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  Convolutional neural networks: Workhorse for 
Image Classifi cation 

 Convolutional neural networks (CNN) have been the most 
popular deep learning architectures used for image classifi -
cation in cancer ( Fig. 1 ). CNNs apply a series of nonlinear 
transformations to structured data (such as raw pixels of an 
image) to learn relevant features automatically, unlike con-
ventional machine learning models that frequently require 
manual feature curation. On the fl ip side, it is diffi cult to tell 
what features are learned by the CNNs, making them what 
many have referred to as a “black box.” One consequence 
is that images used for CNNs should be carefully prepro cessed 
to reduce the risk that the model learns from image artifacts. 
There are two major approaches for CNN models; one is 
transfer learning that uses images from a large collection 
of natural objects (such as in ImageNet) to train the initial 
layers of a model (where the model learns to identify general 
features such as shapes and edges) and then uses the disease-
specifi c data to fi ne-tune the training parameters in the last 
layers. The second variation of CNN is based on an autoen-
coder where the model learns background features from a 
subset of representative images and encodes a compressed 
representation of the basic features later used to initialize 
the CNN. In the CAMELYON16 Challenge—a crowdsourced 
competition to identify and classify lymph node metastasis in 
patients with breast cancer from whole slide images (WSI) of 
hematoxylin and eosin (H&E)–stained tumors—25 of the 32 
submitted algorithms were CNNs, and the top 5 classifi cation 
models were exclusively based on transfer learning, which were  
 GoogLeNet, ResNet, VGG-16 ( 2 ). Khosravi and colleagues 
trained and tested several state-of-the-art deep learning mod-
els to classify WSI from H&E-stained tumor tissues of The 
Cancer Genome Atlas (TCGA) cohort and reported on the 
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  Signifi cance:   AI has the potential to dramatically affect nearly all aspects of oncology—from enhanc-
ing diagnosis to personalizing treatment and discovering novel anticancer drugs. Here, we review the 
recent enormous progress in the application of AI to oncology, highlight limitations and pitfalls, and 
chart a path for adoption of AI in the cancer clinic.        

  INTRODUCTION 
 The term “artifi cial intelligence” (AI) was fi rst coined for the 

Dartmouth Summer Workshop in 1956, where it was broadly 
referred to as “thinking machines.” In simple terms, AI can be 
defi ned as the ability of a machine to learn and recognize pat-
terns and relationships from enough representative examples 
and to use this information effectively for decision-making 
on unseen data. AI is a vast term that encompasses (and is 
sometime used synonymously with) machine learning and deep 
learning. In broad terms, machine learning is a subfi eld of AI, 
and deep learning is the subset of machine learning that focuses 
on deep artifi cial neural networks (i.e., artifi cial neural networks 
with multiple fully connected hidden layers;  Fig. 1 ). In recent 
years, deep learning has gained enormous traction due to its 
unprecedented success in computer vision tasks such as face rec-
ognition and image classifi cation, among others ( 1 ). This prop-
erty of deep learning extended its applicability to various aspects 
of cancer research and medicine, such as automatically and 
accurately detecting cancer from images of stained tumor slides 
or radiology images, thereby holding the potential to unburden 
pathologists and radiologists from routine and repetitive tasks.  
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relative performance of these methods, noting that transfer 
learning–based inception architectures (GoogLeNet V1 and 
V3) had an overall best performance for tumor–normal tissue 
and cancer subtype classification tasks (3).

Generating Predictive Models from Other  
Large Datasets

In the past decade, several national and international initi-
atives have resulted in the generation of large cancer datasets. 
These datasets are obtained from profiling tumor samples 
using diverse high-throughput platforms and technologies. 
They are frequently used to build predictive models that 
inform research and may eventually inform clinical decisions 
(Fig. 2A). TCGA is by far the most comprehensive publicly 
available compilation of tumor profiles and includes a large 
number of data types spanning genomics, epigenomics, pro-
teomics, histopathology, and radiology images (4). Other 
efforts such as The Pan-Cancer Analysis of Whole Genomes 
(PCAWG), METABRIC, and GENIE have also compiled large 
numbers of cancer genomic profiles and made these data 
publicly available. Profiling technologies have evolved over 
time. For example, genomic DNA profiling has expanded 
from targeted panels to whole exomes to whole genomes. 
Gene expression profiling has evolved from genome-wide 
microarrays to RNA sequencing (RNA-seq) and then to more 
granular single-cell RNA-seq (scRNA-seq). Other mature 
technologies have led to the production of a wide-ranging 
array of datasets, including DNA methylation profiles, large-
scale proteomics studies, perturbation studies including cell 
viability or cytotoxicity assays using small molecules, RNAi 
or CRISPR screens, protein–protein interaction networks, 
and more. The sheer breadth and diversity of datasets that 
are availably publicly or can be generated in minimal time 
presents a unique opportunity to integrate various data 
types. Many groups have shown the benefits of such integra-

tion. For example, training predictive models on multiple 
integrated rather than singular data sources has been shown, 
for instance by Cheerla and Gevaert, to improve prediction 
of overall survival in patients across cancers (5). Madhukar 
and colleagues used such an integrative approach to predict 
the targets and mechanisms of action of small anticancer 
molecules and demonstrated clearly that integrating multiple 
data types improves prediction accuracy (6).

Data Quality and Model Selection Are Key
The basic strategy for machine learning workflows is fairly 

standard (Fig. 2B). Data collection and cleaning are the first 
and key components of any workflow, as a model is as good 
as the data it is trained on. To ensure high quality of the col-
lected data, it needs to be inspected and corrected for possible 
noise in both non-image (such as inaccurate data entries and 
missing values) and image (such as high-intensity pixels from 
artifacts and uneven illumination) data types. The data also 
need to be reviewed for possible biases that can lead to under-
fitting the model or high variance that can lead to overfitting 
the model. A model overfits the data when it learns from 
artifacts or noise in the data rather than the true signal. The 
consequence of overfitting is that a model may generalize 
poorly to unseen data with different biases. Strategies such 
as cross-validation, increasing the training set size, manually 
curating predictive features, and using ensemble approaches 
have been recommended to diminish risks of overfitting.

Another key step of machine learning workflows is to select 
and fine-tune an optimal model based on its performance. The 
performance of a machine learning model is commonly meas-
ured using the area under the receiver operating characteristics 
curve (AUROC; or simply AUC), which quantifies the trade-
off between sensitivity and specificity. A good classifier should 
achieve both high sensitivity and high specificity, but emphasis 
on either of them may be important for some applications. In 

Figure 1. Relationship between AI, machine learning, and deep learning, with commonly used algorithms as examples. CART, Classification and Regres-
sion Trees; LASSO, Least Absolute Shrinkage and Selection Operator; SVM, support vector machines.
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general, an AUC of >0.80 is considered good, but whether this 
threshold is also clinically acceptable may vary depending on 
the clinical use. Even if widely used, there are pitfalls in relying 
blindly on AUC as a performance metric. For example, the AUC 
assesses model performance in a population but does not pro-
vide confidence in individual calls. For datasets that have a class 
imbalance such that the positive class (class of interest) examples 
are much less than the negative class examples and the focus of 
the model is to accurately detect the positive class, area under the 
precision-recall curve (AUPRC) is a preferred alternative to AUC. 
After training and testing a model on a given cohort (usually 
split into training and test sets), it is equally important to also 

validate the model on external independent datasets to ensure 
that the model is stable and generalizes well. AI model develop-
ment is not a static process; the model needs to be tested from 
time to time as newer updated datasets become available. Rou-
tine maintenance is frequently required to ensure that model 
performance does not degrade due to concept drift, that is, when 
the relationship between the input and output variables changes 
over time in unforeseen ways.

In this review, we sought to survey a broad spectrum of pub-
lications and studies that together capture the breadth and 
versatility of AI applied to oncology. We sought to describe 
models that range from those with prospective utilization in 

Figure 2. Overview of machine learning basics. A, Patient-derived datasets used for AI models with an aim to accelerate bench-to-bedside cancer 
care. B, Basics steps in machine learning classifier workflows. AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating 
characteristics curve; DL, deep learning.
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the clinic to models that drive research and discovery (Fig. 3). 
This review not only places special emphasis on deep learning 
as a technique for making machine learning models, but also 
covers use cases where traditional machine learning tech-
niques have been used very effectively. Finally, we highlight the 
limitations and challenges that pave the path toward integrat-
ing AI models in clinic.

EARLY DETECTION, DIAGNOSIS, AND 
STAGING OF CANCER

Timing of cancer detection, accuracy of cancer diagnosis, 
and staging are key determinants of tumor aggressiveness 
and affect clinical decision-making and outcomes. In just a 
few years, AI has made significant contributions to this criti-
cal area of oncology, sometimes with performance compara-
ble to that of human experts and with an added advantage of 
scalability and automation.

Making Cancer Diagnoses More Accurate
Deep learning–based models that accurately diagnose cancer 

and identify cancer subtypes directly from histopathologic and 
other medical images have been reported extensively. Deep 
neural networks (DNN) are powerful algorithms that can, 
with appropriate computing power, be applied to large images 
such as H&E-stained WSIs of tissue derived from biopsies 
or surgical resections. These model architectures have indeed 
excelled at classification of images such as determining whether 
a digitized stained slide contains cancer cells or not (2, 3, 7–13). 
While attaining highest prediction accuracies for distinguish-
ing tumor from healthy cells (AUCs > 0.99), DNNs are used 
for more challenging classification tasks as well, such as dis-
tinguishing between closely related cancer subtypes (such as 
adenocarcinoma vs. adenoma in gastric and colon cancers and 
adenocarcinoma vs. squamous cell carcinoma in lung tumors) 
and detecting benign versus malignant tissue. As an example, 
Coudray and colleagues developed and applied DeepPATH, an 
Inception-v3 architecture–based model, to concurrently classify 

WSI for the TCGA lung cancer cohort into any of the three 
classes—normal, lung adenocarcinoma, and lung squamous cell 
carcinoma—with a reported AUC of 0.97 (11).

The success of DNNs is not confined to histopathol-
ogy images but extends to other medical images acquired 
through noninvasive techniques such as CT scans, MRI, 
and mammograms, and even to photographs of suspicious 
lesions. For example, Esteva and colleagues trained a DNN 
(Inception-V3 architecture) on skin lesion images labeled 
for 757 granular skin disease classes (14). Their model, when 
tested for carcinoma and melanoma classification of pho-
tographic and dermoscopic images of skin lesions, outper-
formed (AUC, 0.91–0.94) the average accuracy attained by 21 
board-certified dermatologists. Importantly, their model was 
robust to variabilities inherent to digital photographs (due 
to different camera angles, uneven exposures, and so on), 
hence making the applicability of this model highly generic 
(14). In radiology, Anthimopoulos and colleagues showed 
that CT scans of patients with lung disease can be used to 
build DNNs that classify textural patterns in the lung (such 
as ground glass opacity and micronodules) with an average 
accuracy of 0.85 (15). Similarly, Jiang and colleagues used CT 
scans to develop DNN that predict occult peritoneal metas-
tasis in gastric cancers with an improved AUC (0.92–0.94) 
compared with that achieved from clinical and pathologic 
features (AUC, 0.51–0.63; ref. 16). In another work, Wang 
and colleagues used MRI images from 172 patients with 
prostate cancer to train and test a DNN (developed using 
Caffe deep learning framework by Berkeley AI Research) that 
could distinguish prostate cancer from benign prostate con-
ditions (such as prostate gland enlargement) with a reported 
AUC of 0.84 (17). In a retrospective study with biopsy-
confirmed diagnosis and longitudinal follow-ups, McKinney 
and colleagues published an ensemble approach with three 
independent deep learning models that predict cancer risk 
score directly from the mammograms of approximately 
29,000 women (AUC, 0.75–0.88; ref. 18). The group also 
reported an improvement in absolute specificity (1.2%—5.7%)  

Figure 3. Applications of AI in cancer 
research and precision medicine. ADMET, 
Absorption, Distribution, Metabolism, 
Excretion, and Toxicity.
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and sensitivity (2.7%–9.4%) of cancer detection from mam-
mograms compared with an average radiologist. All in all, 
such models, if their performance is confirmed in prospec-
tive studies, may play an important role in early detection 
and classification of cancers, especially because their perfor-
mance is comparable to, if not better than, experts in field. 
Outside hospital settings, AI-aided smartphone apps have 
also started to be adopted, potentially bringing early detec-
tion of cancerous lesions directly to a user’s handheld device 
(19, 20). However convenient and promising, the diagnostic 
accuracy of such smart phone applications still remains to be 
clinically validated. Of particular concern are cases predicted 
as false negatives, as they may delay patients from procuring 
timely medical attention (19).

Cancer Staging and Grading
Cancer staging and grading, that is, determining how 

aggressive and advanced the cancer is, is another important 
component of the diagnostic process. Staging can indeed 
affect treatment choices, such as deciding between watch-
ful waiting and aggressive treatment involving radiotherapy, 
surgery, and chemotherapy. In prostate cancer, staging is 
achieved using the Gleason score, a combination of two scores 
measuring prevalence of tumor cells in two distinct locations 
on a slide. DNNs have shown promising initial results in 
predicting Gleason scores from histopathology images of 
prostate tumors (21, 22). Nagpal and colleagues used WSI 
for H&E-stained prostatectomy specimens to train and test a 
DNN (Inception-V3) and k-nearest-neighbor classifier–based 
model to predict Gleason scores (21). The group reported an 
improved prediction accuracy of Gleason scores estimated 
from their model (0.70) compared with those determined by 
a panel of 29 independent pathologists (0.61). Cancer staging 
can also be done from radiology images: Zhou and colleagues 
developed a deep learning approach (based on SENet and 
DenseNet) to predict grade (low versus high) from the MRI 
images of patients with liver cancer and reported an AUC of 
0.83 (22). Overall, these studies indicate promising applica-
tion of AI to cancer staging, with reported performance on 
par with trained experts despite modest AUC.

Increasingly, nonimaging data such as genomic profiles 
are also being used for diagnosis and staging. Data obtained 
from next-generation sequencing (NGS)—such as whole-
exome, whole-genome, and targeted panels; transcription 
profiles from microarray, RNA-seq, and miRNAs; and meth-
ylation profiles—can be used to diagnose cancer and classify 
tumors into subtypes. Because the data provided by these 
platforms are highly multidimensional (tens of thousands 
of genes can be assessed simultaneously), their use for cancer 
classification requires statistical methods or machine learn-
ing (23–25). The use of machine learning for cancer diagnosis 
and staging from molecular data has in fact been around 
since the early 2000s, when machine learning approaches 
such as clustering, support vector machine, and artificial 
neural networks were applied to microarray-based expression 
profiles for cancer classification and subtype detection (26). 
Over the years, omics technologies have advanced and so have 
the innovations in the machine learning algorithms. Capper 
and colleagues demonstrated that a random forest classifier 
trained exclusively on tumor DNA methylation profiles can 

significantly improve the prediction accuracies for the hard-
to-diagnose subclasses of the central nervous system cancers 
(AUC, 0.99; ref. 27). Their subclass predictions for 139 cases 
did not match pathologists’ diagnosis, but follow-up of those 
select cases revealed that approximately 93% of those mis-
matched cases were in fact accurately predicted by the model 
(27). Moving into deep learning methods, Sun and colleagues 
built and applied DNN to genomic point mutations to clas-
sify tissues into either of the 12 TCGA cancer types or healthy 
tissues obtained from the 1000 Genomes Project (28). The 
classifier, trained on the most frequent cancer-specific point 
mutations obtained from whole-exome sequencing profiles, 
was able to distinguish between healthy and tumor tissue 
with high accuracy (AUC, 0.94), but did not perform as well 
in a multiclass classification task to distinguish all of the 12 
cancer types at the same time (AUC, 0.70). This work high-
lighted that accurate cancer classification using mutation 
data is challenging, possibly because of intratumor hetero-
geneity and low tumor purity (making mutation detection 
challenging), together with the presence of shared mutations 
across different cancer types. Nonetheless, the work also 
shows that similar models that use genomic information to 
assess cancer can be applied to genomic profiles obtained 
from other sources such as cell-free DNA (cfDNA).

On the Road to Early Cancer Detection
AI is gradually paving its path toward early detection of 

cancer from emerging minimally invasive techniques as well, 
such as liquid biopsies for circulating tumor DNA (ctDNA) 
or cfDNA. Liquid biopsies, obtained via minimally invasive 
techniques such as a simple blood test, in theory allow for 
early detection of cancer, monitoring risk of relapse over time, 
and guiding treatment options. As an example, microsatel-
lite instability (MSI) status can be predicted from ctDNA in 
patients with endometrial cancer in order to inform immuno-
therapy-based treatment (29). Chabon and colleagues devel-
oped a machine learning–based approach, Lung-CLiP (cancer 
likelihood in plasma), that predicts the likelihood of ctDNA 
in blood drawn from patients with lung cancer (30). The 
method first estimates the probability that a cfDNA muta-
tion is associated with the tumor (using an elastic net model 
and features that include cfDNA fragment size) and then 
integrates outputs of this model together with copy-number 
scores in an ensemble classifier with five distinct algorithms 
to predict the presence of ctDNA in a blood sample. The 
method showed modest predicative performance (AUC, 0.69–
0.98), with performance depending on cancer stage, and a 
tradeoff between specificity and sensitivity for the predic-
tions. In another promising work, Mouliere and colleagues 
reported a random forest-based classifier trained on features 
derived from the cfDNA fragment sizes that predicts the 
presence of ctDNA in blood across multiple cancer types at 
a high accuracy (AUC, 0.91–0.99; ref. 31). As a complete end-
to-end blood test for cancer, Cohen and colleagues developed, 
for eight distinct cancer types, CancerSEEK, which not only 
detects early cancer but also predicts any of the eight cancer 
types directly from the ctDNA (32). Samples are first classi-
fied as cancer-positive by a logistic regression model applied 
to mutations in 16 genes and expression levels in 8 plasma 
proteins. The cancer type is then predicted using a random 
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forest classifier (accuracies range from 39% to 84% depending 
on cancer type; ref. 32). This work is particularly important 
because five of the eight cancer types covered in this test have 
no early screening tests currently available. Taken together, 
the initial progression of AI in the early cancer detection area 
is notable but has so far been limited to traditional machine 
learning algorithms. As data acquisition from liquid biopsies 
expands, we anticipate that more advanced deep learning 
architectures will eliminate the need for manual selection 
and curation of most relevant discriminatory features. We 
also anticipate further use of multimodal approaches (such 
as CancerSEEK) that combine several data types, e.g., liquid 
biopsy and imaging, to enhance early detection and monitor 
disease risk over time.

DETECTING CANCER MUTATIONS USING 
MACHINE LEARNING

The ubiquitous availability of NGS has made it possible for 
thousands of cancer laboratories to routinely sequence cancer 
genes, exomes, and genomes. Identifying genetic variants and 
mutations in NGS data can be done using a variety of compu-
tational tools, but frequently fails in certain scenarios, such as 
low coverage or complex, repeat-rich regions of the genome. 
Several groups have explored the idea to recast mutation 
detection as a machine learning problem (33, 34). As an exam-
ple, DeepVariant, a DNN (Inception-V2 architecture)-based 
method, was developed to detect variants from aligned NGS 
reads by first producing read pileup images for candidate 
variants (thereby making it an image classification task) and 
then predicting the probabilities of their genotype likeli-
hood states (homozygous reference, heterozygous variant, 
or homozygous variant; ref. 33). This method won an award 
at the second precisionFDA Truth Challenge (2016) for best 
performance in SNP detection.

Making the Most of Mutations
Another area of interest for AI is the detection of certain 

key mutations directly from histopathology images, espe-
cially clinically actionable mutations that serve as response 
biomarkers for targeted therapies (such as activating muta-
tions in EGFR). This would offer a cost-effective and faster 
alternative to mutation detection from NGS, as it would 
leverage ubiquitously available image data, from both pathol-
ogy and radiology. DeepPATH, besides classifying subtypes of 
TCGA lung cancer, was also able to identify six key mutations 
in lung cancer, that is, STK11, EGFR, FAT1, SETBP1, KRAS, 
and TP53 (as reported from whole exomes) directly from the 
WSI of 59 patients at AUCs that ranged between 0.73 and 
0.85 (11). The results were promising, but understanding of 
what features are being learned by the DNN models to deter-
mine mutation status for each slide still remains wanting. 
The group also tested their model to detect EGFR mutations 
in an independent lung cancer cohort and obtained a lower 
AUC of 0.687. They attributed this lower AUC to differences 
in sequencing platform and tissue preservation techniques 
between the independent cohort and the TCGA cohorts (on 
which their model was trained and validated). Following 
on this work, other groups have also applied AI approaches 
to identify mutations from images. For example, a trans-

fer learning–based DNN approach could determine EGFR 
mutation status directly from preoperative CT scans of 844 
patients with lung adenocarcinoma with AUC > 0.81 (35). 
Determination of EGFR mutation status in non–small cell 
lung cancer tumors was also achieved directly from 18F-FDG-
PET/CT scans using SResCNN model with AUC > 0.81 (36). 
Driver mutations (e.g., IDH1) and MGMT methylation status 
could be detected in diffuse low-grade gliomas using MRI 
images for feature extraction followed by XGBoost Model 
with AUC > 0.70 (37). DNN (Inception-V3) could identify 
common mutations in liver cancer (CTNNB1, FMN2, TP53, 
and ZFX4) directly from WSI using with AUC > 0.71 (38).

The focus on somatic mutations has expanded from assess-
ing mutations in individual genes to assessing mutational 
footprints, that is, the number and context of all mutations 
found within a tumor. MSI status is an example of mutational 
footprint in tumors that has gained a prominent role as a 
diagnostic and predictive biomarker for checkpoint immu-
notherapies (39). As an example, the FDA recently approved 
Keytruda (pembrolizumab) as a first-line treatment for 
patients with MSI-high (MSI-H) metastatic colorectal tumors 
(https://www.fda.gov/news-events/press-announcements/ 
fda-approves-first-line-immunotherapy-patients-msi-hdmmr-
metastatic-colorectal-cancer). This has spurred the search for 
fast and cost-effective methods that can easily detect MSI-H 
tumors. As before, one compelling idea would be to predict 
MSI status directly from H&E-stained histopathology images, 
which are readily available and do not require additional tis-
sue; this would provide a cost-effective and time-sensitive 
alternative to existing methods, for example MSI inference 
from qPCR, immunohistochemistry (IHC), or NGS. With 
that goal in mind, Kather and colleagues applied ResNet18 
CNN to first detect tumor regions in H&E slides (AUC > 0.99) 
and then classify them as either MSI or microsatellite-stable. 
This method was applied to 1,600 TCGA tumors focused 
on gastric, colorectal, and endometrial cancers (40). Model 
performances were cancer-dependent, with AUCs ranging 
around 0.75 to 0.84. Interestingly, analysis of formalin-fixed, 
paraffin-embedded (FFPE) slides was associated with better 
prediction accuracy (AUC = 0.84) compared with the snap-
frozen slides (AUC, 0.77). Validation in an external colorectal 
cancer cohort gave a comparable performance in accuracy 
(AUC, 0.84). Interestingly, their method did not perform as 
well in a different gastric cancer cohort that had individuals 
of a different ethnicity (Asian, n = 185) than the ones used to 
train the models (TCGA-STAD is predominantly non-Asian; 
AUC, 0.69; ref. 40). In more recent work, Yashmita and col-
leagues trained and tested MSINet, a transfer learning model 
based on MobileNetV2 architecture, to classify tissue and 
subsequently classify MSI status in H&E-stained histopa-
thology slides (40× magnification) from a colorectal cancer 
cohort of 100 primary tumors from Stanford Medical Center 
(41). The group reported an AUC of 0.93, which is a good 
improvement over the previously reported ResNet18 model 
(40, 41). Yashmita and colleagues compared their model with 
the previously published ResNet18 model in two ways: (i) 
They retrained the ResNet18 model on their internal cohort 
(n = 100) and applied it to the TCGA-CRC cohort (n = 479): 
here they show that ResNet had an AUC of 0.71, whereas their 
model MSINet had an AUC of 0.77 (or AUC of 0.83 when 
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restricted to 40× magnification only), or (2) they retrained 
their model MSINet on the same training set as used by 
Kather and colleagues and applied it to their internal dataset 
(n = 100): here they report an AUC of 0.88 for their model 
versus an AUC of 0.77 for ResNet18 model (41). Both of their 
comparative strategies showed an improved performance of 
MSINet compared with the ResNet18 model, and the gener-
ally lower AUCs for TCGA cohort may be the result of high 
heterogeneity in the TCGA datasets, which are gathered from 
multiple institutions.

Tumor mutation burden (TMB) is another important bio-
marker of response to checkpoint immunotherapy (42). Nor-
mally estimated using NGS and thus at high cost and with 
high variability across platforms and gene panels (43), its esti-
mation directly from histopathology slides is also becoming 
an area of active research. As a first attempt to determine TMB 
directly from WSI, Jain and colleagues reported a deep learn-
ing model based on Inception-v3 architecture, Image2TMB, 
to determine the TMB status (high vs. low) from frozen H&E 
slides in the lung adenocarcinoma (LUAD) TCGA cohort (n =  
499; ref. 44). The model was trained and tested at three mag-
nifications (5×, 10×, and 20× magnification), and the TMB 
status probabilities from the three magnifications were aggre-
gated using a random forest model to predict if the TMB is 
above or below their predefined TMB (AUC, 0.92). In another 
work, Wang and colleagues also attempted to classify TMB 
status from FFPE slides for the gastrointestinal cohorts from 
the TCGA (n = 545; ref. 45). Like Jain and colleagues, this 
group also relied on TMB calculated from nonsynonymous 
mutation counts from whole exomes and used the upper 
tertile as the cutoff to define high TMB. The group com-
pared eight different transfer learning models and reported 
GoogLeNet as their best model for gastric tumors (AUC, 
0.75) and VGG-19 as their best model for colon tumors (AUC, 
0.82). Besides histopathology images, CT scans have also been 
used to predict TMB in non–small cell lung cancers (AUC, 
0.81; ref. 46). Related to TMB, researchers are now seeking 
to predict chromosomal instability, a known driver of cancer 
evolution, directly from histopathology slides (47).

Determining Tumor Cells of Origin
Clinically, determining the cell of origin of tumors can 

inform site-specific therapies, which have been reported to be 
more effective than systemic chemotherapies (48). This is rel-
evant for those tumors where the primary sites are unknown, 
or for cfDNA obtained from liquid biopsies. Different tumor 
types have distinct patterns of somatic mutations, and these 
patterns can be leveraged to identify the tissue of origin for 
tumors. Conventionally, tissue of origin is determined using 
approaches that include IHC and gene expression profiling 
assays, but the accuracy of these methods is estimated to be 
about 80%, wanting further improvement (49). As an alterna-
tive, Jiao and colleagues as a part of the PCAWG Consortium 
built and applied multiclass DNN-based models to binned 
mutation counts obtained from whole genomes of approxi-
mately 6,000 tumors spanning 28 cancer types including 
primary and metastatic tumors (50). The basic idea behind 
the approach is that the regional mutation counts are repre-
sentative of the chromatin accessibility of the genomic region 
and therefore may recapitulate the epigenetic state of the cell 

of origin. Specifically, they show that the regional distribu-
tion of somatic mutations per Mb bins across the genome, 
the majority of which are passenger mutations, can accurately 
predict the tissue of origin (overall accuracies 0.83–0.91; accu-
racies varied highly among tumor types). Interestingly, the 
presence of driver genes or pathways was not found to be a 
useful classification feature in this model.

Altogether, the methods discussed in this section high-
light the growing potential of AI to detect cancer mutations. 
Although such methods may not be accurate enough for 
replacing molecular pathology assessment, they may help 
shed light on cellular mechanisms associated with mutations 
and may help screen a large number of patients and tumors 
for subtypes likely to have specific mutational profiles. This 
may in turn help in designing clinical trials and identifying 
groups likely to benefit from specific targeted therapies. We 
anticipate many more complementary methods to be devel-
oped in the future. For example, AI may increasingly be used 
to help understand the functional impact of mutations, e.g., 
predict the impact of noncoding mutations on gene expres-
sion, epigenetic processes, as well as disease risk (51, 52). In 
coming years, we also anticipate that the detection of muta-
tions from histopathology images may gain further clinical 
relevance. For example, it may be possible to predict resist-
ance to therapy, changes in mutation status, and, broadly 
speaking, tumor evolution directly from the histologic pat-
tern changes in pathology images collected from longitudinal 
tumor specimens (53–54).

CHARACTERIZING THE TUMOR 
MICROENVIRONMENT

Despite consistently high predictive performances, many of 
the AI approaches used in digital pathology can be described 
as “black box”; that is, AI methods can be taught to dis-
criminate between different types of diseases, but often do 
not provide an easily interpretable explanation underlying 
the classification process. This is unlike the process used by 
trained pathologists, who use well-documented features of 
images and cell morphology and decades of training to assess 
tissue. AI has the potential to help automate that process and 
simplify routine tasks that may be relatively time-consuming 
for a pathologist, for example estimating the quantity of 
tumor cells in a tissue or determining the cell of origin for a 
given specimen from its tissue morphology. Tumor cellularity, 
that is, the fraction of tumor cells in a specimen, is an impor-
tant indicator of residual disease (pathologic response) after 
therapy. On a more practical level, tumor cellularity estima-
tion also helps pathologists select appropriate tissue blocks 
for further analysis, e.g., genomic sequencing. Traditionally, 
pathologists inspect stained tissue slides to determine tumor 
cellularity, an approach that is not just laborious but also 
highly subjective due to intraobserver and interobserver vari-
ability. Tumor cellularity can also be inferred computationally 
from NGS datasets, but there is limited concordance among 
available inference methods and heavy dependence on the 
presence of high numbers of genomic alterations for adequate 
accuracy (55). To address this task using an AI approach, 
Akbar and colleagues aimed to quantify tumor cellularity 
directly from H&E-stained WSI (20× magnification) from  
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53 patients with breast cancer using DNN (InceptionNet 
architecture), eliminating the need for nuclei segmentation 
and classification, and feature extraction (56). The group 
trained two DNN models, one to distinguish tumor from 
healthy tissue, and the other to output regression scores 
(between 0% and 100%) indicative of tumor cellularity. Their 
predicted scores had a good concordance with the tumor cel-
lularity reported by two independent pathologists (correlation 
0.82; ref. 56). Although these initial findings demonstrate the 
feasibility of quantifying tumor cellularity directly from WSI, 
the models need to be trained and tested on larger datasets.

Further extending the analysis of tumor purity, AI 
approaches are being used for the spatial and quantitative 
assessment of the tumor microenvironment (TME). Tumor 
cells constantly interact with other cells in their microen-
vironment, such as immune and stromal cells, and these 
interactions partly determine how tumors evolve, metasta-
size, or respond to therapies (57). Characterization of the 
TME is therefore important to investigate these mechanisms. 
Such characterization is especially important for understand-
ing tumor-immune cross-talk in the context of checkpoint 
immunotherapies. Saltz and colleagues demonstrated the 
feasibility of identifying and quantifying lymphocyte infil-
tration directly from H&E-stained histopathology slides 
acquired for 13 TCGA cancer types using a DNN with con-
volutional autoencoder, where the autoencoder learns a com-
pact representation of basic morphologic features (such as 
cell nuclei and lymphocytes) from the pathology slides and 
uses this to initialize the neural networks for training (58). 
The group trained two DNNs, one to classify tumor-infiltrat-
ing lymphocyte (TIL) status of each patch in a given image, 
and the other to identify regions of necrosis on the slide so 
as to reduce false positives. The patches were later aggregated 
and manually inspected by pathologists to refine the model 
outputs. The fraction of TIL-positive versus TIL-negative 
patches in a slide was then quantified. Using a subset of 
pathology-assessed lung tumors patches (LUAD) as gold 
standard, they reported an AUC of 0.95. In another work, 
Bejnordi and colleagues trained and tested a DNN (VGG-Net 
architecture) on histopathology images from breast biopsies 
of 882 patients to distinguish benign from malignant tissues 
and classify normal versus tumor-associated stroma with an 
accuracy of 92% (59). Recently, Fassler and colleagues lever-
aged histopathology images obtained from multiplex IHC of 
pancreatic cancer tissue and applied a DNN comprised of an 
autoencoder (ColorAE) together with a U-Net CNN (60). Cell 
segmentation and classification performance ranged from 
0.40 to 0.84 (expressed as F1 score, an alternative to AUC). 
In the future, multiplexed imaging platforms (such as Vectra 
PerkinElmer and imaging mass cytometry) capable of imag-
ing multiple aspects of the TME at rapidly increasing resolu-
tion will increasingly be used, together with deeper network 
architectures (such as GoogLeNet and Inception-V3) and 
more powerful graphics processing units. These technolo-
gies will allow researchers to study in detail complex cell–cell 
interactions within the TME.

Besides using histopathology slides to determine the com-
position of the TME, DNNs have also been used to decon-
volve bulk RNA-seq or microarray profiles into repertoires 
of resident or infiltrating cell types, based on data obtained 

from scRNA-seq profiles. These methods, which include 
Scanden and DigitalDLSorter (61, 62), are powerful but 
of limited use, because currently single-cell profiles from 
only a small subset of tissue types are publicly available. 
Nonetheless, these gaps are being addressed, from using 
higher-throughput solutions for scRNA-seq (such as 10× 
Chromium) to coordinating global initiatives such as The 
Human Cell Atlas that aim to comprehensively profile every 
cell type of the human body (63).

Studies that focus on improved quantifications of indi-
vidual cell types in the TME, especially the immune cells 
as described above, are gaining interest mainly due to the 
success of checkpoint immunotherapy in clinic. Indeed, the 
TME plays a major role in mounting an antitumor immune 
response, especially when immune cells are already primed 
by immunogenic tumor-associated neoantigens. Neoanti-
gens are mutated peptides that arise from tumor-specific 
mutational events (nonsynonymous mutations, truncating 
mutations, novel gene fusions, and alternate splicing) and 
are recognized as nonself by the patient’s immune system. 
Neoantigens are studied extensively for their role in driving 
exceptional response in patients treated with checkpoint 
immunotherapies and their potential use in adoptive T-cell 
therapy and personalized peptide vaccines (57). As standard 
practice, mutations detected from exome or genome sequenc-
ing are collected and translated in silico into correspond-
ing mutated peptides. Neoantigens are then inferred from 
these mutated peptides by predicting their binding affini-
ties to the patient’s MHC class I alleles. One of the earliest 
and state-of-the-art neoantigen prediction tools, NetMHC, is 
based on artificial neural networks. Among the other existing 
MHC–peptide binding prediction tools, the majority are still 
based on artificial neural networks (MHCflurry and EDGE), 
whereas some of the newer approaches have expanded to 
other models, such as random forests (ForestMHC), more 
advanced AI algorithms such as natural language processing 
(NLP; HLA-CNN), or CNN (ConvMHC and DeepSeqPan), 
sometimes directly trained from raw data in immunopre-
cipitation assays or mass spectrometry (MS; refs. 57, 64). 
As the trend for clinical use of neoantigens shifts toward a 
more personalized approach, for example with personalized 
peptide vaccines, Tran and colleagues developed a patient-
specific methodology where NLP models are trained on a 
patient’s wild-type immunopeptidome and then applied to 
the patient’s mutated immunopeptidome in order to predict 
de novo peptide sequences of likely neoantigens (65). The 
model needs broader validation because it was trained and 
tested on only five patients with melanoma. Nonetheless, the 
group presented a highly personalized and exciting approach 
to predict HLA-bound neoantigen sequences directly from 
a patient’s MS data without dependence on NGS for muta-
tions or MHC allele predictions. Whether these predicted 
neoantigens, from this and other methods above, are truly 
immunogenic still needs to be experimentally tested.

DISCOVERY OF THERAPEUTIC  
TARGETS AND DRUGS

Drug discovery and development is often associated with 
elevated costs and time burden. Affordable access to various 
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NGS and imaging technologies together with a growing 
availability of large cancer datasets (public or private) has 
led to an exploding interest in leveraging AI to make this 
process more efficient. This includes developing models 
that integrate diverse datasets to address each component 
in the drug discovery spectrum (Fig. 4). As an example, Tong 
and colleagues integrated clinical data with gene expression 
profiles and protein–protein interaction networks to derive 
features that could predict candidate drug targets in liver 
cancer using one-class support vector machine (AUC, 0.88; 
ref. 66). In a breast cancer–specific deep learning–based clas-
sification approach, López-Cortés and colleagues integrated 
numerous cancer databases such as PharmGKB, Cancer 
Genome Interpreter, and TCGA, among others, to predict 
proteins associated with breast cancer pathogenesis, and 

reported several viable candidates to pursue as biomarkers 
or drug targets (4, 67–70). The DepMap Consortium has 
made hundreds of loss-of-function screen datasets available 
to researchers that enable implementation of diverse AI 
strategies (71). For example, the ECLIPSE machine learning 
approach predicts cancer-specific drug targets based on the 
DepMap data by leveraging both gene-specific and cell line–
specific data (72). Similarly, Chen and colleagues examined 
a wide breadth of molecular features from DepMap data 
and found that proteomics data (specifically, reverse-phase 
protein array data) are highly predictive of cancer cell line 
dependencies (73). This finding underscores the versatil-
ity of AI to not only predict therapeutic targets, but also 
assess the type of experimental data most relevant to a  
predictive model.

Figure 4. Integrating datasets from multiple diverse sources, ranging from sequencing to structure to screening datasets, can increase the relevant 
feature space for AI models that enable end-to-end drug discovery.
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Drug Design
AI has also been applied to design drug structures in silico 

with desired physiochemical properties and target specifici-
ties. Traditional AI techniques have focused on binary classi-
fication and have difficulty modeling complicated objectives, 
such as generating new molecules in silico. Reinforcement 
learning, a growing subset of AI that is ideal for problems 
with complex objectives and allows for interactive feedback, 
has been heavily used within in silico molecule generation 
(74–76). Olivecrona and colleagues demonstrated how their 
recurrent neural network approach, tuned using policy-based 
reinforcement learning, was capable of generating analogues 
to celecoxib and compounds without the element sulfur (74). 
You and colleagues introduced a graph convolutional net-
work approach that used reinforcement learning to generate 
novel molecules, showing high accuracy when optimized for 
a specific property or when creating analogues with certain 
properties (76). The use of graph convolutional networks 
has especially affected and improved molecule generation 
because it can better model chemical molecules and does not 
require computational conversion of molecules to their two- 
dimensional representations. Besides, generative adversarial 
networks (GAN), a combination of two networks—the gen-
erator and the discriminator—to build a stronger genera-
tor model, has also been commonly applied for molecule 
generation tasks (77, 78). MolGAN, a method for generat-
ing molecules with specific properties, used both GAN and 
reinforcement learning architecture and achieved high 
performance for various properties, including drug likeli-
ness, synthesizability, and solubility (62%, 95%, and 89%, 
respectively; ref. 78). Although neural network–based mod-
els dominate this area of molecule generation, nonneural 
network–based models have been successful in the area of 
predicting drug properties (79–81). Gayvert and colleagues 
published a random forest model that used distinct preclini-
cal data types to predict drug toxicity and adverse events (79). 
Shen and colleagues trained a support vector machine model 
to predict various absorption, distribution, metabolism, and 
excretion properties of a drug and validated their approach 
by accurately predicting both the blood–brain barrier perme-
ability and the human intestinal absorption (81).

Drug Repurposing
Drug repurposing—finding new therapeutic use for an “old” 

drug beyond its existing medical indication—offers a speedy, 
safe, and economic alternative to conventional drug discovery. 
New initiatives such as Library of Integrated Network-Based 
Cellular Signatures (LINCS) have released rich transcriptional 
datasets (such as gene perturbation profiles) that can be lever-
aged by AI to accelerate drug repurposing efforts (82). LINCS 
datasets, along with others, have been used to identify repur-
posing candidates from drugs that can reverse the expression 
profiles of cancer-specific gene signatures (obtained by com-
paring expression of cancer cells with normal cells; refs. 83–
85). DNNs trained on drug-perturbed transcriptional profiles 
from LINCS have also been used to predict the therapeutic 
use category for drugs (e.g., vasodilator, antineoplastic) and to 
prioritize repurposing candidates by their chemical structural 
similarity with approved cancer drugs (86). In addition to 

transcription profiles, publicly available datasets obtained 
from cell viability assays (that measure the amount of meta-
bolically active cells after treatment with a specific molecule) 
have also been used to train AI models [Genomics of Drug 
Sensitivity in Cancer (GDSC), PRISM, NCI-60, etc.; refs. 87–
89]. CDRScan, an ensemble of five CNN-based models trained 
on cell viability datasets from GDSC and the COSMIC cell 
line project (CCLP), predicts which drug from the GDSC 
would be most effective for a patient based on their individual 
somatic mutation profile (90). Besides cancer-specific repur-
posing efforts, there are numerous other disease-agnostic 
approaches for drug repurposing that can be extended to can-
cer (91–93). DeepDR, a variational autoencoder-based DNN 
model, predicts novel drug–disease connections, based on 
known clinical annotations and chemical structures of drugs 
(92). Similarly, Gottlieb and colleagues created PREDICT, a 
computational pipeline, to predict novel indications for drugs 
based on integrating both drug and disease similarities (93). 
PREDICT identified numerous novel indications for known 
therapies, including the use of progesterone for a rare form 
of renal cell carcinoma, an association that has support in 
the literature. The identification of repurposing candidates 
is an active area of research in AI and by now has led to many 
promising models and repurposing predictions.

PATIENT PROGNOSIS AND  
RESPONSE TO THERAPY

The ability to prospectively identify patients best matched 
for a given therapy can help reduce risks of poor clinical out-
comes and also help reduce high costs of treatment, which 
can average up to $150,000 a year. This is especially relevant 
for checkpoint inhibitor immunotherapies, where favorable 
response rates are low overall (approximately 20%), but cer-
tain patients show exceptional, long-term clinical benefit. 
The use of AI in this area has been limited due to insufficient 
data availability but is now gradually expanding. Liu and col-
leagues reported a logistic regression–based classifier trained 
on treatment-naïve genomic and transcriptomic profiles and 
clinical features to predict resistance to PD-1 inhibitors in 
patients with advanced melanoma (AUC, 0.73–0.83; ref. 94). 
Litchfield and colleagues compiled the largest cohort thus 
far of matched genomic and transcriptomic profiles from 
published checkpoint inhibitor studies and used this dataset 
to train and test a XGBoost-based cancer-specific classifier 
for prediction of response to checkpoint immunotherapies 
(AUC, 0.66–0.86; ref. 95). Johannet and colleagues reported 
a more advanced AI approach using CNNs trained and 
tested on treatment-naïve histopathology slides together 
with patients’ clinical characteristics to predict responses to 
checkpoint immunotherapy in patients with advanced mela-
noma (AUC, 0.80; ref. 96).

Aside from immunotherapies, models that predict patient 
responses to other cancer treatments from omics or image 
data have also been widely reported. Sun and colleagues 
applied DNNs to features extracted from gene expression, 
copy-number alteration, and clinical profiles of patients 
with breast cancer (from METABRIC and TCGA) to predict 
patient prognosis after treatment with varied indications 
(AUC > 0.80; ref. 97). Similar omics-based approaches that 
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use DNN have been shown to predict patient survival from 
gene expression and pathway profiles in brain cancer and to 
predict patient survival from gene expression, miRNA expres-
sion, and methylation profiles in liver cancer (98, 99). Regard-
ing image-based models, Korfiatis and colleagues applied a 
DNN (ResNet architecture) model to preoperative MRI scans 
for brain tumors to predict the methylation status of the 
MGMT gene (which is an established biomarker for patient 
prognosis after surgery or therapy); the ResNet50 model 
showed good predictive performance in validation sets (F1 
score = 0.95–0.97; ref. 100). CNNs have also been applied to 
preoperative or pretreatment CT scans to predict disease-free 
survival in patients with lung cancer (101, 102). In another 
work, Mobadersany and colleagues trained a CNN with a 
final layer of Cox regression model to predict patient risk 
directly from histopathology slides in brain tumors (median 
c index = 0.75), and the performance of their model improved 
further after inclusion of genomic markers (isocitrate dehy-
drogenase mutation status and 1p/19q codeletion) in the 
CNNs (median c index = 0.801; ref. 103). Similarly, Bychkov 
and colleagues applied CNNs to predict survival from tis-
sue patch images of H&E-stained histopathology slides in 
patients with colorectal cancer who underwent surgery (HR, 
2.3 for predicted patient stratification; AUC, 0.69). Surpris-
ingly, the model performed better than the consensus assess-
ments provided by three human experts (HR, 1.67; AUC, 0.58; 
ref. 104). Skrede and colleagues applied CNNs (MobileNetV2 
architecture) to the H&E-stained WSI of resected tumors to 
directly predict patient prognosis in response to chemother-
apy and/or radiotherapy (or none) in early-stage colorectal 
cancer (AUC, 0.71); multivariate survival analysis between 
patient groups stratified based on the model’s predictions 
shows that the patients predicted to have a poor prognosis 
indeed had poor cancer-specific survival (adjusted HR, 3.04) 
compared with those with predicted good prognosis (105).

It is also important to identify early on if an ongoing ther-
apy is not effective for a patient, and if the clinician needs to 
switch or alter the course of treatment in time. In the clinical 
setting, cancer progression and response to therapy are moni-
tored by manually inspecting pathology or radiology images 
to quantify tumor shrinkage and to check for appearance of 
new lesions. This manual assessment can however be chal-
lenging especially for checkpoint inhibitor immunotherapies 
where patterns of disease progression can be atypical (106). 
To this end, Dercle and colleagues showed the possibility 
of using machine learning to train models on treatment-
specific features to predict response to distinct cancer treat-
ments (107). The group used an ensemble of six machine 
learning algorithms to predict patient sensitivity (defined as 
progression-free survival above the population median) to 
chemotherapy, targeted therapy, and immunotherapy, using 
quantitative features extracted from longitudinal CT scans 
of patients with non–small cell lung cancer (AUCs of 0.67, 
0.82, and 0.77 respectively; ref. 107). In another work, Choi 
and colleagues applied CNNs to predict response to neo-
adjuvant chemotherapy in patients with advanced breast 
cancer from PET/MRI scans of both treatment-naïve and 
chemotherapy-treated tumors; the predictive performance 
of their model (AUC, 0.60–0.98) was reportedly better than 
certain conventional methods of response prediction (such 

as the difference in standardized uptake volume quantified 
from the serial CT scans before and after treatment; ref. 108). 
In a more focused time series model, Xu and colleagues used 
CNN with recurrent neural networks applied to longitudinal 
CT scans of lung tumors to predict overall survival in patients 
after chemoradiation (AUC, 0.74; stratified patient HR, 6.16;  
ref. 109). In addition to monitoring patient responses to ther-
apies, machine learning models such as CURATE.AI now offer 
additional avenues to adjust drug dosage for single or combi-
nation therapies for individual patients in a dynamic manner 
using patient-specific data points collected over time (110).

PREDICTING DRUG EFFICACY AND SYNERGY
More broadly, machine learning algorithms have been 

applied to predict drug efficacy based on molecular features. 
This work has gained importance due to availability of large 
cancer drug efficacy datasets, obtained from experiments 
done in cell lines (87, 89, 111, 112). Although cell lines are 
imperfect models due to genetic drift or cross-contamination 
(113), they provide AI models with a large quantity of data 
to learn from. As with all datasets, preprocessing often needs 
to be performed to minimize potential noise, such as cell 
line authentication or validation of in vivo data (114). In 
one study, Iorio and colleagues measured the response of 
1,001 cancer cell lines to 265 different anticancer compounds 
(115). Based on those results, they built a series of Elastic Net 
models to translate genomic features such as mutations and 
gene expression values into drug efficacy (in the form of IC50 
values). The models were able to accurately predict efficacy. 
Owing to both their accuracy and interpretability, random 
forests are a commonly used method for drug response 
prediction and have been shown to improve overall accuracy 
compared with other machine learning approaches (116). 
Besides traditional machine learning, deep learning is also 
becoming a widely used choice for drug response prediction. 
Using data from TCGA and the Cancer Cell Line Encyclo-
pedia, Chiu and colleagues trained a set of three DNNs to 
predict drug response: one built to encode mutation informa-
tion, one built to encode expression information, and  a drug 
response predictor network integrating the first two DNNs 
(117). They found that this method was able to identify both 
known and novel drug–cancer pairings, and interestingly, 
they found that expression data contributed more to accurate 
predictions than mutation information. Also using a DNN, 
Sakellaropoulos and colleagues trained a model using GDSC 
cell lines and then applied it to various genomic datasets with 
clinical response data (118). Using predicted IC50 values, they 
split patients into high-sensitivity and low-sensitivity cohorts 
and found that their DNN was able to separate patients based 
on survival under certain treatment regimens.

One of the biggest drawbacks in using deep learning is 
that most methods suffer from a lack of interpretability 
into the underlying biological mechanisms that drive the 
prediction. To address this, Kuenzi and colleagues developed 
DrugCell, an interpretable deep learning model that uses a 
“visible neural network” (VNN) to ensure that the underly-
ing neural network hierarchy resembled known biological 
processes (119). They combined this VNN with an artificial 
neural network built to model a drug’s chemical structure 
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and found that this combination could correctly predict 
drug response (spearman ρ = 0.80 when comparing predicted 
efficacy vs. actual efficacy) while also providing insight into 
the underlying mechanisms of action-driving response. They 
also showed how this approach could be used to predict syn-
ergistic drug combinations and validated their predictions in 
patient-derived xenograft models with an AUC of 0.75.

Following on DrugCell, some approaches have sought to 
combine genomic data with other features to predict single-
drug or combination efficacy. Cortés-Ciriano and colleagues 
showed that by combining chemical information with bio-
logical information (genomics, transcriptomics, and prot-
eomics) on specific cell lines, they were able to predict efficacy 
for 17,000+ compounds across the 59 cell lines in the NCI-60 
dataset (116). Extending this analysis to drug combinations, 
a recent DREAM challenge crowdsourced different models 
to predict drug synergy in a subset of cancer cell types. With 
more than 80 distinct models submitted, they found that 
those that integrated genomic features with other informa-
tion (such as a chemical structure or known biological inter-
actions) tended to produce higher overall accuracies (120). 
Similarly, Gilvary and colleagues have also reported that, 
using a multitask suite of models that integrate genomic, tar-
get, chemical, and effect-based features, they can retain high 
predictive accuracy while also deconvoluting the mechanisms 
that may be contributing to the predicted synergy (121).

CURRENT CHALLENGES AND FUTURE 
PERSPECTIVES

AI has indisputable potential to enhance the care of 
patients with cancer and more broadly affect the field of 
cancer. In the laboratory setting, it has shown performance 
accuracies high enough to, in theory, transform conventional 
practices at almost all stages of cancer research and medicine 
(Fig. 3). After the tremendous success of AI at the bench, the 
question becomes whether, and then when, AI can become 
fully integrated in the clinic as a regular practice for doctors 
and patients with cancer.

AI runs on data; in the clinical setting, data that adequately 
capture the entire human population are key to developing 
robust AI models. It is becoming increasingly clear that differ-
ences in race and gender together with socioeconomic dispari-
ties affect disease risk and recurrence among individuals. In 
cancer, race-specific variations in occurrence and frequency of 
genomic aberrations have been reported (122). Work by Bhar-
gava and colleagues has in fact shown that race-specific differ-
ences exist even at the level of tissue morphology—and so do 
differences in disease aggressiveness—between Caucasian and 
African American men with prostate cancer (123). But existing 
datasets that are commonly used to train and test AI models 
in cancer are still inherently biased toward certain racial and 
ethnic groups. As an example, TCGA, the largest repository of 
varied cancer datasets, is predominantly composed of white 
individuals with European ancestry (122). Other biases exist 
within the commonly used large datasets. For example, the 
TCGA cohorts are mainly comprised of primary tumors with 
a very limited availability of metastatic tumors. Cell lines, 
which are the workhorses of preclinical drug development and 
frequently populate large genomic datasets, do not capture 

the real-world patient profiles accurately, as they are prone 
to issues such as genetic drifts (which is divergence in the 
genome due to multiple cell line passages). As patient-derived 
organoids become more readily available, cell line–based data-
sets will be complemented with experimental data obtained 
from these organoids, which are genetically more stable (124). 
Aside from data biases, there are also gaps between ease of 
data acquisition from various platforms versus ease of data 
access by external institutions for independent use, especially 
for private or controlled-access datasets. As clinical studies 
and associated datasets of the future continually evolve to 
become more inclusive, harmonized, and easily accessible, 
these data chasms that challenge robust clinical implementa-
tion of AI will also be bridged.

In addition to data sharing, code sharing for AI models is 
another aspect that would ensure that the models are trans-
parent and reproducible and are good candidates for clinical 
use. For most published studies, authors do validate their 
models on external datasets, but for their models to be truly 
translatable and clinically relevant, they should be indepen-
dently reproducible in the hands of others, just like any other 
credible scientific finding. This can be made possible by shar-
ing well-documented code for the model together with trans-
parent descriptions of the optimized hyperparameters and 
hardware specifications. But as Haibe-Kains and colleagues 
point out, despite multiple available options for code sharing 
(such as Github) with version-controlled virtual environments 
(such as Docker), sharing well-annotated code for complex 
models is still not universally adopted (125). Thankfully, most 
high-profile journals now require submission of code and 
detailed descriptions of reported methods, thus paving a path 
toward increased transparency and shared access.

It is also noteworthy that AI cancer models of today have 
a strong emphasis on image and omics data. But one of 
the richest data sources of patient health and clinical his-
tory is embedded in the electronic health records (EHR) of 
a patient and still remains hugely underutilized. Reasons 
for this include records being unstructured with high levels 
of noise, sparseness, and inconsistencies, requiring dedi-
cated curation and data cleaning. These challenges are being 
actively addressed by standards such as the Observational 
Medical Outcomes Partnership Common Data Model, which 
is focused on restructuring patient data into easy-to-use 
databases with standardized disease codes and harmonized 
vocabulary. This is further aided by user-friendly software 
that allows visualization of longitudinal patient data (e.g., 
PatientExploreR) and frameworks that facilitate mining of 
EHR to make clinically relevant predictions (126, 127).

From the clinical perspective, building clinicians’ trust in 
AI-assisted decision-making is also critical for the entry of AI 
in clinic. To this end, Begoli and colleagues recommend devel-
opment and adoption of systematic and pragmatic measures 
of uncertainty quantification in AI models (128). Uncertainty 
in a model may come from the choice of data, accuracy and 
completeness of data, inherent biases in the data, artifacts, 
and model misspecifications. Estimation of uncertainty in 
data-driven prediction models is an area of active research 
and in the future will provide a systematic framework for 
improving models and increasing confidence in AI-assisted 
clinical decision-making. Deep learning currently has the 
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reputation of being a “black box” but is in essence capturing 
complex correlations within data. Hence, additional research 
to increase model interpretability by understanding how deep 
learning models learn from given data, and what cellular and 
molecular mechanistic insights such models can provide, 
will also make the clinical use of AI models more agreeable 
to clinicians.

Thinking prospectively, prevention rather than treatment 
may end up being the most compelling application of AI to 
cancer care. Seminal research has already led the community 
to compile a portfolio of risk factors for cancer. Advances in 
technology have enabled various means of collecting data at 
an individual patient level. Aside from genetic tests and EHR, 
sensors from smartphones or other wearable devices also col-
lect vast amounts of data points just for a single patient. These 
data can empower AI to improve precision of diagnosis by 
sensing physiologic and environmental status. They may help 
facilitate highly personalized disease prevention and treatment 
plans for each patient. Such AI systems may help monitor 
patients with cancer remotely and alert clinicians if need be. 
In the future, AI models that integrate genetic predispositions 
and EHR, together with lifestyle and environmental factors, 
may be able to accurately assess cancer risk for a person nearly 
in real time and suggest personalized options for early inter-
vention and appropriate management of risk factors.
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