the scene. Hence, they lend them-
selves to be described via stochastic models. In particular, each sequence of gaze posi-
tions can be associated to a different realization of a stochastic process.

The forthcoming sections of this Chapter, aim at expanding the concepts shortly
provided by this introduction, starting from the rigorous definition of stochastic pro-
cesses and their description, their adoption as sound models of eye movements, up to
the introduction of the foraging perspective.

3.1 Stochastic Processes

A stochastic process is a collection of random variables X(t) indexed by the variable
t, usually denoting time. If t takes values in the set of real numbers, then X(t) is a
continuous time stochastic process; on the other hand, if t belongs to natural numbers
then X(t) is a discrete time stochastic process.

Figure 3.1, depicts different eye movements as recorded from a group of observers
while looking at the same image. We can treat each trajectory as a realization of a
stochastic process X(t). Observing a realization, means attributing a specific value to
each random variable:

X (t1) = x1, X (t2) = x2, X (t3) = x3, · · · , (3.1)

In this specific case, X(t) is a two dimensional random variable representing the i
and j coordinates of the position of the eye, hence at time tk, X(tk) = xk = [i, j].

We can observe the process X(t) in time by considering a single realization (one
specific scanpath), or we could consider the ensemble of trajectories and look at the
empirical distribution of the variable X(tn) at time tn; this can be conceived as an ap-
proximation of the true PDF P (xn, tn), answering the question What’s the probability
of looking at a specific region of the stimuli at time tn?.

This example highlights the fundamental difference between a stochastic variable
and a stochastic process; if the former describes the probability of having looked at a
specific region of the stimuli at fixed time tn, the latter describes the whole sequence of
eye positions as a set of random variables X(t1),X(t2), · · · ,X(tn), · · · put in appro-
priate order.

Put simpler, one could consider a one-dimensional stochastic process X(t), repre-
senting, for instance, the i coordinate of a scanpath. This is depicted in Figure 3.2. Each
horizontal slice may be conceived as a realization of the stochastic process underling
the i coordinate of a scanpath. By fixing the time variable t = tn we are intuitively
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Chapter 3. Stochastic Processes, Eye Movements and Ecology

Figure 3.1: Eye movements recorded from a set of different observers on the same stimuli from
the dataset Judd et al. (2009). Each color corresponds to a different observer

slicing vertically the ensemble of realizations, thus obtaining an empirical estimate of
P (xn, tn).

Mathematically, a stochastic process is completely defined by its joint probability
density function; if P (x1, t1) defines the PDF for X(t1) at time t1, P (x1, t1;x2, t2) is
the joint probability density for variables X(t1) and X(t2) of the stochastic process at
times t1 and t2, respectively. In other words, this quantity represents the probability
that the random variable X(t1) at time t1 takes a value x1 and the random variable
X(t2) at t2 takes the value x2. Similarly, the k-th joint PDF at successive times ti (with
i = 1, · · · , k) is P (x1, t1;x2, t2; · · · ;xk, tk). The latter quantity completely specifies
the statistical properties of the process.

The evolution over time of a stochastic process can be described via transition prob-
abilities; these are nothing but the conditional probabilities of the future values of the
process given the past. Such quantities can be easily obtained from the joint distribution
via the product rule of probability, which allows to rewrite the joint as follows:

P (x1, t1; · · · ;xk, tk; · · · ;xk+l, tk+l) = P (x1, t1; · · · ;xk, tk)×
P (xk+1, tk+1; · · · ;xk+l, tk+l | x1, t1; · · ·xk, tk) (3.2)

Hence, the transition probability writes:
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Figure 3.2: Different realizations of a stochastic process

P (

future︷ ︸︸ ︷
xk+1, tk+1; · · · ;xn, tn | x1, t1; · · · ;xk, tk︸ ︷︷ ︸

past

) =
P (x1, t1; · · · ;xn, tn)

P (x1, t1; · · · ;xk, tk)
. (3.3)

The k-joint distributions can be reduced to the (k−1)-joint PDFs by integrating out
the k-th variable:

∫
Ωk

P (x1, t1;x2, t2; . . . ;xk, tk) dxk = P (x1, t1;x2, t2; . . . ;xk−1, tk−1) (3.4)

where Ωk is the support of xk. By combining Equation 3.2 and 3.4, one obtains:

P (xk+1, tk+1; . . . ;xk+l, tk+l) =

∫
Ω1

. . .

∫
Ωk

P (x1, t1; . . . ;xk, tk)

×P (xk+1, tk+1; . . . ;xk+l, tk+l | x1, t1; . . . xk, tk) dx1 . . . dxk (3.5)

By way of example one could consider the case of the two joint PDF in which
Equation 3.5 becomes:

P (x2, t2) =

∫
Ω1

P (x1, t1)P (x2, t2 | x1, t1) dx1 (3.6)

Here P (x2, t2 | x1, t1) acts like the evolution kernel or propagator form (x1, t1) to
(x2, t2). In other words, Equation 3.5 provides the explicit dependence of the joint on
time. However, some kind of stochastic processes do not exhibit a time dependence,
but eventually reach a situation in which their statistical properties remain unchanged in
time, thus converging to a stationary bahaviour. Such processes are called strict sense
stationary (SSS) and satisfy the relation:
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P (x1, t1;x2, t2; . . . ;xn, tn) = P (x1, t1 + τ ;x2, t2 + τ ; . . . ;xn, tn + τ) (3.7)

for all τ > 0 and n. Hence, for a strict sense stationary stochastic process P (xi, ti) =
P (xi).

3.1.1 Summarizing a stochastic process

Given a realization of a stochastic process x(t), the measurements that are readily avail-
able at any time t are quantities like the mean of the variance. In general, by computing
standard summary statistic at any time, one assumes a particular shape of the noise
(Gaussian, Lèvy, Poisson etc.). However such quantities do not provide any insight
about the dynamics of the process, i.e. about the ability of the values measured at the
current time to influence the future ones. The amount of dependence or memory of the
measured signal can be characterized by the autocorrelation function:

Cxx(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t+ τ)dt (3.8)

This can be seen as a time-average of the product x(t)x(t + τ) over the interval
(0, T ) for a fixed value τ and for T tending to infinity. Cxx(τ) measures the correlation
between two points of the signal x(t) separated by a time shift τ . Large values of
the autocorrelation function indicates that subsequent values of the process are strongly
dependent on the previous ones; hence, our capability to predict the future values from
its previous history increases.

Practically, when a finite and discretized signal is measured, the integral can be re-
placed by a sum and the average is computed on the total amount of sample collected
(N ); in this case, the autocorrelation function is approximated by the sample autorre-
lation:

cxx(∆) =
1

N

N−|∆|−1∑
n=0

x(n)x(n+ ∆) (3.9)

Another way to summarize a stochastic process is by analysis of its spectral com-
ponents by means of the Power Spectral Density (PSD):

S(ω) = lim
T→∞

1

2πT

∣∣∣∣∫ T

0

e−iωtx(t)dt

∣∣∣∣2 (3.10)

This function measures the contribution of each frequency component to the ob-
served time series; interestingly enough, such quantity exhibits a tight connection with
the autocorrelation function.

In fact, if strict-sense stationarity is a desirable property, it’s often not met in many
real-life processes. Fortunately, it is possible to show a "weaker" form of stationarity
than the one defined above. One of the most common forms of stationarity that is used
in practice is wide-sense (or weak-sense) stationarity (WSS). A random process is WSS
if its mean function and its autocorrelation function do not change by shifts in time; that
is, for each t1, t2 and τ :
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〈X (t1)〉 = 〈X (t2)〉 (3.11)
〈X (t1)X (t2)〉 = 〈X (t1 + τ)X (t2 + τ)〉 (3.12)

Where 〈·〉 denotes the expected value operator. Note that the first condition states
that the mean function is not a function of time t, while the second condition states that
the correlation function is only a function of the difference t2 − t1 and not t1 and t2
individually.

For WSS processes according to the Wiener-Khinchin theorem exists a conjugal
relationship between the autocorrelation function Cxx(τ) and the PSD S(ω):

S(ω) =
1

2π

∫ −∞
−∞

exp(−iωτ)Cxx(τ)dτ

Cxx(τ) =

∫ −∞
−∞

exp(iωτ)S(ω)dω (3.13)

This means that the autocorrelation function can be estimated from the observed
signal by means of the inverse Fourier Transform of the spectral density which is tipi-
cally easier to determine from the analysis of data series via the Fast Fourier Transform
(FFT).

3.1.2 Markov Processes

The simplest stochastic process that can one can conceive is a process in where each
random variable X(t) is completely independent from the others. For such Purely
Random Process the joint distribution can be easily written as the product of all the
random variables that occur at each time instant:

P (x1, t1; . . . ;xn, tn) = P (x1, t1)P (x2, t2) · · ·P (xn, tn) (3.14)

or, more succinctly:

P (x1, t1; . . . ;xn, tn) =
n∏
i=1

P (xi, ti) (3.15)

Equation 3.15 states that the processX(t) is completely memoryless and present no
correlations. A particular case occurs when besides independence with respect to time
t, the probability distributions of the random variables at each time instant P (xi, ti)
are governed by the same probability law. Such a process is said to be defined by a set
of independent and identically distributed (i.i.d.) random variables. When P (xi, ti) is
assumed to be the Normal distribution, the popular white noise is recovered.

The autocorrelation function for the purely random process is given by:

Cxx(τ) = Aδ(τ) (3.16)
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Figure 3.3: Top: Purely random process (white noise). Bottom: Sample autocorrelation Func-
tion

where δ(·) is the Dirac Delta function. Eqaution 3.16 highlights the absence of
correlations between the random variables that make up the process. This fact is empir-
ically show in Figure 3.3, which depicts a simulation of a purely random process (white
noise) with the corresponding sample autocorrelation function.

Unsurprisingly the sample autocorrelation function shows no dependence (correla-
tion) between values as witnessed by its immediate decay.

More realistically, we know that the vast majority of processes in nature, despite
being random, exhibit some degree of predictability or dependence between consecu-
tive values. A step towards this direction is assuming that each value depends on the
previous one only; this concept can be mathematically described by:

P (xn, tn | xn−1, tn−1; . . . ;x1, t1) = P (xn, tn | xn−1, tn−1) (3.17)

with t1 < t2 < · · · < tn. Such hypothesis is called Markovian Approximation
and such a process is called Markov Process. By assuming markovianity, the joint
distribution can be extremely simplified by following Equation 3.2 and 3.17 as:

P (xn, tn;xn−1, tn−1; · · · ;x1, t1) = P (x1, t1)
n∏
i=2

P (xi, ti | xi−1, ti−1) (3.18)

Hence, a Markov process is completely described by the initial distribution P (x1, t1)
and by the propagator P (xi, ti | xi−1, ti−1).

An immediate example of a Markov process is the simple Random Walk, described
by the following equation:

xt = xt−1 + kξt (3.19)
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3.2. Levels of description of stochastic processes

here ξt is the noise term which is sampled from a suitable distribution (e.g. Gaus-
sian, Bernoulli, etc.) and k is a scaling constant. If Equation 3.19 is iterated for a
number of time steps (in this specific case, time is assumed to be discrete), one obtains
a realization of the process (intuitively corresponding to one horizontal slice of figure
3.2).

ξt is a random variable which is sampled independently from the noise distribution
ξt ∼ P (ξ). It is easy to see that the differences in sequential observations xt − xt−1 =
ξt ∼ P (ξ) are i.i.d. However, in the process described by Equation 3.19 the observa-
tions at each time step are not independent. Indeed the evolution in time of the variable
at the current time step depends on the previous one.

For comparison with the purely random walk, Figure 3.4 shows a simulation of
Equation 3.19 with the associated sample autocorrelation function. As notable, here
the the process exhibits a much slower decay in the empirical autocorrelation function
denoting the presence of memory.

Figure 3.4: Top: Simple Random Walk. Bottom: Sample autocorrelation Function

If we assume the noise distribution P (ξ) in Equation 3.19 to be Gaussian, that is
ξ ∼ N (0, σ2), and we extend the process in two dimensions by defining:

xt = xt−1 + ξx,t

yt = yt−1 + ξy,t (3.20)

we obtain a simulation of the Brownian Motion (Figure 3.5) described in the intro-
duction of the present chapter.

3.2 Levels of description of stochastic processes

Let’s now head back to the depiction provided by Figure 3.1; this shows different scan-
paths as recorded from different observers while attending the same image. As stated
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Figure 3.5: Simulation of a simple random walk in two dimensions. Green ad red dots indicate
the starting and end points of the simulation, respectively

earlier, the main assumption here is to consider such trajectories as different realiza-
tions of the same stochastic process. The goal of building such a stochastic model is
to be able to answer the question "what’s the probability P (x, t) of gazing at x at time
t?".

This question can be addressed at different levels; for instance, one could be inter-
ested in considering the single scanpath as the tiniest unit of description. In this per-
spective, each observer can be conceived as a particle wandering in a two dimensional
landscape (the image) like the brownian particle depicted in Figure 3.5.

By recording many observers, we are figuratively simulating many particles, each
particle (scanpath) being governed by the same stochastic law. This is the microscopic
level of description of a stochastic process in which the dynamics of a single particle
is taken into account. Such view was proposed by the french physicist Paul Langevin,
who gave rise to the mathematical field of the Stochastic Differential Equations (SDE)
describing the behaviour of a single random walker.

Conceptually, many recordings from different observers may be conceived as many
simulations of a SDE carried out independently, i.e. a Monte Carlo simulation. Hence,
P (x, t) can be approximated by counting the number of times each position x has been
gazed at a given time t.

Conversely, one could consider directly the evolution of the probability density
P (x, t) of a many particles system (ideally an infinite number of particles), without
actually taking care of the behaviour of the single random process, but considering the
bigger picture, the collective phenomenon. This was the approach pursued by Ein-
stein when derived the diffusion equation on brownian particles. This coarse-grained
representation is the macroscopic level description and relies on the so called Master
Equation and Fokker-Plank Equation.

The connection between the microscopic and the macroscopic levels is provided by
the mesoscopic level of description. In the picture outlined thus far, this is represented
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3.2. Levels of description of stochastic processes

by the Chapman-Kolmogorv Equation (C-K Equation). This equation states that the
probability of a particle to be in position x+∆x at time t+∆t is given by summing all
possible displacements ∆x multiplied by the probability of being at x at time t. Note
how this relies on the assumption that each displacement is independent of the previous
history; we are thus assuming markovianity.

Crucially, the C-K Equation is the mathematical tool that allows to coarse-grain the
representation from the microscopic level (SDE) to the macroscopic one (Master Equa-
tion and Fokker-Plank Equation). This concepts are further developed in the following.

3.2.1 Microscopic Level

The microscopic level of description of a stochastic process involves the definition of
the dynamical law of the single realization of the process. The typical tool employed
for describing a dynamical system is the differential equation, which usually comes in
the form:

dx(t)

dt
= a(x(t), t) (3.21)

Here, the variable x represents the quantity whose dynamics we wish to character-
ize. Intuitively Equation 3.21 describes the rate of change of x w.r.t. the variable t.
In other words it provides the state of x at the next time step given the current state.
Clearly, the law formalized in Equation 3.21 is deterministic; if noise or uncertainty has
to be taken into account, then the evolution equation becomes a Stochastic Differential
Equation (SDE) and writes:

state-space rate of change︷ ︸︸ ︷
dx(t)

dt
=

deterministic comp.︷ ︸︸ ︷
a(x(t), t) +

stochastic comp.︷ ︸︸ ︷
b(x(t), t)ξ(t) (3.22)

This is called Langevin Equation, after the definition given by Paul Langevin to
describe the motion of a brownian particle.

Notably, Equation 3.22 is composed by a deterministic component a(x, t), usually
called drift, and a stochastic one b(x, t)ξ(t), called diffusion. Here ξ(t) is the noise sam-
pled from a probability density function ξ(t) ∼ P (ξ), usually a Normal distribution.

The Langevin equation, written as in Equation 3.22, poses some formal problems;
indeed ξ(t) is often obtained by sampling i.i.d. values from a PDF. As a consequence
this may be non differentiable, thus making x(t) non differentiable, too. This makes
the left hand side of Equation 3.22 incoherent from such point of view. To overcome
this problem, Equation 3.22 is usually written in the more mathematically sound form:

dx(t) = a(x(t), t)dt+ b(x(t), t)ξ(t)dt = a(x(t), t)dt+ b(x(t), t)dW (t) (3.23)

where W (t) =
∫ t

0
ξ (t′) dt′, so that the integration of the stochastic component∫

b(x, t)dW (t) can be performed according to the rules of stochastic calculus (in the
Itô or Stratonovich sense (Higham, 2001)). In simpler terms, one can loosely interpret
the quantity dW (t) as an instance of a white noise process. An Itô SDE like the one
described by Equation 3.23 can be written in its integral form, for all t and t0, as:
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x(t) = x (t0) +

∫ t

t0

a (x (t′) , t′) dt′ +

∫ t

t0

b (x (t′) , t′) dW (t′) (3.24)

Here
∫ t
t0
b (x (t′) , t′) dW (t′) represents an Itô stochastic integral, stochastic gener-

alization of the Riemannian integral in which the integrands and the integrators are
stochastic processes.

One general way of simulating a SDE is to obtain a discretized version of it by
taking a mesh of points ti:

t0 < t1 < t2 < · · · < tn−1 < tn = t (3.25)

and writing the SDE as:

xi+1 = xi + a (xi, ti) ∆ti + b (xi, ti) ∆Wi (3.26)

where xi = x (ti), ∆ti = ti+1 − ti and ∆Wi = W (ti+1)−W (ti) ∝
√

∆tiξi.
The SDE can now be solved by recursively computing xi+1 given xi and adding the

drift and diffusion terms; notably such formulation highlights the markovian nature of
the Langevin Equation. Such approximate procedure is called the Euler-Maruyama
discretization and provides a general way of simulating a SDE.

3.2.2 Mesoscopic Level

Consider the 3-joint PDF P (x1, t1;x2, t2;x3, t3). By means of Equation 3.3, this can
be written as:

P (x3, t3;x2, t2 | x1, t1) =
P (x1, t1;x2, t2;x3, t3)

P (x1, t1)
(3.27)

One of the most important properties of a Markov process, is obtained by marginal-
izing the conditional PDF P (x3, t3, x2, t2 | x1, t1) with respect to x2:

P (x3, t3 | x1, t1) =

∫
Ω2

P (x3, t3;x2, t2 | x1, t1)dx2 =

∫
Ω2

P (x1, t1;x2, t2;x3, t3)

P (x1, t1)
dx2

(3.28)
By exploiting the Markov property, Equation 3.28 writes:

P (x3, t3 | x1, t1) =

∫
Ω2

P (x3, t3 | x2, t2)P (x2, t2 | x1, t1)P (x1, t1)

P (x1, t1)
dx2 (3.29)

Hence:

P (x3, t3 | x1, t1) =

∫
Ω2

P (x3, t3 | x2, t2)P (x2, t2 | x1, t1) dx2 (3.30)

Equation 3.30 is commonly known as the Chapman-Kolmogorov (CK) Equation
and states that the transition probability from state {x1, t1} to state {x3, t3} occurs in
two stages: one involving the transition from {x1, t1} to {x2, t2}, and the second per-
forming the move from {x2, t2} to {x3, t3}. Intuitively, such process is carried out by
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3.2. Levels of description of stochastic processes

considering (integrating out) all the possible intermediate states {x2, t2} that could act
as transition states; this is depicted in Figure 3.6.

Figure 3.6: Schematic picture for the Chapman-Kolmogorov equation (taken from Méndez et al.
(2014))

The CK Equation is a consistency equation for the conditional probabilities of a
Markov process; its solution would provide a complete description of the Markov pro-
cess. However it’s a rather complex non-linear functional equation for which no general
solution is known. Nonetheless, this equation is the hook that allows to switch from the
microscopic level (SDE) to the macroscopic one.

3.2.3 Macroscopic Level

Given the mesoscopic level of representation, it is possible to obtain two macroscopic
limits of CK Equation, namely the macroscopic limit in time or in space. These two are
represented by the Master Equation and the Fokker-Planck Equation, respectively.

The Master Equation

Here is the derivation that allows to get the Master Equation as a limit in time of the CK
Equation. To such end, in order to simplify the math, let’s consider the discrete version
of the CK Equation:

P (x′, t+ ∆t | x0, t0) =
∑
x

P (x′, t+ ∆t | x, t)P (x, t | x0, t0) (3.31)

where we have set x′ = x3, x0 = x1, t + ∆t = t3 and t0 = t1 in order to highlight
the presence of a starting state x0 occurring at time t0 and an arrival state x′ at time
t + ∆t. Differently from Equation 3.30, Equation 3.31 describes a Markov process
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occurring on a discrete lattice of states. By assuming ∆t to be a small time interval, let’s
define the short time conditional probability P (x′, t+ ∆t | x, t), where x represents
the intermediate state between the initial state x0 and the arriving one x′.

Moreover, let w (x′ | x) denote the density variation per unit time when transition-
ing from x to x′, and assume that such quantity is proportional to time. Thus:

P (x′, t+ ∆t | x, t) ≈ ∆t× w (x′ | x) (3.32)

This relation holds if x′ 6= x; in order to take into account the case when x′ = x,
let’s define the quantity:

Q(x) = 1−∆t
∑
x′ 6=x

w (x′ | x) (3.33)

which represents the density transition rate in the case of no state transition. Hence:

P (x′, t+ ∆t | x, t) ≈ ∆t× w (x′ | x) +Q(x)δx′,x (3.34)

where δx′,x is the Kroenecker delta, assuming value 1 iif x′ = x and is 0 otherwise.
By substituting Equation 3.34 into Equation 3.31, after some rearrangement, we

obtain:

P (x′, t+ ∆t | x0, t0)− P (x′, t | x0, t0) =

∆t
∑

x [w (x′ | x)P (x, t | x0, t0)− w (x | x′)P (x′, t | x0, t0)]
(3.35)

Note that by letting ∆t→ 0, le left hand side of Equation 3.35 can be written as:

lim
∆t→0

P (x′, t+ ∆t | x0, t0)− P (x′, t | x0, t0)

∆t
=
∂P (x′, t | x0, t0)

∂t
(3.36)

i.e. it is the definition of Partial Derivative. Using such definition in Equation 3.35
and letting ∆t→ 0, we obtain:

∂P (x′, t | x0, t0)

∂t
=
∑
x

[w (x′ | x)P (x, t | x0, t0)− w (x | x′)P (x′, t | x0, t0)]

(3.37)
We can now multiply both size of Equation 3.37 by P (x0, t0) and use the discretized

version of the marginalization rule described by Equation 3.6, i.e.:∑
x0

P (x′, t | x0, t0)P (x0, t0) = P (x′, t) (3.38)

Finally, we obtain:

∂P (x′, t)

∂t
=
∑
x

[w (x′ | x)P (x, t)]−
∑
x

[w (x | x′)P (x′, t)] (3.39)

which is the Master Equation describing the rate of change with respect to time of
the probability P (x′, t) of the ensemble of particles (or scanpaths) of being in state (or
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3.3. Notable Processes

position) x′ at time t. Eventually, sums can be replaced with integrals so to recover the
Master equation for continuous state space processes.

Intuitively, the Master Equation can be conceived as a balance equation: the rate of
change of P (x′, t) w.r.t. time t is given by the difference between

∑
x [w (x′ | x)P (x, t)],

i.e. the probability of moving from any state x to x′, minus
∑

x [w (x | x′)P (x′, t)],
i.e. the probability of already being in state x′ and moving to any other state x. In other
words the variation of P (x′, t) in time is the difference between what comes in state x′

and what gets out of it.

The Fokker-Planck Equation

We saw how one of the macroscopic views of a stochastic process is the Master Equa-
tion; this is a stochastic Partial Differential Equation (PDE) with derivatives with re-
spect to time of the PDF of an ensemble of particles.

The other way of describing macroscopically a stochastic process is through the
well known Fokker-Planck (FP) Equation. Likewise the Master Equation, the FP
Equation is a PDE too, but with derivatives with respect to both time and state space.

The FP Equation can be derived starting from the CK Equation (like the Master
Equation) or from the Langevin Equation. However, the explicit derivation is not car-
ried out here, because is out of the scope of the present thesis. The interested reader
can find the full drawing in Gardiner (2011).

The FP Equation for diffusive processes, in the simple one dimensional case is:

∂P (x, t)

∂t
= − ∂

∂x
[a(x, t)P (x, t)] +

1

2

∂2

∂x2

[
b(x, t)2P (x, t)

]
(3.40)

Likewise the Master Equation, the FP Equation (3.40) describes the evolution of a
PDF in time. However it is interesting to note how the probabilities w (x′ | x) that in
the Master Equation contained the complete statistical information of the transition be-
tween states, have been now replaced by what can be interpreted as transition moments,
namely a(x, t) and b(x, t)2 which only include partially that information. This means
that the same FP equation could be found from different expressions of the transition
probabilities w (x′ | x). This denotes the macroscopic nature of such equation.

Interestingly enough, Equation 3.40 exhibits a formal link with the Langevin Equa-
tion, right through the drift (a(x, t)) and the diffusion (b(x, t)2) terms.

3.3 Notable Processes

As a matter of fact, Markov processes represent a viable way of reducing the mathe-
matical complexity of stochastic processes, while being at the same time very useful in
modelling natural phenomena. As a consequence, Markov processes have been widely
used in the scientific literature throughout many different fields (Méndez et al., 2014).

Examples of such well-known processes are, for instance, the Wiener and the Ornstein-
Uhlenbeck processes (both instances of a broader class of stochastic processes called
Gaussian processes) or the Poisson process, which are discussed below.
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3.3.1 Gaussian processes

A stochastic process X(t) is a Gaussian process, if given a finite collection of random
variables (X(t1), . . . , X(tn)) its joint probability P (x1, t1;x2, t2; . . . ;xn, tn) follows a
multivariate Gaussian PDF, which has the form:

N(µ,Σ) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
(3.41)

Hence, any realization of a gaussian process (X(t1), . . . , X(tn)) = (x1, . . . , xn)
can be seen as a sample point from a n-dimensional multivariate gaussian:

(x1, . . . , xn) ∼ N(µ,Σ) (3.42)

A gaussian process is completely specified by its mean µ and covariance matrix Σ.
The latter is a real, symmetric and strictly positive defined n × n matrix and captures
the correlations between the random variables defining the process. If we assume that
the process has 0 mean, i.e. µ = 0, then a gaussian process is completely specified by
its second order statistics; in particular given any two random variables of the process
X(ti) and X(tj), the covariance matrix measures their correlation:

Cov (X (ti)X (tj)) = 〈X (ti)X (tj)〉 = Σij (3.43)

If the gaussian process is uncorrelated, i.e. any random variable is independent from
the others, then:

〈X (ti)X (tj)〉 = δ (ti − tj) (3.44)

for every i and j. Equivalently Σ = I, where I is the identity matrix. In this case a
sample from N(0, I) would yield a realization of white noise (c.f.r. Section 3.1.2).

Note how equation 3.44 is the autocorrelation function of the purely random process
(Equation 3.16), but has been employed to build the covariance matrix of a multivariate
gaussian PDF; for this reason, in the context of gaussian processes the autocorrelation
functions are named covariance functions. Covariance functions determine the shape
of the covariance matrix and allow to define different kinds of gaussian processes.

Simulating Gaussian Processes

As stated earlier, simulating a gaussian process is as simple as sampling from a mul-
tivariate gaussian; in general to sample from a generic multivariate gaussian X ∼
N(µ,Σ) it’s sufficient to be able to sample from an isotropic normal PDF Z ∼ N(0, I),
then given the Cholesky decomposition of the covariance matrix Σ = AA>, a sample
from N(µ,Σ) can be easily obtained from:

X = µ+ AZ (3.45)

Consider a gaussian process evolving in time; simulating the process for n time
steps would require to define and store a n × n covariance matrix. However in the
specific case of Gauss-Markov processes, Markovianity and the properties of the mul-
tivariate gaussian distribution can be exploited in order to perform efficient simulations.

54



i
i

“main” — 2021/2/19 — 17:53 — page 55 — #75 i
i

i
i

i
i

3.3. Notable Processes

Recall the properties of the multivariate gaussian distribution in the simple 2-dimensional
case X = (X1,X2) ∼ N(µ,Σ):

1. X1 ∼ N (µ1,Σ11)

2. X2 ∼ N (µ2,Σ22)

3. E [X2 | X1] = µ2 + Σ21Σ−1
11 (X1 − µ1)

4. Var (X2 | X1) = Σ22 − Σ21Σ−1
11 Σ12

Now, consider two random variables of a gaussian process indexed in two succes-
sive time steps: (

Xti

Xti+1

)
∼ N

((
µi

µi+1

)
,

(
σi,i σi,i+1

σi,i+1 σi+1,i+1

))
(3.46)

where σi,i+1 = Cov
(
Xti , Xti+1

)
and µi = E[Xti ], then the PDF of the random

variable at the next time step given the current follows from the properties of the mul-
tivariate gaussian:

Xti+1
| Xti = xi ∼ N

(
µi +

σi,i+1

σi, i
(xi − µi) , σi+1,i+1 −

σ2
i,i+1

σi,i

)
(3.47)

Note how this assumes that the RV at the next time steps only depends on the pre-
vious one (Markovianity). Following Equation 3.45 a Gauss-Markov process can thus
be efficiently simulated by repeatedly sampling Z ∼ N(0, 1) and then computing:

Xti+1
= µi +

σi,i+1

σi, i
(Xti − µi) +

√σi+1,i+1 −
σ2
i,i+1

σi,i

Z (3.48)

3.3.2 The Wiener process

Consider the Langevin Equation written as an Itô SDE described by Equation 3.23; if
we set the deterministic component a(x(t), t) (drift) to zero and let b(x(t), t) =

√
2D,

where D is called the diffusion coefficient, then we obtain:

dx =
√

2DdW (t) (3.49)

Equation 3.49 represents the SDE describing Brownian Motion and is generally
known as the Wiener Process. Broadly speaking, if Brownian Motion is the physi-
cal phenomenon, the Wiener Process is its mathematical description at the microscopic
level. It owns its name to the American mathematician and philosopher Norbert Wiener
who provided a rigorous mathematical formalization of the Brownian motion, prov-
ing that the trajectory of a Brownian particle is (almost) everywhere continuous but
nowhere differentiable (Wiener, 1930).

Note how by performing the Euler-Maruyama discretization of Equation 3.49:
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xt = xt−1 +
√

2D∆Wt = xt−1 +
√

2D∆tξt = xt−1 + kξt (3.50)

with ξt sampled from a zero-mean Gaussian distribution of unit variance N(0, 1),
Equation 3.19 is recovered. Indeed the Wiener Process can be constructed from a sim-
ple random walk by letting the time intervals to become infinitesimal.

To show this, suppose to divide the half line [0,∞) into small sub-intervals of length
τ so that the first sub-interval occurs at position τ , the second at 2τ , the n-th at t = nτ .
Each sub-interval may be a time slot in which we toss a fair coin so that at each time
step is associated a random variable Zi (i = 1 . . . n) that can take values:

Zi =

{ √
τ with probability 0.5

−
√
τ with probability 0.5

Note how the coin tosses are independent with each other. The resulting stochastic
process Z has E [Z] = 0 and Var (Z) = τ . Let’s now define the stochastic process
W (t) at time t = nτ as:

W (t) = W (nτ) =
n∑
i=1

Zi (3.51)

Since W (t) is the sum of i.i.d. RVs:

E[W (t)] =
n∑
i=1

E [Zi] = 0 (3.52)

and

Var(W (t)) =
n∑
i=1

Var (Zi)

= nVar (Z1)

= nτ

= t

(3.53)

Moreover, since the the Zi RVs are independent, the increments of W (t) are in-
dependent, too. For any fixed t ∈ (0,∞) as n → ∞, τ → 0; by the central limit
theorem, for large values of n, the difference W (t2)−W (t1) for every t1 < t2 is close
to N(0, t2 − t1). Hence, W (t) can be written as:

W (t) ∼ N(0, t) (3.54)

As a consequence of the Donsker’s theorem (a functional extension of the central
limit theorem.), as n → ∞, W approaches the Wiener Process. Equation 3.54 states
that the position of the stochastic trajectory defined by a Wiener Process W at time
t can be described by a RV distributed as a gaussian with zero mean and variance
proportional to time.

The very same conclusion can be obtained more rigorously by considering the
macroscopic behaviour of the Wiener Process. In particular, consider the FP Equation
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(3.40); by setting a(x, t) = 0 and b(x, t) =
√

2D as in the SDE definition (Equation
3.49), we obtain:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
(3.55)

which is broadly known as the heat or diffusion equation. This was the mathemati-
cal description that Einstein provided when derived the diffusion equation for Brownian
particles, thus addressing the problem from the macroscopic point of view (Einstein,
1905). The solution to Equation 3.55 is given by:

P (x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
(3.56)

which can be easily recognized as a gaussian PDF with zero mean and variance
σ2 = 4Dt. Hence, a particle whose microscopic dynamics is described by a Wiener
Process (Equation 3.49) can by described at the macroscopic level through the heat
equation whose solution (Equation 3.56) is a time-dependent gaussian with variance
growing linearly in time.

Simulating the Wiener Process

One straightforward way of simulating a Wiener process, wold be to consider the Euler-
Maruyama discretization of the SDE shown in Equation 3.49:

xi+1 = xi +
√

2D∆Wi = xi +
√

2D∆tiξi (3.57)

with ξi sampled from a zero-mean Gaussian distribution of unit variance. However
it’s worth noticing how the Wiener process is a Gauss-Markov process. This means
that given the covariance function, the simulation can be performed efficiently using
the properties listed in Section 3.3.1. The covariance function for the Wiener process
can be derived as follows: given two time instants t1 and t2 such that. t1 < t2,

CWW (t1, t2) = 〈W (t1)W (t2)〉
= 〈W (t1)W (t2)−W (t1)2 +W (t1)2〉
= 〈W (t1)(W (t2)−W (t1)) +W (t1)2〉
= 〈W (t1)(W (t2)−W (t1))〉+ 〈W (t1)2〉
= 〈W (t1)〉〈(W (t2)−W (t1))〉︸ ︷︷ ︸

=0

+〈W (t1)2〉

= 〈W (t1)2〉 = Var(W (t1)) = t1

= min(t1, t2)

(3.58)

Now consider Equation 3.48, bearing in mind that for the Wiener process µi =
〈W (ti)〉 = 0 and σi,i+1 = min (ti, ti+1) = ti, the process can be simulated by recur-
sively computing:

W (ti+1) = W (ti) +
(√

ti+1 − ti
)
Z (3.59)
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where Z ∼ N(0, 1). Note that Equation 3.59 and Equation 3.57 are equal except for
a constant.

3.3.3 The Ornstein-Uhlenbeck process

Consider again, the general form of the Langevin Equation written as an Itô SDE (Equa-
tion 3.23); we have seen that, by setting the drift term to zero the diffusion term to a
constant, the resulting SDE describes the Wiener process or Brownian Motion.

The Ornstein-Uhlenbeck (OU) process is obtained by setting the drift a(x(t), t) =
β(µ− x(t)) and the diffusion b(x(t), t) = D, thus getting:

dx(t) = β(µ− x(t))dt+DdW (t) (3.60)

where β > 0, µ andD > 0 are constants. If the stochastic part of Equation 3.60 does
not show any particular novelty, describing de facto a Wiener process, the deterministic
term expresses a more interesting functional form.

Intuitively, supposing to consider only the drift term, it can be deduced that the
instantaneous change of x i.e. dx(t) depends on the distance of the current state x(t)
from the value µ. In particular, if µ − x(t) > 0, then dx(t) will be positive; hence,
x(t) will increase. The opposite holds when µ − x(t) < 0. As a consequence, the
drift term will force x(t) to move towards µ as the process evolves. For this reason the
parameter µ is often called steady state or attractor and the OU process is defined as a
mean reverting process.

Note how the strength of the attraction towards µ is modulated by the parameter β;
for bigger values of β, the difference (µ − x(t)) will be magnified, therefore a faster
change will occur in the direction of the steady state. On the other hand, for values of
β close to zero the attraction will be weaker. Because of this property, the parameter β
is called dampening force or centralizing tendency.

When adding the diffusion term, thus considering Equation 3.60 entirely, it’s easy
to imagine how the behaviour of a trajectory whose microscopic dynamics is described
by an OU process would consist is a noisy run towards µ, the amount of "noise" be-
ing determined by the parameter D. Eventually, when the steady state is reached, the
process will keep wiggling around µ. This is depicted in Figure 3.7 which shows a
Monte Carlo simulation of 7 trajectories, all described by the same OU process with
parameters β = 1, µ = 0 and D = 0.2, starting at different points.

The solution of the OU process is obtained by integrating the SDE of Equation 3.60.
This results in an expression for x(t) | x(t−d) i.e. a conditional on d time units before:

x(t) | x(t− d) ∼ N

(
µ+ e−βd(x(t− d)− µ),

D2

2β

(
1− e−2βd

))
(3.61)

It is immediate to verify that if we let d tend to infinity, i.e. we condition on many
time units earlier, the distribution does not depend on x(t − d) anymore. Hence, the
initial condition of the process is forgotten. In this case the solution reads:

x(t) ∼ N

(
µ,
D2

2β

)
(3.62)
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1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 3.7: 7 different realizations of the same one dimensional OU process with different
initial conditions. As can be noted, despite the different starting points, the process runs
towards the steady state µ = 0

In contrast to the Wiener process, whose solution is a time dependent Gaussian
distribution (Equation 3.54), the OU process admits a stationary probability distribution
which is a Gaussian with mean µ and standard deviation depending on the constants D
and β, as shown in Equation 3.62. This fact can be appreciated qualitatively by looking
again at Figure 3.7.

The n-dimensional generalization of the OU process is given by:

dx(t) = B(µ− x(t))dt+ DdW(t) (3.63)

Now x(t) represents the position of the trajectory in a n-dimensional space, which
is pulled towards the steady state represented by the n-dimensional vector µ. The
adjustment to the attractor is now determined by the n × n matrix B, while the n × n
covariance matrix D controls the variances and covariances of the n driving white noise
processes dW(t). In order to ensure the stability of the process (convergence to the
stationary distribution) the matrix B is supposed to have all positive eigenvalues (Oud
and Singer, 2008).

Eq. 3.63 can be explicitly written in the two dimensions simply as

dx(t) = bx[µx − x(t)]dt+DdWx(t), (3.64)
dy(t) = by[µy − y(t)]dt+DdWy(t). (3.65)

Consider the 1-D process on the x coordinate. It is known that for t ≥ 0, with initial
value x(0) = x0, the explicit solution of Eq. 3.64 writes (see e.g. Lemons (2002);
Kloeden and Platen (2013)):
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x(t) = x0e
−bxt+µx(1− e−bxt)+ (3.66)

D2
x

∫ t

0

e−bx(t−s)dWx(s),

and analogously for the y(t) process. The solution can be equivalently written as Equa-
tion 3.61 by conditioning on the initial state x(0):

x(t) | x(0) ∼ N (µx + e−bxt(x0 − µx),
γx(1− e−2bxt)), (3.67)

with γx = D2

2bx
, so that the expected value is E[x(t)] = µx + e−bxt(x0 − µx) and the

variance ia var(x(t)) = γx(1− e−2bxt). The same holds for the y(t) process.
The explicit evolution of x in time between 0 and t can be obtained by numerically

advancing the particle position with an update equation. This is derived by replacing t
in the exact solution (Eq. 3.66) with t′ = t + δt, δt time units later, and applying the
initial condition x0 = x(t):

x(t′) = x(t)e−bxδt + µx(1− e−bxδt)+√
γx(1− e−2bxδt)z(t). (3.68)

In the same way, Eq. 3.67 writes as the conditional distribution

x(t′) | x(t) ∼ N (µx + e−bxδt(x(t)− µx),
γx(1− e−2bxδt)). (3.69)

Interestingly enough, Eqs. 3.68 and 3.69 can be read as solving Eq. 3.64 via Monte
Carlo simulation, where a sequence of such updates with the realization of the updated
position x(t′) at the end of each time step is used as the initial position x(t) at the
beginning of the next.

Eventually, Eq. 3.69 and the corresponding one for the y(t) coordinate can be
generalized in compact form as

x(t′) | x(t) ∼ N (µ+ e−Bδt(x(t)− µ),Ψ), (3.70)

which represents the general solution to Eq. 3.63, with
Ψ = Γ−e−BδtΓe−B′δt; B and Γ = D2

2
B−1 are 2×2 matrices and e−M is the matrix

exponential.
If B is positive definite the OU process is stationary; intuitively, by letting δt→∞,

then e−Bδt → 0 and the process has the equilibrium distribution r(t) ∼ N (µ,Γ). The
assumption of stationarity implies that if the process runs for an infinitely long period
of time, this equilibrium density is the density function of the visited points in the
2-dimensional space.
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By examining the conditional mean vector

E [x(t′) | x(t)] = µ+ e−Bδt(x(t)− µ),

the parameter µ is the vector of expected values of the equilibrium distribution (δt →
∞) and can thus be seen as a fixed point attractor; the matrix B controls the strength of
the centralising tendency, which keeps the process in the vicinity of attractor µ.

The matrix Γ is the covariance matrix of the stationary distribution in and is part
of the conditional covariance. It is a positive definite, symmetric 2 × 2 matrix; large
variance values imply that the gaze process can go through many changes (i.e., it is very
volatile), while small variances lead to smoother trajectories. As to the instantaneous
variance Ψ = Γ − e−BδtΓe−B′δt, we can see that when the exponential part goes to 0
(i.e., a large centralizing tendency and/or time difference), the instantaneous variance
converges to the variance of the stationary distribution. As the exponential part goes
to 1 (i.e., small centralizing tendency and/or time difference), the conditional variance
becomes very small.

Simulating an Ornstein-Uhlenbeck process

As the Wiener process, the OU process is a Gauss-Markov process, moreover it is
stationary. The covariance function for the OU process is given by:

Cxx(t1, t2) = e
β|t1−t2|

2 (3.71)

By substituting σi,i+1 = e
β|ti−ti+1|

2 in Equation 3.48, for any µ ∈ R and D > 0 we
obtain:

xti+1
= µ+ e

β|t1−t2|
2 (xti − µ) +

(√
1− eβ|t1−t2|

)
DZ (3.72)

Hence, an OU process can be simulated by recursively evaluating Equation 3.72
where Z ∼ N(0, 1).

3.3.4 The Poisson process

The Poisson process is one of the most widely used stochastic processes for modelling
the times at witch certain events occur. It is a continuous time process, meaning that
such events may occur at arbitrary positive times 0 < S1 < S2 < · · · , where Si+1 − Si
is a random variable defined in R+. The RVs Si are called arrival times or arrival
epochs and represent the times at which some repeating phenomenon occurs. This kind
of process are broadly known as arrival processes. An example of an arrival process is
given in Figure 3.8, which shows a sequence of arrival times (S1, S2, . . .).

However, it’s easy to note how such processes can be easily defined in two alterna-
tive ways; the first one is given by the sequence of inter-arrival timesX1, X2, . . ., which
are positive RVs defined in terms of the arrival times: X1 = S1, Xi = Si − Si−1.

Equivalently the arrival times can be defined in terms of inter-arrival times as Sn =∑n
i=1 Xi. If X1, X2, . . . is a sequence of i.i.d. RVs, then the corresponding arrival

process is called a renewal process.
The other alternative to define an arrival process is through the counting process

N(t), with t > 0. N(t) represents the number of events that have occurred up to time
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Figure 3.8: A realization of a random sequence of arrival times, together with inter-arrival
intervals and its counting process

t. N(0) is defined to be 0 with probability 1 and N(t2)−N(t1) for every t2 > t1, is a
positive and discrete random variable.

The Poisson process is most commonly viewed as a counting process. For a fixed
λ > 0, the counting process {N(t), t ∈ [0,∞)} is called a Poisson Process with rate λ,
if:

1. N(0) = 0

2. N(t) has independent increments

3. the number of arrivals in the unitary time interval has Poisson(λ) distribution

where Poisson(λ) = e−λλk

k!
for k = {1, 2, 3, . . .}.

Hence, the Poisson process allows to model the number of events that occur in a
specific time interval. For a generic time interval τ = t2 − t1, the number of arrivals
is given by a Poisson(λτ). Consequently, the distribution of the number of arrivals in
any interval depends only on the length of the interval, and not on the exact location of
the interval on the real line. Therefore the Poisson process has stationary increments.

3.4 Order in apparent chaos: diffusion and Central Limit Theorems

In 1889 Sir Francis Galton, first cousin of Charles Darwin and mentor of the father of
frequentist statistics Karl Pearson, published a treatise about the laws of heredity enti-
tled Natural Inheritance (Galton, 1894). He formulated a theory about the inheritance
of human traits such as stature and intelligence. In order to demonstrate his theories he
came up with a device that he called "quinqunx" (now usually referred to as the Galton
board or bean machine); it consists of a vertical board with interleaved rows of pegs
into which small metal balls can be inserted through an opening at the top so that they
bounce either left or right as they hit the pegs. Eventually, balls are collected into bins
at the bottom of the board, and a bell shaped histogram appears.

The quinqunx was likely built about 16 years earlier and its original purpose was to
give a mechanical illustration of "the principle of the Law of Error of Dispersion", but
Galton gave a detailed description of this device only lately in his book (Kunert et al.,
2001).
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3.4. Order in apparent chaos: diffusion and Central Limit Theorems

The way the quinqunx was employed by Galton to deal with his theories about
inheritance is out of the scope of this dissertation; still and all, his device witnesses the
ubiquity of the Gaussian distribution in the statistical description of natural phenomena;
Galton himself, used it as a teaching aid, e.g. for a lecture at the Royal Society in 1874.

Galton was fascinated about the fact that although the path followed by any indi-
vidual ball looked completely random, when a bunch of balls are introduced into the
board a nice bell shaped curve appeared into the bins at the bottom. He was charmed
by the order of the bell curve that emerges from the apparent chaos of balls bouncing
off of pegs in the quinqunx; this is well described by this quote from his book (Galton,
1894):

Order in apparent Chaos. - I know of scarcely anything so apt to impress
the imagination as the wonderful form of cosmic order expressed by the
"Law of Frequency of Error." The law would have been personified by the
Greeks and deified, if they had known of it. It reigns with serenity and
in complete self-effacement amidst the wildest confusion. The huger the
mob, and the greater the apparent anarchy, the more perfect is its sway.
It is the supreme law of Unreason. Whenever a large sample of chaotic
elements are taken in hand and marshalled in the order of their magnitude,
an unsuspected and most beautiful form of regularity proves to have been
latent all along. The tops of the marshalled row form a flowing curve of
invariable proportions; and each element, as it is sorted into place, finds,
as it were, a pre-ordained niche, accurately adapted to fit it.

This order, of course, has a mathematical explanation. By recalling the construction
of the Wiener process presented in the previous Section, it’s easy to think about the
pegs, making the ball bouncing either left or right, as a series of coin flips, and the
path of the single ball as the process described by Equation 3.51. The bell-shaped
distribution appears at the bottom of the Galton board for the same reason that led to
the construction of the Wiener process: the Central Limit Theorem, proved in 1810 by
Pierre-Simon Laplace. The Galton board is simply a visual demonstration of Laplace’s
theorem.

The wide applicability that the Gaussian distribution enjoys for the statistical de-
scription of natural phenomena is a direct consequence of the Central Limit Theorem
(CLT). The key idea behind the classical CLT is the following. If we sum a large num-
ber n of RVs Xi that are:

• statistically independent

• identically distributed

• with finite and non-zero variance

the resulting probability distribution P (Sn) for the sum Sn =
∑n

i=1Xi converges
to a Gaussian distribution with mean nµ and variance nσ2. In other words, as n → ∞
P (Sn) ∼ N(nµ, nσ2).

This represents the "classical" and most famous version of the CLT; however, there
exist other weaker versions that do not require the random variablesXi to be identically
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distributed. According to such versions (Lyapunov CLT, or Lindeberg CLT), there
may be distributions with different variances Var (Xi) = σ2

i . In this case, the CLT
still holds if the contribution of any individual random variable to the overall variance
σ2
n =

∑n
i=1 σ

2
i is arbitrarily small for n→∞.

One of the properties that enable the classical CLT is the fact that the linear com-
bination of independent Gaussian distributions yields again a Gaussian. Such property
is called stability and distributions enjoying it are called Stable distributions. Besides
the Gaussian, other functions of the exponential family share this property; these can
be gathered into a broad collection of functions, which is generally referred to as the
family of Lévy alpha-stable distributions, after Paul Lévy, the first mathematician to
have studied it (Mandelbrot, 1960). In general, the density function of an alpha-stable
random variable cannot be given in closed form. However, the characteristic function
can always be given:

ϕ(t;α, β, γ, δ) = exp (itδ − |γt|α(1− iβ sgn(t)Φ)) (3.73)

where

Φ =

{
tan
(
πα
2

)
α 6= 1

− 2
π

log |t| α = 1

By computing the Fourier transform of ϕ(t;α, β, γ, δ), one obtains the expression
for the Lèvy stable distribution:

f(x, α, β, γ, δ) =
1

2π

∫ ∞
−∞

ϕ(t)e−ixtdt (3.74)

The α-stable distribution is a four-parameter family of distributions f(x, α, β, γ, δ)
. The first parameter α ∈ (0, 2] is called the characteristic exponent, and describes
the tail of the distribution; the closer to 0 the more heavy tailed the distribution is.
The β ∈ [−1, 1] parameter is the skewness, and as the name implies, specifies if the
distribution is right- (β > 0) or left- (β < 0) skewed. The last two parameters are the
scale, γ > 0, and the location δ ∈ R. One can think of these two as being similar to the
variance and mean in the Normal distribution.

The family of alpha-stable distributions is a rich class, and includes the following
distributions as sub-classes:

• Gaussian distribution N(µ, σ2) is recovered from ϕ(2, β, σ√
2
, µ)

• Cauchy distribution with scale γ and location δ is given by ϕ(1, 0, γ, δ)

• Levy distribution with scale γ and location δ is given by ϕ(1
2
, 1, γ, δ)

Figure 3.9a shows the α-stable distribution for different values of the characteristic
exponent α (α = 0.5, 1, 1.5, 2), and fixed values of the other parameters (β = 0, γ = 1,
δ = 0) . Notably, for α = 2 the bell shape of the Gaussian distribution is recovered;
on the other hand, as α approaches 0, the distribution becomes more picked and with
fatter tails. Mandelbrot referred to such distributions as "stable Paretian distributions"
due to the fact that the trend of the tails follows a power law or "paretian" behaviour. In
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particular, the tails decrease as |x|−α−1 (Mandelbrot, 1963). This can be appreciated by
looking at Figure 3.9b; it shows the Complementary Cumulative Distribution Function
(CCDF) of the α-stable distribution for different values of the characteristic exponent
α on a log-log plot. Notably, for α = 2 (the Gaussian case) the tails exhibit a rapid
fall-off. On the contrary, for α < 2 the tail distribution on the log-log scale shows
almost straight lines, thus denoting a power law tail behaviour. Due to this property,
the α-stable distribution has undefined (or diverging) variance for α < 2.

=0.5

=1.0

=1.5

=2.0

(a) α-stable PDF

=0.5

=1.0

=1.5

=2.0

(b) α-stable CCDF

Figure 3.9: Left: α-stable distribution for different values of the characteristic exponent α
(α = 0.5, 1, 1.5, 2). Right: α-stable Complementary Cumulative Distribution Function
(CCDF) for different values of the characteristic exponent α

The α-stable distribution plays an important role in what has been called the Gen-
eralized Central Limit Theorem. Such generalization to the classical CLT is due to
Gnedenko and Kolmogórov (1954) and states that the sum of a number n of random
variables with symmetric distributions having power-law tails (and thus infinite vari-
ance), will tend to an α-stable distribution as n→∞.

3.4.1 Normal Diffusion: Brownian Motion

In Section 3.3.2, it has been shown how the Wiener process can be seen as a limiting
case of a simple random walk with positive or negative increments, provided by a coin
toss. The Wiener process is thus recovered as the sum of the resulting independently
sampled Bernoulli RVs; when the number of samples tend to infinity, the large sample
of independent and identically distributed random displacements (with finite variance)
produces the Gaussian PDF as distribution of the step length, namelyW (t2)−W (t1) ∼
N(0, σ2).

This construction of the Wiener process, put the accent on how classic CLT is the
foundation of Brownian Motion and explains why it is so widely employed for the
description of natural phenomena.

When considering the long term limit of Brownian Motion, either following the
above construction (Equation 3.54), or by examining the macroscopic limit given by
the FP Equation (Equation 3.56), the result is a Gaussian distribution with variance
growing linearly in time.

More precisely, this fact can be further verified by inspection of the Mean Squared
Displacement (MSD), a measure of the deviation of the position of a trajectory with
respect to a reference position over time. Intuitively, it measures the amount of "space"
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that the random walker explores up to a given time instant. The MSD of a walk that
starts at position x0 at time t0 is:

MSD =
〈
|x− x0|2

〉
(3.75)

For Brownian Motion Einstein (1906) showed that MSD = 2Dt; this can be writ-
ten in a more general form in terms of the Hurst Exponent H:

MSD = kt2H (3.76)

where H = 0.5 for Brownian Motion. The Hurst Exponent H captures the long
term behaviour of a time series in terms of its correlation properties. More generally,
the value of H in Equation 3.76 allows to determine the relation of the process with
respect to time. For H < 0.5 the MSD grows sub-linearly in time; H > 0.5 denotes a
super-linear growth, while H = 0.5 indicates a linear trend.

The latter behaviour is known as Normal Diffusion and is exhibited only by the
processes obeying the rules of the classic CLT. By contrast, when classic Central Limit
Theorem cannot be applied, the so called Anomalous Diffusion arises.

3.4.2 Anomalous Diffusion: Deviating from the CLT

Often, and in particular when dealing with the statistical description of eye movements,
some of the conditions required by the classic CLT are not fulfilled (cfr Section 3.5).

In this respect, a violation of the first condition (independence), would lead to tra-
jectories exhibiting long term correlations, so a movement of the random walker in a
given direction would influence the probability of moving in the same direction at suc-
cessive time steps. In this case, superdiffusion would arise. On the contrary, the process
would reveal long pausing times (portion of time in which the process holds in a resting
state), thus expressing subdiffusion.

Violating the second condition (RV are not identically distributed), would mean
having processes with non-identical displacements. This may be gradually shorter or
longer, leading to either subdiffusion or superdiffusion, respectively. These two are
often collapsed into a single condition (the i.i.d. property).

A violation of the third condition would imply innovation distributions with infinite
variance.

Two widely known examples of stochastic processes not ruled by classical CLT are
Fractional Brownian Motion and Levy Flights.

Fractional Brownian Motion

A celebrated example of a stochastic process violating the i.i.d. condition is the Frac-
tional Brownian Motion (FBM), proposed by Mandelbrot and Van Ness (1968). It is
a Gaussian process whose covariance function is given by:

Cxx(t1, t2) =
1

2

(
t2H1 + t2H2 − |t1 − t2|2H

)
(3.77)

where H ∈ (0, 1) is the Hurst exponent. Observe that for H = 0.5 the covariance
function of the Wiener process or standard Brownian Motion is recovered. Hence the
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FBM represents a generalization of standard Brownian Motion obtained by allowing
the Hurst parameter to differ from 0.5.

The Hurst exponent H governs all essential properties of FBM. In a nutshell, for
H ∈ (0, 0.5) the process is called counter-persistent i.e. if it was increasing in the past,
it is more likely to decrease in the future, and vice versa. In other words, increments
are negatively correlated. The opposite holds for H ∈ (0.5, 1), the process is called
persistent, i.e. random walk shows the tendency to continue to move in the current
direction and exhibits long term memory. This properties follow from the fact the FBM
is characterized by increments that for H 6= 0.5 are dependent, hence classical CLT
does not apply here.

It follows from the above discussion that the Hurst parameter H dictates the reg-
ularity of FBM: the closer H is to 1, the smoother the process becomes. This can be
appreciated by looking at Figure 3.10 showing three realization of Fractional Brownian
Motion with different values of the Hurst exponent H (H = 0.1, 0.5, 0.9).

(a) FBM with H = 0.1 (b) FBM with H = 0.5 (c) FBM with H = 0.9

Figure 3.10: Left: A realization of a counter-persistent FBM with H = 0.1; increments are
negatively correlated and the resulting process is very irregular. Center: A realization of
FBM with H = 0.5 (standard Brownian Motion) Right: A realization of a persistent FBM
with H = 0.9; increments are positively correlated and the process is smoother.

If we consider the MSD for Fractional Brownian Motion MSD = kt2H it is easy to
see how for H < 0.5 the deviation of the random walk from the initial position grows
sub-linearly in time (subdiffusion). On the other hand, for H > 0.5 the MSD evolves
super-linearly (superdiffusion).

Lèvy Flights

The third condition to be met in order to apply the classical CLT is the use of RVs de-
scribed by distributions having finite (and non zero) variances. Violating this condition
would lead to avoid convergence to Brownian Motion in the long time limit. A way of
doing so, is to employ power-law tailed distributions in the random walk steps, rather
than the classical Gaussian distributed displacements. When the adopted heavy-tailed
distribution is in the family of α-stable distributions, the so called Lèvy Flights (LFs)
take place. These are stochastic processes characterized by the occurrence of extremely
long jumps, whose length is described by Lèvy α-stable statistics with a power-law tail
and divergence of the second moment (i.e. α < 2).

The microscopic description of a LF is straightforward; indeed these are Markov
processes with stochastic increments sampled from a α-stable distribution. The SDE
describing a LF can thus be obtained from Equation 3.23 by setting a(x, t) = 0,
and replacing the stochastic increment dW (t) ∼ ξ(t)dt where ξ(t) ∼ N(0, 1), with
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dLα(t) = ψ(t)dt with ψ(t) ∼ f(ψ, α, β, γ, δ):

dx(t) = b(x, t)dLα(t) (3.78)

Notably, by setting α = 2, γ = 1√
2
, δ = 0 and b(x, t) =

√
2D standard Brownian

Motion is recovered.
Suppose to set b(x, t) = 1 for simplicity, LFs can be easily simulated by discretizing

Equation 3.78, thus obtaining:

xi+1 = xi + kψi (3.79)

where ψi ∼ f(ψ, α, β = 0, γ = 1, δ = 0). The process can be straightforwardly
extended in two dimensions by defining:

xi+1 = xi + kψx,i

yi+1 = yi + kψy,i
(3.80)

Figure 3.11 depicts the simulation of 2-dimensional LFs for 500 time steps while
varying the parameter α = 1, 1.5, 2. As can be noted, the amount space explored by
a Lèvy random walk is bigger for lower values of α; as α approaches 2 (Brownian
Motion) the scale of the exploration is shrunk.
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(a) LF with α = 1
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(b) LF with α = 1.5
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(c) LF with α = 0.2

Figure 3.11: Left: A realization of a Lèvy Flight with α = 1 (Cauchy Walk) Center: A re-
alization of a Lèvy Flight with α = 1.5 Right: A realization of a Lèvy Flight with α = 2
(standard Brownian Motion)

This provides the notion of LFs as super-diffusive processes at an intuitive level.
More rigorously, one could imagine to compute the MSD for LFs; however, the di-
verging second moment characterizing the α-stable distribution for α < 2, leads to a
divergent MSD. Hence, in general for LFs MSD =∞.

Nevertheless, one could pursue a Monte Carlo approach by simulating many 1D
LFs and computing estimates of the time varying distribution P (x, t). The evolution
over time of the width of such distributions can be defined empirically through, for
instance, the Full Width at Half Maximum (FWHM), an expression of the extent of a
function given by the difference between the two extreme values of the independent
variable at which the dependent variable is equal to half of its maximum value. The
FWHM is a measure of the spread of a function; if such function is the density of a
Gaussian distribution it is proportional to it’s standard deviation.

Figure 3.12 shows one such simulation of 1000 LF trajectories; red dots represent
the FWHMs of the empirical estimate of P (x, t) at fixed time instants. By looking at
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the Figure it’s easy to see how the growth of this "pseudo-MSD" closely follows the
function t

1
α . The latter is depicted by the black dashed line.

It’s worth noticing how for α = 2 (Brownian Motion) the increments become Gaus-
sian and the pseudo-MSD would grows as

√
t; by recalling the relationship between the

FWHM and the standard deviation of the Gaussian, the linear growth of the variance of
the Gaussian describing BM at the macroscopic level, is easily recovered. By contrast,
for α < 2 the super-linear growth or the pseudo-MSD reveals the superduffusive nature
of LFs.

Figure 3.12: Monte Carlo simulation of 1000 Lèvy Flights. The Mean Square Displacement
is approximated by computing at fixed time instants t the Full Width at Half Maximum of
the empirical distribution P (x, t) (red dots). Dashed lines show how such "pseudo-MSD"
grows as ∼ t

1
α , where α represents the characteristic exponent of the α-stable distribution

defining the LF

3.5 Stochastic models of eye movement and foraging

Let’s consider again what Figure 3.1 represents; it suggests that each scanpath is a real-
ization of a stochastic process. At this point one may ask what’s the kind of stochastic
process more apt for the stochastic modelling of eye movements.

By having a quick glimpse at the literature on the subject, one immediately realizes
that when dealing with eye movements, the most appropriate stochastic processes are
those for which the classical CLT is violated.

Among others, two interesting examples are the modelling of fixational eye move-
ments by Engbert (2006); Engbert et al. (2011); Makarava et al. (2012); Engbert and
Kliegl (2004) and the study of saccades amplitude by Brockmann and Geisel (2000).

3.5.1 Fixational eye movements as fractional Brownian motion

Engbert and colleagues analyzed the random walk behaviour of fixational eye move-
ments (FEMs) by describing it via the mathematical formalism of fractional Brownian
Motion.

FEMs can be defined as small involuntary eye movements that exhibit an erratic tra-
jectory or random walk. There are two important types of FEMs that have been called

69



i
i

“main” — 2021/2/19 — 17:53 — page 70 — #90 i
i

i
i

i
i
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physiological drift or tremor and microsaccades. The former is a low-velocity move-
ment, while the latter are rapid small-amplitude movements, which typically occur at a
rate of one to two per second.

Engbert and Kliegl (2004) studied the correlation across time of FEMs as well as
their degree of persistence by computing the empirical Mean Squared Displacement
and estimating the their Hurst exponent H . In a similar vein, Makarava et al. (2012)
carried out a more detailed analysis relying on Bayesian methods for the estimation of
H .

Engbert and Kliegl (2004) found that when considering a short time scale (2 to
20 ms) the random walk is persistent (H > 0.5); on the contrary, on larger time
scales (between 100 ms and 400 ms), random walks exhibit a non-persistent behaviour
(H < 0.5). Hence, in the short time period, fixational eye movements exhibit pos-
itive correlation between successive increments, while in the larger one, tend do be
negatively correlated. According to such analysis, the latter conduct is caused specif-
ically by the microsaccades that act as error-correcting movements that "balance" the
diffusive carriage of the physiological drift.

This is psychologically plausible, because persistent behavior increases retinal im-
age shifts, which contribute to the prevention of perceptual fading. However, a super-
diffusive behaviour (H > 0.5) reoccurring for long time would lead to loosing the
desired focus of attention (FoA). The non-persistent behaviour (H < 0.5) on a longer
time period operates in order to keep the current fixation point. Crucially, the negatively
correlated increments arising on the larger time scale, serve to avoid such disalignment
(Engbert and Kliegl, 2004).

More recently Engbert et al. (2011) proposed a model of FEMs incorporating self-
avoidence. In particular FEMs are considered as realizations of Self Avoiding Random
Walks (i.e. random walks that keep track of the previously visited positions in order to
avoid coming upon the same region twice) confined in a potential.

3.5.2 Saccades as Lèvy Flights

Consider Figure 3.13a; it shows an image and a scanpath recorded from a subject while
attending at it. Figure 3.13c shows a random realization of a two dimensional Lèvy
Flight. By comparing Figure 3.13b with Figure 3.13c, a pronounced similarity in terms
of shape between the two trajectories should be noticeable, a least in a qualitative sense.

(a) A sample data from the
dataset Cerf et al. (2008)

(b) The recorded scanpath (c) A realization of a 2D Lèvy Flight

Figure 3.13: Qualitative comparison of scanpaths and Lèvy Flights

Brockmann and Geisel (2000) provided empirical support for such observation by
assuming a power-law dependence in the tail of the saccades amplitude distribution,
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thus establishing a relationship between eye movements and Lèvy Flights.
They relied their investigation on the simulation of artificial scanpaths through ran-

dom walks whose step length could be sampled from either a Gaussian or a Cauchy
distribution. In order to obtain simulated eye movements resembling those of humans
while free viewing an image, they computed an empirical salience field from the spa-
tial distribution of the fixations made by observers throughout the scene. This was then
used to constrain the random walk (either Gaussian or Cauchian).

To verify the assumption that scanpath step length follows a power-law distribution,
they collected saccadic magnitudes as measured from real subjects while scanning nat-
ural scenes, and gave evidence that their distribution’s tail on a log-log plot is well fitted
by a straight line. Hence, they conclude that saccades can be conceived as Levy Flights.

Moreover, they showed how employing a Cauchy Flight as saccadic model, would
require a much lower time to scan the entire scene if compared with a random process
with Gaussian increments. This is not surprising from a strictly mathematical stand-
point: the MSD of LFs grows super-linearly, consequently they exhibit super-diffusive
behaviour. However, if considering a broader perspective, such claim poses the problem
of eye guidance under a new light.

Indeed, one of the findings of the work of Brockmann and Geisel (2000) is that
the visual system minimizes the time needed to scan the entire visual space. Hence,
they argue that our oculomotor system may have evolved in order to perform optimally,
Lèvy Flights being the means ensuring such optimality requirements.

Crucially, such view allows to connect eye guidance modelling to the theories of
foraging animals in the ecology literature, by means of what has been referred to as the
Lèvy Flight foraging hypothesis (c.f.r. Section 3.5.3). Stated differently, one could
think of the eye ( or the brain modules controlling the eye behaviour) as a forager
searching for valuable information (preys) in a given (and possibly time varying) scene
(foraging landscape).

The forthcoming section, provides a brief introduction of those topics concerning
foraging theory that are deemed relevant for the modelling of attentive eye guidance.

3.5.3 The Foraging Perspective

Foraging theory is the branch of behavioural ecology that studies the the foraging be-
havior of animals, i.e. the way they search for wild food resources. Indeed, animals
must move in order to perform a number of fundamental tasks (eating, mating, escap-
ing predators, etc...). The goal of foraging theory, or more specifically of the field of
movement ecology, is to understand how living organisms move, i.e. the typical pat-
terns and statistical properties of the trajectories describing their displacements. It is
a very broad and multidisciplinary field, involving research areas (among others) like
stochastic processes and anomalous diffusion.

One of the eminent ideas in behavioural ecology is the Optimal Foraging Theory
(OFT). It was initially proposed by Emlen (1966) and MacArthur and Pianka (1966)
and states that the mechanisms driving foraging organisms have been naturally selected
during evolutionary time in order to maximize the energy intake. A large body of
theoretical work grew in an attempt to deal with the multitude of determinant factors
and in order to identify the relevant parameters involved in such optimization. Two
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important examples are the Lèvy Flight Foraging (LFF) Hypothesys (Viswanathan et al.,
1999, 2008) and the Marginal Value Theorem (MVT) (Charnov, 1976).

It turns out that many concepts of foraging theory and movement ecology success-
fully apply to human movement behaviour; indeed, even humans engage many forms
of foraging by collecting resources from the surrounding world. For instance, Gonza-
lez et al. (2008) studied the movements of humans by recording GPS tracks via mobile
phones; they found that after compensating for the variability among individuals, the
data collapse onto an exponentially truncated Lèvy flight with characteristic exponent
α = 0.75, consistent with super-diffusion. Similarly Brockmann et al. (2006) studied
human’s movements by tracking the the circulation of dollar bills; they found a power
law distribution of travel distances consistent with a Lèvy flight pattern of movement
with α = 0.59. Because dollar bills move only when carried by people, they conclude
that the movement of people is super-diffusive.

Notably, eye movements analysis has been carried out in terms of foraging, too;
aside from the already cited adoption of LFs to describe saccades (Brockmann and
Geisel, 2000), Wolfe (2013) and Cain et al. (2012) examined the human’s visual be-
haviour under such lenses, performing experiments in order to test the predictive capa-
bilities of the MVT for visual search tasks.

In the following paragraphs of the present Chapter a quick description of such con-
cepts (Lèvy Flight Foraging Hypothesis and Marginal Value Theorem) will be provided
together with an account of their applicability to the eye movement modelling problem.

Lèvy flight foraging hypothesis

The Lèvy Flight foraging hypothesis states that since Lèvy Flights maximize the amount
of space covered in a fixed time period, they optimize random searches. Hence, natural
selection should have led to adaptations for Lèvy flight foraging. This is due to their
super-diffusive nature arising from the power-law decay of the tails of the step length
distribution.

The LFF hypothesis holds under specific but common circumstances; in particular
it is assumed that the forager is engaged in a so called non-destructive random search,
i.e. the target are randomly distributed and regenerates after some (very) short time and
that these are distributed sparsely (in patches) throughout the environment.

In their seminal work, Viswanathan et al. (1999) analyzed the efficiency of a Lèvy
forager for different values of the characteristic exponent 0 ≤ α ≤ 2 of the associated
α-stable distribution. They showed how in the two extreme cases (α = 0 and α = 2)
the forager acted sub-optimally, but for two different reasons. In the first case (α = 0)
the forager performs ballistic movements, this means that it chooses a random direction
of movement and then moves on a straight line until a prey is encountered. This means
that, eventually, closer preys are discarded.

In the opposite case (α = 2) Gaussian innovations are preformed, the forager will
thus perform Brownian motion; it will bias the search towards the closer target because
it will come within the range of the bell-shaped region of the propagator before the more
distant target. The linear growth of the MSD of BM makes the Gaussian propagator not
very efficient (c.f.r. Figure 3.11). Moreover, this way of behaving, leads to returning
often to the already visited sites (a process called oversampling).

The compromise is represented by Lèvy Flights with 0 < α < 2; in particular, it
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has been shown (Viswanathan et al., 1999) that the optimal value of the Lèvy Flight ex-
ponent which maximizes the search efficiency of the forager is α = 1 (Cauchy Flight).
Besides such empirical findings, these results find a theoretical justification in the fact
that for α = 1, LFs reach the largest possible Hurst exponent H = 1, thus maximizing
the super-diffusivity of the walk (Viswanathan et al., 2011).

Nonetheless, it’s worth remarking that such optimal behaviour persists as long as
the above conditions are met. For instance it has been shown how in case of destructive
random search, the ballistic Lèvy searcher is the one acting optimally (Viswanathan
et al., 2011). Similarly, when dealing with high-density-prey environments (targets are
not patchily distributed), Lèvy Flight searches are not distinguishable from Brownian
ones in terms of foraging efficiency (Viswanathan et al., 2011).

Criticism to the LLF Hypothesys

Despite the large success of the LFF hypothesis, the general applicability of such theory
is still the subject of some controversy (Benhamou, 2007; Edwards et al., 2007). In fact,
many of the observed patterns that are attributed to Lèvy processes can be generated
by a simpler composite random walk process where the turning behaviour is spatially
dependent (Codling et al., 2008; Benhamou, 2007; Bénichou et al., 2006).

In particular Benhamou (2007) argued about the fact that even if the observed pat-
terns of movement may resemble those of LFs, (step length frequency distribution well
fitted by a straight line in a log-log plot) the real generating process is not necessarily
a LF process. The author shows how Composite Brownian Walks (CBW) generates
search patterns that mimic those generated by LFs and that under specific circumstance
are more efficient than LFs (Benhamou, 2007).

CBW are obtained as a mixture of two "classical" random walks, i.e. stochastic
processes characterized by a step length distribution whose variance is finite, which act
jointly to mimic the intensive and extensive search of foraging animals. One of such
processes is in charge of producing frequent and exponentially distributed steps with
relatively small mean, while the other produces more sporadic exponentially distributed
steps with relatively large mean.

Benhamou (2007) shows how simulations from CBW may be erroneously rated
as LFs. This highlights the crucial difference between the observed patterns and the
inference of the data generating model and directs attention to the methods used to
perform such deductions.

Following the ideas of Benhamou (2007) one could argue about the plausibility of
considering the eye movements (the alternating of fixations and saccades) as generated
from a mixture of simpler random walks, rather that LFs. A more rigorous account of
this idea will be provided in the next Chapter. For now, it must suffice to consider the
following pictorial representation.

Consider again the recorded scanpath shown in Figure 3.13 which is reported here
in Figure 3.14a for the reader’s convenience. Figure 3.14 shows the same scanpath at
different sampling rates. The lower sampling rates are obtained via sub-sampling the
original one sampled at 1000Hz. It can be seen how low sampling rates (∼ 20Hz)
are not able to capture the rapid eye movements like saccades, hence these seem to be
ballistic displacements and the overall shape resembles a Lèvy Flight.

At finer grains (sampling rate ≥ 100), saccades are better represented. It’s worth
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(a) Scanpath sampled at 20Hz (b) Scanpath sampled at 100Hz

(c) Scanpath sampled at 500Hz (d) Scanpath sampled at 1000Hz

Figure 3.14: The same scanpath at different sampling rates. Lower sampling rates are obtained
via sub-sampling

noticing how these are not straight lines but exhibit some curvature and randomness
(c.f.r. Figure 3.15), hence these can be conceived as biased random walks towards
the arriving patch. The same observation holds for fixations, which can be seen as
stochastic processes with an attractor represented by the center of the patch (Figure
3.15).

In the following Section, we will build upon this idea by proposing an Ornstein-
Uhlenbeck (OU) model with switching parameters as a mechanistic model of eye move-
ments. This will allow to move from feeding (fixation) to relocation (saccades), and
vice versa according to a switching signal defined as the output of a decision making
process. The latter will be modelled, again, in terms of foraging theory by considering
fixation duration as the time spent by a stochastic forager inside a patch. This can be
modelled and predicted by the celebrated Marginal Value Theorem (MVT), which is
described in the following.

The Marginal Value Theorem

Lèvy Flights (or CBWs) allow to model the spatial properties of the foraging path (or
the scanpath), i.e. the shape of the exploration performed by the forager (observer) in
a patchy environment. Crucially, they do not account for the patch handling, i.e. the
modelling of the amount of time spent inside a patch before deciding to move to the
next one.

In essence, this is a decision making process; at each time instant the forager has to
decide if it’s worth keeping exploit the current patch or it’s time to move to next one.
Indeed, patch depletion makes the encounter of preys increasingly rare, as a result the

74



i
i

“main” — 2021/2/19 — 17:53 — page 75 — #95 i
i

i
i

i
i

3.5. Stochastic models of eye movement and foraging

Figure 3.15: A zoom-in on fixations and saccades as recorded by high frequency eye-trackers

energy net intake at some point is not maximized anymore. On the other hand, leaving
a patch entails some costs (typically the energy expenditure of the travel towards the
next patch).

This exploration/exploitation dilemma, has been addressed in many Optimal For-
aging Theories (Stephens, 1986); one of the most famous is the Charnov’s Marginal
Value Theorem (MVT) (Charnov, 1976). In a nutshell, it states that a forager moving
in an environment with patchily distributed resources (separated by areas with no re-
sources), should leave the current patch when the marginal rate of food intake drops to
the long-term average rate of food gain across the patches in the environment.

Due to the resource-free space, animals must spend time traveling between patches,
hence the MVT can be seen as an optimality model balancing energy gain and con-
sumption.

The MVT assumes that exist a number n of patches, that may be differentiated for
their "quality" (number of preys, quality of the preys etc..). Each patch is characterized
by a gain function. This specifies the expected energy gain for that specific patch at
time t and it is assumed to be a well-defined, continuous, deterministic and negatively
accelerated function (Stephens, 1986). This means that the rate of increase of energy
intake decreases as time increases. In other words a proper gain function should ex-
hibit a steep initial slope that become progressively flatter in such a way that the patch
depletion is taken into account.

Charnov (1976) showed that in order to maximize the average rate of energy intake,
the forager should choose the patch residence time so that the marginal rate of energy
gain function at the time of leaving, equals the long-term average rate of energy gain
of the habitat. Here "marginal rate" is a statement inherited from economics meaning
"derivative" and is responsible for the name of the Charnov’s Theorem.

This solution is usually depicted graphically as in Figure 3.16. The graph shows the
energy gain function associated to two types of patches A and B which are classified
as "rich" and "poor", respectively. By assuming that the travel time to the patches of
the environment is constant (dashed lines start at the same point), the optimal residence
time or giving-up time is found by drawing the tangent to the energy gain function and
projecting the point found onto the x axis. It’s worth noticing how for richer patches,
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the MVT predicts longer patch residence times.

A

B

Rich 
Patch

Poor
Patch

Figure 3.16: Graphical depiction of the Marginal Value Theorem.

Pushing ahead the simile between the animal’s foraging paths and the eye movement
recorded from human observers, we ask if the principles advocated by the Marginal
Value Theorem can be applied to describe the patch leaving times in human visual
behaviour. Putting the question straight, can MVT predict the duration of fixational eye
movements?

The MVT has been previously employed by Wolfe (2013) to verify if it could pre-
dict human patch leaving behaviour in visual search experiments. It has been shown
that as long as the patches are considered roughly identical, the MVT successfully
predicts patch leaving times; on the contrary, as experiments start to exhibit more com-
plex structure (different patch quality, prevent access to some information), human be-
haviour seems to depart from Charnov’s Theorem.

In a similar vein, Cain et al. (2012) proposed an ecological optimal foraging model
to quantify human strategies in multiple-target search. They employed an extended
version of the MVT, the potential value theorem (McNamara, 1982) and showed that
individuals searched longer when they expected more targets to be present.

In the next Chapter, we build upon such ideas and propose a full computational
model of attentive eye guidance grounded on the principles of OFT. Rather than con-
straining the experiments on visual search specific tasks, we consider the more general
free viewing condition in which observers can freely scan the scene. More specifically,
we examine the human visual attentive behaviour while watching videos displaying
conversations between people. Under such circumstances, the foraging eye operates in
a time varying environment (video) in which patches are represented by small regions
of the stimuli containing objects of interest.

The decisions about which patch to choose at any given time and how much time to
spend inside each patch are demanded to a stochastic optimal foraging model relying on
the MVT. This allows to solve the decision making problem associated the prediction
of the current fixation duration.
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3.6. Summary

The microscopic dynamics of the eye movements will be defined as a switching
Ornstein-Uhlenbeck process whose switching signal is provided by the aforementioned
decision making mechanism.

3.6 Summary

This Chapter provided the theoretical background of stochastic processes and diffusion,
while introducing at the same time the foraging perspective on eye movements. In
particular, it has been shown how gaze behaviour can be assimilated to that of foraging
animals. Hence, we conjecture that principles of optimal foraging theory (OFT) can be
employed to predict human overt attentive behaviour.
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CHAPTER4
A model of gaze deployment to audio-visual cues

of social interaction

CONSIDER a clip displaying social interactions, in particular a conversational clip
(audio and video): the chief concern of this Chapter is to model the deployment
of attention through gaze by a human subject who is viewing and listening to

the clip. When humans are immersed in realistic, ecological situations that involve
other humans, attention deployment strives for monitoring the behaviour, intentions
and emotions of others even in the absence of a given external task (Foulsham et al.,
2010).

Under such circumstances, the internal goal of the perceiver is to control attention
so to maximize the implicit reward in focusing signals that bear social value (Anderson,
2013).

Despite of experimental corroboration gained for such tendencies, their general
modelling is far from evident. Indeed, in order to put into work the mechanisms of
selection, integration and sampling underlying the multifaceted phenomenon of atten-
tion, sensory systems have to master the flood of multimodal events (e.g., visual and
audiovisual) captured in the external world.

Why should this research problem be relevant beyond its merits?
One straightforward reason lies in the classic data mining hurdle. YouTube, Twitch,

Facebook Live contain myriads of such clips and dedicated channels (Truong and
Agrawala, 2019; Pires and Simon, 2015). Also, large-scale multimodal data convey-
ing social interactions from non-laboratory settings are being increasingly employed
to analyse behaviors, emotions, and interactions in real-life situations (Nassauer and
Legewie, 2019).

It goes without saying, the processing of large spatio-temporal data from multiple
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media in different contexts is a mind-blowing engineering challenge: spotting sharable
highlights, capturing socially relevant events, generate value-based summaries to facil-
itate browsing and skimming. All such problems call for an ability that is germane to
the successful performance of any cognitive task: the ability to predict and to select
where the most meaningful and task-relevant information is to be found in the sensory
input.

A less evident, albeit earnest need takes root in the challenge of “subject’s mining”:
the computational inference of subject’s traits, or expertise, or even expectations from
his/her attentive behaviour. Much can be gained indeed by analysing the “mind’s eye”
conduct of a subject who scrutinizes and forages on the behaviour of other subjects
involved in social interactions (Shic et al., 2007; Staab, 2014; Grossman et al., 2019;
Jording et al., 2019; Guy et al., 2019).

In a nutshell, the research problem addressed here is relevant beyond its peculiar in-
terest because it complies with a quest for parsimony. Under a variety of circumstances,
what prima facie might come across as a conundrum of diverse engineering problems,
boils down to the modelling of one and only skill: the effective deployment of attention
that organisms have evolved to promote survival and well-being.

4.1 Problem statement and challenges

Throughout our lives, we are bond to unfalteringly sample the environment. Moment-
by-moment we strive to answer the question: Where to look next? Attention guides
our gaze to the appropriate location of the scene and holds it in that location for the
deserved amount of time given current processing demands (Henderson, 2017).

In doing so, like other animals with as diverse evolutionary backgrounds, we exhibit
a consistent pattern of eye movements. To illustrate at the finest “resolution scale” the
signature of gaze dynamics, Fig. 4.1 plots the raw data recording of one subject’s gaze.
The trajectory of gaze is shown as unfolding in time on an excerpt of subsequent frames:
large relocations are followed by local clustering of gaze points.

The given tasks or goals determine by and large such pattern (Henderson, 2017).
Yet and cogent for the work described here, the pattern is not the unconcerned result
of a disembodied process. Nor are the given task and the stimuli properties the only
constraints to the perceiver. Subject’s gut and feelings matter too: in our daily life
we keenly move our gaze to gauge and collect visual information that includes social
information, such as others’ emotions and intentions (Shepherd and Platt, 2007; Guy
et al., 2019).

The implicational converse of this state of affairs is that the dynamic pattern spring-
ing from this lifelong sampling endeavour provides information about plans, goals, in-
terests, and probable sources of rewards; even expectations about future events (Kowler,
2011; Henderson, 2017), personality and social traits .

In this perspective, in the conversational setting, Foulsham et al. (2010) have shown
that observers spend the majority of time looking at the people in the videos, markedly
at their eyes and faces, and that gaze fixations are temporally coupled to the person
who was talking at any one time. This is not surprising. Visually-mediated social
interactions are not exclusive to humans, and have played a significant role very early in
the primate lineage: selective pressure is likely to have promoted convergent evolution
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4.1. Problem statement and challenges

Figure 4.1: Gaze deployment recorded from a human subject who is viewing and listening to a
conversational clip. Gaze position in time is rendered by overlapping the raw data recorded
along an eye-tracking session on a representative excerpt of video frames. The trajectory
unfolding in time is characterised by area-concentrated phases that alternate with large
distance relocations between regions attracting attention

of social gazing abilities for social group-living animals (Shepherd and Platt, 2007).
Modelling attention in such case entails taking into account the value of social cues.

This, in turn, raises the question of whether it is feasible to mine from behavioural data
the implicit value of multimodal cues that drives observer’s motivation.

Even prior to such urgent quest, the audio-visual nature of these stimuli brings for-
ward the challenge of how gaze is to be guided in the context of multimodal perception
(audio and visual). As discussed in Section 4.2, limited work has been devoted to eye
guidance in a multimodal setting.

4.1.1 Our approach

The key intuition can be easily grasped at a glance by going back to Fig. 4.1. The tra-
jectory of gaze unfolding in time can be best described, at the phenomenological level,
as one kind of biased random walk that takes place at different scales: the fine scale
of area-concentrated phases within valuable “information patches” (exploitation) that
alternates with the coarse scale of large distance relocations between patches (explo-
ration), whatever the precise rules that control them.

Thus, the portrait of Fig. 4.1 boils down our chief research problem to two crucial
questions: What defines a valuable patch? How is gaze guided within and between
patches?

We formalize the above intuition in a model for eye guidance that is liable to ac-
count for the characteristics of the behaviour depicted in Fig. 4.1. Namely, we consider
gaze trajectories as traced by a composite forager, chasing up resources that are patchily
distributed. A composite forager is one capable of switching the scale of the foraging
walk from within-patch exploitation to large between-patch relocations or vice versa
(Viswanathan et al., 2011). In our case, the forager is a stochastic one, and either regime
- exploitation or exploration - is accomplished via a biased Brownian walk, precisely an
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Ornstein-Uhlenbeck (OU) process, tuned at the appropriate scale. Crucially, the refor-
mulation of attention in terms of foraging theory goes beyond the informing metaphor.
There is substantive evidence that what was once foraging for tangible resources in a
physical space became, over evolutionary time, foraging in cognitive space for infor-
mation related to those resources (Hills, 2006). Such adaptations play a fundamental
role in goal-directed deployment of visual attention (Wolfe, 2013).

The bias is provided by the audio-visual patches that moment-by-moment appear
relevant (rewarding) within the multimodal landscape. The idea of exploiting the forag-
ing framework has gained currency in the attention literature (cfr. Table 4.1), reckoned
more than an informing metaphor (Wolfe, 2013).

Table 4.1: Relationship between Multimodal Attention and Foraging

Audio-visual attentive processing Patchy landscape foraging
Perceiver Forager

Perceiver’s gaze shift Forager’s relocation
Audio-visual object/event Patch

Audio-visual object/event selection Patch choice
Deploying attention to object/event Patch handling

Disengaging from object/event Patch leave or giving-up

Technically, as depicted in Fig. 4.2, model input is represented by the audio-visual
stream together with eye-tracking data. We exploit the publicly available dataset pre-
sented in Xu et al. (2018), who gathered data of eye-tracked subjects attending to con-
versational clips.

At the pre-attentive stage, inference is performed to obtain dynamic value-driven
priority maps resulting from the competition of visual and audio-visual events occurring
in the scene. Their dynamics integrates the observer’s current selection goals, selection
history, and the physical salience of the items competing for attention. The free-viewing
task given to subjects allows for dynamically inferring the history of their “internal”
selection goals as captured by the resulting attentive gaze behaviour.

From priority maps a number of attractors are sampled in the form of value-based
patches suitable to bias the forager’s walk. The attentive stage involves trading between
local patch exploitation and landscape exploration through relocations across patches.
This is achieved by switching the OU process at different scales. The trading rules stem
from stochastic approaches to optimal foraging theory.

4.2 Background and rationale

We proceed now to set up a minimal formalism needed to outline the necessary back-
ground to the work presented here and to compare with the state-of-the-art.

Early studies on gaze behaviour and attention (James, 1890; Yarbus, 1967) made
clear that in this matter three factors are to be taken into account: the task or goal G,
the stimuli S, and the perceiver O.
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4.2. Background and rationale

Figure 4.2: Gaze deployment as foraging in a multimodal landscape. Model input is rep-
resented by multimodal stimuli that convey social content; the output is represented by a
composite (local/global) foraging walk. Value-based patches are sampled from priority
maps and integrate different sources of selection bias in a socially valuable context. The
audio-visual scene social content drives perceiver’s (internal) value that, in turn, guides
the sampling of relevant patches. The perceiver’s gaze continuously switches between local
patch exploitation and between-patch global relocation. Gaze dynamics is that of a spatial
Ornstein-Uhlenbeck process, which is performed at two different scales, local and global.

Overt attention deployment as instantiated through the unfolding of gaze shifts in-
volves two main processes: i) perception, by which O processes sensory information
and makes inferences to set up a representation W capturing salient aspects of the
world; ii) action A, by which O chooses how to sample the world to obtain useful
sensory information.

The perceptual process can be formalized in terms of an ideal perceiver model which
makes task-relevant inferences. The perceiver O uses the sensory input S (visual or
audio-visual, for example) together with a knowledge of the properties of the task G
and the world, as well as features of the sensors at hand. The process of selecting an
action uses both the observer’s inferences and knowledge of the goal G to determine the
next movement, i.e. where to orient the eyes. Action execution leads to new sensory
input S ′. This closes the active sensing loop of perception and action.

In brief, consider time instants t < t′, where t′−t = δt is an arbitrary time step. As-
sume that at time t the perceiver’s gaze centers the focus of attention (FOA) at location
rF (t).

Then, the goal-driven action/perception cycle performed by O boils down to the
iteration of the following steps. Under goal G and current sensory input S(t)

Step 1: Infer the current perception of the world S(t)→W(t) when gazing at rF (t)

Step 2: Sample the appropriate motor action/decision A(t) depending onW(t);
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Stimuli

Perceptual
Evaluation

Gaze Shift

Action
Control

Goal

Figure 4.3: High level view on the adopted model describing the perceptual process accom-
plished by an ideal perceiver O when attending a time varying scene. The goal G of the
observer affects both the perceptual evaluation of the stimuli at time t and the action to be
taken (where to look next).

Step 3: Sample where to look next, that is the gaze shift, rF (t)→ rF (t′)

In a nutshell, the eye guidance loop answers the very question: Where to look next?
The “where” part (Step 1) concerns the selection of what to gaze at - features, objects,
actions - and their location within the scene; the “next” part (Steps 2 and 3) involves
how we gaze at what we have chosen to gaze. The latter crucially brings in the unfold-
ing dynamics of gaze deployment. The overall description of the adopted approach is
provided by the Probabilistic Graphical Model depicted in Figure 4.3

As notable, the perceptual process is composed by many layers each of which will
be described throughout the present Chapter.

4.2.1 How to define G: the may facets of goals

As a matter of fact, in the real world, most fixations are not generically deployed to ob-
jects but allocated to task-relevant objects (Canosa, 2009; Rothkopf et al., 2007; Schütz
et al., 2011; Foulsham and Underwood, 2008). The recent theoretical perspectives on
active/attentive sensing (Yang et al., 2016) promote the idea that the ultimate objective
of the active sensing loop (Steps 1-3) should be to maximize via exploration the long
term total rewards and to gain additional knowledge about the environment. Cogently,
this endeavour recalls that of animals foraging for food. Animals are likely to choose
actions that not only take them closer to known food sources but also yield information
about potential new sources (Yang et al., 2016; Averbeck, 2015).
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4.2. Background and rationale

Yet, defining what is a goal is far from evident. The dichotomy between top-down
and bottom-up control assumes the former as being determined by the current “endoge-
nous” goals of the observer and the latter as being constrained by the physical, “exoge-
nous” characteristics of the stimuli (independent of the internal state of the observer,
e.g., flashes of light, loud noises, etc).

The construct of “endogenous” attentional control (unrelated to stimulus salience)
is subtle since it conflates control signals that are “internal” (such as the motivation for
paying attention to socially rewarding objects/events), ”external” (induced by the given
current task voluntarily pursued), and selection history (either learned or evolutionary
inherited), which can prioritize items previously attended in a given context.

To discuss thoroughly this point would carry us deep into the study of the complex
interaction between cognition and emotion (Pessoa, 2008). A few words must here
suffice.

If the ultimate objective of the attentive perceiver is total reward maximisation, one
is urged to distinguish between “external” rewards (incentive motivation, e.g, monetary
reward) and reward related to “internal” value. Most important for the work presented
here, the latter has different psychological facets (Berridge and Robinson, 2003) includ-
ing affect (implicit “liking” and conscious pleasure) and motivation (implicit incentive
salience, “wanting”). Indeed, the selection of socially relevant stimuli by attention has
important implications for the survival and wellbeing of an organism, and attentional
priority reflects the overall value and the history of such selection (Anderson, 2013).

This also suggests that the crude top-down vs. bottom-up taxonomy of attentional
control should be adopted with the uttermost caution (cfr., Awh et al. (2012); Tatler
et al. (2011); Groen et al. (2017)).

4.2.2 The neglected perceiver: biases, variability, idiosyncrasy

To date, the vast majority of models have focused on task and stimuli-specific effects
but have largely ignored the “observer factor”. When considering the how component
(Steps 2 and 3), though, cogently the perceiver O is brought in.

On the one hand, regardless of the perceptual input, scan paths exhibit both system-
atic tendencies and notable inter- and intra-subject variability (c.f.r. Section 2.3.1).

Different individuals move their gaze differently even when confronted with the
same task and stimuli. This variability was often treated as noise and data was collapsed
across observers. Gaze behavior exhibits individual characteristics much like gait and
speech. Unlike gait and speech, gaze behavior strongly determines the visual input
arriving in the brain, making such variability an important factor in determining and
reflecting one’s inner world.

Recent studies examined the variability of eye movements between observers dis-
tinguishing which characteristics are stable and reliable, and therefore should be treated
as a trait of the observer rather than “noise” (Henderson and Luke, 2014; Bargary et al.,
2017). Guy et al. (2019) have reported on a novel gaze related trait that influences
the amount of social information accumulated by the observer; it has been shown that
the amount of time subjects fixate on others’ faces (face-preference) varies between
individuals in a reliable manner (Guy et al., 2019)

The variability and bias issues can be explicitly addressed from first principles in
the theoretical context of Lévy flights (Brockmann and Geisel, 2000; Boccignone and
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Ferraro, 2004). As stated earlier (Section 3.5.3), this direction leeds to treating visual
exploration strategies in terms of foraging strategies (Wolfe, 2013; Cain et al., 2012;
Boccignone and Ferraro, 2014; Clavelli et al., 2014; Napoletano et al., 2015).

Indeed, in certain circumstances, uncertainty may promote almost “blind" visual
exploration strategies Tatler and Vincent (2009); Over et al. (2007), much like the be-
haviour of a foraging animal exploring the environment under incomplete informa-
tion. As a matter of fact, when animals have limited information about where resource
patches are located, different random search strategies can provide different chances to
find them Bartumeus and Catalan (2009).

4.2.3 Defining S: the multi-sensory challenge

Humans are multi-sensory perceivers, capable of attentional behaviour on multimodal
stimuli, for example those mixing visual and audio stimuli, S = {I,A}, where I is a
frame sequence and A an audio signal.

As to computational models, whilst attentional mechanisms have been largely ex-
plored for vision systems, there is not much tradition as regards models of attention in
the context of sound systems (Kaya and Elhilali, 2017).

The dichotomy between top-down and bottom-up control has been assumed in the
auditory attention field of inquiry.

Since the seminal work by Kayser et al. (2005), efforts have been spent to model
stimulus-driven attention to the auditory domain, by computing a visual saliency map
of the spectrogram of an auditory stimulus (see Kaya and Elhilali (2017) for a compre-
hensive review).

In this perspective, the combination of both visual and auditory saliencies support-
ing a multimodal saliency map that grounds multimodal attention becomes a viable
route (Onat et al., 2007; Evangelopoulos et al., 2008).

Seminal work on multimodal saliency has been done by Coutrot and Guyader (2014a,
2015, 2016), where static and dynamic low-level visual features were combined with
semi-automatically segmented object-based cues (such as faces and annotation of body
parts). For the audio track of video frames a speaker diarization technique was pro-
posed based on voice activity detection, audio speaker clustering, and motion detection.
This information was then combined with visual information to obtain a saliency map.
Clearly, the need for manual face and body part segmentation limits the applicability of
these models in real-world scenarios.

In a recent work, Tavakoli et al. (2019) directly learn the mapping using a deep neu-
ral network instead of relying on a sampling scheme and multiple feature maps. Their
model is distinct from aforementioned audio-visual saliency models because applica-
ble to any scene type, not only to conversational videos, and it is a single end-to-end
trainable framework for the multi-modal saliency prediction.

4.3 Overview of the basic model architecture

The general problem addressed by the proposed model may be stated as follows:
The dynamic multimodal landscapeW(t), the world as perceived by subject O, is

a “patchy” environment. Patches are clumps of audio-visual information to which gaze
is deployed. The perceiver scrutinises “items” within a patch and, at any time t, makes
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4.3. Overview of the basic model architecture

action decisions A(t) as to: 1) which patches are to be inspected; 2) when to leave the
patch currently visited for focussing on a new patch. In this endeavour, the unfolding
of gaze deployment, r(t) → r(t′), alternates between scanning the patch, for prob-
ing and exploiting the chunks of information locally available, and longer, explorative
relocations between patches.

To frame such problem, in essence a foraging problem, we make a number of as-
sumptions.

A1 The unfolding of gaze deployment in time, is best described as a stochastic process,
namely a biased random walk of a forager over the changing landscape (cfr. Fig.
4.1)

The landscapeW(t) generated byO from the audio-visual stream S(t) = {I(t),A(t)}
is inherently stochastic and the observer has partial information, since patches may
change unpredictably in time. Further, as discussed in Section 4.2, we need to take into
account O’s variability and biases.

A2 The gaze walk can be accounted for by one and only model of oculomotor behav-
ior, namely an Ornstein-Uhlenbeck process; the process acts at different scales,
from landscape exploration to local patch exploitation.

Indeed, recent work has been challenging the view that exploration and fixation
are dichotomous. Current literature suggests instead that visual fixation is functionally
equivalent to visual exploration on a spatially focused scale (Otero-Millan et al., 2013;
Martinez-Conde et al., 2013). In brief, they are two extremes of a functional continuum.
Interestingly enough, recent experiments confirmed scale invariance in the temporal
structure of the larger shifts in gaze position (saccades), which has also been observed
in fixational eye movements while the eye is gauging a localized region in the visual
field (Marlow et al., 2015). A consequence of this assumption is that we do not need
to rely, in our analysis, on gaze behaviour classification such as saccade, fixation, and
smooth pursuit.

A3 In a multimodal landscape conveying social content, the forager’s random walk for
exploration/exploitation is modulated by the value v, which is internally assigned
by the agent O to socially rewarding items. Value dynamics can thus be inferred
from the oculomotor behaviour of real subjects.

In the work presented here, no “external” task is assigned to the perceiver; thus,
value v is modulated by the “internal” drive towards spotting socially relevant object-
s/events.

In a landscape featuring social content, the most prominent visual objects are likely
to be faces and audio objects as represented by speakers’ voices (Foulsham et al., 2010).
These, eventually, will maximally contribute to the relevant patches within W(t) that
will bias the random walk of the perceiver’s gaze.

Under such circumstances, gaze deployment is obtained as follows. Along a pre-
attentive stage, audio-visual features are derived to assess the likelihood of the spatio-
temporal occurence of such events. This provides the basis for setting up time-varying
priority maps L` (` = 1, · · · , N`) and for gauging their moment-to-moment value v`
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in the context of the scene. From priority maps, a number of value-based patches P(`)
p

(p = 1, · · · , NP ) are generated.
The attentive stage is distilled in the evolution of the gaze state represented by point

rF (t) = (xF (t), yF (t))T in a continuous 2-dimensional space, at any time t > 0, which
sets the focus of attention (FoA). As such, gaze dynamics rF (t)→ rF (t′) unfolding in
time defines a trajectory, which is the realisation RF (t) = r(t), of a continuous-time
stochastic process {RF (t) : t > 0}. From now on, for sake of simplicity and with some
abuse of notation, we shall use rF (·) for denoting both the process/random variable and
its realization; the same holds for other random variables, unless otherwise specified.

The process is conceived as an OU process operating at two different scales. These
parametrise local and global biased random walks so that area-concentrated phases
within patches (exploitation) alternate with large distance relocation phases between
patches (exploration).

The switch between the two states of oculomotor behaviour, patch exploitation and
landscape exploration, is provided by a foraging decision resulting from comparing the
expected reward gained within currently exploited patch against the average reward that
could be gained moving to other patches available within the landscape. If exploration
is undertaken, then the choice of a new patch must be made. State switching and patch
choice are the behavioural decisions A available to the forager.

A further assumption of the model presented here relates to the patch exploitation
mechanism. In stochastic foraging theory, the time spent within a patch depends on
the potential value of a patch, which is based on the the expected rate, the forager’s
current expectations on the number of items in the patch and how easy they should
be to find, (Green, 1980; McNamara, 1982; McNamara and Houston, 1985). In the
case of internal goals, it is difficult to exactly define what is an item. For example,
consider a patch embedding a speaker’s face. Items could either be main facial shape
features (eyes, nose, etc.), or action units of facial expressions, or joint lip movements
and spoken words, etc. Even if we could count the items, we would not know how
many items are processed when gaze is deployed at point r(t) in the course of local
patch exploration; multiple items might be processed in parallel (Ehinger and Wolfe,
2016).

On this basis, in the same vein of the foraging literature and its applications in per-
ception (Wolfe, 2013; Cain et al., 2012; Ehinger and Wolfe, 2016), our model abstracts
from the actual mechanisms of specific gaze behaviour within a region of interest un-
der a given task, but isolates some very relevant phenomenological aspects akin to be
shaped in statistical terms. This suits our needs, our concern here being with the general
view rather than with the details.

Patches and items within the patch are encountered according to a Poisson process;
indeed Poisson processes and associated exponential waiting times play an important
role to relate points of gaze and global/local scene characteristics (Barthelmé et al.,
2013; Han et al., 2013). Here, patches are modelled as independent Poisson process
generators. Number of items are sampled from a Poisson distribution, which allows to
derive a simple law for estimating the instantaneous information gain of the perceiver
within the patch and to compare the latter with the average gain achievable over the
landscape. This provides a sound basis for deciding when to relocate to another patch
and how to choose the next patch to be exploited, namely the actionsA(t) moment-by-
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moment available to the perceiver.
The overall control algorithm for gaze deployment is summarised in the GazeDe-

ploy procedure outlined in Algorithm 1. Its steps are detailed in the following sections
and a Python implementation of the procedure is freely available on GitHub1

However, at this point, Figure 4.4 might provide a useful insight of the overall
behaviour of the procedure.

Given an input conversational clip, summarised as an excerpt of four subsequent
frames (top to bottom, left column), the GazeDeploy procedure outputs a continuous
gaze trajectory as generated by one artificial observer (second column), whilst the third
column shows the focus of attention (FoA) set at the corresponding time. In the top,
the second and the bottom raw the simulated observer scrutinises the current speaker,
as espected, whilst in the third and fourth raws, a brief glance is deployed to the woman
listening on the left and to the onset of the hand gesture of the forthcoming speaker.

It is worth remarking that one such individual trajectory might stochastically deviate
to some extent from those of other observers, either real or artificial. This can be appre-
ciated from the fourth and the last columns. These represent the time-varying fixation
maps computed from a paired number of either artificial observers and actual human
observers. Note that when the conversational scene becomes more complex (typically
due to people arguing, gesturing, turn-taking, etc.), the fixation maps are characterised
by higher spatio-temporal dispersion, which is a signature of the attention variability of
observers. Such uncertainty is captured by both the artificial and actual maps. In such
circumstances, indeed, the inter-observer variability grows, and individual observers
are likely to be driven their own expectation and other idiosyncratic factors.

4.4 The preattentive stage: perceiving the audio-visual landscape and
it’s value

At the heart of the time-varying, pre-attentive perceptual representation W(t) lies the
concept of priority map. Intuitively, a priority map L combines top-down (relevance un-
der given goals G) and bottom-up (salience) mechanisms for eye guidance (Desimone
and Duncan, 1995; Egeth and Yantis, 1997; Serences and Yantis, 2006; Fecteau and
Munoz, 2006). More generally, it can be conceived as a dynamic map of the perceptual
landscape constructed from a combination of properties of the external stimuli, intrin-
sic expectations, and contextual knowledge (Chikkerur et al., 2010; Torralba, 2003);
it can also be designed to act as a form of short term memory to keep track of which
potential targets have been attended. As such, the representation entailed by a priority
map differs from that provided at a lower level by feature maps X (or classic salience).

Priority maps are used in our model to sample the audio-visual patches of interest
that define the perceiver’s landscape. Each patch bears a value inherited from its priority
map. Here, rather than shaping value in the form of a map (in a sense, a further instance
of a priority map, see Klink et al. (2014); Chelazzi et al. (2014)), we consider it as a
process that moment to moment weighs the relevance of the the different priority maps
conditionally on the observer’s goal. Under such circumstances, we generally assume
attention as driven by goals G that, in turn, set the appropriate value V to events/objects
occurring in the audiovisual scene. Also, in the work presented here, we assume that no

1https://github.com/phuselab/GazeDeploy
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Algorithm 1 Gaze control in a multimodal landscape

Input: Visual stream {I}, audio stream {A}, goals G (internal or external), T the duration to
be simulated, video fps FPS, random walk sampling rate fs.

Output: Prediction of gaze
0: procedure GAZEDEPLOY

1: δt = 1
FPS , δu = 1

fs
2: Initialisation of first gaze location r(t1) on patch p = k, with behavioural state s(t1) = 1

{Exploitation mode}
3: for n = 2 to T

δt do
4: {Preattentive feedforward stage}
5: Compute the current state of the perceptual landscape, in terms of audio-visual priority

maps {L`} and distributions {L`(tn)} (Eqs. 4.1, 4.2)
6: {Value inference}
7: Infer value dynamics {v`(tn)} given all available information I(t1 : tn) up to time tn,

(Eq. 4.3)
8: {Landscape evaluation}
9: Compute audio-visual patches {Pp(tn)} as potential value-sensitive attractors

10: Compute the expected average gain Q(tn) from all patches in the landscape (Eq. 4.19)
11: {Attentive stage}
12: if s(tn) = 1 then
13: {Exploitation: patch handling}
14: Set the parameters µ(st)

p ,Ψ
(st)
p for OU sampling according to state s(tn) and current

patch indexed by p(tn)
15: while within patch do
16: {Exploitation: local gaze shifting }
17: for j = 0 to fs

FPS do
18: Sample the OU gaze relocation

rtn−1+(j×δu) → rtn−1+(j+1×δu)

19: end for
20: {Behavioural state sampling}
21: Compute the instantaneous expected gain gp(tWp) for current patch (Eq. 4.17)
22: Compare current patch gain against the expected average gain Q from the environ-

ment (Eq. 4.20)
23: Sample the behavioural state s(tn) at time tn = tn−1 + δt (Eq. 4.11)
24: end while
25: else
26: {Exploration: patch-choice}
27: Sample next most valuable attractor p(tn−1 + δt) (Eq. 4.12)
28: Set the parameters µ(st)

p ,Ψ
(st)
p for OU sampling according to state s(tn) and attractor

p(tn)
29: {Exploration: relocation gaze shifting }
30: for j = 0 to fs

FPS do
31: Sample the OU gaze relocation

rtn−1+(j×δu) → rtn−1+(j+1×δu)

32: end for
33: end if
34: end for
34: end procedure=0
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Figure 4.4: The behaviour of the GazeDeploy procedure captured through the excerpt of four
subsequent frames of a conversational clip. The left-most column summarises the input
sequence (top to bottom). The second column displays the output of the procedure, namely
the continuous gaze trajectory (graphically overlapped on the input frame) as generated by
one artificial observer up to that frame. The third column highlights the focus of attention
(FoA) set on the scene. To weigh such individual trajectory in the context of other observers’
behaviour, the fourth and right-most columns represent the time-varying fixation maps (a.k.a,
heatmaps, attentional maps) computed from a paired number of either artificial observers
and actual human observers, respectively.

explicit task is assigned to the perceiver; thus, value V is modulated by the “internal”
goal (drive) towards spotting socially relevant objects/events.

4.4.1 Computing priority maps

Perceptual spatial attention driven by multimodal cues mainly relies on visual and
audio-visual priority maps, which we define as the RVs LV and LAV , respectively.
Formally, a priority map L is the matrix of binary RVs l(r) denoting if location r is
to be considered relevant (l(r) = 1) or not (l(r) = 0), with respect to possible vi-
sual or audio-visual “objects” occurring within the scene. Thus, given the video and
audio streams defining the audio-video landscape, {I(t)}, {A(t)}, respectively, a pre-
liminary step is to evaluate, given two time instants t < t′, the posterior distributions
P (LV (t′) | LV (t), I(t′)) and P (LAV (t′) | LAV (t),A(t′), I(t′)), where t′ − t = δt with
δt being an arbitrary time step.

The steps behind such estimate can be derived by resorting to the conditional de-
pendencies defined in the PGM in Fig. 4.5.

Backward inference {A(t), I(t)} → {LV (t),LAV (t)} stands upon a set of percep-
tual features F(t) = {f(t)} that can be estimated from the multimodal stream. From
now on, for notational simplicity, we will omit time indexing t, unless needed.
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Figure 4.5: An overall view of the model as a Probabilistic Graphical Model describing the
computation of the audio-visual priority maps. This can be seen as a zoom-in on the Percep-
tual Evaluation layer appearing in the PGM of Figure 4.3. Time index t has been omitted
for simplicity.

As to the visual stream, we distinguish between two kinds of visual features: generic
features F|I - such as edge, texture, colour, motion features-, and object-dependent
features, F|O. As to object-based features, these are to be learned by specifically taking
into account the classes of objects that are likely to be relevant under the goal G, via the
distribution P (O | G). Here, where the task is free viewing/listening, and internal goals
are biased towards social cues, the prominent visual objects are faces, OV = {face}.
Both kinds of visual features, F|Iand F|O, can be estimated in a feed-forward way.
Note that in the literature face information is usually referred to as a top-down cue
(Schütz et al., 2011) as opposed to bottom-up cues. However, much like physically
driven features, they are phyletic features, and their distribution P (F|OV

| OV = face)
is learnt by biological visual systems along evolution or in early development stages
(Wilkinson et al., 2014).

In order to be processed, features F|I and F|OV
need to be spatially organised in

feature maps. A feature map X is a topographically organised map that encodes the
joint occurrence of a specific feature at a spatial location (Chikkerur et al., 2010). It
can be considered the probabilistic counterpart of a salience map (Chikkerur et al.,
2010) and it can be equivalently represented as a unique map encoding the presence
of different object dependent features Ff |OV

, or a set of object-specific feature maps,
i.e. X = {Xf} (e.g., a face map, a body map, etc.). More precisely, Xf is a matrix of
binary RVs x(r) denoting whether feature f is present or not present at location L = r.
Simply put, Xf is a map defining the spatial occurrence of Ff |OV

or Ff |I. In our case,
we need to estimate the posteriors P (X|I | F|I) and P (X|OV

| F|OV
).
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As to the processing of audio, similarly to visual processing, auditory objects form
across different analysis scales (Shinn-Cunningham, 2008). Formation of sound ele-
ments with contiguous spectro-temporal structure, relies primarily on local structures
(e.g., onsets and offsets, harmonic structure, continuity of frequency over time), while
social communication signals, such as speech, have a rich spectro-temporal structure
supporting short-term object formation (e.g. formation of syllables). The latter are
linked together over time through continuity and similarity of higher-order perceptual
features, such as location, pitch, timbre and learned meaning.

In our setting, the objects of interest OA are represented by speakers’ voices (Foul-
sham et al., 2010), and features Ff |OA

suitable to represent speech cues. In this work,
we are not considering other audio sources (e.g, music). From a social perspective, we
are interested in inferring the audio-visual topographic maps of speaker/non-speakers,
X|OAV

, given the available faces in the scene and speech features via the posterior dis-
tribution P (X|OAV

| X|OA
,X|OV

,F|OA
,F|OV

), where X|OAV
= x(r) denotes whether

a speaker/non-speaker is present or not present at location r.
At this point, audio-visual perception has been cast in a spatial attention prob-

lem and priority maps LV and LAV can be eventually estimated through distributions
P (LV (t′) | LV (t),X|I,X|OV

) and P (LAV (t′)|LAV (t),X|OAV
).

Note that, in general, the representation entailed by a priority map differs from that
provided at a lower level by feature maps X (or classic salience). It can be conceived as
a dynamic map of the perceptual landscape constructed from a combination of proper-
ties of the external stimuli, intrinsic expectations, and contextual knowledge (Chikkerur
et al., 2010; Torralba, 2003). Also, it can be designed to act as a form of short term
memory to keep track of which potential targets have been attended. Thus, L(t′) de-
pends on both current perceptual inferences on feature maps at time t′ and priority at
time t < t′. Denote:

πAV = P (X|OAV
| X|OA

,X|OV
,F|OA

,F|OV
)

πV = P (X|OV
| F|OV

)

the distributions related to the feature maps, and:

LV (t′) = P (LV (t′) | LV (t),X|I,X|OV
)

LAV (t′) = P (LAV (t′)|LAV (t),X|OAV
)

the distributions related to the priority maps. Then, the latter can be estimated as:

LV (t′) = αV πV (t′) + (1− αV )LV (t), (4.1)
LAV (t′) = αAV πAV (t′) + (1− αAV )LAV (t). (4.2)

where αV and αAV weight the contribution of currently estimated feature maps with
respect to previous priority maps.

Priority map dynamics requires an initial prior P (L), which can be designed to ac-
count for spatial tendencies in the perceptual process; for instance, human eye-tracking
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studies have shown that gaze fixations in free viewing of dynamic natural scenes are bi-
ased toward the center of the scene (“center bias”), (Tatler and Vincent, 2009; Le Meur
and Coutrot, 2016), which can be modelled by assuming a Gaussian distribution located
on the viewing center.

4.4.2 Deriving Feature Maps

The input stimuli S are represented by the time-varying visual and audio streams,
S(t) = {I(t),A(t)}, t = 1, · · · , T , where I is the frame sequence and A the audio
signal.

In order to derive a priority map, we need to specify which features F are to be
taken into account, given the context or goal G, and the feature maps X, that is the
topographically organised maps that encode the joint occurrence of a specific feature
at a spatial location (Chikkerur et al., 2010). In a probabilistic setting, a feature map
Xf is a matrix of binary RVs x(r) denoting whether feature f is present or not present
at location L = r (Chikkerur et al., 2010). It can be equivalently represented as a
unique map encoding the presence of different object dependent features Ff,O, or a set
of object-specific feature maps, i.e. X = {Xf} (e.g., in the visual realm, a face map, a
body map, etc.)

Visual features

From input I, two kinds of visual features are derived: generic visual features FI -
such as edge, texture, colour, motion features-, and object-dependent features, FOV

.
The latter are selected by taking into account the classes of objects that are likely to be
relevant under the goal G.

Internal goals are biased towards social cues, thus the prominent visual objects are
faces, OV = {face}. Both kinds of visual features, FI and FOV

, can be estimated in a
feed-forward way.

In order to be processed, features FI and FOV
need to be spatially organized in

feature maps. In the visual attention context, the distribution P (X) can be considered
the probabilistic counterpart of the classic salience map (Chikkerur et al., 2010). Thus,
Xf,I represents the support of a low-level saliency map, whilst Xf,OV

is the support of
an high-level, object-based saliency map.

At this stage, the inferential step entails estimating the posteriors P (XI | FI) and
P (XOV

| FOV
), whatever the technique adopted.

In order to derive the physical stimulus feature map XI, we rely on the spatio-
temporal saliency method proposed by Seo and Milanfar (2009) based on local re-
gression kernel center/surround features. It avoids specific optical flow processing
for motion detection and has the advantage of being insensitive to possible camera
motion. By assuming uniform prior on all locations, the evidence from a location
r of the frame is computed via the likelihood P (I(t) | xf (r, t) = 1,FI, rF (t)) =

1∑
s

exp
(

1−ρ(Fr,c,Fr,s)

σ2

)
, where ρ(·) ∈ [−1, 1] is the matrix cosine similarity (see Seo

and Milanfar (2009), for details) between center and surround feature matrices Fr,c and
Fr,s computed at location r of frame I(t).

The visual object-based feature map XOV
entails a face detection step. There is a

huge number of methods currently available: the one proposed Hu and Ramanan (2017)

94



i
i

“main” — 2021/2/19 — 17:53 — page 95 — #115 i
i

i
i

i
i

4.4. The preattentive stage: perceiving the audio-visual landscape and it’s value

has shown, in our preliminary experiments, to bear the highest performance. It relies
on a feed-forward deep network architecture for scale invariant detection. Starting
with an input frame I(t), a coarse image pyramid (including interpolation) is created.
Then, the scaled input is fed into a Convolutional Neural Network (CNN) to predict
template responses at every resolution. Non-maximum suppression (NMS) is applied
at the original resolution to get the final detection results. Their confidence value is
used to assign the probability P (XOV

| FOV
,LV = r) of spotting face features FOV

at
LV = r, according to a gaussian distribution located on the face center modulated by
detection confidence and face size.

Audio and audio-visual features

From input A, auditory objects form across different analysis scales (Shinn-Cunningham,
2008). Formation of sound elements with contiguous spectro-temporal structure, relies
primarily on local structures (e.g., onsets and offsets, harmonic structure, continuity of
frequency over time), while social communication signals, such as speech, have a rich
spectro-temporal structure supporting short-term object formation (e.g. formation of
syllables). The latter are linked together over time through continuity and similarity of
higher-order perceptual features, such as location, pitch, timbre and learned meaning.

In our setting, the objects of interest OA are represented by speakers’ voices (Foul-
sham et al., 2010), and features Ff,OA

suitable to represent speech cues. In this work,
we are not considering other audio sources (e.g, music).

From a social perspective, we are interested in inferring the audio-visual topo-
graphic maps of speaker/non-speakers, XOAV

, given the available faces in the scene
and speech features via the posterior distribution P (XOAV

| XOA
,XOV

,FOA
,FOV

),
where X|OAV

= x(r) denotes whether a speaker/non-speaker is present or not
present at location r.

Technically, the features F|OA
used to encode the speech stream are the Mel-frequency

cepstral coefficients (MFCC). The Mel-frequency cepstrum is highly effective in speech
recognition and in modelling the subjective pitch and frequency content.

The audio feature map XOA
(t) can be conceived as a spectro-temporal structure

computed from a suitable time window of the audio stream, representing MFCC values
for each time step and each Mel frequency band. It is important to note, that the prob-
lem of deriving the speaker/non-speaker map XOAV

when multiple faces are present,
is closely related to the AV synchronisation problem (Chung and Zisserman, 2016);
namely, that of inferring the correspondence between the video and the speech streams,
captured by the joint probability P (XOAV

,XOA
,XOV

,FOA
,FOV

,LAV ).
The speaker’s face is the one with the highest correlation between the audio and

the video feature streams, whilst a non-speaker should have a correlation close to zero.
It has been shown that the synchronisation method presented in Chung and Zisserman
(2016) can be extended to locate the speaker vs. non-speakers and to provide a suitable
confidence value. The method relies on a two-stream CNN architecture (SynchNet)
that enables a joint embedding between the sound and the face images. In particular
we use the Multi-View version (Chung and Zisserman, 2016, 2017)), which allows the
speaker identification on profile faces and does not require explicit lip detection. To
such end, 13 Mel frequency bands are used at each time step, where features FOA

(t)
are computed at sampling rate for a 0.2-secs time-window of the input signal A(t). The
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same time-window is used for the video stream input.

4.4.3 Inferring the value of preattentive information

Attentional value is set by the “internal” goal (drive) G towards spotting socially rele-
vant objects/events occurring in the scene. As such, it is a hidden state of the perceiver.
The problem we are facing now is to set up an inferential procedure so that, given all
available information from the onset of the process up to time t, say I(1 : t), the latent
value v(t) can be estimated,

v(t) | I(1 : t) ∼ P (I(1 : t)). (4.3)

Information I(t) should encompass both perceivers’ behaviour and stimulus con-
tent. Consider that, on the one hand, we know that the actual moment-to-moment
deployment of attention over the landscape is the outcome of a value assignment pro-
cedure. We assume that the result of attention allocation is summarised through the
time-varying heatmap H(t), which can be easily computed from eye-tracked gaze po-
sitions (fixations) of the perceivers Bylinskii et al. (2019). On the other hand, the
information available from the stimulus is, at this point, pre-attentively captured via
densities L`(t). Recall that a priority map density L`(t) can be conceived as a dynamic
predictor of potential gaze allocation in space. We surmise that each map contributes
to such prediction conditionally on the value it bears for the observer at moment t.

Formally, define v(t) = (v1(t) · · · vN`(t))T the time-varying random vector of val-
ues that are internally assigned to priority map densities L`(t). Under such circum-
stances, the mappingH(t) = h({L`(t)},v(t)) can be simply cast in terms of the linear
regression equation

H(t) =
∑
`

v`(t)L`(t) + ω(t), (4.4)

which specifies the observers’ heatmap H(t) as the linear combination of predictors
(regressors) derived from the stimulus, namely the priority densities L`(t), perturbed
by noise ω(t). Here, H(t) is a 2D matrix having dimensions equal to the dimensions
of the L`(t) matrices. Eq. 4.4 specifies a time-varying linear regression, since v`(t) are
unknown time-varying coefficients. A straightforward dynamics for the latter is to let
v`(t) vary over time according to a random walk, where the value displacement dv`(t)
simply amounts to a Brownian displacement dW`(t), i.e. dv`(t) = dW`(t).

Then, the dynamic regression model can be conveniently written in terms of the
following vector state-space model:

h(t) = P(t)v(t) + ω(t), ω(t) ∼ N (0,R(t)) (4.5)
v(t) = v(t− δt) + ε(t), ε(t) ∼ N (0,Q(t)) (4.6)

where: h(t) = vec(H(t)) is the observation vector of dimension |H| × 1, obtained
by vectorising matrix H; P(t) = [vec(L1(t)) | · · · | vec(LNl(t))] is the matrix whose
columns are the vectorised predictors.
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4.5. The attentive stage: stochastic walk driven by audio-visual patches

The Gaussian disturbances, namely, the process noise ε(t) (with Q = cov(v)) and
the observation noise ω(t) (with R = cov(h)) are both serially independent and also
independent of each other.

Online inference of value (Eq. 4.3) can eventually be performed by solving the
filtering problem P (v(t) | h(1 : t)) under Markov assumption, where h is a function
of the priority map distributions L` via the observation/regression in Eq. 4.5. This
way, current goal and selection history effects are both taken into account (Awh et al.,
2012).

4.4.4 Sampling value sensitive patches

Priority maps and related values are then used for patch sampling. Patches formalise
the concept of multimodal attention attractors and inherit the value from the generating
priority maps.

Much like proto-objects postulated by object-based attention approaches, they rep-
resent the dynamic interface between attentive and pre-attentive processing (Boccignone
and Ferraro, 2014).

Given a priority map L`, the spatial support of possible patches is computed.
DenoteM(`)

p = {m(`)
p (r)}r∈L(`) the map of binary RVs indicating the presence or

absence of a patch p.
Assume independent patches, within and across priority maps L`. The map of

patches generated by L` is defined as M(`) =
⋃N

(`)
P

p=1 M
(`)
p , where M(`)

p

⋂
M(`)

k =

∅, p 6= k and the overall patch support map isM =
⋃N(`)

`=1 M(`).
To derive patches from priority maps we need first to estimate their supportM(t) =

{m(r, t)}r∈L, such that m(r, t) = 1 if L`(t) > TM , and m(r, t) = 0 otherwise. The
threshold TM is adaptively set so as to achieve 90% significance level in deciding
whether the given priority values are in the extreme tails of the pdf L`. The proce-
dure is based on the assumption that an informative patch is a relatively rare region and
thus results in values which are in the tails of the distribution.

Once the overall support of all patchesM is available, we estimate the parameters
defining each patch, namely Pp = (µp,Σp, νp) representing its location, shape and
value respectively. The value is simply inherited from the generating priority map νp =
v`. Location and shape parameters are derived so to provide an elliptical representation
of the patch support (patch centre and axes).

4.5 The attentive stage: stochastic walk driven by audio-visual patches

At this point, the input for the attentive stage is available in the form of value-sensitive
foraging patches P = {Pp(t)}NPp=1, with Pp(t) = (µp(t),Σp(t), νp(t)), that define the
multimodal landscape for the forager’s walk.

4.5.1 Dynamics of the walk

Consider the simple case where a single patch of the viewed scene centered at location
µ (center of mass) serves as an attentional attractor, e.g. the face patch in Fig.4.6a. The
gaze approximately fluctuates (fixational movement) for a time interval around µ.
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(a) (b)

Figure 4.6: (a) A face patch serving as attractor of attention, where the gaze deployment in time
can be described as a biased 2-D random walk (b) Two face patches representing multiple
centers of attraction, with an example of fixation and relocation among patches

We can idealise the motion of gaze as that of a particle. In Newtonian dynamics the
attraction of a particle of position r(t) pulled towards the location µ can be described
by means of a potential function, a quadratic form H(r, t) = 1

2
(µ− r(t))TB(µ− r(t))

that controls the particle’s direction and velocity ṙ(t); in particular, B is the 2×2 matrix
that constrains the strength of the attraction. In the case that friction is high, particle’s
velocity is not directly involved and the equation of motion can be written (Nelson,
1967; Brillinger et al., 2002)

drF (t) = −∇H(rF , t)dt, (4.7)

with ∇ = (∂/∂x, ∂/∂y)T the gradient operator applied to the potential and defining
the force field F = ∇H .

When motion is subject to random forces, Eq. 4.7 generalizes to the stochastic dif-
ferential equation (SDE)

drF (t) = B[µ− rF (t)]dt+ D(rF (t))dW(t), (4.8)

where B[µ− rF (t)] = −∇H(rF , t) is the drift term, D is a 2× 2 matrix representing
the diffusion parameter. The noise term W(t) is a 2-D Brownian process that leads to
variability around deterministic motion. Simply put, in the stochastic case the particle
(gaze) is wandering but being pulled towards the location µ.

Eq. 4.8 can be easily recognised as a Langevin-type equation. Precisely, the gaze
trajectory rF (t), t ≥ 0 is an instance of the 2-D mean-reverting Ornstein-Uhlenbeck
(OU) process, where typically B = (bx, by)

T , DDT = σ2I and W = (Wx,Wy)
T are

independent Brownian processes. Clearly, when B = 0, the drift term is 0 and the OU
process boils down to the Brownian walk.

As pointed out in Section 3.3.3 the general solution for Equation 4.8 writes:

rF (t′) | rF (t) ∼ N (µ+ e−Bδt(rF (t)− µ),Ψ), (4.9)

Equation 4.9 describes gaze dynamics towards one point of attraction. In our case,
the visual landscape is a time-varying landscape with multiple attractors, the centres of
patches Pp. This problem has been partially considered in animal ecology. Breed et al.
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(2017) have proposed a multi-state extension of Eq. 4.9, considering multiple centers
of attraction.

These centers have unique OU parameters µi,Bi,Ψi. However, relocation paths
between attractors are not explicitly modelled, which in our case would correspond to
the important case of medium/long saccades. Also, along time multimodal patches can
vary in number, shape and value.

Harris and Blackwell (2013) proposed a flexible class of continuous-time models
for animal movement, allowing movement behaviour to depend on location in terms
of a discrete set of regions and also on an underlying behavioural state. The diffusion
processes that the individual follows while in a particular combination of state and re-
gion are, by assumption, OU processes. Thus, for each combination, the parameters of
the OU process are specified as, µ(s)

i ,B
(s)
i ,Ψ

(s)
i , for states s = 1, ..., K, and regions

i = 1, ..., L. The switching process is a continuous- time finite state Markov chain.
Its properties are therefore defined by its generator (Harris and Blackwell, 2013), the
matrix of instantaneous rates of transition between states observed at short time inter-
vals of length δt. Again, such approach is unfeasible, in our case, where the number of
attractors - and, consequently, the number of states- is not known a priori and varies in
time.

In our case, we are more truly dealing with two behavioural states that are in-
dependent of location: local intensive foraging and extensive exploration. Denote
{S(t) : t > 0} a process defined on a binary set st ∈ {0, 1} accounting for such
behaviour switching process. Its value represents which state of the hidden behaviour
is active: foraging, when st = 1, or exploration when st = 0 at time t. The regions of
attraction are represented by the ensemble of patchesW(t) = {Pp(t)}NPp=1.

In this setting the parameters µ(st)
p ,B

(st)
p ,Ψ(st)

p of the OU process are related to a
chosen patch p identified through its center location parameter µ(st)

p . Meanwhile, the
state st sampled at time t drives the choice of the appropriate parameters B

(st)
p ,Ψ(st)

p .
The specification of parameters constrains the OU process to bias the random walk

locally, that is in proximity of the patch located at µ(1)
p ; alternatively, µ(0)

p denotes a
patch different from current location, which can be reached through displacements at a
larger scale defined by B

(0)
p ,Ψ(0)

p . This way gaze dynamics is given by the multi-state
OU equation

drF (t) = B(st)
p [µ(st)

p − rF (t)]dt+ D(st)
p (rF (t))dW(st)(t), (4.10)

which is solved by

r(t′) | r(t) ∼ N (µ(st)
p + e−B

(st)
p δt(r(t)− µ(st)

p ),Ψ(st)
p ).

with Ψ(st)
p = Γ(st)

p − e−B
(st)
p δtΓ(st)

p e−B
(st)
′

p δt. To sum up, gaze dynamics is obtained
through the following steps:

1. Sample the behavioural state, based on the current experience of the forager (up
to time t, and summarised by parameters ξ(t))

s(t) ∼ P (ξ(t)) (4.11)
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2. Sample the patch index

p(t) ∼ P (π(t)) (4.12)

with π(t) the set of parameters depending on the landscape state, and choose patch
P(`)
p .

3. Set OU parameters µ(st)
p ,B

(st)
p ,Ψ(st)

p and sample the gaze shift rF (t) → rF (t′)
via the OU process specified by Eq. 4.11, which is explicitly written as

xF (t′) | xF (t) ∼ N (µ(st)
x,p + e−b

(st)
x,p δt(xF (t)− µ(st)

x,p ), ψ(st)
p,x ),

yF (t′) | yF (t) ∼ N (µ(st)
y,p + e−b

(st)
x,p δt(yF (t)− µ(st)

y,p ), ψ(st)
p,y ), (4.13)

with ψ(st)
p,x = γ

(st)
x (1− e−2b

(st)
x,p δt) and ψ(st)

p,y = γ
(st)
y (1− e−2b

(st)
y,p δt).

Regarding the OU parameters the drift terms b(st)
x,p and b(st)

y,p are set proportional to the
width of the patch p if st = 1, or proportional to the distance to the arriving patch (dp),
otherwise. The diffusion terms γ(st)

x , γ
(st)
y is set proportional to the average distance

between patches if st = 0; equal to 1 otherwise.
The steps 1 and 2 behind the choice of the forager’s action A(t) = {s(t), p(t)} at

time t involve explicit calculation of Eqs. 4.11 and 4.12. These are discussed in the
following Section.

4.5.2 Switching behaviour: should I stay or should I go?

Assume that the FOA is located at rF (t), within the current patch p, and, for simplicity,
that gaze is involved in local patch exploitation. The problem that the perceiver moment
to moment has to solve boils down to answering the question: Should I stay or should
I go?

In its essence, this is a foraging problem. Indeed, answering such question has
long been a fundamental objective in ecology in the endeavour of understanding how
animals effectively search for and exploit food patches (MacArthur and Pianka, 1966),
and, in particular, how a patch cycle is handled. Consider the environment consisting
of a set of discrete patches: a cycle starts when the animal leaves a patch to search for a
new one; once a patch has been found, the animal gains energy at a rate that decreases
as the food becomes depleted; eventually the animal leaves the patch and a new cycle
starts.

A series of optimal foraging theories have been developed in line with this objective
(see Stephens (1986), for a review). By assuming that animal activities are optimized
to maximize the rate of net energy gain, optimal foraging theories provide testable
hypotheses as well as bases for interpreting complex animal behaviour.

Charnov’s marginal value theorem (MVT) is central to these theories (Charnov,
1976). The MVT proposes that foragers should exploit patches in such a way as to
maximize a net rate of energy gain and predicts the optimal patch residence time. Let
G denote the net energy gain on a cycle, and let T denote the time taken to complete
a cycle. Simply put, the MVT states that foragers should move from one patch to
another when the marginal rate of food intake (thus, of energy gain, ∂G/∂T ) drops to
the long-term, average rate Ē of food gain across many patches in the environment
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4.5. The attentive stage: stochastic walk driven by audio-visual patches

Figure 4.7: The prediction by MVT is that a poor patch should be abandoned earlier than
a rich patch. The time axis starts with a travel time with no energy gain after which the
forager finds a patch. The shapes of the red and black gain curves, arising from resource
exploitation, represent the cumulative rewards of a “rich” and a “poor” patch, respectively.
For each curve, the osculation point of the tangent defines the optimal patch residence time.

In this simple model, energy gain is a proxy for fitness and it assumes that the
foragers have knowledge about the environment: namely, the quality of other patches
and traveling time between patches. Thus, MVT predicts that patch quality should
affect patch leaving. Accordingly, a poor patch, yielding a lower energy gain, should be
abandoned earlier. Clearly, a forager that stays in a patch too long pays an opportunity
cost because it wastes time exploiting a depleted patch when fresher patches remain
unexploited.

In a stochastic environment, such as that we are dealing with, where rewards are
not deterministic and do not arrive in a smooth flow, an optimal forager should reason
about the foraging task probabilistically, based on the potential value of the patch with
respect to the environment (McNamara, 1982). The optimal leaving time is when the
expected rate, not the observed rate, drops below the average for the environment

In stochastic foraging models, typically G and T are random variables whose distri-
bution depends on the behavioral strategy adopted by the foraging animal. In particular,
G is a function of the time varying state U(t) experienced by the forager up to time t,
G(U(t)); for instance, as detailed later, the value U(t) = u, might indicate the number
k of items/preys “captured” by the forager. The mean net rate of energetic gain, or mean
reward rate, achieved by the animal is defined as ratio of expectations E [G] /E [T ].

In a stochastic perspective, it is convenient to consider the instantaneous reward rate
(McNamara, 1982)

g(u, t) = lim
δt→0

E [G(U(t+ δt)) | U(t) = u]−G(u)

δt
, (4.14)

that is the expected reward over the next interval of time δt; such definition provides
the stochastic counterpart of the continuous energy intake rate ∂G/∂T exploited by the
MVT.
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The general rule adopted by the forager, while scrutinising a patch, is to leave the
patch when

g(u, t) ≤ Q(t), (4.15)

that is when the instantaneous reward rate drops below a “quality” threshold Q, which,
in general, depends on the richness of the environment, the distance between patches
and possibly other factors (in actual foraging, predation risk, etc.)

There is a number of ways to make concrete the rule given in Eq. 4.15. A method
for calculating g(u, t) has been given in Bayesian foraging approaches (Iwasa et al.,
1981; Rodríguez-Gironés and Vasquez, 1997).

A straightforward method is the following. Assume that one patch contains a dis-
crete number of items, say m. Let n be the items “consumed” in the time t. Then,
the experiential state U is represented by the pair (n, t), G(U(t)) = G(n, t) and
g(u, t) = g(n, t). At time tWp spent within the patch, k = m − n are the items re-
maining.

When foragers search for food items at random, the time required to find one item
is assumed to follow the exponential distribution

P (T ∈ [t, t+ δt]) = λe−λtdt = Ake−Aktdt, (4.16)

where the rate λ = Ak depends on A, the searching efficiency of the forager. The
probability of capturing at least one item, conditionally on the k remaining, is P (δt |
k) = 1− e−Akt.

It has been calculated (Iwasa et al., 1981; Rodríguez-Gironés and Vasquez, 1997)
that, if the initial distribution of the mp items in patch p (prior, with k = 0) follows a
Poisson law, Pois(ρp) =

e−ρpρ
mp
p

mp!
, then simply

gp(tWp) = ρpe
−AtWp . (4.17)

It can be seen from Eq. 4.17 and Eq. 4.16 that the foraging efficiency parameter
A controls the rate at which the forager switches from one item to another and con-
sequently the instantaneous intake rate. Yet, it is known that individuals concentrate
their foraging effort in areas with high reward (de Knegt et al., 2007; Kazimierski et al.,
2016), increasing the handling time of each item, thus increasing the expected time to
next item within the patch. In our case, this effect is accounted for by setting A = φ

νp(t)
,

recalling that νp(t) ∈ [0, 1] is the value associated to the patch p at time t, while φ is a
positive constant defining the baseline foraging efficiency.

Also, we set ρ as a function of the patch quality, namely,

ρp(t) = νp(t)|Pp|e−κdp , (4.18)

where |Pp|, is the area of the patch, νp is the patch value, and their product is weighted
by e−κdp representing the visibility of the patch, dp being the distance to patch p from
the current point of gaze and κ being a positive constant. In foraging terms, the weight-
ing factor accounts for the cost of relocating between patches in foraging .

The expected average gain from the environment for all patches q except the current
one can be obtained by considering the potential intake rate at tW = 0, i.e., via Eq. 4.17
gq(0) = ρq, q 6= p:
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4.5. The attentive stage: stochastic walk driven by audio-visual patches

Figure 4.8: Overall description of the switching behaviour. The first block depicts the typical
conduct of the instantaneous reward rate for two types of patches (rich and poor). These
can be conceived as Giving Up Time (GUT) functions; as time goes by the GUT function
approaches the quality threshold Q, the run being faster for poorer patches. At any time
step the decision stay/go is taken by sampling a Bernoulli RV (third block) whose parameter
is given by the distance between the GUT function and the quality threshold at that time
(opportunely scaled by a logistic function, c.f.r. second block)

Q(t) =
1

Np − 1

∑
q 6=p

ρq(t). (4.19)

Rather than straightforwardly use the deterministic rule given in Eq. 4.15, we allow
the forager to perform a probabilistic decision; namely the behavioural state decision
s(t) ∈ 0, 1 is sampled following a Bernoulli law, Bern(s(t) | ξ(t)). The parameter ξ,
denoting the prior probability of staying within the patch is obtained using a logistic
rule accounting for a stochastic comparison on the difference gp(tWp)−Q, thus

ξ(t) = P (stay | g(t), Q(t))) =
1

1 + e−β(gp(tWp )−Q(t))
, (4.20)

s(t) ∼ Bern(ξ(t)). (4.21)

By random sampling the behavioral state s(t), most of the time we are likely to get
a state “sample” that is somewhere close to the prior ξ(t). However, sometimes we will
randomly sample a decision in the tails of the distribution, which offers an opportunity
to the forager to tradeoff between the determinism/trend set by rule given Eq. 4.15,
and the dynamically varying landscape. The overall procedure is succinctly depicted in
Figure 4.8.

Eventually, if s(t) = 0 is sampled, the choice of a patch is the next step to be
accomplished.
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Chapter 4. A model of gaze deployment to audio-visual cues of social
interaction

4.5.3 Choosing the next patch

Given the NP patches, denote πp the probability of choosing indexed by patch p =
1, · · · , NP , with

∑
p πp = 1 Then, the sample space of multiple choices can be con-

sidered to be the set of 1-of-K encoded (Bishop, 2006) random vectors c of dimension
K = NP having the property that exactly one element cp has the value 1 and the others
have the value 0. The particular element having the value 1 indicates which patch has
been chosen. In other terms, c, follows a categorical (or generalised Bernoulli) distri-
bution, c ∼ Cat(π, NP ) =

∏Np
p=1 π

yp
p . Probabilities π = (π1 · · · πNP ) can be related to

the above described patch model as follows.
The NP patches can be considered at time t as sources of independent Poisson

processes Mp(t) ∼ Pois(ρp(t)) with mean value function E [Mp(t)] = ρp(t). Then,
in virtue of the superposition theorem , the process M(t) =

∑Mp

p=1Mp(t) is a Poisson
process with expected value E [M(t)] =

∑Np
p=1 ρp(t) = ρ(t).

Under such conditions, the coloring theorem holds , and the vector (M1(t)/S, ...,MNp/S),
where S = M1(t) + ... + MNp , follows a multinomial distribution with parameters
πp = ρp(t)

ρ(t)
.

When considering a single draw, the multinomial distribution is nothing but the
categorical distribution; thus, patch choice can be performed by sampling, at any time
t the choice vector

c ∼ Cat(π1, · · · , πNP ) =

Np∏
p=1

[
ρp(t)

ρ(t)

]cp
, (4.22)

and by selecting patch Pp based on index p such that cp = 1.
Equation 4.22 together with Eqs. 4.20, 4.21 completely specify Eqs. 4.12 and 4.11,

respectively.

4.6 Summary

Attention supports our urge to forage on social cues. Under certain circumstances,
we spend the majority of time scrutinising people, markedly their eyes and faces, and
spotting persons that are talking. To account for such behaviour, this Chapter de-
velops a computational model for the deployment of gaze within a multimodal land-
scape, namely a conversational scene. Gaze dynamics is derived in a principled way
by reformulating attention deployment as a stochastic foraging problem. An Ornstein-
Uhlenbeck process with switching parameters has been employed to model the stochas-
tic dynamics of the eye movements at the microscopic level. The switching signal is
provided by a stochastic decision making mechanism derived from Charnov’s Marginal
Value Theorem.
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CHAPTER5
Simulations and results

THE rationale behind experiments described in this Chapter is to figure out whether
behaviours simulated from the proposed model are characterized by statistical
properties that are significantly close to those featured by human subjects who

have been eye-tracked while watching conversational videos. In simple terms, any
model can be considered adequate if model-generated scan paths could have been gen-
erated by human observers (which we regard as samples of the Real model) while
attending to the same audio-visual stimuli.

Consider for example Fig. 5.1. It summarises the essential spatio-temporal features
computed from scan paths that have been sampled via the GazeDeploy procedure (Al-
gorithm 1) on one clip; these are compared to those of human observers on the same
clip. Notably, such results are by and large representative of those obtained on the
whole dataset.

The simulation has generated scan paths that prima facie mimick human scan paths
in terms of spatio-temporal statistics. The actual saccade amplitude distribution exhibits
a multi modal shape, which is well replicated by the saccades distribution obtained from
model simulation (Figure 5.1b). The model correctly favors small gaze shifts over large
ones, that are occasionally undertaken, as highlighted by the right-skewed, long-tailed
shape (Dorr et al., 2005). For what concerns the fixation duration (Fig. 5.1e), again,
distributions from both real and simulated data exhibit a right-skewed and heavy-tailed
shape. This is important, since in our model duration is closely related to the modelling
of patch giving up time. Apparently, a high similarity can be noticed between saccades
direction distributions of real (Fig. 5.1c) and simulated data (Fig. 5.1f).

Clearly, beyond the adequate behaviour of the model discernible from such qual-
itative results, the latter need to be quantitatively substantiated. Are such similarities
significant from a statistical standpoint? Is the audio-visual information effectively ex-

105



i
i

“main” — 2021/2/19 — 17:53 — page 106 — #126 i
i

i
i

i
i

Chapter 5. Simulations and results

ploited? Could a different gaze control algorithm provide comparable or even better
results?

There are two critical aspects in answering such question.
The first relates to method comparison. Unfortunately a handful of models have

been proposed and are experimentally ready for use (i.e., with released code) for pre-
dicting gaze shift dynamics. They are referred to as saccadic models (Le Meur and
Liu, 2015) and mostly conceived for processing static image input (Itti et al., 1998;
Boccignone and Ferraro, 2004; Le Meur and Liu, 2015; Xia et al., 2019; Xia and
Quan, 2020; Bao and Chen, 2020b). Two methods are actually available for handling
time-varying stimuli, which we used in our experiment (Boccignone and Ferraro, 2014;
Zanca et al., 2019).

The second aspect relates to the evaluation metrics. Unlike to classic work on
saliency estimation, where standard metrics are available and widely adopted, here as-
sessment must necessarily involve scan path evaluation. Here we adopt two well known
and state of the art methods: the ScanMatch (Cristino et al., 2010) and the MultiMatch
(Jarodzka et al., 2010; Dewhurst et al., 2012) metrics. ScanMatch is apt to provide
an overall performance summary, whilst MultiMatch specifically addresses the many
dimensions of gaze dynamics. The evaluation of metric results is subtle, thus we sup-
port it by addressing appropriate statistical analyses, a point that is often neglected in
computational modelling of visual attention.

5.1 Stimuli and eye-tracking data

The adopted dataset (Xu et al., 2018) consists of 65 one-shot conversation scenes from
YouTube and Youku, involving 1 to 27 different faces for each scene. The duration
of the videos is cut down to be around 20 seconds, with a resolution of 1280 × 720
pixels at a frame rate of 25 fps. The dataset includes eye-tracking recordings from 39
different participants (26 males and 13 females, ageing from 20 to 49), who were not
aware of the purpose of the experiment. The eye fixations position and duration of the
39 subjects were recorded by a Tobii X2-60 eye tracker at 60 Hz.

Ten subjects were randomly sampled out of the 39 and their scan paths used to deter-
mine the free parameters of the model described in Section 4.5.2, namely the baseline
foraging efficiency φ, the logistic growth rate β and the steepness of the exponential
determining the visibility of patches κ. A grid search maximising metric scores accord-
ing to the procedure described in the following Section 5.2 yielded as optimal values:
φ = 3.5, β = 20 and κ = 18.

The remaining 29 subjects were used for evaluation.

5.2 Evaluation protocol

We compare the scan paths simulated from a number of model-based, "artificial" ob-
servers to those recorded from human observers. By considering different models, or
variants of the same model, we simulate different groups of observers. We address two
experiments. The first (Sec. 5.3) evaluates the behaviour of the GazeDeploy procedure
(thus, exploiting the gaze control strategy described in Algorithm 1) by inhibiting mod-
ules accounting for different levels of preattentive information. This provides a family
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5.3. Information level effects: the model under the knife

of models, that are ablated variants of what we name the Full model.
The second experiment (Sec. 5.4) compares the Full model with other gaze con-

trol strategies.
In both experiments, the evaluation protocol is the following. For each video:

1. Compute MultiMatch and ScanMatch scores for each possible pair of the 29 real
observers (Real vs. Real).

2. For each model:

(a) Generate gaze trajectories from artificial observers.
(b) Parse/classify trajectories into scan paths (saccades and fixations with the

relative duration) via the NSLR-HMM algorithm Pekkanen and Lappi (2017).
(c) Compute MultiMatch and ScanMatch scores for each possible pair of real

and 29 artificial scan paths (Real vs. Model).

3. Return the average ScanMatch and MultiMatch scores for Real vs. Real and
Real vs. Model comparisons.

As to point 2b), note that (cfr. Fig. 4.4) the gaze position sequence sampled by
GazeDeploy (and its variants) can be assimilated to gaze raw data (continuous gaze
trajectories) generated by eye-trackers. Thus, in order to follow a classic eye tracking
analysis pipeline, the first step is to apply an event detection algorithm to both simulated
and actual gaze trajectories so to derive the corresponding scan paths (a sequence of
fixations). We rely on the NSLR-HMM algorithm described in Pekkanen and Lappi
(2017) which classifies the raw data into saccades, fixations, smooth pursuits, and post-
saccadic oscillations (PSO). Here we are dealing with dynamic stimuli that can trigger
smooth pursuit eye movements. Yet, pursuit can be broadly categorised as a prolonged
fixation on a moving target; consequently, smooth pursuit and fixations are collapsed
into a single class. Also, saccades embed PSOs.

In what follows we treat each MultiMatch dimension as a stand-alone score. Thus,
the analysis uses six different scores: the five obtained from the MultiMatch (MM) di-
mensions of shape (MMShape), direction (MMDir), length (MMLen), position (MMPos)
and duration (MMDur), plus the ScanMatch score SM .

5.3 Information level effects: the model under the knife

A basic assumption of the proposed model (A3, Section 4.3), derived from psycholog-
ical studies (Foulsham et al., 2010), states that in a scene displaying conversations and
social interactions, attention is predominantly allocated to faces, with higher relevance
given to speakers. This assumption is practically addressed in the model by relying on
audio-visual priority maps of speaker vs. non-speakers maps.

If such premise holds, we expect that the “ablation” of model components account-
ing for face information and specifically for speaker information would lead the model-
generated scan paths to significantly deviate, in a statistical sense, from human scan
paths.

On the other hand, given that the availability of such information is necessary for
a human-like gaze deployment, is it sufficient? To put the question straight: when
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Chapter 5. Simulations and results

(a) (b) (c)

(d) (e) (f)

Figure 5.1: (a) Frame of video 010 with overlaid heatmap of real fixations. (b) Real (red) and
Generated (blue) saccades amplitude distribution. (c) Real saccades direction distribution.
(d) Frame of video 010 with overlaid heatmap of generated fixations. (e) Real (red) and
Generated (blue) fixations duration distribution. (f) Generated saccades direction distribu-
tion.

attending a conversational clip, do we actually need bottom-up information/saliency
for reliably generating gaze shifts, or is it redundant? This is a deceptively simple point
that has been overlooked, since by and large visual attention models give for granted a
central role for low-level salience.

In order to shed light on such questions we simulate gaze data from the following
models:

1. BU or Bottom-up: we prevent the model from the computation of the audio-
visual priority maps, thus only considering low-level features in the preattentive
stage;

2. BU+F or No Speaker: faces are considered, together with BU features, but no
distinction is made between speakers and non-speakers;

3. F or Face model: only faces are considered, as in the No Speaker model, but
without BU features;

4. F+S model: a face and speaker model, without BU features;

5. BU+F+S or Full: the model described in this paper where audio-visual patches
account for low-level information (BU), faces (F) and speakers (S).

In addition, a baseline Random model is adopted, too. This simply generates random
gaze shifts by sampling (x, y) fixation coordinates and relative duration from the uni-
form distribution. Note that in such setting, only the Full and the F+S models are
explicitly accounting for audio information.
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For each model we adopt the protocol described in Section 5.2. Figure 5.2, depicts
at a glance the empirical distributions of the scores obtained in the ablation experiments.
A preliminary inspection shows that the Full and F+Smodels give rise to distributions
that are close to those yielded by real subjects for all dimensions, with the exception of
the direction score MMDir.

5.3.1 Statistical analyses

The similarity scores obtained from the six models introduced above are used to assess
whether or not a model generates scan paths that significantly differ from those of hu-
man observers and to gauge the size of such difference (effect size). In the analyses that
follow, scores obtained from Real vs. Real comparison represent the gold standard;
the significance level of all statistical tests is α = 0.05.
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Figure 5.2: Score distributions for models considered in the ablation experiment

For each score, the normality of model distributions (groups) was assessed via the
Shapiro-Wilk test for normality (Shapiro and Wilk, 1965) with Bonferroni correction
(Bonferroni, 1936). All models exhibit normal distributions for scores SM , MMLen
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M SD d Magnitude

F+S 0.487 0.082 -0.127 negligible
Full 0.481 0.067 -0.045 negligible
Face 0.430 0.088 0.650 medium

No Speaker 0.423 0.067 0.889 large
Bottom-Up 0.352 0.071 1.955 large

Random 0.146 0.012 8.140 large

Real 0.478 0.056 0 /

(a) ScanMatch Score

MED MAD δ Magnitude

F+S 0.974 0.006 -0.300 small
Face 0.971 0.007 -0.140 negligible
Full 0.969 0.007 0.170 small

No Speaker 0.965 0.006 0.391 medium
Bottom-Up 0.959 0.009 0.790 large

Random 0.880 0.010 1.000 large

Real 0.970 0.005 0 /

(b) MultiMatch Shape

MED MAD δ Magnitude

F+S 0.722 0.022 0.283 small
Face 0.718 0.030 0.351 medium

Random 0.711 0.016 0.651 large
Full 0.707 0.024 0.574 large

No Speaker 0.708 0.030 0.628 large
Bottom-Up 0.680 0.024 0.862 large

Real 0.734 0.029 0 /

(c) MultiMatch Direction

M SD d Magnitude

F+S 0.964 0.010 0.116 negligible
Full 0.960 0.011 0.462 small
Face 0.961 0.010 0.486 small

No_Speaker 0.957 0.009 1.034 large
Bottom-Up 0.945 0.010 2.186 large

Random 0.816 0.026 7.726 large

Real 0.965 0.007 0 /

(d) MultiMatch Length

MED MAD δ Magnitude

F+S 0.878 0.048 0.093 negligible
Full 0.869 0.044 0.205 small
Face 0.841 0.040 0.459 medium

No Speaker 0.844 0.035 0.516 large
Bottom-Up 0.830 0.034 0.748 large

Random 0.745 0.012 1.000 large

Real 0.885 0.038 0 /

(e) MultiMatch Position

M SD d Magnitude

Full 0.480 0.024 0.384 small
F+S 0.450 0.035 1.328 large
Face 0.418 0.038 2.269 large

No Speaker 0.416 0.037 2.355 large
Bottom-Up 0.370 0.037 3.866 large

Random 0.262 0.021 10.603 large

Real 0.489 0.022 0 /

(f) MultiMatch Duration

Table 5.1: Information level effects: central tendencies for each score and model computed as
mean (M) or median (MED) with associated dispersion metrics (standard deviation, SD or
median absolute deviation, MAD. Effect sizes are computed as the Cohen’s d or the Cliff’s
δ between the given model and real subjects.

and MMDur; when MMShape, MMDir and MMPos scores were considered, the null
hypothesis of normality was rejected for at least one of the models.

Then, for normally distributed scores the statistics adopted to summarize each model
were the empirical mean and standard deviation. The effect size for each model was
measured via Cohen’s d (Cohen, 2013), based on differences between model and Real
means. Otherwise, if at least one model violated normality, we considered the median
for capturing the central tendency and the absolute deviation from the median as the dis-
persion measure. In that case the effect size for each model was computed via Cliff’s
delta (Cliff, 2014).

The overall results are reported in Table 5.1. We follow Cohen’s convention (Cohen,
2013) considering effect magnitudes ’small’ (d ∼ 0.2), ’medium’ (d ∼ 0.5), ’large’
(d ∼ 0.8) and negligible (d < 0.2). As to Cliff’s delta, we follow Hess and Kromrey
(2004), by distinguishing ’small’ (δ ∼ 0.147), ’medium’ (δ ∼ 0.33) and ’large’ (δ ∼
0.474) effect size; the effect is negligible for δ < 0.147.

We then performed homogeneity of variance tests. For each score, when normality
held, the Bartlett’s test (Bartlett, 1937) was employed to test homoscedasticity; oth-
erwise, Levene’s test was adopted (Levene, 1961). Either Bartlett’s or Levene’s tests
rejected the null hypothesis of homogeneity of variances (p < 0.01, for all scores).

The assessment of statistically significant differences between models was per-
formed as follows. Since neither normality, nor equality of variances could be ensured,
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5.3. Information level effects: the model under the knife

we resorted to the well known Friedman Test (FT, Friedman (1937), a non-parametric
variant of ANOVA), with Nemenyi Nemenyi (1963) post-hoc analysis of pairwise dif-
ferences (similar to the Tukey test for ANOVA). We tested the null hypothesis for each
score that the medians were equal between the 6 groups plus the Random one.

For all scores, the FT rejected the null hypothesis (p < 0.001, always, cfr. Fig. 5.3).
Thus, for each score at least one statistically significant difference between two mod-
els exists. The Nemenyi’s post-hoc analysis was then performed. The test compares
each pair of groups in terms of their difference in average ranks; if such difference
exceeds the critical difference CDα at the confidence level α, then the two group are
statistically different. Figure 5.3 reports the FT outcomes (test statistics t and p-value
p) and, most important, visualises post-hoc analysis results. The latter are rendered in a
compact, information-dense format by means of the Critical Difference (CD) Diagram
as proposed in Demšar (2006). CD Diagrams show the average rank of each model
(higher ranks meaning higher average scores); models whose difference in ranks does
not exceed the CDα (α = 0.05) are joined by thick lines and cannot be considered
significantly different.

By first considering the ScanMatch metric, a clear ranking is established. We can
assume that there are no significant differences within the following two groups: F+S,
Real and Full; Face and No_Speaker. All other differences are significant. Tak-
ing into account the magnitude of the effect, the difference between the Full model
and Real is negligible with a smaller magnitude than that of F+S. The effect size
grows to large for Face and No_Speaker. The Bottom-Up model performs badly,
albeit being significantly different from the Random model, which clearly has the
largest effect size.

Together with the fact that when the BU component is ablated from higher level
models, the similarity performance does not decrease, these results suggest that BU
conspicuity has a modest relevance, at least for the kind of conversational clips we deal
with.

Overall, it can be noted that the test does not support any statistically significant dif-
ference between the scores of Real subjects and the ones from the Full model. This
is true for the ScanMatch metric and for all the MultiMatch metric dimensions except
for the Direction score. A similar behaviour is exhibited by the F+S model, the only
remarkable difference being that of the MultiMatch Duration metric. In this case, as
opposed to the Full model a significant difference with fixation duration of real sub-
jects is found. Significant differences arise when comparing real scan paths with those
generated from ablated models like the Bottom-Up, No Speaker and Face and
the huge dissimilarity with the randomly generated eye movements (Random model).

Taken together with the size effects reported in Table 5.1, these results bear some
consequences. First of all, they show how the proposed (Full) model is able to mimic
the human behaviour of gaze deployment to audio-visual dynamic stimuli of social
interactions. This is witnessed by differences with the scores achieved by real subjects
that are negligible in their size and not statistically significant for almost all scores. The
only exception is the MultiMatch Direction dimension, for which no clear association
with the gold standard is found. This is not surprising. Indeed the saccades direction is
the only feature that is not explicitly tackled in any aspect of the proposed model, but
only subsumed as a consequence of the value based patch selection mechanism (Eq.
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4.22).

Second, it is interesting to note how preventing models from accounting for bottom-
up information, does not results in a significant loss of performance, according to most
of the adopted metrics, when comparing with the same models that account for it.
Indeed, if fixation duration seems to benefit from the computation of low level cues, for
other scores like the ScanMatch and the MultiMatch Position, the ablation of bottom-up
information generated outcomes that are indistinguishable from a statistical standpoint.
In light of this result, it is clear how the role of bottom-up information when dealing
with videos of social interaction, should be reappraised, since marginally contributing
to the process of attention allocation.

Overall, the only model that performs comparably with humans is the Full model;
indeed it is able to achieve indistinguishable results w.r.t. humans on 5 out of the 6
adopted metrics. The fact that the models obtained after the ablation of high level in-
formation (speaker/no-speaker, face location) produce significantly lower scores, high-
lights the causal effect of the presence of (talking) faces, or more generally top down
cues, on attention allocation. This fact has been previously demonstrated in psycho-
logical studies (Foulsham et al., 2010), but here it is made operational by means of a
computational model.
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Figure 5.3: Information level effects: critical Difference (CD) diagrams of the post-hoc Ne-
menyi test (α = 0.05) for the ScanMatch score and each MultiMatch score obtained by us-
ing different information levels obtained by ablation of components feeding the GazeDeploy
strategy. Diagrams can be read as follows: the difference between two models is significant
if the gap between their ranks is larger than CD; there is a line between two models if the
rank gap between them is smaller than CD. Graphically, models that are not significantly
different from one another are connected by a black CD line. Friedman’s test statistic (t)
and p-value (p) are reported in brackets.
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5.4 Gaze control effects

The experiment reported in this section aimed at comparing the GazeDeploy control
strategy to those of models previously proposed in the literature that are:

• capable of handling time-varying scenes

• for which a model implementation is available

In particular we used the Ecological sampling model (from now on Eco_Sampling)1

proposed in Boccignone and Ferraro (2014), and the recent G-Eymol model2 (Zanca
et al., 2019) described in Section 2.3.4.

For what concerns the Eco_Sampling model it’s worth noticing how, much like
GazeDeploy, it assumes the gaze sequence to be generated by a stochastic process.
Different from GazeDeploy it does not rely on a specific account for patch handling
and giving-up time. Moreover, the preattentive representation, formalised in terms of
proto-objects, roughly corresponds to the patches of the GazeDeploy procedure. In
what follows, we feed the Eco_Sampling model with the same perception of the
world as inferred in the preattentive stage of the proposed Full model, so as to focus
on the performance of the different gaze control strategies, rather than representation
issues.

For what concerns the G-Eymol model, we employ the version that allows faces
as additional masses; this is accomplished in the original implementation, by adopting
a Haar cascade face detection (Viola and Jones, 2004).

Further, in order to belay a fair comparison, we set up a variant (G-Eymol_sp) that
takes into account the difference between speakers and non-speakers. This is achieved
by feeding the G-Eymol model with speaker and non-speaker masses whose magni-
tude is proportional to their value as defined in Equation 4.6. The G-Eymol equation
of motion are deterministic. However, the stochasticity requested to sample different
scan paths mimicking different observers can be achieved by perturbing the initial con-
ditions of the equations. Eventually, we also consider the Random model.

As in the previous experiment, for each model we adopted the protocol described in
Section 5.2. Figure 5.4, depicts at a glance the empirical distributions of the scores
obtained by the 5 control models. Visual inspection of distributions derived from
the ScanMatch score suggests a higher similarity of scan paths simulated from the
Full model with respect to the original G-Eymol; Eco_Sampling and, surpris-
ingly, G-Eymol_sp achieve inferior performance.

As to MultiMatch, the behaviour of the Full model gives rise to distributions that
on the average are closer than other models to those yielded by real subjects, the MM
direction score again being an exception, as in the previous experiment. But here, re-
markably, the Full model seems to outperform the others with respect to the Duration
dimension, a result that was to be expected, because this dimension benefits from the
Bayesian stochastic foraging approach.

1Matlab implementation available at https://github.com/phuselab/EcoSampling
2Python implementation available at https://github.com/dariozanca/G-Eymol
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Figure 5.4: Score distributions for models considered in the gaze control experiment

5.4.1 Statistical analyses

The statistical analysis of effects entailed by different gaze control strategies, closely
followed the one carried out in Section 5.3.1.

Scores SM , MMDir, MMPos and MMDur according to the Shapiro-Wilk test
failed to reject the hypothesis of normality, as opposed to scoresMMShape andMMLen.
The overall results for central tendencies, dispersions and effect size are reported in Ta-
ble 5.2. For all scores, either Bartlett’s or Levene’s tests rejected the hypothesis of
homoscedasticity of distributions. Thus, the FT with Nemenyi post-hoc analysis was
performed. The final results are reported in Figure 5.5.The quantitative results overall
support what surmised so far by visually inspecting the score distributions.

Based on the post-hoc Nemenyi test, and considering the ScanMatch metric, we as-
sume that there are no significant differences within the following three groups: Full,
Real; Eco_Sampling and G-Eymol_sp; G-Eymol_sp and Random. All other
differences are significant. The effect size of such differences with respect to the gold
standard of human observers can be appreciated in Table 5.2.
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M SD d Magnitude

Full 0.477 0.065 -0.044 negligible
G-Eymol 0.393 0.098 1.031 large

Eco_Sampling 0.288 0.078 2.779 large
G-Eymol_sp 0.212 0.093 3.441 large

Random 0.146 0.012 8.393 large

Real 0.475 0.054 0 /

(a) ScanMatch Score

MED MAD δ Magnitude

Eco_Sampling 0.985 0.003 -0.939 large
Full 0.968 0.007 0.171 small

G-Eymol_sp 0.957 0.008 0.820 large
G-Eymol 0.960 0.008 0.714 large
Random 0.881 0.010 1.000 large

Real 0.969 0.006 0 /

(b) MultiMatch Shape

M SD d Magnitude

Random 0.711 0.015 1.345 large
Full 0.710 0.027 1.131 large

Eco_Sampling 0.663 0.036 2.424 large
G-Eymol 0.626 0.064 2.343 large

G-Eymol_sp 0.610 0.053 3.065 large

Real 0.741 0.027 0 /

(c) MultiMatch Direction

MED MAD δ Magnitude

Eco_Sampling 0.985 0.004 -0.913 large
Full 0.960 0.011 0.220 small

G-Eymol_sp 0.944 0.013 0.803 large
G-Eymol 0.944 0.012 0.810 large
Random 0.820 0.024 1.000 large

Real 0.964 0.009 0 /

(d) MultiMatch Length

M SD d Magnitude

Eco_Sampling 0.890 0.028 -0.285 small
Full 0.868 0.039 0.364 small

G-Eymol 0.816 0.066 1.273 large
G-Eymol_sp 0.787 0.059 1.991 large

Random 0.744 0.014 5.549 large

Real 0.881 0.032 0 /

(e) MultiMatch Position

M SD d Magnitude

Full 0.480 0.024 0.389 small
G-Eymol_sp 0.278 0.122 2.411 large

Random 0.261 0.021 10.562 large
G-Eymol 0.213 0.107 3.556 large

Eco_Sampling 0.221 0.044 7.677 large

Real 0.489 0.022 0 /

(f) MultiMatch Duration

Table 5.2: Gaze control effects (notation follows Table 5.1)

123456

Random
G-Eymol_sp

Eco_Sampling G-Eymol
Real
Full

CD

(a) ScanMatch Score (t = 262, p < 0.001)

123456
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G-Eymol

G-Eymol_sp Full
Real
Eco_Sampling

CD

(b) MM Shape, (t = 273, p < 0.001)

123456

G-Eymol_sp
G-Eymol

Eco_Sampling Full
Random
Real

CD

(c) MM Direction, (t = 214, p < 0.001)

123456

Random
G-Eymol

G-Eymol_sp Full
Real
Eco_Sampling

CD

(d) MM Length, (t = 274, p < 0.001)
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G-Eymol_sp
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(e) MM Position, (t = 243, p < 0.001)

123456

Eco_Sampling
G-Eymol
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Full
Real

CD

(f) MM Duration, (t = 206, p < 0.001)

Figure 5.5: Gaze control effects: CD Diagrams of the post-hoc Nemenyi test (α = 0.05) for
MultiMatch (MM) and ScanMatch scores (cfr. Fig 5.3), obtained by using different gaze
control strategies (see text for explanation). Friedman’s test statistic (t) and p-value (p) are
reported in brackets.

The many facets of such overall model performance ranking can be best weighed
by considering the individual dimensions provided by MultiMatch scores. Remarkable
is the divergence with respect to duration: no significant differences are detected within
the Fulland Real group, with a small effect magnitude; all other models fall in one
group, together with the Random model, albeit distinguished by different effect sizes
(in this case, for instance G-Eymol_sp performs better than the original G-Eymol).

115



i
i

“main” — 2021/2/19 — 17:53 — page 116 — #136 i
i

i
i

i
i

Chapter 5. Simulations and results

The worst performance of all models is detectable on the direction dimension. In
this case there are no significant differences within the following two groups: Full and
Random (but with smaller effect size for the first model); Eco_Sampling, G-Eymol
and G-Eymol_sp. By taking into account the effect size, models in the second group
perform worse than random choice. In simple terms, a random choice of direction
seems to provide a better opportunity than any inappropriate strategy.

As to the position dimension there are no significant differences within the follow-
ing groups: Eco_Sampling and Real; Full and Real; G-Eymol and G-Eymol_sp;
G-Eymol_sp and Random. The smallest effect size in difference from human sub-
jects are provided by the Full and Eco_Sampling models, the latter being the
smallest. This could be due to the fact that, all being equal, the sampling mechanism of
interest points from proto-objects/patches can provide a fine-grained, shape-sensitive
choice of the possible gaze shift “landing”, as opposed to the use of the center of mass
attraction in GazeDeploy. Similarly, the high ranking of Eco_Sampling is likely to
stem from the core business of the approach, namely the sophisticated modelling of
gaze shift amplitudes via Lévy flights; yet, GazeDeploy suffers from a smaller effect
size. Results achieved for the shape score deserve similar considerations.

5.5 Summary

This Chapter presents simulation experiments from the proposed computational model
on a publicly available dataset of eye-tracked subjects. Results show that the simulated
scan paths exhibit similar trends of eye movements of human observers watching and
listening to conversational clips in a free-viewing condition.

Two experiments were carried over: in the first one we question the usefulness of
the adopted modelling assumptions by performing an ablation study of the model. In
the second we compare the proposed gaze control strategy with those of state of the art
models suggested in literature.

Rigorous statistical analyses proved the soundness of the hypotheses advanced in
the previous Chapter and the tight similarity between the generated and real scanpaths,
even when comparing with state of the art models.
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CHAPTER6
Discussion and Conclusions

THE present work dealt with the problem of gaze deployment to multi-modal and
time varying stimuli. The formalization of such a complex system is not an easy
task, especially when considered in it’s entirety. In Chapter 2 it has been shown

how often, the most recent attempts to model visual attention do not take into account
many of the peculiarities of our oculomotor system; from the dynamics of the attentive
process, to the oculomotor biases, up to the inherent stochasticity of gaze allocation.

The main contributions of Chapter 2 is given by the definition of a novel model of
time-aware scanpath simulation on static stimuli, which shows how taking into account
visual attention dynamics leads to generated scanpaths exhibiting a tighter similarity to
the recorded ones, if compared to those generated by time-agnostic models.

Moreover, we stressed on the fact that visual attention is composed by both overt
and covert mechanisms; when considered together, both the goals of the observer and
the actual gaze shift mechanism must be taken into account. Under such perspective,
the observer (either consciously or unconsciously) uninterruptedly has to decide to keep
looking at the current portion of the stimuli or relocate gaze elsewhere. Such choices
are strongly influenced by the value (quality) that the observer assigns to the current
patch. This way of behaving can be successfully associated to that of foraging animals.

The idea of applying movement ecology models to describe visual attention alloca-
tion is not new. In Chapter 3 we have shown how Lèvy Flights may be conceived as an
efficient strategy to scan the scene motivated by evolution. Interestingly enough, they
represent the missing link between eye movement and foraging models and provide an
interesting new perspective on modelling overt attention.

Likewise, Marginal Value Theorem has been employed in the visual attention realm
to describe visual search tasks and in particular to address patch leaving mechanisms.
This entails a decision making process that deals with the covert attentive mechanisms
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Chapter 6. Discussion and Conclusions

that allow to assign specific values to each different patch, based on the current tasks
and goals.

These concepts are expanded and made operational in Chapter 4 where a full com-
putational model of gaze deployment to audio-visual cues of social interactions is pro-
posed.

The main contributions of Chapter 4 lie in the following:

1. The proposed attention deployment model addresses the active sensing of a mul-
timodal stimulus (audio and visual). Although humans are multi-sensory per-
ceivers, surprisingly enough and to the best of our knowledge, there is not much
tradition in the computational modelling of this problem.

2. Attention deployment is reformulated as a stochastic foraging problem. Albeit
unconventional, this choice allows a parsimonious approach to cope with both
the what and how problems that ground active sensing, the how problem being
hitherto neglected in the computational modelling of attention.

3. Gaze dynamics succintly relies upon one and only OU stochastic process that is
apt to switch between different scales of diffusion. This solution accounts for the
variability problem of the perceivers in a simpler way than some attempts based
on more cumbersome mathematical tools (e.g., Lévy flights). A side consequence
is to allow a concrete step towards the unified modelling of different kinds of gaze
shifts, a recent trend in eye movement research.

4. The foraging framework is exploited for a seamless but principled integration
of attentional control mechanisms that are modulated by value and rewards. In
particular it is shown how implicit social reward as elicited by multimodal con-
versational clips can be inferred and exploited in the loop.

5. Different from the current propensity towards end-to-end approaches, the model-
based behavior of gaze deployment provides an explainable account. This is an
important feature if the approach is to be used in a subject’s mining context (for
example, inferring socially-aware psychological traits of the perceiver or atypical
development in the appraisal of social cues)

In a nutshell the model aims at answering fundamental questions on the attentive
behaviour of a subject who scrutinises and forages on other subjects involved in social
interactions, such as:

• What defines a patch of audio-visual information valuable to spot?

• How is gaze guided within and between patches?

Surprisingly the study of this problem is still in its infancy in the field of compu-
tational modelling of visual attention (Rubo and Gamer, 2018; Nguyen et al., 2018;
Bylinskii et al., 2016). This state of affairs is in striking contrast with the exponentially
spreading body of audio-visual data that convey social content and the need of analyz-
ing the perceiver’s behaviour under such circumstances. Unwisely, a large amount of
research effort of the computer vision community in the last two decades has by and
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large focused on salience estimation from natural scenes, mostly neglecting the dynam-
ics of actual attention deployment, as instantiated by gaze shifts. The shortcomings of
this effort become dauntingly palpable when dealing with scenes endowed with rich
semantics, where gaze sampling is affected by goals, rewards, social traits and even
expectations about future events.

In this respect, it’s not surprising that the How problem in attention modelling has
been more often addressed in computational neuroscience, psychology and robotics
fields, where explainability on the one hand and embodiment/simulation purposes on
the other explicitly require answering such question. In particular, active inference
(Friston et al., 2006) has been adopted as a scheme for describing visual searches and
scene construction (Mirza et al., 2016) or action perception (Donnarumma et al., 2017).
Similarly, attention allocation has been framed as an active perception problem in which
an agent (robot) actively samples the surrounding environment in order to solve a given
task, like action/event recognition or target localization (Ognibene et al., 2013; Og-
nibene and Baldassare, 2014; Ognibene and Demiris, 2013; Lee et al., 2015). In this
vein, reinforcement learning has been adopted to model eye-movements during search
(Butko and Movellan, 2008) or object recognition tasks (Paletta et al., 2005). Inter-
estingly enough, it has been shown that equipping an agent with an active vision sys-
tem can enhance the performance and efficiency on visual tasks such as classification
(de Croon et al., 2009).

Still and all, these approaches typically put the accent specifically on the problem of
saccadic target selection under a given task or goal (Parr and Friston, 2018), while leav-
ing on the background other important facets of gaze deployment, like the description
of the mechanics of oculomotion or the temporal modelling of the decision making (fix-
ation duration). This latter aspect is deemed particularly relevant in the psychological
field, as the fixation duration speaks for the moment-to-moment information priorities
of the visual system, thus potentially unraveling the strategies employed by the brain
to serve ongoing behavior (Tatler et al., 2017). As a matter of fact, the vast majority of
computational models that address the How question remain silent on the determinants
of fixation duration (Borji and Itti, 2012), with few notable exceptions (Tatler et al.,
2017; Unema et al., 2007; Findlay and Walker, 1999; Nuthmann et al., 2010; Mackay
et al., 2012).

Here we deliberately made a fresh step forward in such direction. It has been shown
how oculomotor behaviour while attending at social interactions can be effectively and
holistically described in terms of the principles of Optimal Foraging Theory.

Gaze dynamics has been derived in a principled way by reformulating attention de-
ployment as a stochastic foraging problem: the perceiver allocates gaze to audio-visual
patches much like a forager visits patches in the environment to obtain nourishment.
Our model is that of a stochastic forager performing an Ornstein-Uhlenbeck walk by
switching to the appropriate scale for engaging in either within-patch exploitation and
large between-patch relocations. The foraging dynamics is thus driven by the audio-
visual patches that at any time appear relevant as to social value (rewarding). Patches
are sampled from spatially-based probabilistic priority maps. These, in turn, are de-
rived by adapting to our framework recent results gained by deep network techniques
(Chung and Zisserman, 2016, 2017), so to account for the visual and auditory objects
across different analysis scales. Moment to moment, patch value dynamics is inferred
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on a video clip, with dynamics parameters being derived on the basis of eye-tracked
gaze allocation of a number of actual observers. Patch choice, handling and leave are
framed within an optimal Bayesian foraging setting.

In Chapter 5 model simulation experiments on a publicly available dataset of eye-
tracked subjects and in-depth statistical analyses of results so far achieved have been
performed. These show an overall statistically significant similarity between scan paths
of human observers and those generated by the GazeDeploy procedure, which uses the
full stack of information levels.

The current model has limitations and caveats that pave the way for future research
and deserve being discussed. For instance, statistical analyses have highlighted specific
problems in gaze direction modelling. This is a difficult hurdle to face. Some contextual
rules (e.g., the prevalence of horizontal scanning) that have been advocated in the com-
puter vision field (Torralba et al., 2006) and in the psychological literature (Tatler and
Vincent, 2008), might fail in more ecological conditions, out of the lab and in dynamic
environments. On the other hand, the ecology of animal movements is still struggling
on the point (Viswanathan et al., 2011) in spite of an important body of research laid
down over years. One solution could be that of a data-driven strategy (Le Meur and
Coutrot, 2016; Hu et al., 2020), albeit raising in turn the problem of generalisability.

The model simulates fixation duration from first principles (Charnov’s theorem) and
achieves significant performance. Notwithstanding, it would be interesting to amend
the lack of an explicit account for actual patch exploitation and within-patch item han-
dling. One such example is facial expression processing of people engaged in the con-
versations. Expression perception is one fundamental mean for our understanding of
and engagement in social interactions. This aspect is intimately related to the notion of
value proposed in our work, which represents as a matter of fact a doorway to intertwine
attention, cognition and emotion (Pessoa, 2008). Indeed, several studies have reported
the influence of emotion on overt attention and emphasised the distinction between in-
ternally and externally located emotional cues; meanwhile, other studies have shown
the reversed causal effect: attention can also affect emotional responses (Schomaker
et al., 2017; Rubo and Gamer, 2018).

OFT is a general and appealing framework able to effectively detail the process of
gaze deployment. However, this approach lacks the mechanistic description suitable
to unravel the neural underpinnings of value-based decision making, for which ded-
icated models are available (Gold and Shadlen, 2007; Bogacz et al., 2006; Krajbich
and Rangel, 2011; Noorani and Carpenter, 2016). Under such rationale, the very same
problems outlined throughout this thesis can be recast into a so-called Perceptual Deci-
sion Making task, in which sensory information is gathered through the senses and then
evaluated and integrated according to the current goals and internal state of the subject
in order to take a decision. In this respect, the LATEST model proposed by Tatler et al.
(2017) is worthy of mention; LATEST has its foundations in the LATER model (Car-
penter, 1981; Noorani and Carpenter, 2016), which assumes that decision making is the
result of the accumulation of evidence according to a linear function, until a threshold
is reached and eventually an action is taken. LATEST simultaneously accounts for both
when and where we look by evaluation of the relative benefit expected from moving the
eyes to a new location compared with that expected by continuing to fixate the current
target (Tatler et al., 2017). When the evidence in favor of a particular location of the
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stimuli outweighs that of the current one, the eyes move to that location. As a result the
duration of fixations is explicitly modeled as the latency of the decision making process
i.e. the amount of time needed for one location’s evidence to outweigh the others (sac-
cade latency). From such point of view, the LATEST model shares some similarities
with the principles advocated by MVT; indeed, it has been shown that under appro-
priate conditions, there might be a tight relationship between evidence accumulation
models and foraging (Davidson and El Hady, 2019).

On the other hand, it is clear that a careful analysis of the model outlined in the
present work may reveal some similarity with Reinforcement Learning (RL), albeit not
adopting any explicit learning mechanism. A glimpse at Figure 4.2 unveils how it is
possible to gain some insight on how the patch exploration/exploitation dilemma that
the foraging eye has to solve, might be efficiently modelled through RL algorithms
(Sutton et al., 1998). This link is further strengthened if considering the value/reward
concepts that permeate OFT models. It is not surprising that recent research trends
have shown how the behaviour of foraging animals can be well approximated by RL
algorithms (Miller et al., 2017; Kolling and Akam, 2017). In particular the patch res-
idence time (corresponding to fixations duration) may be learned and simulated effec-
tively with such algorithms (Wawerla and Vaughan, 2009). In this respect, it would be
interesting to recast the gaze deployment issue as a RL problem where the ultimate ob-
jective would be to learn to forage optimally on a (audio-)visual landscape. The main
challenge here, would be to carefully design the reward function associated to each
choice in order to accurately represent the task. Indeed, as discussed in Chapter 4, the
goals of the observer may be endogenous and not easily definable explicitly. To this
end, prior knowledge coming from foraging theory might be employed so to hand-craft
a proper reward function. Yet, a more elegant solution could be provided by Inverse Re-
inforcement Learning (IRL) algorithms (Ng et al., 2000). In that case the main purpose
is to learn an agent’s objectives, values, or rewards functions from the demonstrations
that could explain the expert’s behavior. It’s worth remarking that this approach would
sensibly deviate from the one adopted here, as the current implementation does not rely
on any learning procedure for the patch value estimation, but infers it by assuming that
the value is proportional to the amount of "real" fixations that fall in a given patch at
any given time. In this sense an IRL approach could be an interesting alternative.

The proposed model has been presented and tested on the particular task of attention
allocation on social video clips. Despite being a widely spread kind of task to deal with
and representing a crucial aspect in social robotics (Admoni and Scassellati, 2017),
some might see this as a big limitation. A quantitative account on the possibility to
extend the proposed model to a wider class of stimuli, tasks and conditions will be
part of future works. However, the general principles at the foundation of the adopted
method suggest that this might be successful in explaining gaze behaviour even in more
general cases. These facts need to be further investigated.

To sum up, despite such limitations, the results presented in this study allow to draw
at least two general conclusions.

The first lies in that when we engage with the computational modelling of attention
in multimodal scenarios with rich semantics, we should not overstate the role of classic
salience. Concentrating all research efforts by mostly focusing on subtle improvements
of such techniques (whose statistical significance is at best questionable), under the
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wishful assumption that these will be predictive of actual gaze allocation, might not be
the optimal strategy.

The second and artful lesson to learn, is that general models of gaze deployment are
appealing, indeed elegant and explainable. Nevertheless, they should be general as to
the foundational principles and rationales, albeit not generic. Caution suggests that the
many dimensions of gaze dynamics are to be specifically accounted for, if the similarity
to human gaze behaviour is the ultimate goal.
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