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1  Introduction
The Internet of Things (IoT) is developing rapidly in theory and application. With the 
development of narrow band Internet of Things (NB-IoT) and the accelerating popular-
ity of 5G, the cost of connecting devices to IoT has been reduced, which greatly pro-
motes its development. As a result, more and more devices are connected to the Internet 
of Things in various fields, from smart terminals to industrial facilities. Devices con-
nected to the Internet of Things continue to generate and transmit large amounts of 
information. But the availability of wireless communication links to attackers means that 
data on the Internet of Things are vulnerable to various types of attacks, such as data 
eavesdropping and data tampering. Therefore, it is not safe to transmit information in 
plaintext form on the Internet of Things. Cryptography is the most widely used method 
to ensure the security of data transmission and sharing in the network. Encrypted data 
transmission on the Internet of Things has become the key to secure communication 
between devices. RSA public key cryptography has been well researched and widely used 
since the introduction of Rivest, Shamir and Adleman in 1975. The system relies on Inte-
ger Decomposition Problem (IFP), which typically uses a 1024-bit or more key. In 1976, 
Hellman proposed a public key exchange algorithm based on the Discrete Logarithm 
Problem (DLP) [1]. In 1986, Miller [2], Koblitz [3] independently proposed the Elliptic 
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Curve Cryptography (ECC). ECC is a kind of encryption technology based on DLP. It 
uses elliptic curve in finite domain to generate finite Abel group to implement public key 
cryptographic primitives. Unlike the RSA algorithm, which relies on the sub-exponential 
time algorithm to solve the integer decomposition problem, the best algorithm for solv-
ing the basic mathematical problems of ECC involves the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP). This leads to the infeasibility of solving the ECDLP algorithm, 
which increases rapidly with the size of the problem and is much higher than integer 
factorization and discrete logarithm problem. Therefore, ECC requires only smaller keys 
than public key cryptography (such as RSA and ElGamal), while providing the same level 
of security. For example, an ECC that provides the same level of security as RSA with 
a 1024-bit key size requires only 160 keys. Due to the high security of per key length, 
ECC is widely used for mobile devices and IoT. However, ECC operations are still very 
complex and costly for devices with poor computing power, limited energy reserves and 
intensive data transmission in IoT. This poses a challenge for the long-term stable func-
tion and real-time data transmission of IoT devices. Therefore, we need to improve the 
operation of ECC to make it lighter, thereby increasing the efficiency of cryptography 
and reducing costs.

The operation of the ECC works on a multiplication group over a finite field. The sca-
lar multiplication of an elliptic curve is an operation that adds a point P on the curve k 
times.

where P is a point on an elliptic curve and k is a large positive integer. In any primitive 
implementations of ECC, scalar multiplication is the main computing operation. The 
key factor to improve the efficiency of ECC is how to realize fast scalar multiplication. 
Therefore, many researchers have proposed various studies on accelerated scalar mul-
tiplication. Morain et al. [4] proposed the non-adjacent form (NAF), which is a signed 
form of representation. This form ensures that at least one of any two adjacent terms 
is zero. Solinas et al. proposed the Joint Sparse Form (JSF) based on NAF [5]. JSF is the 
best signed binary representation of a pair of integers, which can generate more dou-
ble-zero bits than NAF. Koblitz [6] and Solinas [7], respectively, proposed an anomalous 
binary curve on which Frobenius mapping can be used, and an effective scalar represen-
tation on that curve—reduced τ-adic non-adjacent form (RTNAF). The squaring on an 
anomalous binary curve is implemented by a displacement, which can be performed in a 
very short time. Under the RTNAF representation, the scalar multiplication τP is quickly 
obtained by squaring on the x and y coordinates of the point P . Cohen proposed a more 
efficient hybrid addition operation by combining projective coordinates and affine coor-
dinates into mixed coordinates [8]. The introduction of Jacobian coordinates elimi-
nates expensive inversion operation in scalar multiplication under affine coordinates. In 
recent years, the method of expressing a large integer k by double base and multi-base 
has attracted widespread attention. Dimitrov [9] first proposed the Double-Base Num-
ber System (DBNS) and applied it to speed up scalar multiplication, which effectively 
reduces the number of point additions in scalar multiplication, by taking advantage of 
the sparseness and the ternary nature of DBNS. But there are some repetitive compu-
tations in DBNS. In order to solve this problem, Dimitrov [10] proposed Double-Base 

Q = kP = P + P + · · · + P, k times
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Chain (DBC) on the basis of DBNS. DBC performs computations in a nested form, so 
that the results of each part of the computation will be reused, reducing the occurrence 
of repeated computations. Mishra extended DBNS to Multi-Base Number Representa-
tion (MBNR), breaking the limitation that only two bases can be used to represent sca-
lars, so as to bring higher redundancy in the representation of scalars [11]. But MBNS 
has some repetitive computations like DBNS.

In this paper, we propose an efficient formula for fast computation of the sevenfold of 
elliptic curve points over the binary fields, which can be used in DBNS and MBNR to com-
pute the scalar multiplication of elliptic curves. This formula uses division polynomial and 
multiplexing of intermediate values in affine coordinates to increase the speed of com-
puting the sevenfold point by more than 14%. We also proposed a scalar multiplication 
algorithm based on the Step Multi-Base Representation (SMBR). This algorithm uses the 
sevenfold point formula we proposed and replaces the traditional point doubling with the 
faster point halving. Experimental results show that our scalar multiplication algorithm is 
more efficient in affine coordinates over binary fields and contributes to reducing the cost 
of cryptography for devices in the IoT.

The organization of this paper is as follows. In Sect. 2, we briefly introduce the basics 
of elliptic curves, point halving, double-base chain and multi-base representations. In 
Sect.  3, we give an efficient formula for computing the sevenfold point of an elliptic 
curve over binary fields and provide proof of the formula and analysis of the compu-
tational cost. In Sect. 4, we propose a scalar multiplication algorithm based on SMBR 
and give the method of scalar k conversion to SMBR and the detailed steps of the scalar 
multiplication algorithm. In Sect. 5, we show experimental results, compare and analyze 
our algorithm with other research and demonstrate that our method is more efficient. 
Finally, in Sect. 6, we draw our conclusions.

2 � Related work
In this section, we will review the concepts and research status of ECC, point halving, 
double-base chains and step multi-base representation.

2.1 � Elliptic curve cryptography (ECC)

Definition 1  (Elliptic curve cryptography) An elliptic curve E over a finite field GF  field 
K  can be defined by the Weierstrass equation

where a1, a2, a3, a4, a6 ∈ K  , and �  = 0,where � is the discriminant of E.

In practice, adjusting the variables within the admissible range can greatly simplify the 
Weierstrass Eq. (1).

Over prime fields,K = FP , if the characteristic of K  is not equal to 2 and 3, then Eq. (1) 
can be simplified to

where a, b ∈ Fp , � = 4a3 + 27b2 �= 0.

(1)E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x + a6

(2)y2 = x3 + ax + b
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Over binary fields, K = F2m , the elliptic curve E is called the non-supersingular curve, 
and Eq. (1) can be rewritten as

where a, b ∈ F2m,� = b �= 0.
The set E(K ) of rational points and the infinity point O defined on an elliptic curve E over 

a field K  form an abelian group under the operation (usually denoted by addition) defined 
by the law of chord and tangent. If the points on an elliptic curve E are represented in affine 
coordinates, such as P = (x, y) and Q = (u, v) , then both the point addition ( P + Q ) and 
point doubling (2P) require an expensive field inverse operation. We use [i],[s] and [m] to 
represent the computational cost of one inversion I , one squaring S and one multiplica-
tion M , respectively. In order to facilitate the gauging of the computational cost of inver-
sions, the [i]/[m] ratio is defined according to the ratio of the cost between one inversion 
and one multiplication. It is generally assumed that 3 ≤ [i]/[m] ≤ 10 for the binary fields 
[12], and [i]/[m] ≥ 30 for the prime fields [13]. In addition, squaring is the least expensive 
of the three main operations. Over binary fields, squaring is a linear operation with negligi-
ble computational cost, and it is generally assumed that [s] ≤ 0.1[m] [12]. Over prime fields, 
[s] = 0.8[m] is generally assumed, but in order to prevent side-channel attacks (SCA) from 
using side-channel atomicity [14], the same multiplier needs to be used to perform squar-
ings and multiplications, then [s] = [m].

2.2 � Point halving

The point halving independently proposed by Knuden [15] and Schroeppel [16] is a reverse 
operation of point doubling. Assume that P = (x, y) and Q = (u, v) are two points defined 
on the elliptic curve E Over binary field and expressed in affine coordinates, satisfying 
Q = 2P . If we know the affine coordinates of the point P , the coordinates of point Q can be 
obtained by point doubling using the following equation:

Point halving is the completely opposite operation. When Q = (u, v) is known, find 
P = (x, y) so that Q = 2P , denoted as P = 1

2Q . First, we need to solve �2 + � = u+ a 
according to Eq. (5) to get � , then solve x2 = v + u(�+ 1) from Eq. (6) to get x and finally 
calculate y = �x + x2 based on Eq. (4) to get y . The logic of the point halving is shown in 
Algorithm  1. The detailed analysis of the solving process and the calculation complexity 
about point halving are shown in [13].

(3)y2 + xy = x3 + ax2 + b

(4)� = x + y/x

(5)u = �
2 + �+ a

(6)v = x2 + u(�+ 1)
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Point halving is less expensive to compute than point doubling, and the advantage 
is more evident when the point P is unknown in advance and the [i]/[m]-ratio is small 
[13]. If the doubling required in the usual double-and-add operations is all replaced 
by point halving, the calculation speed can be accelerated by 50% [16].

2.3 � Double‑base chain (DBC)

The Double-Base Number System (DBNS) was originally proposed by Dimitrov [9] as 
a scheme for the representation of positive integers, where each positive integer k can 
be expressed as the sum or difference of a number of 2-integers (the product of the 
powers of two relatively prime positive integers). For example, the positive integer k 
represented by the application of {2,3}-integers (the sub-formats are 2b3t ) are

In [9], Dimitrov described the attributes of DBNS and proved that DBNS have a 
high degree of redundancy. Obviously, there are no unique forms of DBNS represen-
tation of an integer. For example, there are 5 different DBNS representations of 10, 72 
representations of 50 and 402 representations of 100, where only positive sums ( si = 1

,i ∈ [1,m] ) are considered. The number of representations grows rapidly as the integer 
k increase.

Subsequently, Dimitrov [10] developed the Double-Base Chain (DBC) and speci-
fied that a DBNS can only be transformed into a DBC if the exponent of the base in 
the DBNS is a decreasing sequence, that is k =

∑m
i=1 si2

bi3ti and satisfies si ∈ {−1, 1}

,b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0.

(7)k =

m
∑

i=1

si2
bi3ti , with si ∈ {−1, 1} and bi, ti ≥ 0
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Definition 2  (Double-base chain (DBC)) Given a positive integer k > 0 , a sequence 
(Cn)n>0 of positive integers, if it satisfies:

for some u, v ≥ 0 , such that ∃m > 0 satisfies Cm = k , the sequence Cm is called a double-
base chain of k , and m is the length of this double-base chain. The length of the double 
base chain is equal to the number of 2b3t subitems in DBNS.

Double base chain make all calculated values reusable by restricting the sequence 
(bi) and (ti) in DBNS to decrease monotonically (i.e.,b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 , 
t1 ≥ t2 ≥ · · · ≥ tm ≥ 0 ) and by applying recursive calculations. The double-base chain 
representations are highly redundant and can dramatically reduce the Hamming 
weights in scalar expansion. Algorithm  2 gives the process for transforming a large 
integer k into DBNS that conform to exponential constraints.

←−

In Algorithm  2, the maximum exponential limit on the base x is generally set to 
logx(k) , i.e., bmax < log2(k) ≤ n , tmax < log3(k) ≤ 0.65n , where n is the binary bit 
size of the positive integer k . With a positive integer of 160-bit size, for example, 
bmax = 160 and tmax = 103 can be specified.

(8)C1 = 1,Cn+1 = 2u3vCn + s, with si ∈ {−1, 1}
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The ternary/binary method for fast computation of ECC scalar multiplication pro-
posed by Ciet [17] was subsequently applied to double-base chain to decrease the num-
ber of inversions and the execution time by efficient point doubling ( 2P ), point tripling 
( 3P ) and point quadrupling ( 4P).

2.4 � Step multi‑base representation (SMBR)

In [11], Mishra extends the Double-Base Number System to Multi-Base Number Repre-
sentation. Given a large positive integer k and a set B = {b1, b2, . . . , bl} of small positive 
integers, if there exists an expression for k which is the sum of the products of the pow-
ers of the elements in base B , i.e.,k =

∑m
j=1 (sj

∏l
i=1 b

eij
i ),with sj ∈ {−1, 1} and eij ≥ 0 , 

then the above equation is called the multi-base number representation of the integer k 
using base B . The integer m is the length of the MBNR and |B| denotes the number of ele-
ments in the set of B. If |B| = 2 , the MBNR is simplified to a DBNS. DBNS already has a 
high degree of redundancy and a short expression. MBNR has a higher redundancy and 
shorter expressions than DBNS.

Definition 3  (Step multi-base representation) A step multi-base representation based 
on the set B = {b1, b2, . . . , bl} is

where ∀j ∈ {1, 2, . . . , l} , the sequence (ej) is monotonously decreasing, then it is called 
the step multi-base representation of the integer k.

SMBR can be seen as a generalized extension of the DBC. If |B| = 2 , the SMBR is sim-
plified to a DBC. Same as the DBC, all intermediate calculated values can be reused 
in SMBR. Thus, SMBR has a higher redundancy and can further reduce the Hamming 
weights in scalar expansion. As the efficient formula for point quintupling was proposed 
in [11], the SMBR based on B = {2, 3, 5} , i.e., k =

∑m
i=1 si2

bi3ti5qi , is widely used and 
studied [18, 22]. In the scalar multiplication algorithm, the selection of the base of SMBR 
will determine the computational performance of the algorithm. Replacing the existing 
base with a more efficient multiple-point formulas can further increase the redundancy 
of the expression and reduce the computational cost of scalar multiplication algorithm. 
Therefore, in Chapter 3, we proposed an efficient septuple formulas, and in Sect. 4, we 
proposed a scalar multiplication algorithm based on the SMBR with B = {1

/

2, 3, 7}.

3 � Septuple formula design
In this section, we give an efficient septuple formula for elliptic curve points over binary 
fields, a proof of the formula and an efficiency analysis.

3.1 � Point septupling in elliptic curves over binary fields

In order to reduce inversions in multipoint operations, it is common practice in research 
work to convert points to other coordinate systems (e.g., the Jacobi coordinates). How-
ever, over binary fields, where the [i]/[m]-ratio is small, generally 3 ≤ [i]/[m] ≤ 10 , the 
elliptic curve group arithmetic in affine coordinates already has excellent performance. 

(9)k =

m
∑

i=1

sib
e1i
1 b

e2i
2 . . . b

eli
l with si ∈ {−1, 1}
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Therefore, we propose a new point septupling formula in affine coordinates. Let 
P = (x, y) be a known point on an elliptic curve shown in Eq.  (3) over a binary field. 
Assume that the sevenfold point of P is expressed as 7P = (u, v) . Then, we can obtain u 
and v by the following formula:

Let us define a set of polynomials as follows: Then,

3.2 � Proof of septuple formula over binary fields

For non-supersingular curves over the binary fields, K = F2m , there are division polyno-
mials as follow:

The higher degree division polynomials can be deduced from the following recursive 
relations:

Applying these recursive relations, by sequentially assigning n = 2 in Eq. (11), n = 3 in 
Eq. (12), n = 3 in Eq. (11) and n = 4 in Eq. (12), we can obtain:

A = x4 + x3 + a

B = x(A+ x3)

C = A3 + x4B

D = A(B2 + C)

E = A6 + x4B(A3 + B2)

F = B(A2D + C2)

(10)







u = x + xD
�

xF
E2

�

v = y+ u+

�

xF
E2

��

CF
E + (x2 + y)D

�

ψ1 = 1

ψ2 = x

ψ3 = x4 + x3 + a

ψ4 = x6 + ax2 = x2(x4 + a)

(11)ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1

(12)ψ2ψ2n = ψn+2ψnψ
2
n−1 − ψn−2ψnψ

2
n+1

ψ5 = ψ4ψ
3
2 − ψ1ψ

3
3

ψ6 =

(

ψ5ψ3ψ
2
2 − ψ1ψ3ψ

2
4

)/

ψ2
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Depending on the polynomials ψ1ψ2ψ3ψ4 and the recurrence relation (11), (12), for 
any point P = (x, y) on a non-supersingular curve, the n-fold of this point can be derived 
from the formula:

where,

and

Assuming that the affine coordinates of 7P is (u, v) , we can calculate directly from 
Eq. (14):

However, calculating (u, v) directly using the Formulae above is not the most suitable 
method. In the process of calculating ψ1ψ2 . . . ψ8 and (u, v) , many intermediate values 
are generated. The calculation can be accelerated by transforming the formula forms 
and multiplexing the intermediate values. We define polynomials: A = x4 + x3 + a , 
B = x(A+ x3),C = A3 + x4B , D = A(B2 + C) , E = A6 + x4B(A3 + B2) and 
F = B(A2D + C2) , then the transformed forms of formulae ψ1ψ2 . . . ψ8 and (u, v) are as 
follows:

ψ7 = ψ5ψ
3
3 − ψ2ψ

3
4

ψ8 =

(

ψ6ψ4ψ
2
3 − ψ2ψ4ψ

2
5

)/

ψ2

(13)[n]P =

(

x +
ψn+1ψn−1

ψ2
n

, y+ ψ2on+
ψ2
n+1ψn−2

ψ2ψ3
n

+ h4
ψn+1ψn−1

ψ2ψ2
n

)

ψ2on = x +
ψn+1ψn−1

ψ2
n

h4 =

(

x2 + y
)

u = x +
ψ8ψ6

ψ2
7

v = y+ ψ2on+
ψ2
8ψ5

ψ2ψ
3
7

+ h4
ψ8ψ6

ψ2ψ
2
7

= y+ u+
ψ2
8ψ5

ψ2ψ
3
7

+

(

x2 + y
)

(

ψ8ψ6

ψ2ψ
2
7

)

ψ1 = 1

ψ2 = x

ψ3 = x4 + x3 + a = A

ψ4 = x6 + ax2 = x2(x4 + a) = x2(A+ x3) = x
[

x(A+ x3)
]

= xB
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Substituting these values into formula (13) and then transforming, we can get septuple 
formula (10). The specific transformation process is as follows:

3.3 � Cost of septuple formula over binary fields

Given a point P = (x, y) on a non-supersingular curve (Eq.  3), let us check the sub-
expressions and costs required to compute 7P by applying Eq. (10) without any pre-com-
putation. Table 1 lists the sub-expressions, intermediate values and costs for computing 
7P . Next, we analyze the efficiency of the septuple formula. Table  2 lists the costs of 
various field operations over binary fields. A number of methods for computing 7P 
have been proposed in previous research. In [19], the authors proposed several septu-
ple formulae over prime fields, one with 15[s] + 14[m] costs in Jacobian coordinates, 
and the other with 9[s] + 13[m] costs in Jquartic coordinates. In [20], the author uses 

ψ5 = ψ4ψ
3
2 − ψ1ψ

3
3 = x4B+ A3 = C

ψ6 =

(

ψ5ψ3ψ
2
2 − ψ1ψ3ψ

2
4

)/

ψ2 =

(

x2AC − x2AB2
)/

x = x
[

A(B2 + C)
]

= xD

ψ7 = ψ5ψ
3
3 − ψ2ψ

3
4 = A3C − x4B3 = A6 + x4B(A3 + B2) = E

ψ8 =

(

ψ6ψ4ψ
2
3 − ψ2ψ4ψ

2
5

)/

ψ2 =

(

x2A2BD + x2BC2
)/

x = x
[

B(A2D + C2)

]

= xF

u = x +
ψ8ψ6

ψ2
7

= x +
x2DF

E2
= x + xD

(

xF

E2

)

v = y+ ψ2on+
ψ2

8
ψ5

ψ2ψ
3
7

+ h4
ψ8ψ6

ψ2ψ
2
7

= y+ u+
xCF2

E3
+

(

x2 + y
)

(

xDF

E2

)

= y+ u+

(

xF

E2

)[

CF

E
+ (x2 + y)D

]

Table 1  Cost of septuple formula for elliptic curves over binary fields

Sub-expression Intermediate value Cost

A x2, x3, x4 2[s]+ 1[m]

B 1[m]

C A2, A3, x4B 1[s]+ 2[m]

D B2, A(B2 + C) 1[s]+ 1[m]

E A6, x4B(A3 + B2) 1[s]+ 1[m]

F C2, A2D 1[s]+ 2[m]

1
E

1[i]

xF
E2

1

E2
, xF 1[s]+ 2[m]

u xD, xD
(

xF
E2

)

2[m]

v CF , CF
E
, (x2 + y)D,

(

xF
E2

)[

CF
E
+ (x2 + y)D

]

4[m]

Total:1[i]+ 7[s]+ 16[m]
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the expensive sevenfold point operation over binary fields, which requires three inver-
sion, and the total computational cost is as high as 3[i] + 7[s] + 18[m] . Later, in [21], the 
authors proposed two fast methods for point septupling over binary fields with compu-
tational costs of 2[i] + 7[s] + 14[m] (method 1) and 1[i] + 6[s] + 20[m] (method 2), and 
the break-even ratio between the two methods is [i]/[m] = 6.

The costs of septuple formula we proposed is 1[i] + 7[s] + 16[m] . Compared with the 
method in [20], the formula proposed in this paper reduces two inversion and two mul-
tiplication, resulting in a speed up of 33% at the ratio of [i]/[m] = 4 and 43% at the ratio 
of [i]/[m] = 8 , with more speed up at higher [i]/[m]-ratio. Compared with the method 
2 in [21], our formula reduces four multiplication and adds one squaring (the cost of 
squaring can be ignored over binary fields), and the speed is increased by 17% at the 
ratio of [i]/[m] = 4 and by 14% at the ratio of [i]/[m]= 8 , which is more significant when 
the [i]/[m]-ratio is smaller. Compared with the method 1 in [21], our formula reduces 
one inversion and adds two multiplication. The break-even ratio between our formula 
and method 1 in [21] is [i]/[m] = 2 . Our formula is faster when [i]/[m] > 2 , with up 
to 17% faster at the ratio of [i]/[m] = 4 and 20% faster at the ratio of [i]/[m] = 8 . Over 
binary fields, the [i]/[m]-ratio is generally not less than 3 and is commonly assumed to 
be [i]/[m] = 8 . Therefore, the septuple formula we proposed is more efficient than the 
methods in [20, 21].

4 � Methods
In order to improve the computation speed of elliptic curve scalar multiplication, we 
modify the MBNR based on B = {2, 3, 5} proposed in [11] and propose a SMBR based 
on B = {1

/

2, 3, 7} , denoted k =
∑m

i=1 si(
1
2 )

bi3ti7qi . We retain the original point tripling, 
replace the point doubling and quadrupling with faster point halving, replace the point 
quintupling with the point septupling we proposed in Sect. 3 and restrict the exponen-
tial sequences (bi)(ti)(qi) of 1/2, 3 and 5 to decreasing monotonically, respectively. The 
modified SMBR is defined as follows.

Definition 4  ({1
/

2, 3, 7}-step multi-base representation) A multi-base number repre-
sentation based on the set of B = {1

/

2, 3, 7}.

(14)k =

m
∑

i=1

si

(

1

2

)bi

3ti7qi , with si ∈ {−1, 1}

Table 2  Costs of various field operations for elliptic curves over binary fields in affine coordinates

Operation Propose Cost Operation Propose Cost

P + Q 1[i] + 1[s] + 2[m] 4P + Q [17] 2[i] + 6[s] + 10[m]

2P 1[i] + 1[s] + 2[m] 4P + Q [10] 3[i] + 3[s] + 5[m]

2P + Q [17] 1[i] + 2[s] + 9[m] 5P [11] 1[i] + 5[s] + 13[m]

3P [17] 1[i] + 4[s] + 7[m] 7P [20] 3[i] + 7[s] + 18[m]

3P + Q [17] 2[i] + 3[s] + 9[m] 7P [21] 2[i] + 7[s] + 14[m]

4P [17] 1[i] + 5[s] + 8[m] 7P [21] 1[i] + 6[s] + 20[m]

4P [10] 2[i] + 3[s] + 3[m] 7P This paper 1[i] + 7[s] + 16[m]
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where the sequence of (bi)(ti)(qi) is each monotonically decreasing. Then, the representa-
tion is called a {1

/

2, 3, 7}-step multi-base representation of the integer k.

Due to the inclusion of point halving, the {1
/

2, 3, 7}-SMBR of the large integer k has to 
be derived indirectly. Assuming that the size of the binary field is p , firstly we find a large 
exponent 2r with base 2 that the value approximating p . Then, we multiply the original 
scalar k by 2r and then model p and denote the result as k ′ , as shown in Eq. (15).

This allows us to transform finding a {1
/

2, 3, 7}-SMBR of k into finding a {2, 3, 7}-
MBNR with exponential restrictions of k ′ . Thus, the form of the representation of k can 
become

where si ∈ {−1, 1} , 0 ≤ b′1 ≤ b′2 ≤ · · · ≤ b′m , t1 ≥ t2 ≥ · · · ≥ tm ≥ 0 and 
q1 ≥ q2 ≥ · · · ≥ qm ≥ 0.

Subsequently, we find MBNR of k ′ with base {2, 3, 7} and restrict the exponential 
sequences of 3 and 7 monotonic decrease, but the exponential sequence of 2 monotonic 
increases. We obtain this MBNR in an iterative way. First, we find n such that 
k = 0 mod n , where the trial order of n is 
{42, 36, 32, 28, 27, 24, 21, 18, 16, 14, 12, 9, 8, 7, 6, 4, 3, 2} . If k = 0 mod 42 , then return 
2 · 3 · 7

(

k
42

)

 . If k = 0 mod 36 , then return 22 · 32
(

k
36

)

 . If k = 0 mod 32 , then return 

25
(

k
32

)

 . And so on, if k = 0 mod n , then return 2n1 · 3n2 · 7n3
(

k
n

)

 , where 

2n1 · 3n2 · 7n3 = n . If no suitable match is found for all trials, we find a power of 2 that is 
closest to k denoted as kc and return the absolute value 

∣

∣k − kc
∣

∣ of the difference between 
k and kc . We chose the power of 2 as the approximation for k because point doubling will 
become point halving afterwards (and may also constitute half-and-add) with less cost 
than point tripling and point septupling. As the return value of 

∣

∣k − kc
∣

∣ becomes smaller 
and smaller, it can always be approximated in the next round by a lower power of 2. So in 
this MBNR, the exponents of 2 are keep monotonically decreasing. Therefore, triple-
and-add are rarely required in this scalar multiplication. The iterations do not stop until 
k is equal to 1 or the power of 2, 3 and 7, which means that for any non-negative integer 
b , t and q , 2b3t7q can represent a positive integer. The return terms of this iterative algo-
rithm form a MBNR of k ′ and are ordered from the highest exponent of 2 multiplied by 
the lowest power of 3 and 7 to the lowest exponent of 2 multiplied by the highest power 
of 3 and 7. Then, we reverse the order of the sub-terms of the MBNR, so that the expo-
nents of 3 and 7 decrease, and the exponents of 2 increase. Finally, by dividing the MBNR 
by 2r , so that all exponents of 2 are negative, the exponents of 1/2 are monotonically 
decreasing. From this, we can obtain an {1

/

2, 3, 7}-SMBR of k as shown in Eq. (16).
Based on this representation, we can propose a scalar multiplication for elliptic curves 

over binary fields using {1
/

2, 3, 7}-SMBR, as described in Algorithm 3. The number of addi-
tions (including half-and-add and triple-and-add) is equal to the number of items in the 

(15)k ′= 2rk mod p

(16)

k =
k ′

2r
=

m
∑

i=1

si2
b′i3ti7qi

2r
=

m
∑

i=1

si

(

1

2

)(r−bi)

3ti7qi mod p, with k ′= 2rk mod p
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presentation minus one. Half-and-add is used instead of addition as long as the exponent 
of 1/2 is not zero. If the exponent of 1/2 is zero, but the exponent of 3 is not zero, then 
triple-and-add is used instead of addition. Since there is no formula for quadruple-and-add, 
we can only use the typical addition operation if the exponents of 1/2 and 3 are zero at the 
same time. A total of b1 point halving (including half-and-add), t1 point tripling (including 
triple-and-add) and t1 point septupling are required in the execution of Algorithm 3.



Page 14 of 17Guo and Gong ﻿J Wireless Com Network         (2021) 2021:82 

5 � Results and discussion
The experiments were performed on the elliptic curve recommended by the National 
Institute of Standards and Technology (NIST). The experiments are divided into three 
test groups in total, it including the elliptic curves NIST B-163, NIST B-233 and NIST 
B-283, and the size of the binary field was selected as 160-bit, 233-bit and 283-bit, 
respectively. In order to analyze the performance of the scalar multiplication algorithm 
proposed in this paper more visually, we compare our algorithm with the NAF proposed 
in [4], the DBC proposed in [10], the MBNR proposed in [11] and the MMBR proposed 
in [22]. For each test group, 1000 large integer scalar quantities k are selected at ran-
dom, scalar multiplication is performed with each algorithm in turn without using any 
precomputation and pre-storage points, the average of the number of field operations 
of each algorithm is counted, and the number of inverse, square and multiplication are 
expressed in terms of I , S and M , respectively. The experimental environment is: the 
hardware environment is Intel (R) Core (TM) i7 CPU @ 2.20 GHz, the installed mem-
ory is 16 GB, the software environment is LINUX operating system, and the algorithms 
are implemented in C/C++ with the Multiprecision Integer and Rational Arithmetic C/
C++ Library.

In this section, the performance of our proposed algorithm is described in detail. In 
order to clearly compare the total computational cost of the different algorithms, we 
select [i]/[m] = 8 and ignore [s] over binary fields. The comparison of the total compu-
tational cost of different scalar multiplication algorithms is shown in Fig. 1, the cost of 
all algorithms rises as the length of the scalar k grows. Since our algorithm and MMBR 
both use point halving operation, the computational cost is significantly lower than 
other algorithms. Compared with MMBR, our algorithm has better performance, and 
the greater the length of the scalar k, the more obvious the advantage of our algorithm. 
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Fig. 1  Comparison of the total computational cost of different scalar multiplication algorithms. Compares 
the performance of our method with the NAF method in [4], the DBC method in [10], the MBNR method in 
[11] and the MMBR method in [22]
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This is because our algorithm uses new septuple formulas we proposed, which is more 
effective in reducing the number of expensive field inverse operation than the quintuple 
formulas.

Table 3 shows that detailed data of computational cost of different scalar multiplica-
tion algorithms. On the curve NIST B-163 ( k = 160 bit), the cost of our algorithm is 
35% lower than the NAF, 29% lower than the DBC, 25% lower than the MBNR and 3% 
lower than the MMBR. On the curve NIST B-233(k = 233 bit), the cost of our algorithm 
is 37% lower than the NAF, 30% lower than the DBC, 26% lower than the MBNR and 4% 
lower than the MMBR. On the curve NIST B-283(k = 283 bit), the cost of our algorithm 
is 38% lower than the NAF, 30% lower than the DBC, 27%lower than the MBNR and 4% 
lower than the MMBR. Based on the above results, we can see that the cost of the algo-
rithm in this paper is significantly reduced compared with NAF, DBC, and MBNR and 
has a small enhancement compared with MMBR, and the improvement effect becomes 
more obvious with the increase in the length of the scalar k . As a result, in the case of 
the same elliptic curve over binary fields and the same field size, the scalar multiplication 
algorithm we propose is more efficient.

6 � Conclusions
ECC is a crucial method to ensure secure communication between devices in the IoT. 
Scalar multiplication is one of the major operations in ECC. How to reduce the com-
putational complexity of ECC scalar multiplication is key to maintaining the long-term 
stable functioning of IoT devices. There has been much research proposing schemes to 
speed up scalar multiplication. In this paper, we present an efficient formula for point 
septupling on elliptic curves over binary fields in affine coordinates and a scalar multi-
plication algorithm based on the step multi-base representation. The septuple formula 
uses division polynomial and multiplexing of intermediate values in affine coordinates to 
speed up computations by more than 14%. The scalar multiplication algorithm is based 

Table 3  Detailed data of computational cost of different scalar multiplication algorithms with 
[i]/[m]= 8

Curve Algorithm Propose I S M Cost ( ≈ [m])

NIST B-163
(k = 160 bit)

NAF [4] 163 217 705 2009

DBC [10] 137 366 735 1831

MBNR [11] 114 337 833 1745

MMBR [22] 77 162 725 1341

Our algorithm This paper 74 168 706 1298

NIST B-233
(k = 233 bit)

NAF [4] 233 349 1003 2867

DBC [10] 202 465 964 2580

MBNR [11] 158 420 1187 2451

MMBR [22] 103 227 1048 1880

Our algorithm This paper 98 215 1017 1801

NIST B-233
(k = 233 bit)

NAF [4] 283 437 1225 3489

DBC [10] 241 589 1198 3126

MBNR [11] 194 535 1426 2978

MMBR [22] 124 273 1289 2281

Our algorithm This paper 116 271 1246 2174
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on the SMBR with B = {1
/

2, 3, 7} , which drastically reduces the computational cost by 
using point halving and the point septupling we propose. The experimental results indi-
cate that our method can effectively reduce the cost of scalar multiplication for elliptic 
curves over the binary fields and contribute to the lightweight of ECC. In addition, the 
elliptic curve scalar multiplication method studied in this paper is still at the theoretical 
research stage, and future research needs to further consider the newer iterations of IoT 
terminal devices.
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