
Research Article
HTTP-Based APT Malware Infection Detection Using URL
Correlation Analysis

Wei-Na Niu ,1 Jiao Xie ,1 Xiao-Song Zhang ,1,2 Chong Wang ,1 Xin-Qiang Li ,1

Rui-Dong Chen ,1 and Xiao-Lei Liu 3

1School of Computer Science and Engineering, Institute for Cyber Security,
University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
2Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518040, China
3Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China

Correspondence should be addressed to Xiao-Lei Liu; liuxiaolei@caep.cn

Received 29 October 2020; Revised 19 February 2021; Accepted 14 March 2021; Published 7 April 2021

Academic Editor: Huaizhi Li

Copyright © 2021 Wei-Na Niu et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

APTmalware exploits HTTP to establish communication with a C & C server to hide their malicious activities.-us, HTTP-based
APTmalware infection can be discovered by analyzing HTTP traffic. Recent methods have been dependent on the extraction of
statistical features from HTTP traffic, which is suitable for machine learning. However, the features they extract from the limited
HTTP-based APT malware traffic dataset are too simple to detect APT malware with strong randomness insufficiently. In this
paper, we propose an innovative approach which could uncover APTmalware traffic related to data exfiltration and other suspect
APT activities by analyzing the header fields of HTTP traffic. We use the Referer field in the HTTP header to construct a web
request graph. -en, we optimize the web request graph by combining URL similarity and redirect reconstruction. We also use a
normal uncorrelated request filter to filter the remaining unrelated legitimate requests. We have evaluated the proposed method
using 1.48GB normal HTTP flow from clickminer and 280MB APTmalware HTTP flow from Stratosphere Lab, Contagiodump,
and pcapanalysis.-e experimental results have shown that the URL-correlation-based APTmalware traffic detectionmethod can
correctly detect 96.08% APTmalware traffic, and its recall rate is 98.87%. We have also conducted experiments to compare our
approach against Jiang’s method, MalHunter, and BotDet, and the experimental results have confirmed that our detection
approach has a better performance, the accuracy of which reached 96.08% and the F1 value increased by more than 5%.

1. Introduction

Advanced Persistent -reats (APT) are the utmost chal-
lenging attacks as attackers use sophisticated attacking op-
tions to launch persistent attacks on specific targets [1]. With
the assistance of APT malware, attackers could remotely
control compromised devices and steal high-value informa-
tion of government, military, and the financial industry.
Economic losses of an APT victimized organization amount
to millions of dollars [2]. And, the unfortunate thing is that
APT attacks are hard to be detected due to their strong
concealment, long periods of time, and customization for the
targeted organization. APT is generally divided into seven
stages: reconnaissance, weaponized deployment, load

delivery, exploitation, installation, command and control (C
& C), and action [3]. APT attackers’ intentions are to steal
sensitive information instead of causing damage. -erefore,
after the target network is compromised, attackers will install
APT malware such as a Trojan horse or backdoor on the
infected device to remotely control and steal confidential data
for a long period of time. For example, BITTER attack or-
ganization used spear-phishing and Microsoft Office-related
vulnerabilities to induce a victim to download a malicious
Trojan horse [4] to establish communication with C & C, and
downloaded various remote control plug-ins according to the
command returned by C & C, and then executed a series of
malicious actions, such as stealing sensitive data and con-
trolling botnets.

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6653386, 12 pages
https://doi.org/10.1155/2021/6653386

mailto:liuxiaolei@caep.cn
https://orcid.org/0000-0002-3235-3463
https://orcid.org/0000-0003-2857-3823
https://orcid.org/0000-0001-9886-1412
https://orcid.org/0000-0002-6462-1522
https://orcid.org/0000-0002-5141-3900
https://orcid.org/0000-0002-1970-5743
https://orcid.org/0000-0001-8510-4025
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6653386


To avoid detection, the most popular APT attackers
establish a connection between infected machines with
command and control servers through HTTP/HTTPS
protocols. It also has contributed to discovering parts of
malware traffic that do not rely on HTTPS protocol to build
a command and control channel through analyzing HTTP
traffic. -e rule-based detection method [5, 6] extracts
signature rules from a large amount of C & C traffic, and
then it generates templates based on these rules to filter
normal traffic which does not conform to characteristics of C
& C. Despite its promising results on APT malware detec-
tion, it cannot identify the normal traffic with similar
characteristics of C & C traffic. To solve this problem, su-
pervision-based detection method, which combines the
statistical characteristics of HTTP traffic and machine
learning, is sought [7]. It mainly trains a classifier based on a
large amount of labeled data. In order to decrease the cost of
labeling manually, unsupervised methods are proposed to
detect APTmalware infection, which cluster unlabeled traffic
and compare the similarity between suspicious traffic and
malicious traffic. However, this method requires a large
amount of data for cluster and similarity analysis, resulting
in a huge space overhead. To further enhance the perfor-
mance of detection, correlation-based approach [8] is used.
It analyzes the correlation and similarity of malware be-
haviour and uses different detection methods comprehen-
sively. With the development of malicious attack methods,
the concealment of malicious traffic increases, making it
increasingly difficult to distinguish normal and malicious
traffic, so correlation-based detection method needs
improvement.

In this paper, we propose an effective HTTP-based APT
malware infection using URL correlation. Different from
most existing correlation-based detection methods, we use
graph analysis to discover APT malware based on the dy-
namic correlation of normal traffic. -e user’s normal web
requests have a definite correlation, and the requests gen-
erated by APT malware will not be related to the current
user’s target behaviour. -us, we can build a web request
graph and then identify HTTP-based malware traffic based
on the correlation analysis among URLs. Our approach
includes three phases: the first phase is to build a web request
graph, which is established according to the Referer field in
the HTTP header; the second phase is to refine the web
request graph through redirection refactoring and URL
similarity; and the third step is to filter the remaining un-
related legitimate requests using a normal uncorrelated
request filter, which is trained with the user’s normal traffic.
-e remaining outliers in the request graph may be requests
initiated by the malware to establish a C & C channel
through HTTP protocol. We have conducted experiments
on datasets from clickminer [9], Stratosphere Lab [10],
Contagiodump [11], and pcapanalysis [12], which demon-
strate that our approach has a better performance than
Jiang’s method [5], MalHunter [13] and BotDet [14].

In summary, our contributions are as follows:

(1) We have proposed an approach to detect HTTP-
based APT malware infection based on graph

reasoning and used Hviz [15] to construct a web
request graph.

(2) Due to a small percentage of normal requests that do not
include a Referer field, we have proposed two methods,
namely, redirection refactoring and URL similarity to
add “missing” user-initiated requests into the web re-
quest graph and refine the web request graph.

(3) We have used Local Outlier Factor to build a filter,
which can filter 83.2% of normal uncorrelated
requests.

-e rest of this paper is structured as follows: Section 2
introduces the related work of malware C & C channel
detection, followed by Section 3, wherein the motivation of
using URL correlation analysis to detect APT malware is
sketched in detail. Section 4 illustrates our APT malware
infection detection based on URL correlation analysis in
detail. And, Section 5 presents twomethods to refine the web
request graph. Section 6 describes the experimental setup
and analyzes the experimental results. Discussion and
Conclusion sections are summarized in Section 7 and
Section 8, respectively.

2. Related Work

Detecting C & C channels is one of the most effective ways to
detect APT. Based on the different detection granularity and
the basic ideas behind C & C, detection methods are sub-
divided into rule-based detection, machine-learning-based
detection, and correlation-based detection [5].

2.1. Rule-Based C & C Detection. -e rule-based detection
method mainly proposes detection rules and generates rule
templates based on the differences between C & C traffic and
normal traffic, and then matches the rule of traffic to be
detected with the generated template to determine whether it
is malicious C & C traffic. Giroire et al. [16] found that C & C
traffic is persistent during access, and persistence is a
measure of temporal regularity. -us, they calculated the
“persistence” value of each target atom (the set of target
addresses) and considered that atoms with a high persistence
score but not on the whitelist were C & C targets. -erefore,
C & C traffic communication time is usually used to detect C
& C traffic. Sadhan et al. [17] extracted count-feature se-
quences from the network traffic and then evaluated their
periodograms to check for periodic behaviour. -ese two
methods cannot adequately detect variable C & C traffic
because they only use a single temporal feature rule to detect.
To solve this problem, some works use multiple signature
rules to filter non-C & C traffic, and then further analyze the
filtering results. Jiang et al. [5] proposed two heuristic rules
to filter normal traffic that behaved significantly different
from C & C traffic. In order to further improve the detection
accuracy, they performed spatial anomaly detection based
on spatial characteristics and payload anomaly detection
based on statistical characteristics of malicious payloads for
the remaining suspicious traffic.

2 Security and Communication Networks



In order to improve the detection speed, the method of
extracting traffic characteristics and rules to generate tem-
plates and using template matching for C & C traffic de-
tection has appeared. Zarras et al. [18] proposed a botnet
detection system, BOTHOUND, which combined HTTP
header field chains and HTTP header message templates to
identify botnet traffic accurately. Nelms et al. [19] developed
ExecScent, which generated a control protocol template
(CPT) based on known malicious C & C traffic and matched
the measured traffic with the template for similarity. -e
traffic exceeding the detection threshold would be regarded
as C & C traffic.

Due to changes in the network environment and botnet
code, not all C & C traffic strictly follows rules and templates.
In addition, it is difficult for rule-based detection methods to
distinguish normal traffic similar to C & C traffic correctly.
In contrast, our method concentrated on the dynamic
correlation between normal HTTP traffic without specific
rules and used a customized filter to filter normal traffic
similar to C & C traffic.

2.2.Machine-Learning-BasedC&CDetection. -emachine-
learning-based detection method extracts features from
network traffic, combines machine learning algorithms for
model training, and finally uses the trainedmodel to detect C
& C traffic. For example, Tegeler et al. [20] presented
BotFinder system, which extracted five statistical features
from different bot families’ C & C traffic and then trained the
model using clustering. BotFinder compared the statistical
features of the new trace with the trained model’s clusters to
detect malware. Bilge et al. [21] developed Disclosure to
identify C & C servers by extracting flow-size-based features,
client access pattern-based features, temporal features, and
using a trained detection model based on labeled training
samples. To handle encrypted network communication
protocols, Zhao et al. [22] came up with a botnet traffic
detection approach without depending on the packet pay-
load.-ey used flow interval behaviour features and decision
tree algorithm to discover botnet activity. Mizuno et al. [23]
developed a malware-infected device detection system,
BotDetector. BotDetector generated a feature template based
on the extracted HTTP header fields and adopted classifi-
cation algorithms to train the detection models.-is method
only needs to save the HTTP header field, which reduces the
amount of information to be kept. Instead of extracting
statistical features, this method automatically generates
template features based on HTTP headers. -us, it achieved
a high accuracy of classification. In order to mimic the le-
gitimate HTTP communication and hide C & C activities,
Sakib et al. [24] proposed an HTTP-based botnet C & C
traffic detection method using HTTP request URL field and
DNS response packet fields that included two stages. -e
first stage applied three different anomaly detection methods
independently in an unsupervised manner to isolate the
software-agent-generated HTTP packets from the browser-
generated HTTP packets. -e second stage used one
anomaly detection method to isolate the botnet C & C
domain from the legitimate web domains. To reduce the

impact on the detection performance when the C & C server
is temporarily offline or changes its response content, Li et al.
[13] developed the MalHunter system. MalHunter used a
trained classifier to detect malware based on behaviour-
related statistical characteristics from HTTP requests. It also
used L2 regularization for preventing binary classification
model training from overfitting to some degree. Guo et al.
[25] applied pronunciation and TLD features into machine
learning to improve the accuracy of malicious traffic de-
tection and used statistical methods to reduce the false-
positive rate.

Machine-learning-based detection method requires
large amounts of labeled dataset for feature engineering and
model training. However, our method does not need to use
labeled malicious C & C data to train the model.-e filter we
use only needs to be trained for normal benign traffic. We
focused on the correlation between reference URLs and
requested URLs from HTTP traffic to overcome the lack of
large-scale labeled APT malicious datasets.

2.3.Correlation-BasedC&CDetection. Based on the spatial-
temporal correlation and similarity of traffic, the correlation-
based detection method uses correlation algorithms to
perform correlation analysis on network behaviour to detect
C & C traffic. BotSniffer [26] was based on their proposed
anomaly detection algorithm and performed a group
analysis of spatial-temporal correlation and similarity to
detect the botnet. Similarly, BotMiner [27] clustered similar
communication activities and malicious activities in dif-
ferent planes, and then performed cross-cluster correlation
to identify the infected hosts. However, BotSniffer [26]
cannot effectively discover C & C activities without cen-
tralized servers. In recent years, the correlation-based de-
tection method has improved the accuracy of C & C
detection by using the results of multiple detectionmodels to
perform correlation detection on suspected C&C traffic. For
example, Ghafir et al. [14] used four detection methods to
detect C & C attack events, and then used a C & C attack
correlation alert framework to perform correlation analysis
on C & C attack events to improve the detection accuracy.

-e correlation of these methods mainly analyzes the
correlation or similarity of malicious traffic characteristics or
attack behaviours, or comprehensively considers the results
of different detection methods. Unlike these correlation-
based detection methods, the correlation of our proposed
approach refers to the dynamic association between HTTP
request traffic. -is association can be represented by the
relevant URLs of the web request graph without massive
quantities of the dataset. In addition, the dynamic associ-
ation of normal traffic is difficult to extract, making it dif-
ficult for attackers to disguise malicious traffic as normal
traffic in our detection method.

3. Motivation and HTTP Request Classification

3.1. Motivation. When a user is browsing the Internet, each
web pagemay include hundreds of embedded objects such as
images, videos, or JavaScript code, which results in a lot of

Security and Communication Networks 3



HTTP requests to ask the server for resource. Usually, the
initial HTTP request is sent to ask for HTML code, and the
corresponding HTTP response message type is the text/
html. -en, the browser needs to load JavaScript, CSS, font
files, and images referenced by the requested pages based on
the HTML code. When the browser is loading the requested
page based on the HTML code, users may further trigger the
download of other files or AJAX requests, which generates a
lot of HTTP requests. -us, the order of HTTP requests
about a web page is related to the user’s browsing behaviour
and the web page composition. Furthermore, HTTP request
packet stores the order of HTTP request, where Host field in
Header and Request-URI field in Request line are combined
to represent the currently requested page. Referer field in
Header represents its previous page. -erefore, the request
relationship of each page accessed by the browser can be
represented by a Web request graph based on the Referer
field.

For example, Figure 1 illustrates the process of con-
structing a web request graph, where a node represents the
requested URL; a directed edge indicates the sequence be-
tween two URLs. -e page of Chinadaily includes two
pictures. In the process of loading the page of Chinadaily,
two HTTP requests about these two pictures whose Referer
field is the URL of Chinadaily are sent to server. In this case,
we add two directed edges from the URL of Chinadaily to
URLs of these two pictures in the graph.When a user clicks a
link to Page1, the Referer field of the HTTP request for Page1
is the URL of Chinadaily. -en, a directed edge from the
URL of Chinadaily to the URL of Page1 is added into the
graph. According to HTTP requests issued by Page1, we can
add other directed edges into the graph.

In addition to users’ legitimate HTTP requests, there are
HTTP requests initiated by HTTP-based APT malware to
establish communication with the C & C server. Many
malicious HTTP requests hide in a lot of users’ legitimate
HTTP requests to avoid being found by network inspectors.
In this work, we found that HTTP requests initiated by
HTTP-based APTmalware do not contain Referer fields and
are not related to users’ web browsing behaviour. In other
words, HTTP request of APT malware C & C are inde-
pendent of the web request graph. -erefore, in the process
of constructing a normal web request graph, URLs requested
by malware cannot be added into the web request graph and
become isolated nodes. According to the above character-
istics between normal HTTP requests and malicious HTTP
requests of HTTP-based APTmalware, we propose to use a
web request graph based on URL correlation to detect
HTTP-based APT malware traffic.

3.2. HTTP Request Classification. In the detection process,
many HTTP requests need to be processed. In order to
further improve the detection efficiency, we classify and filter
HTTP requests generated in the monitored network envi-
ronment. In this section, we divide HTTP requests into the
following four types according to how they are generated.

(1) User-Initiated Requests. User-initiated requests are
triggered by the behaviours of the user browsing the

Internet, including typing an URL into the browser
address bar, clicking on a link, browsing a bookmark,
or submitting a web form, etc. -e Referer field of
these requests usually is empty.

(2) Webpage-Contained Requests. Webpage-containing
requests are mainly JavaScript, CSS, font files, and
images referenced during the page loading process,
as well as file downloads and AJAX requests auto-
matically triggered by the browser during the user
browsing process but not triggered by the user di-
rectly. -ese requests usually include a Referer field
that identifies their source URL.

(3) Normal Uncorrelated Requests. Normal uncorrelated
requests refer to benign users’ web requests which
lack Referer field. It is generated by redirection or
some legitimate software or normal services running
on the user device, etc. Without the Referer field, this
type of HTTP requests cannot be added into the web
request graph directly. Fortunately, normal uncor-
related HTTP requests are related to user normal
browsing, and we can add them into the graph or
filter them according to rules.

(4) Malicious Requests. Malicious requests are generated
when APT Malware communicates with C & C
servers. -ese HTTP requests are unrelated to the
above three HTTP requests. -ey do not contain
Referer fields and thus cannot be added into the web
request graph. -erefore, malicious requests remain
uncorrelated HTTP requests.

4. APT Malware Infection Detection Based on
URL Correlation Analysis

In this section, we present an overview of the proposed
approach for using web request graph based on URL
correlation to detect HTTP-based APTmalware, as shown
in Figure 2. It is mainly divided into four parts: (1)
pre-processing, (2) constructing a web request graph, (3)
refining the web request graph, and (4) normal uncor-
related requests filtering.

4.1. Preprocessing. -e preprocessing stage mainly extracts
the relevant URL from HTTP request traffic to facilitate the
subsequent construction of the web request graph. We use
mitmproxy [28] to capture HTTP traffic from the monitored
network and divide them according to users’ IP address.
-en we extract the Referer field, Host field, and Request-
URI field fromHTTP request packet and combine Host field
and Request-URI field as the request URL. Reference URL
from Referer field and request URL are used to construct the
web request graph in the next section. HTTP response traffic
is used to refine the constructed web request graph in the
subsequent section.

4.2.ConstructingWebRequestGraph. Referring to Hviz [15],
we construct a different web request graph according to
different users’ IP address. In a web request graph, a node

4 Security and Communication Networks



which is represented by URL corresponds to an HTTP
request and its response. If an HTTP request has a valid
Referer field, we add a directed edge from the node cor-
responding to the reference URL to the node corresponding
to the requested URL. For example, if the Referer field of
request j is the URL of request i, two nodes i and j can be
connected using a directed edge (i, j). In other words, the
request j is issued by the request of i. For most HTTP re-
quests, we can extract directed edges with their valid Referer
fields and requested URLs. Generally, there is no Referer
field in user-initiated requests, and these HTTP requests are
the initial nodes of a web request graph.

4.3. Refining theWeb Request Graph. Unfortunately, a small
percentage of normal requests do not include a Referer field,
for example, directly entering the URL address of a resource
in the address bar of the browser, visiting the website
through the bookmark maintained by the browser, clicking

the link in the external application, etc. -erefore, the web
request graph constructed based on the Referer field of
HTTP requests is incomplete. To refine the constructed web
request graph, we proposed to add normal uncorrelated
requests into the graph. -is section mainly introduces how
to add normal uncorrelated requests to the web request
graph based on Referer field. According to the generation of
normal uncorrelated requests, we come up with two
methods to refine the web request graph, namely, redirection
refactoring and URL similarity.

4.3.1. Refining the Web Request Graph by Redirection
Refactoring. If a user-initiated request is redirected, the
Location field of its response will give the redirection ad-
dress.-e browser will automatically jump to the redirection
address and send an HTTP request to the redirection ad-
dress. -e subsequent HTTP requests are correlated to the
HTTP request of the redirection address. Unfortunately, the

Figure 1: A web request graph based on URL correlation.

Security and Communication Networks 5



Referer field of the HTTP request of the redirection ad-
dress is empty, which means that there is no HTTP request
connected to the user-initiated request. -us, the user-
initiated request will become an uncorrelated request.
Due to the lack of some user-initiated requests in the web
request graph, the accuracy of HTTP-based APTmalware
detection will be reduced. In the dataset we used, the
proportion of redirects was 9.37%. In order to solve the
problem, we introduce redirection refactoring to refine
the web request graph according to the characteristics of
redirection, and add these “missing” user-initiated re-
quests into the web request graph. We will represent the
redirection refactoring in detail in part 1 of Section 5.

4.3.2. Refining the Web Request Graph by URL Similarity.
In this work, we found that normal HTTP requests with
valid Referer fields are only 80% in addition to HTTP re-
quests whose response is redirection. In other words, after
redirection refactoring, there are still many normal un-
correlated requests. And, we also found that URLs of normal
uncorrelated requests have similarity with other URLs of
normal request from the same server. To increase the ac-
curacy of detection, URL similarity is used to add normal
uncorrelated requests to the web request graph. -e URL
similarity focuses on the word-level similarity between
URLs. URLs are divided into single word based on the
segmentation symbol of URLs and the number of words is
counted. -en, we compare the similarity between URLs of
normal uncorrelated requests and each URL of the web
request graph one by one, and add normal uncorrelated
requests into the web request graph. We will introduce URL
similarity in detail in part 2 of Section 5.

4.4. Normal Uncorrelated Request Filtering. In addition to
users’ normal web browsing, there are many legitimate
services and legitimate software in the user’s device using

HTTP protocol to communicate. -ere are some HTTP
requests issued by legitimate software and services. At the
same time, these requests cannot be associated with the Web
request graph and become isolated nodes. If we do not deal
with these requests, they will be misidentified as malicious
requests in subsequent detection. To deal with normal re-
quests generated by legitimate services and software, we use
machine learning to construct a normal request filter to filter
these requests. We use the features referred to the feature
selection of the existing machine learning methods shown in
Table 1 as input for machine learning, such as TLD, User
Agent.We count all the top-level domains in the dataset, and
then calculate the probability of each top-level domain
appearing in the normal domain name and the malware
domain name, and use the ratio of the two probabilities to
predict whether the domain name to be tested is a normal
domain name. To use the HTTP correctly, the malware
needs to create the HTTP header in which the User-Agent
field should be filled. A user-agent field in every HTTP
request can have one of the following forms: Legitimate
user’s browser, Empty, Specific, Spoofed, or Discrepant. So,
we extract the user-agent field as a feature.

Since the filter is only used to filter normal traffic, we use
labeled normal request traffic for training. -e selection of
machine learning is shown in Section 6.3.

5. Refining the Web Request Graph

5.1.RedirectionRefactoring. Redirection refers to redirecting
a network request to a new URL which is different from the
originally requested URL. After receiving a redirection re-
quest, the web server will send its response with a new URL
to the user. -e client will automatically send a new HTTP
request whose URL is the new URL to the server. In general,
we can detect whether the HTTP request URL is redirected
according to the Status-Code of the HTTP response header.
If the value of Status-Code in the HTTP response header

Normal uncorrelated
request filter

HTTP traffic

Refining the web request graph

Constructing web
request graph

Redirection
refactoring

URL similarity

Web request
graph

Uncorrelated request

Normal request

Malicious request

Preprocessing

Filtering

www
www

www

Figure 2: -e overview of HTTP-based APT malware traffic detection based on URL correlation.

6 Security and Communication Networks



equals to 301, 302, 303, or 307, it indicates that a redirect has
occurred. In addition to setting the status code to redirec-
tion, other types of redirection include HTML-based redi-
rection and JavaScript-based redirection. -ese kinds of
redirections are mainly implemented using 〈meta〉 element
and the window.location attribute of the HTML page with a
Status-Code of 200. According to the characteristics of page
redirection, we replay an HTTP response packet with a
Status-Code of 200 to obtain its HTML page. -en, we
inspect the hmetai element and the window.location attri-
bute of the HTML page to determine whether the HTTP
request was redirected and obtain the redirected URL. -e
redirection-based web request graph reconstruction process
is shown below.

For example, when one user accesses page B from page
A, and if page B is redirected to page C, there is an HTTP
response with the address of page B. After the client receives
the HTTP response, the client will be sent a new HTTP
request to visit page C. Actual redirection edges of the above
situation are A⟶ B, A⟶ C, and subsequent requests are
connected to node C in the web request graph, as shown in
Figure 3(a). To refine the web request graph, our proposed
method will reconstruct these direction edges as
A⟶ B⟶ C, which is shown in Figure 3(c). -e HTTP
request of page C occurs after that of page B, thus we delete
the directed edge from node A to node C and add the di-
rected edge from node B to node C, as shown in Figure 3(b).
If a user directly requests page B, the Referer field of his or
her HTTP request is empty. Because it is redirected to page
C, subsequent HTTP requests are connected to page C, then
the HTTP request for page B becomes an outlier in the web
request graph. However, the http request for page B is a
normal uncorrelated request, as shown in Figure 4(a). In
order to improve the detection accuracy, we restructure the
web request graph: adding the HTTP request of page B to the
web request graph, that is, letting node B connect to node C,
as shown in Figure 4(b).-e reconstructed result is shown in
Figure 4(c).

5.2.URL Similarity. URL is a uniform resource locator, which
can indicate the location of resources in the server. Different
URLs that request resources with the same scope or the same
type of resources on the same server may have similarities.
Some URLs of normal uncorrelated requests similar to the web

request graph, share the same parent URL. Based on the above
characteristics, we can calculate the similarity between the URL
of uncorrelated requests and URLs of the web request graph,
and add these normal uncorrelated requests to the web request
graph based on URL similarity. -ere are several calculation
methods, like string similarity, space vector similarity, string
edit distance, and clustering-based method. Considering the
principles and applicability, we choose a similarity calculation
method for domain name characteristics. -e URL similarity
calculation process is as follows:

According to the characteristics of the URL, using “.” and
“/” to divide the resource access level, we propose to hierar-
chically divide each URL into a set of elements. Each URL is
divided into two parts based on the Host and Request-URI
fields.-e host field is split by “.,” while the Request-URI field is
split by “/,” and these split elements make up a collection of
URL elements. After splitting the URLs that access the same
server, it is found that these URLs have the same elements.
-erefore, we proposed to count the number of elements of
URLs, and calculate the ratio between the number of same
elements and the maximum number of two URLs. -erefore,
we came up with the following equation. Counting the number
of elements in a URL collection and using the following
equation, we get the similarity value of two URLs.

α �
c(A, B)

max(β(A), β(B))
. (1)

In this equation, c(A, B) is the number of elements in
common of request URLsA and B. β(A), β(B) is the number
of elements of request URLs A and URL B, respectively.
max(β(A), β(B)) refers to the maximum between β(A) and
β(B). For example, there are request URL A (http://www.
example.com/test/123.html) and request URL B (example.
com/test/abc.html), and the common elements between
URL A and B are example, com, and test, which means that
c(A, B) � 3. Due to β(A) � 5, β(B) � 4, max(β(A), β(B)) � 5,
the similarity rate α of request URLs A and B is 0.6.

We consider the similarity calculation between an un-
related request URL and all URLs in the web request graph as
a URL similarity calculation process. After the similarity
calculation process of an unrelated request ends, the max-
imum similarity value is extracted. If the maximum simi-
larity value is greater than the similarity threshold v, the URL
of an unrelated request finds its similar peer URL in the web
request graph. -is uncorrelated request URL shares the
same parent URL as its similar sibling URLs in the web
request graph. Its parent URL is then connected to the URL
of this unrelated request. URLs of unrelated requests can be
successfully added to the web request graph in this way.

6. Experiment and Evaluation

-is section mainly introduces the evaluation criteria,
datasets, and experimental results analysis.

6.1. Evaluation Criteria. -is work will use accuracy, recall,
and F1-score to comprehensively evaluate the detection
effect.

Table 1: Feature set for normal uncorrelated request filter.

Feature Description
URL length Number of characters of the URL
URL entropy -e information entropy of the URL
Number of URL
parameters Number of parameters of the URL

TLD -e top-level domain of the URL

Domain entropy -e information entropy of the
domain

Content type Content type of the HTTP request

Cookie Does the HTTP request contain
cookies?

User agent User agent of the HTTP request

Security and Communication Networks 7

http://www.example.com/test/123.html
http://www.example.com/test/123.html
http://example.com/test/abc.html
http://example.com/test/abc.html


6.1.1. True Positive (TP). TP represents the number of
normal HTTP requests, which is predicted as normal, that is,
the number of normal HTTP requests that constitute a web
request graph.

6.1.2. True Negative (TN). TN represents the number of
malicious HTTP requests, which is predicted as malicious,
that is, the number of malicious HTTP requests.

6.1.3. False Positive (FP). FP represents the number of
malicious HTTP requests, which is predicted as normal, that
is, the number of malicious HTTP requests that constitute a
web request graph.

6.1.4. False Negative (FN). FN represents the number of
normal HTTP requests, which is predicted as malicious, that
is, the number of remaining normal uncorrelated HTTP
requests.

6.1.5. Accuracy. Accuracy is the ratio of the number of
correctly detected HTTP requests to the number of HTTP
requests to be detected. -e higher the accuracy, the better
the detection. Accuracy calculation is as follows:

accuracy �
TP + TN

TP + TN + FP + FN
. (2)

6.1.6. Recall. Recall is a measure of coverage. Recall is the
ratio of correctly detected normal HTTP requests to the
number of actual normal HTTP requests. -e higher the
recall rate, the better the detection. Recall rate is calculated as
follows:

recall �
TP

TP + FN
. (3)

6.1.7. F1-Score. -e definition of F1-score is based on
precision and recall. -e higher the F1-score, the better the
detection. F1-score is calculated as follows:

precision �
TP

TP + FP
, (4)

F1 − score �
2∗precision∗recall
precision + recall

. (5)

6.2. Dataset. -e experimental dataset used in this work
includes the normal traffic dataset and malicious traffic
dataset. We used a normal dataset from clickminer [9],
which contains 24 traces. -ese traces were collected from a
user study with 21 participants from the University of
Georgia. All participants were assigned a browsing time slot
of about 20 minutes, during which they visited a large variety
of sites. -e total size of the dataset is 1.48GB, with more
than 70,000 HTTP requests. -e http request generated by
the software is consistent with that generated by the browser,
so the dataset can be used to represent the traffic generated
by the software and the browser. Among the normal traffic
dataset, we use 1GB traffic to train a normal uncorrelated
request filter, and the rest is used to evaluate our experi-
ments. -e other part of the dataset is the malicious dataset.
-e malicious traffic datasets were derived from APT
malware collected by Stratosphere Lab [10], Contagiodump
[11], and Pcapanalysis [12]. In addition, the size of the
malicious traffic dataset we used is 280MB with over 10,000
HTTP requests.

6.3. Selecting Parameters. Before implementing the experi-
ments, we need to choose a suitable machine learning al-
gorithm to build a normal request filter. Since only normal
request traffic is used to train, malicious traffic is an outlier
for the normal request filter. Based on such characteristics,
we use the anomaly detection algorithm to train a normal
uncorrelated request filter, including One Class SVM, Iso-
lation Forest, and Local outlier Factor. -e training data are
mainly constructed by normal uncorrelated request traffic,
which is the remaining request traffic of clickminer after
constructing the web request graph. -e experimental re-
sults are shown in Table 2. In our experiment, when the
Local Outlier Factor is selected and set n_neighbors� 7, the
normal uncorrected filter performs better and its accuracy
reaches 92.91%.

Request B

Request A
Request A Request A

Request C Request C Request C

Request B Request B

 

Add edge

(a) (b) (c)

Delect edge

Figure 3: Redirection refactor of normal redirection.

8 Security and Communication Networks



6.4. Experiment Results and Analysis. After splitting the
URLs that access the same server, it is found that these URLs
have the same elements. We found that when the URL
similarity threshold ] is 0.5, the detection effect is better.
Since most URLs have the same top-level domain name
(.com, .edu, etc.) or server name (such as www), if the
threshold selected is too small, many unrelated URL nodes
will be added into the web request graph. If the threshold is
chosen too large, the most legitimate unrelated URL nodes
cannot be added into the request graph.

We mixed the collected dataset and then performed
experiments in a computing environment with 3.6GHz Intel
Core i5 and 8GB of RAM.

As shown in Table 3 and Figure 5, using the proposed
method in this paper, the number of normal uncorrelated
requests was significantly reduced, and the accuracy of
detection increased. After extracting the web request graph
from HTTP traffic, there were still 6.02% normal uncorre-
lated requests. By refining the web request graph, the normal
uncorrelated requests were reduced by 13.62% and the
accuracy was 91.75%. After filtering the normal uncorrelated
requests, the normal uncorrelated requests were reduced by
83.20%, and the accuracy of detecting APT malware traffic
was 96.08%. Clearly, refining the web request graph and
normal uncorrelated request filtering effectively reduced the
normal uncorrelated requests and effectively improved the
effect of APT malware traffic detection. However, in the
process of refining the web request graph, the malicious
requests were reduced by 1.84%. We analyzed this situation
in detail and found that a small part of malicious requests
were added into the web request graph due to URL simi-
larity. -e main reason is that the malicious dataset contains
some legitimate traffic, but it was wrongly labeled as
malicious.

6.5. Comparative Experimental Results Analysis. We com-
pared our proposed detection method with three types of
detection methods, which are Jiang’s [5] method of rule-
based detection, MalHunter [13] of machine-learning-based
detection, and BotDet of correlation-based detection. Jiang’
method mainly used two heuristic rules to filter most non-C
& C traffic, and then used two anomaly detection models to
filter normal traffic, which is similar to C & C traffic.
MalHunter focused on header features of malware traffic.
MalHunter extracted URL features, HTTP header features,
and HTTP header sequence features, and then adopted
XGBoost to detect malware traffic. BotDet proposed a C & C
correlation alert framework, which correlated four method
detection results, making C & C traffic detection more
accurate.

As for the reference [8], similar with our work, they use
click detection, whitelist filtering, and links to complete the
picture. However, click detection has limitations. Because it
depends on the training data, the accuracy of the model will
decrease in a real network environment and lead to a de-
crease in the effect of graph reconstruction. At the same
time, whitelist filtering has a certain lag. However, we train
normal benign data by using machine learning in the last
step. -ese data do not depend on a specific dataset and will
perform better in the actual network environment.

-e results of the comparison experiments were shown
in Figure 6. Our proposed method had the best detection
effect, the accuracy of which reached 96.08% and the recall
reached 98.87%. While BotDet had poorer detection effect,
its accuracy was 87.14% and recall was 85.71%. As shown in
Figure 7, these four APTmalware traffic detection methods
have good performance based on the roc curve. However,
the area enclosed by our proposed method was larger than
the others. -ese experimental results showed that our

Add
edge

Request B Request B Request B

Request C Request C Request C

Subsequent

request

Subsequent
request Subsequent

request

(a) (b) (c)

Figure 4: Redirection refactor of user directly request.

Table 2: Result of different machine learning.

Machine learning Accuracy (%) Recall (%) F1-score (%)
One class SVM 90.49 91.69 93.87
Isolation forest 89.81 92.87 93.50
Local outlier factor 92.91 95.31 95.48

Table 3: Change of uncorrelated requests during experiment.

Experiment step Normal (%) Malicious (%)
Construct web request graphs 6.02 19.84
Refine web request graphs 5.20 19.47
Normal uncorrelated request filter 0.87 19.01

Security and Communication Networks 9



proposed method was superior to APT malware detection
methods of compared experiments.

7. Discussion

Our proposed method also has some limitations. Our main
goal was to detect HTTP communications generated by
malware whose Referer field is empty. -is is because the
malware mainly conducts C & C communication with the
server, so most of the HTTP traffic Referers generated by the
APTmalware is empty and become an isolated node in the
request graph. If malware forges the Referer field, it will have

a certain impact on our method. For example, some mali-
cious software fakes the Referer field as a known site, and
may mistakenly judge it as a benign node during the cor-
relation detection process. In our follow-up work, we will
continue to solve the problems caused by forged Referer
fields. At the same time, the proposed method also has
certain detection capabilities for botnets. -is is because

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91
Construct web
request graphs

Refine web
request graphs

Whitelist
filtering

�
e r

at
e o

f d
et

ec
tio

n

Accuracy
Recall
F1-score

Figure 5: Change of the detection rate during experiment.

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Accuracy Recall F1-score

0.9608

0.9167

0.9499

0.8717

0.9887

0.9106 0.9058
0.9171

0.8823

0.8571

0.975

0.95

Proposed method
Jiang’s method

MalHunter
BotDet

Figure 6: Comparison of our method with three types of detection
method.

1.0

0.8

0.6

0.2

0.0

0.4Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 1.00.80.6
False positive rate

Proposed method
Jiang’s method

MalHunter
BotDet

Figure 7: -e roc of our method and three types of detection
methods.

10 Security and Communication Networks



when the botnet uses HTTP C & C communication, it will
also become an isolated node in the request graph and be
detected. For example, Chen et al. [29] proposed that mobile
botnets use cloud services to achieve robustness and con-
cealment, but their push services use bi-direction commu-
nication channels to transmit information, and theymay still
be detected. As for the detection of network secret channels,
our method is not applicable. -is is because the detection
method of the converted channel mainly focuses on the
content and behaviour of the data packet. For example, Luo
et al. [30, 31] proposed a combined method to encode the
message into a data packet and the time or content of the
request message. Later, they further proposed a method of
using time-series channels to transmit hidden information.
Our method mainly focuses on the correlation analysis of
HTTP requests. -e detection of secret channels is a
behavioural detection that pays more attention to packet
transmission. -is will be the direction we will focus on in
the next work plan.

8. Conclusion

When HTTP-based APT malware performs C & C com-
munication, it will generate HTTP traffic that is unrelated to
the normal HTTP traffic of users’ normal Internet browsing.
Based on this observation, this paper proposed a method of
detecting HTTP-based APT malware-infected traffic using
URL correlation. First, we referred to Hviz to construct a
web request graph according to URL correlation. -en, we
used the redirection refactoring and URL similarity to refine
the web request graph. Finally, we used a normal uncor-
related request filter to increase the detection accuracy. After
these three steps were completed, the remaining uncorre-
lated requests were marked as malicious traffic. -is paper
used public datasets from clickminer, Stratosphere Lab,
Contagiodump, and pcapanalysis to evaluate the proposed
method. -e accuracy of detecting HTTP-based APT mal-
ware traffic was 96.08%. -e experimental results have
shown that the proposed method can effectively detect APT
malware traffic. And, the proposed method does not need to
rely on the knowledge of previous attacks, and it is more
advantageous for detecting small-scale datasets generated by
HTTP-based APT malware.

Data Availability

-e malicious traffic datasets were derived from APT
malware collected by Stratosphere Lab [10], Contagiodump
[11], and Pcapanalysis [12]. In addition, the size of the
malicious traffic dataset we used is 280MB with over 10,000
HTTP requests.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was partially supported by the National Key
Research and Development Program of China (Grant no.

2016QY13Z2302), the National Natural Science Foundation
of China (Grant no. 61902262), the National Defense In-
novation Special Zone Program of Science and Technology
(Grant no. JG2019055), the Director of Computer Appli-
cation Research Institute Foundation (Grant no.
SJ2020A08), and China Academy of Engineering Physics
Innovation and Development Fund Cultivation Project
(Grant no. PY20210160).

References

[1] M. J. Kim, S. Dey, and S.-W. Lee, “Ontology-driven security
requirements recommendation for apt attack,” in Proceedings
of the 2019 IEEE 27th International Requirements Engineering
ConferenceWorkshops (REW), pp. 150–156, IEEE, Jeju, Korea,
September 2019.

[2] A. Zimba, H. Chen, Z. Wang, and M. Chishimba, “Modeling
and detection of the multi-stages of advanced persistent
threats attacks based on semi-supervised learning and com-
plex networks characteristics,” Future Generation Computer
Systems, vol. 106, pp. 501–517, 2020.

[3] 2019, https://www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.htmls Lockheedmartin.

[4] C. C. San and M. M. Su-win, “Selecting prominent api calls
and labeling malicious samples for effective malware family
classification,” International Journal of Computer Science and
Information Security (IJCSIS), vol. 17, no. 5, 2019.

[5] J. Jiang, Q. Yin, Z. Shi, M. Li, and B. Lv, “A new C &C channel
detection framework using heuristic rule and transfer
learning,” in Proceedings of the 2019 IEEE 38th International
Performance Computing and Communications Conference
(IPCCC), pp. 1–9, IEEE, London, UK, October 2019.

[6] R. Zhang, Y. Huo, J. Liu, and F. Weng, “Constructing apt
attack scenarios based on intrusion kill chain and fuzzy
clustering,” Security and Communication Networks, vol. 2017,
Article ID 7536381, 2017.

[7] J. Gardiner and S. Nagaraja, “On the security of machine
learning in malware C & C detection,” ACM Computing
Surveys, vol. 49, no. 3, pp. 1–39, 2016.

[8] P. Lamprakis, R. Dargenio, D. Gugelmann, V. Lenders,
M. Happe, and L. Vanbever, “Unsupervised detection of apt C
&C channels using web request graphs,” in Proceedings of the
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 366–387,
Springer, Bonn, Germany, July 2017.

[9] C. Neasbitt, R. Perdisci, Li Kang, and N. Terry, “Clickminer:
towards forensic reconstruction of user-browser interactions
from network traces,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 1244–1255, ACM, Scottsdale, AZ, USA, November 2014.

[10] Czech Republic, “Stratosphere Lab,” 2013, https://www.
stratosphereips.org/.

[11] Milaparkour, “Contagio malware dump,” 2019, http://
contagiodump.blogspot.com.

[12] “Pcap analysis.com,” 2019, http://www.pcapanalysis.com.
[13] Ke Li, R. Chen, L. Gu, C. Liu, and J. Yin, “A method based on

statistical characteristics for detection malware requests in
network traffic,” in Proceedings of the 2018 IEEE Cird In-
ternational Conference on Data Science in Cyberspace (DSC),
pp. 527–532, IEEE, Guangzhou, China, June 2018.

[14] I. Ghafir, V. Prenosil, M. Hammoudeh et al., “Botdet: a system
for real time botnet command and control traffic detection,”
IEEE Access, vol. 6, pp. 38947–38958, 2018.

Security and Communication Networks 11

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.htmls
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.htmls
https://www.stratosphereips.org/
https://www.stratosphereips.org/
http://contagiodump.blogspot.com
http://contagiodump.blogspot.com
http://www.pcapanalysis.com


[15] D. Gugelmann, F. Gasser, B. Ager, and V. Lenders, “Hviz: http
(s) traffic aggregation and visualization for network foren-
sics,” Digital Investigation, vol. 12, pp. S1–S11, 2015.

[16] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and
D. Papagiannaki, “Exploiting temporal persistence to detect
covert botnet channels,” in Proceedings of the International
Workshop on Recent Advances in Intrusion Detection,
pp. 326–345, Springer, Saint-Malo, France, September 2009.

[17] B. AsSadhan, M. F. José, D. Lapsley, C. Jones, and
W. T. Strayer, “Detecting botnets using command and control
traffic,” in Proceedings of the 2009 Eighth IEEE International
Symposium on Network Computing and Applications,
pp. 156–162, IEEE, Cambridge, MA, USA, July 2009.

[18] A. Zarras, A. Papadogiannakis, R. Gawlik, and T. Holz,
“Automated generation of models for fast and precise de-
tection of http-based malware,” in Proceedings of the 2014
Twelfth Annual International Conference on Privacy, Security
and Trust, pp. 249–256, IEEE, Toronto, Canada, July 2014.

[19] N. Terry, R. Perdisci, and M. Ahamad, “Execscent: mining for
new c&c domains in live networks with adaptive control
protocol templates,” in Proceedings of the Presented as Part of
the 22nd {USENIX} Security Symposium ({USENIX} Security
13), pp. 589–604, Washington, DC, USA, August 2013.

[20] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: finding
bots in network traffic without deep packet inspection,” in
Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, pp. 349–360,
ACM, Florham Park, NJ, USA, September 2012.

[21] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: detecting botnet command and control servers
through large-scale netflow analysis,” in Proceedings of the
28th Annual Computer Security Applications Conference,
pp. 129–138, ACM, Orlando, FL, USA, December 2012.

[22] D. Zhao, I. Traore, B. Sayed et al., “Botnet detection based on
traffic behavior analysis and flow intervals,” Computers &
Security, vol. 39, pp. 2–16, 2013.

[23] S.Mizuno,M.Hatada, T.Mori, and S. Goto, “Botdetector: a robust
and scalable approach toward detectingmalware-infected devices,”
in Proceedings of the 2017 IEEE International Conference on
Communications (ICC), pp. 1–7, IEEE, Paris, France, May 2017.

[24] M. N. Sakib and C.-T. Huang, “Using anomaly detection
based techniques to detect http-based botnet C & C traffic,” in
Proceedings of the 2016 IEEE International Conference on
Communications (ICC), pp. 1–6, IEEE, Kuala Lumpur,
Malaysia, May 2016.

[25] Z. Guo, P. Jin, J. Fu, Y. Cheng, and C. Chen, “Botnet detection
method based on artificial intelligence,” in Proceedings of the
2019 IEEE Fourth International Conference on Data Science in
Cyberspace (DSC), pp. 487–494, IEEE, Hangzhou, China, June
2019.

[26] G. Gu, J. Zhang, and W. Lee, “Botsniffer: detecting botnet
command and control channels in network traffic,” in Pro-
ceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, September 2008.

[27] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: clustering
analysis of network traffic for protocol-and structure-independent
botnet detection,” in Proceedings of the 17th USENIX Security
Symposium, San Jose, CA, USA, August 2008.

[28] “Maximilianhils cortesi. mitmproxy,” 2018, https://
mitmproxy.org.

[29] W. Chen, X. Luo, C. Yin, B. Xiao, M. H. Au, and Y. Tang,
“CloudBot: advanced mobile botnets using ubiquitous cloud
technologies,” Pervasive and Mobile Computing, vol. 41,
pp. 270–285, 2017.

[30] X. Luo, E. W. W. Chan, P. Zhou, and R. K. C. Chang, “Robust
network covert communications based on TCP and enu-
merative combinatorics,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 6, pp. 890–902, 2012.

[31] X. Luo, P. Zhou, E. W. W. Chan, R. K. C. Chang, and W. Lee,
“A combinatorial approach to network covert communica-
tions with applications in Web leaks,” in Proceedings of the
2011 IEEE/IFIP 41st International Conference on Dependable
Systems & Networks (DSN), pp. 474–485, Hong Kong, China,
June 2011.

12 Security and Communication Networks

https://mitmproxy.org
https://mitmproxy.org

