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Abstract

This paper is a continuation of the study of partially ordered patterns (POPs) introduced re-
cently. We provide a general approach to code combinatorial objects using (POP-)restricted per-
mutations. We give several examples of relations between permutations restricted by POPs and
other combinatorial structures, such as labeled graphs, walks, binary vectors, and others. Also,
we show how restricted permutations are related to Cartesian products of certain objects.
Keywords: pattern avoidance, segmented patterns, permutations, words, walks, (homeomorphi-
cally irreducible) labeled general graphs, binary vectors, coding.

1 Introduction
Below we de�ne partially ordered generalized patterns (POPs) by �rst de�ning �classical

patterns,� and then de�ning generalized patterns (GPs) introduced by Babson and Steingrímsson
(see [1]). We refer to [2, 7, 10] for motivations to study GPs, POPs, and classical patterns.

We write permutations as words π = a1a2 · · · an, whose letters are distinct and usually
consist of the integers 1, 2, . . . , n.

An occurrence of a pattern τ in a permutation π is �classically� de�ned as a subsequence in π
(of the same length as τ) whose letters are in the same relative order as those in τ . For example,
the permutation 31425 has three occurrences of the pattern 123, namely the subsequences 345,
145, and 125.

Generalized permutation patterns (GPs) allow the requirement that two adjacent letters in
a pattern must be adjacent in the permutation. In order to avoid confusion we write a �classical"
pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if this pattern occurs
in a permutation π, then the letters in π that correspond to 3 and 1 are adjacent. For example,
the permutation π = 516423 has only one occurrence of the pattern 2-31, namely the subword
564, whereas the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563.

In [5, 7], a further generalization of GPs was introduced, namely partially ordered patterns
(POPs) also called partially ordered generalized patterns (POGPs). A POP is a GP some of
whose letters are incomparable. For instance, if we write p = 1-1′2′ then we mean that in an
occurrence of p in a permutation π the letter corresponding to the 1 in p can be either larger or
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smaller than the letters corresponding to 1′2′. Thus, the permutation 31254 has three occurrences
of p, namely 3-12, 3-25, and 1-25.

A POP with no dashes is called a segmented POP (SPOP).
In this paper we continue the study of POPs considered in [5]�[9]. Sections 2 and 3 are

devoted to POPs in permutations, which is the main concern of the paper. Section 4 deals with
POPs in words.

Let Dn and Mn denote the set of Dyck paths of length 2n and Motzkin paths of length
n respectively. What could be a natural combinatorial interpretation for the set Di ×Mn−i

or Di1 ×Mi2 ×Mn−i1−i2? It turns out that such a combinatorial interpretation in these and
many other cases is given by a set of (n-)permutations simultaneously avoiding certain sets of
POPs. In section 3 we explain this phenomenon as well as suggest a general approach for looking
for di�erent connections between restricted permutations and other combinatorial objects. We
provide several examples. This direction is related to coding combinatorial objects in terms
of (POP-)restricted permutations. In section 2 we are mostly concerned with combinatorial
interpretations for the sets of permutations avoiding certain sets of POPs of length at most 4.

Finally, in section 4 we brie�y sketch a direction for further research related to combinatorial
interpretations for restricted words.

Notation
We use xk to denote xx · · ·x︸ ︷︷ ︸

k times
.

Throughout the paper we assume that An (resp. A(x), G(x)) denotes the number (resp.
the exponential and ordinary generating functions for the number) of permutations that avoid
a pattern or a set of patterns under consideration. Moreover, when we consider the patterns of
length 4, it is clear that A0 = A1 = 1, A2 = 2, and A3 = 6, which we do not state explicitly in
most cases.

2 Multi-avoidance of POPs in permutations
In this section we give some relations between multi-avoidance of POPs and other combina-

torial objects such as certain walks and labeled general graphs.

2.1 4-SPOPs and walks
In [6] a bijection was given between the set of (n + 1)-permutations avoiding the SPOP

12′21′ and the set of walks of n unit steps between lattice points, each in a direction N, S, E or
W, starting from the origin and remaining in the positive quadrant. Propositions 2.2 and 2.3
below establish a connection between certain 1-dimensional walks and permutations avoiding the
SPOPs 11′22′ and 22′11′ simultaneously.

Proposition 2.1. For the set of patterns {11′22′, 22′11′} and n ≥ 3, An = 2
(

n
bn/2c

)
.

Proof: Suppose a permutation π avoids the above patterns. One can see that whenever
π(i) < π(i + 2) (resp. π(i) > π(i + 2)) for some i, we must have that π(i + 1) > π(i + 3) (resp.
π(i + 1) < π(i + 3)). Thus, either the entries in even (resp. odd) positions of π are in increasing
(resp. decreasing) order, or vice versa. We choose the letters of π in odd positions in

(
n

bn/2c
)

ways, then rearrange the odd and even positions in two ways.



Using a result by Perrin [11] and proposition 2.1, we get the following proposition which we
prove by �nding an explicit bijection.

Proposition 2.2. For n ≥ 3, there is a bijection between the set of all n-permutations avoiding
simultaneously the patterns 11′22′ and 22′11′, and the set of all (n + 1)-step walks on the x-axis
with the steps a = (1, 0) and ā = (−1, 0) starting from the origin but not returning to it.
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Proof: Using the symmetry of the class of walks with respect to the origin, and the structure
of permutations avoiding the patterns (see the proof of proposition 2.1), it is su�cient to �nd a
bijection between the set of permutations

{π | π ∈ Sn(11′22′, 22′11′), π(1) < π(3)}

and the set of all the walks on the x-axis of length n starting at X = (1, 0), with the �rst step
a = (1, 0) which never go to the left of X.

So, we know that the permutations under consideration have the letters in odd positions in
increasing order, whereas the letters in even position in decreasing order. As the �rst step of our
bijective proof, given a permutation π, we may reverse the even position letters to get π′. Thus
π′ is a permutation obtained by shu�ing two increasing sequences. Moreover, clearly any walk
under consideration can be coded by a word w = w1w2 · · ·wn over the alphabet {a, ā} with the
property that for any i, 1 ≤ i ≤ n, the number of a's in w1w2 · · ·wi is not less than the number
of ā's there. Considering π′'s and the walks, we �nd ourselves under conditions of the auxiliary
problem in the proof of a bijective result [6, Prop. 9] related to walks in the positive quadrant
and pattern avoidance. So we can use the jumping procedure to get the desired bijection. We
follow [6, Prop. 9] in describing this procedure. However, we refer to the proof of [6, Prop. 9]
for all required justi�cations, as well as for description of the reverse to that procedure.

Suppose we are given a walk w = aaāaāa. The i-th letter in w will correspond to the letter
i in the n-permutation π′ corresponding to w. We start with the barred permutation 123̄45̄6.
Now, the barred letters will move to the left jumping over the neighbor with no bar; if more
than one of consecutive letters are barred, these barred consecutive letters form a group that will
jump to the left over the closest neighbor with no bar. After a jump, we erase a bar from the
largest letter in the group of letters that have jumped together to get the �rst approximation
of π′: 123̄546. In general, only the rightmost group of barred letters jump in a time. Under
this procedure a merging of two barred groups is possible. We are supposed to proceed until all
the letters have no bar. In our example one more jump is required, and we get π′ = 132546.
The desired permutation is easily obtained from π′ by reversing the sequence in even positions:
π = 162543.

We provide an example here of implementing the jumping procedure in both directions:

π′ = 31527486 ↔ 13̄527486 ↔ 123̄5̄7486 ↔ 123̄45̄7̄86 ↔ 123̄45̄67̄8̄ ↔ aaāaāaāā

Finally, we note that in order to apply our bijection to the walks starting in the negative
direction, we may �rst switch a's and ā's, and then, using the jumping procedure, obtain π′

which consists of two shu�ed increasing sequences, and �nally reverse the letters of π′ in odd
positions to get the desired π. The converse of this operation is clear.

Alternatively, we can use Catalan factorization to implement the same bijection as that
given by the jumping procedure. We map a sequence of a's and ā's as described above onto
an increasing string of positions 12 . . . n where the positions of ā's are barred and positions of
a are unbarred. At each position i, we count the number m(i) of unbarred positions and the
number m̄ = i − m(i) of barred positions up to each position i = m(i) + m̄(i) and, for each
k ≥ 1, �nd positions ik = max{i | m(i) − m̄(i) = k − 1} + 1. Then ik is the leftmost position
such that m(j) − m̄(j) ≥ k for any j ≥ ik. Then the word on each segment on positions ik + 1
through ik+1−1 corresponds to a Dyck word on {a, ā} with equal number of barred and unbarred
positions. Now we permute the entries of our original permutation so that each resulting Dyck
segment on 2i letters is mapped onto the segment (āa)i and both barred and unbarred positions
increase left to right, while leaving the letters ik �xed.

aaāaaaāāa = 123̄4567̄8̄9 = 123̄4567̄8̄9 7→ 132475869 = 132475869 = π′

Again, the converse map is not di�cult to �nd. Values π(i) of descents i of π′ correspond exactly
to barred positions.


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Remark 2.1. Note that, alternatively, we can use the steps a = (1, 1) and ā = (1,−1) in two
dimensions to obtain pre�xes of either positive or negative elevated Dyck paths.

The statement of proposition 2.2 can be slightly generalized.

Proposition 2.3. Let k ≥ 0 be an integer. For n ≥ 3, there is a bijection between the set
of all n-permutations avoiding simultaneously the patterns 11′22′ and 22′11′, and the set of all
(n + k)-step walks on the x-axis with the steps a = (1, 0) and ā = (−1, 0) starting from the
origin but not returning closer than k units to it. That is, for k ≥ 1, the points (0, 0), (±1, 0),
(±2, 0), . . . , (±(k− 1), 0) may be visited only once by a legal walk, whereas for k = 0, a legal walk
is not allowed to cross the origin, it is only allowed to touch it.

2.2 4-SPOPs and semi-alternating permutations
In this section we consider the set of permutations avoiding the pair of patterns (121′2′, 212′1′).

Since this set of patterns is closed under reversal and complementation, the set Sn(121′2′, 212′1′)
is also closed under reversal and complementation.

The permutations π ∈ Sn(121′2′, 212′1′) are characterized as follows: π ∈ Sn(121′2′, 212′1′)
if and only if for each t ≥ 1, π(t) > π(t + 1) exactly when π(t + 2) < π(t + 3) and π(t) < π(t + 1)
exactly when π(t + 2) > π(t + 3). We call such π semi-alternating.

Given a permutation in Sn we can map it onto its updown word of length n− 1 which has
letter u (resp. d) at position i if π(i) < π(i + 1) (resp. π(i) > π(i + 1)). It is easy to see
that exactly half the permutations in Sn(121′2′, 212′1′) begins with an ascent, so we consider
the updown words of π ∈ Sn(121′2′, 212′1′) that start with u. Those fall into 8 di�erent classes:
(uudd)∗, (uudd)∗u, (uudd)∗uu, (uudd)∗uud, (uddu)∗, (uddu)∗u, (uddu)∗ud, (uddu)∗udd. It is
also easy to see that the classes (uudd)∗u and (uddu)∗u are equinumerous, as are (uudd)∗uud
and (uddu)∗udd. Note that the empty string and the string u are contained in two classes. We
will take that into account later.

Note that the letter n corresponds to the initial d or the �nal u or some segment ud, while
the letter 1 corresponds to the initial u or the �nal d or some segment du.

We now de�ne exponential generating functions for the numbers of permutations π ∈
Sn(121′2′, 212′1′) with a given updown word, in the independent variable t. We will also give
the values of of each function and its �rst three derivatives at t = 0.

updown word e.g.f. initial values at t = 0
of e.g.f. and �rst three derivatives

(uudd)∗uu u(t) 0, 0, 0, 1
(uudd)∗ v(t) 0, 1, 0, 0

(uudd)∗uud, (uddu)∗udd w(t) 1, 0, 0, 0
(uudd)∗u, (uddu)∗u x(t) 0, 0, 1, 0

(uddu)∗ y(t) 0, 1, 0, 0
(uddu)∗ud z(t) 0, 0, 0, 2

We can now split each π into π1nπ2 or π′1π′′, where each of π1, π2, π
′, π′′ avoids 121′2′ and

212′1′. This results in the following system of quadratic di�erential equations:




u′ = wx

v′ = w2 = x2 + 1
w′ = xy

x′ = wy = v + xz

y′ = w + yz

z′ = y2 = 2x + z2

Using the initial conditions, we can express each of the functions as a function of y, as follows.
Let Y (t) =

∫ t

0
y(s)ds, then u = 1

2

∫ t

0
sinh(2Y (s))ds, v = 1

2 t + 1
2

∫ t

0
cosh(2Y (s))ds, w = cosh(Y ),
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x = sinh(Y ), z =
∫ t

0
y(s)2ds. However, we were unable to solve the above system explicitly. The

exponential generating function for |Sn(121′2′, 212′1′)| is given by

2(u + v + 2w + 2x + y + z)− 3t− 1 = 4eY +
∫ t

0

e2Y (s)ds + 2y + 2
∫ t

0

y(s)2ds− 2t− 1.

2.3 POPs and general graphs
A general graph (pseudograph) is a graph in which both graph loops and multiple edges are

permitted. A homeomorphically irreducible general graph is a graph with multiple edges and
loops and without nodes of degree two (see [12, A060580]).

It is easy to see that the number of homeomorphically irreducible general graphs on two
labeled nodes (2-HIGG) with n ≥ 3 edges is

(
n+2

2

)− 4 = n2+3n−6
2 . Indeed, suppose L and R are

the nodes of a 2-HIGG with n edges. Then the number of such graphs is the number of integer
non-negative solutions to xL + xR + xLR = n, where xL and xR are the number of loops of L
and R respectively, and xLR is the number of edges between L and R; we must also subtract the
number of �bad" graphs. There are 4 such graphs: two graphs with xLR = 2 and one of xL = 0
or xR = 0, and two graphs with xLR = 0 and one of xL = 1 or xR = 1. We represent a 2-HIGG
by the triple (xL, xLR, xR).

Proposition 2.4. For n ≥ 2, and the SPOPs p1 = 121′2′, p2 = 211′2′, p3 = 121′3, we have

An =
n2 + 3n− 6

2
.

Proof: The result is clearly true for n = 2, 3. Suppose n ≥ 4 and a permutation π =
π1π2 · · ·πn avoids the patterns.

If πi = n then i ≤ 3, since otherwise p1 or p2 occur in π. We consider three cases:
1) If π1 = n then either π2 < π3 > π4 > · · · > πn or π2 > π3 > · · · > πn, otherwise p1 or p2

occurs in π. So, we have (n− 1) permutations in this case.
2) If π2 = n then to avoid p1 and p2 we must have π3 > π4 > · · · > πn. So, this case gives

us (n− 1) permutations too.
3) If π3 = n then, as above, we must have π4 > π5 > · · · > πn. If π1 > π2, there are no

additional restrictions and we get
(
n−1

2

)
good permutations in this case. If π1 < π2 then in order

to avoid p3 we must have π2 = n− 1. So, we get (n− 2) permutations in this case.
Summing over the cases, we get the desired result.



Using proposition 2.4 and the considerations preceding it, we get the truth of the following
proposition which we prove combinatorially.

Proposition 2.5. For n ≥ 3, there is a bijection between the set Sn(p1, p2, p3) of n-permutations
avoiding the SPOPs p1 = 121′2′, p2 = 211′2′, and p3 = 121′3 and the set of homeomorphically
irreducible general graphs on two labeled nodes with n edges.

Proof: Suppose n ≥ 4 (if n = 3, the bijection described below does not work; however, in
this case there are only six objects in each set, and this is straightforward to �nd a bijection).
We describe a map Ψ from Sn(p1, p2, p3) to the set of graphs which will be easy to see to be a
bijection. See considerations before proposition 2.4 to recall that we denote our graphs by the
triples (xL, xLR, xR).

According to the proof of proposition 2.4, we can subdivide Sn(p1, p2, p3) into three subsets
W1, W2, and W3 consisting of permutations having π1 = n, or π2 = n, or π3 = n respectively.

If π ∈ W1, and π = niπ3 · · ·πn, we consider two subcases. If i = 1 then corresponding
xL = 0, xLR = 1, and xR = n − 1; if i > 1 then xL = 0, xLR = i + 1, and xR = n − i − 1. So,
the permutations from W1 are mapped to good graphs in which node L has no loops.

If π ∈ W2, and π = inπ3 · · ·πn, we consider three subcases. If i = 1 then xL = n − 1,
xLR = 1, and xR = 0; if n− 1 > i > 1 then xL = 0, xLR = i + 1, and xR = n− i− 1 (note, that
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we do not count second time the triple (0, n, 0)); if i = n − 1, we map the permutation to the
triple (n, 0, 0). So, the permutations from W2 are mapped to the good graphs in which node R
has no loops.

If π ∈ W3 and π = π(i, j) = ijnπ4 · · ·πn then Ψ(π(1, n − 1)) = (0, 0, n); Ψ(π(i, n − 1)) =
(i, 0, n − i) (nodes L and R get at least two loops). The remaining case is i > j. In this case
Ψ(π(i, j)) = (n− i, i− j, j) (note that each of the components of the last vector is greater than
0, which distinguishes this case from the preceding two; also, the degrees of L and R are greater
than 2, and thus we get a legal graph).

Finding the inverse of Ψ is straightforward.



Using similar bijections we can get a bunch of combinatorial results connecting graphs and
restricted permutations. For instance, if p3 = 123 in proposition 2.5, then the structure of
permutations avoiding p1 = 121′2′, p2 = 211′2′, and p3 = 123 is almost the same as that in
proposition 2.5, except for if π3 = n then it must be π1 > π2. Thus we get the following result
right away.

Proposition 2.6. For n ≥ 3, there is a bijection between the set of n-permutations simultane-
ously avoiding the SPOPs p1 = 121′2′, p2 = 211′2′, and p3 = 123 and the set of 2-HIGG with n
edges such that either xLR > 0 or xLR = 0 and xL = n.

Imposing two extra restrictions, namely, p4 = [21′1 and p5 = [1′21 (here we use Babson-
Steingrímsson notation, where �[" in p = [xy · · · means that an occurrence of p in a permutation
must begin from the leftmost letter of the permutation) we see that the sets W1 and W2 in the
proof of proposition 2.5 become prohibited; also, as above, if π3 = n then π1 > π2. Thus we
obtain the following proposition.

Proposition 2.7. For n ≥ 0, there is a bijection between the set of (n + 3)-permutations simul-
taneously avoiding the SPOPs p1 = 121′2′, p2 = 211′2′, p3 = 123, p4 = [21′1 and p5 = [1′21 and
the set of arbitrary general graphs on two labeled nodes and n edges.

Let An,k be the k×k adjacency matrix of a graph on k labeled nodes and n edges (multiple
edges and loops are allowed). We assign labels 1, 2, . . . , k2 to the entries of An,k by reading the
matrix from left to right and from top to bottom.

We de�ne a class Cn,k(a1, a2, . . . , a`) of graphs by indicating k2− ` entries of An,k that must
be 0 (the other entries, having labels a1, a2, . . . , a`, may or may not be 0).

De�nition 2.1. Suppose p = a1a2 · · · ak is a permutation and, for �xed non-negative integers
`1, `2, . . . , `k−1, the letters b(i,j), 1 ≤ i ≤ k − 1, 1 ≤ j = j(i) ≤ `i, are incomparable with each
other and with the ai's, 1 ≤ i ≤ k. We call the SPOP

a1b
(1,1)b(1,2) · · · b(1,`1)a2b

(2,1)b(2,2) · · · b(2,`2)a3 · · · ak−1b
(k−1,1)b(k−1,2) · · · b(k−1,`k−1)ak

separated segmented POP (SSPOP). For the SSPOP above we use the notation

τk(`1, `2, . . . , `k−1) = a1|`1a2|`2a3 · · · ak−1|`k−1ak.

We use “|” instead of “|1”.
SSPOPs were introduced in [6]. These patterns allow us to control the distance between

certain letters in permutations and we use this property in Theorem 2.2. If we write, say,
p = [|txy, then we mean that an occurrence of the pattern p in a permutation must start with
the leftmost letter of the permutation, and the �rst t letters of the permutation can be arbitrary,
while the relative order of x and y must be preserved.

In what follows we allow a SSPOP to contain dashes. We call such patterns separated
partially ordered patterns and we abbreviate them S-POPs (to distinguish from SPOPs).

Let P ′ be a set of SPOPs (or, rather, SSPOPs) {[|i2|`−i−21}0≤i≤`−2. We de�ne P to be
P ′ ∪ {p1 = |`−112, p2 = 12-3}.

We now state the main result in this subsection.
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Theorem 2.2. Let Cn,k(a1, a2, . . . , a`) and P be as de�ned above. There is a bijection between
the set of graphs Cn,k(a1, a2, . . . , a`) and the set of (n + `)-permutations avoiding simultaneously
the patterns from P .

Proof: Suppose that (n + `)-permutation π avoids all the patterns from P . To avoid all
the patterns from P ′ ∪ {p1}, we must have π` = n + `. Then avoidance of p1 and p2 forces
π1 > π2 > · · · > π`−1 and π`+1 > π`+2 > · · · > πn+`. Thus the number of good permutations is(
n+`−1

`−1

)
, which is exactly the number of graphs in Cn,k(a1, a2, . . . , a`) (the number of non-negative

integer solutions to a1 + a2 + · · ·+ a` = n).
Suppose π = π(i1, i2, . . . , i`−1) = i1i2 · · · i`−1(n+`)π`+1 · · ·πn+`, where i1 > i2 > · · · > i`−1.

Clearly, we can represent the graphs from Cn,k(a1, a2, . . . , a`) by `-tuples where the i-th entry
will correspond to the number of edges associated with ai. The desired bijection now is the map
Ψ such that

Ψ(π(i1, i2, . . . , i`−1)) = (i`−1 − 1, i`−2 − i`−1 − 1, . . . , i1 − i2 − 1, n + `− i1 − 1).

The reverse to Ψ is easy to see.



As a corollary to Theorem 2.2, we have the following statement.

Corollary 2.1. There is a bijection between the set of all graphs on k nodes with n edges
and the set of (n + k2)-permutations that avoid simultaneously all the patterns from the set
{[|i2|k2−i−21}0≤i≤k2−2 ∪ {|k2−112, 12-3}.

3 A general approach for looking for connections between
restricted permutations and other combinatorial objects

3.1 A general approach
A standard approach to �nd relations between restricted permutations and other combina-

torial objects seems to be as follows. First one considers a particular set of patterns P ; then
one either �nds a formula for, say, a number of permutations avoiding P or makes a (computer)
experiment to �nd initial values of the number of permutations avoiding P ; thereafter one may
check if the numbers appear in [12], which might establish relations to other combinatorial ob-
jects. Of course, we may start from other combinatorial objects, and then �nd out using [12] if
there is a relation to restricted permutations. The probability of getting a positive result with
the last approach is very low, though.

We suggest to start from consideration of a structure of permutations that are supposed to
avoid some set of patterns. The idea is to consider those structures that can be �controlled," that
is, for which we can �nd a set of patterns that force our permutations to have the prescribed
structure. Moreover, in order to increase the probability of obtaining relations to other objects,
we may try to make the number of permutations having our structure be of a �nice� form, like
expressions containing binomial coe�cients, or, say, powers of 2, etc. As the next step we can
either go to [12], or we may recognize the formula involved to count objects known to us. Then
we try to �nd a bijection between our object and the other one.

Creating the structures described by prohibited patterns is the place when POPs are of
great importance, since if we use just GPs, we would be forced to deal with huge sets of patterns,
which are di�cult to control. Of course, although sets of POPs are convenient abbreviation of
sets of GPs, they still can be large in many cases.

Below, we list some of the tricks that may be helpful when creating structures (one also
meets other tricks in our considerations below). We assume that we consider n-permutations.
We also give the notation for particular sets of patterns, some of which we will be using below.
Those sets are not unique, but our intention is to �nd minimal sets of forbidden patterns that
give rise to a given structure.
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(1) To make n occur in position i and not to create extra restrictions, consider the set of
prohibited patterns P1 = {[|k2|i−k−21}0≤k≤i−2 ∪ {[|i−21-2};

(2) To make n occur in position i and to have all the letters to the right of n in decreasing
order (this gives the binomial coe�cient for the number of ways to choose the �rst i − 1
letters, namely

(
n−1
i−1

)
), consider the set P2 = {[|k2|i−k−21}0≤k≤i−2 ∪ {|i−212};

(3) To make the letter in position j + 1 be the largest one among the �rst i letters of a
permutation (j < i), use P3 = {[|k2|j−k−11}0≤k≤i−1 ∪ {[|j1|k2}0≤k≤i−j−2;

(4) To make ` consecutive letters of a permutation be decreasing starting from position t,
consider the set P4 = {[|k+t−11|`−k−22}0≤k≤`−2;

(5) To make any of the �rst i letters of an n-permutation be greater than any letter in positions
i + 1, i + 2, . . . , n, use P5 = {[|k1|i−k−12}0≤k≤i−1.

(6) Suppose a set of patterns P gives f(n) n-permutations avoiding it. We can obtain a set
of patterns P∗ that yields kf(n) (n + k)-permutations avoiding it, where k is a constant.
Here we use a result of [4] that the number of k-permutations simultaneously avoiding the
patterns 123, 132, and 231 is k. To obtain P∗ we can use (5) above with i = k to make
the �rst k letters of a (n + k)-permutation π be the largest letters in π. Then we add
the pre�x [|k to each pattern from P to make sure that for any �xed permutation of the
�rst k letters, the letters in positions k + 1, k + 2, . . . , n + k give us exactly f(n) di�erent
permutations. Finally, instead of each of the three patterns of the form xyz above, we
add the set of prohibited patterns {[|ixyz|k−i]}0≤i≤k to get exactly k permutations for any
�xed permutation in the positions k + 1, k + 2, . . . , n + k.

We close this subsection by pointing out that the ideas described above suggest a way
of coding combinatorial objects in terms of restricted permutations. This is a rather natural
problem, taking into account that coding objects by words is a very useful approach under many
di�erent contexts.

3.2 Cartesian products of combinatorial objects and restricted permu-
tations

In the following subsection we give other examples of applying our approach.
Let On be the set of all (natural) combinatorial objects of size associated with n and having

interpretation in terms of restricted permutations. For instance, Motzkin paths Mn of length
n, as well as Dyck paths Dn of length 2n are elements of On since the former is related to the
n-permutations avoiding the GPs 1-23 and 13-2, whereas the latter is related to n-permutations
avoiding the GP 2-13 (see [3]). There are many other combinatorial objects including di�erent
types of labeled trees appearing in On. Let O = ∪n≥0On.

Theorem 3.1. Suppose Ani ∈ Oni for i = 1, 2, . . . , k, and n =
∑

i ni. Then

An1 ×An2 × · · · ×Ank
∈ On ⊂ O.

In other words, the Cartesian product of combinatorial objects related to restricted permutations
has an interpretation in terms of restricted permutations.

Proof: Suppose n0 = 0. To create a structure for n-permutations related to the Cartesian
product we �rst use the set of prohibited patterns

∪0≤j≤(k−2){[|i1|nj+1−i−1-2}n1+n2+···+nj≤i≤nj+1−1

to subdivide each of our permutations into k parts of lengths n1, n2, . . . , nk when reading the
permutations from left to right, such that any letter of the s-th part is greater than any letter
of the t-th part whenever s < t.

The fact that Ani ∈ Oni guarantees the existence of patterns (POPs) pi,1, pi,2, . . . such that
the number of objects in Ani equals the number of ni-permutations avoiding simultaneously all
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of the patterns from Pi = {pi,j}j=1,2,.... We now can rewrite the patterns from Pi, creating
in general a larger set of patterns (see the procedure below), to make them a�ect only the i-
th part in the subdivision of our permutations described above. Treating all Ani 's this way
(i = 1, 2, . . . , k), and joining all obtained sets of patterns into one set, we get a set of patterns P
with the property that the number of n-permutations avoiding P is equal to the cardinality of
the set An1×An2×· · ·×Ank

, and one can �nd an explicit bijection between those combinatorial
objects using bijections corresponding to the k parts of our n-permutation subdivision.

Finally, we need to explain the rewriting process for Pi. Recall that if no opening bracket
� [� (resp. closing bracket �]�) occurs at the beginning (resp. end) of a pattern, the pattern is
understood to have a dash at the beginning (resp. end). Suppose a pattern pi ∈ Pi has ` ≥ 0
dashes and if we omit the dashes and brackets, we get a word w = a1a2 · · · ah over a certain
alphabet (where some of the letters of w may be incomparable). We keep the brackets if any,
but instead of the j-th dash, if there is one, we put |dj

. Suppose doing this way we get a pattern
τ = τ(d1, d2, . . . , d`). Now, to the pattern pi there corresponds the set

{[|n1+n2+···+ni−1τ(d1, d2, . . . , d`)}d1+d2+···+d`=ni−h,

which is a subset of the set of the patterns we are constructing. Note that if τ starts with a
bracket, we just remove it; otherwise τ starts with |d1 and we can merge it with |n1+n2+···+ni−1

to make the pattern start with [|n1+n2+···+ni−1+d1a1 · · · ; and if a bracket occurs at the end of pi,
we simply remove it.

For example, if n1 +n2 + · · ·+ni−1 = 10, ni = 5 and Pi = {12], [13-2, 21′-1} then we rewrite
the set Pi to be the set

{[|1312} ∪ {[|1013|d12|d2}d1+d2=2 ∪ {[|10+d121′|d21|d3}d1+d2+d3=2,

where the indicated subsets correspond to our three patterns.



The following corollary to theorem 3.1 gives a lower bound for the cardinality of the set of
di�erent combinatorial objects related to restricted permutations.

Corollary 3.1. The cardinality of O is at least continuum.

Proof: Since O = ∪n≥0On, and Mn and Dn are from O, we have according to theorem 3.1
that the Cartesian product involving an arbitrary number of terms each of which is eitherMn or
Dn gives an object belonging to O. So the cardinality of O is at least as large as the cardinality
of all binary strings, which is continuum.



We end up this subsection with listing some of known objects (but not all of them) related
to restricted permutations. One can use these relations as building blocks in Cartesian products
to discover new relations using theorem 3.1.

Sets of patterns to avoid Related objects in case of n-permutations
none Increasing binary trees on n vertices
1-2-3 (or 1-3-2) Dyck paths of length 2n
1-23 Partitions of [n]
1-23, 12-3 Non-overlapping partitions of [n]
1-23, 1-32 Involutions in Sn

1-23, 13-2 Motzkin paths of length n
132, [21 Increasing rooted trimmed trees with n + 1 nodes
12′21′ Lattice walks of n− 1 steps in N, S, E, W
11′22′, 22′11′ Certain walks of (n + 1)-steps (proposition 2.2)
121′2′, 212′1′ Semi-alternating permutations (subsection 2.2)
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3.3 Other examples of applying the approach
Let S1(i, j, n+1) denote the set of (n+1)-permutations having the structure AxB(n+1)C,

where A, B, and C are decreasing, x is the largest letter in AxB, |AxB| = i, and |A| = j.
Clearly, |S1(i, j, n+1)| = (

n
i

)(
i−1

j

)
. Moreover, there is a set of patterns so that the set of (n+1)-

permutations avoiding it is exactly S1(i, j) � we can take, for example, the union of sets of
patterns given by (2)�(4) in subsection 3.1 with n replaced by (n + 1) and choosing appropriate
values of ` and t in (4).

The set S2(k, n) is obtained by prohibiting the patterns |k-132 and |k-231 in n-permutations.
It is known [4] that the number of n-permutations avoiding simultaneously the patterns 132 and
231 is given by 2n−1, and thus |S2(k, n)| = (

n
k

)
2n−k−1.

We de�ne the set S3(i, j, n+2) to be the set of (n+2)-permutations of the form A1B(n+2)C
where |A| = i, |B| = j, A and B are decreasing, C avoids 132 and 231. The number of such
permutations (using the result the of previous paragraph) is

(
n
i

)(
n−i

j

)
2n−i−j . Also, this is clear

how to describe the set of prohibited patterns to create the structure using considerations above.
We only point out that, to �x 1 in position (i + 1), one can use the same method as when �xing
the largest element in a certain position, the only di�erence being that we switch 1 and 2 in the
patterns.

Let S4(k, n+ k) be the set of (n+ k)-permutations having the structure AB, where |A| = k,
any letter in A is greater than any letter in B, A avoids 123, 132, and 231, and B avoids 1-2-3 and
2-3-1. Clearly, S4(k, n + k) is just a particular case of the situation described in (6) in previous
paragraph. Thus |S4(k, n + k)| = k(

(
n
2

)
+ 1) since the number of n-permutations avoiding 1-2-3

and 2-3-1 is
(
n
2

)
+ 1 (see, e.g., [10]).

The set S5(k, n + k) is essentially the same as S4(k, n + k) with the only exception that B
avoids di�erent patterns, namely 1-2-3, 1-3-2, and 2-1-3. Since the number of n-permutations
avoiding these three patterns is Fn (see, e.g., [10]), where Fn is the n-th Fibonacci number with
F0 = 1 and F1 = 1, we have |S5(k, n + k)| = kFn.

In Table 1 we provide some of the connections related to the structures described above
for certain choices of i, j, and k. Note, that we meet non-trivial connections between di�erent
classes of restricted permutations. However, the connections from Table 1 beg direct bijections
to indicate the actual coding of the objects in terms of restricted permutations, which we leave
as open problems.

Closing this subsection, we indicate that restricted permutations might be used to give
combinatorial proofs of certain identities. For example, let us prove that

3
(

n

4

)
=

((
n−1

2

)

2

)

using S1(4, 1, n+1). As it mentioned above, the left-hand side gives the number of permutations
of the form AxB(n + 1)C, where |A| = 1, |B| = 2, x is the largest letter in AxB, and A,B, C
are decreasing. On the other hand, a permutation having the same structure can be obtained
as follows. Choose two di�erent pairs of numbers from [n − 1] = {1, 2, . . . , n − 1}. If the pairs
do not have a common element, then without loss of generality the pairs are {a, b}, {c, d}, and
a < b, d = max{a, b, c, d}. Then AxB = cdba. Otherwise, the pairs have exactly one common
element. Thus, we have {a, b}, {b, c}, and without loss the generality a < c. Then x = n and
AxB = bnca.

4 POPs in words and other combinatorial structures
In case of words, similar ideas can be used as those in section 3 when we consider permu-

tations. In particular, an analogue of theorem 3.1 can be proved. We record it as theorem 4.1,
where Ω = ∪n≥0Ωn and Ωn is the set of all objects (of size depending on n) related to restricted
words of length n over some alphabet having more than one letter. We want to point out that
when proving theorem 4.1 in the way proposed in the proof of theorem 3.1, we skip the step that
follows after subdivision of a word of length n into parts. The relative order of the elements from
two di�erent parts is irrelevant.
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Set of Formula Sequence Combinatorial interpretation
permutations in [12]
S1(2, 0, n + 1)

(
n
2

)
A000292 (n + 3)-permutations avoiding 1-3-2-4 and

having exactly one descent (a descent in a
permutation π is an i such that π(i) > π(i + 1)).

S1(3, 1, n + 1) 2
(
n
3

)
A007290 Acute triangles made from the vertices of

a regular n-polygon.
S1(4, 1, n + 1) 3

(
n
4

)
A050534 Lines drawn through the points of intersections

of n straight lines in a plane, no two of which are
parallel, and no three of which are concurrent.

S2(1, n) n2n−2 A057711 Number of 1's in all palindromic compositions of
N = 2(n− 1). E.g., there are 5 palindromic
compositions of 6, namely 111111, 11211, 2112,
1221, and 141, containing a total of 16 1's.

S3(1, 1, n + 2)
(
n
2

)
2n−1 A001815 (n + 3)-permutations containing 1-3-2 and 1-2-3

exactly once.
S4(2, n + 2) n2 − n + 2 A014206 Binary bitonic sequences of length n (a bitonic

sequence is
a1 ≤ a2 ≤ · · · ≤ ah ≥ ah+1 ≥ · · · ≥ an−1 ≥ an or
a1 ≥ a2 ≥ · · · ≥ ah ≤ ah+1 ≤ · · · ≤ an−1 ≤ an ).

S5(2, n + 2) 2Fn A006355 Binary vectors of length n + 2 with no singletons.

Table 1: Examples of relations between restricted permutations and other combinatorial
objects

Theorem 4.1. Suppose Wni ∈ Ωni for i = 1, 2, . . . , k, and n =
∑

i ni. Then

Wn1 ×Wn2 × · · · ×Wnk
∈ Ωn ⊂ Ω.

In other words, the Cartesian product of combinatorial objects related to restricted words has an
interpretation in terms of restricted words.

However, this paper is primarily oriented to permutations in the sense of di�erent connections
to other structures using our approach; thus, we do not provide here examples related to words
and their relations to other combinatorial objects leaving this as a direction for future research.
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