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Background
In the field of biomedical research, the disease-gene association prediction is a funda-
mental and important problem [1, 2]. With the advancement of machine learning and 
artificial intelligence research, many machine learning methods have been applied to 
discover new genetic associations of diseases. However, there are still many challenges 
in this research area. For instance, the number of gene sets is much larger than that of 
confirmed disease-related genes. In other words, it is difficult to use less data to mine 
the pattern of disease-gene association. Meanwhile, the genetic heterogeneity of dis-
eases makes the pattern diverse, which increases the difficulty of mining too. Then it 
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is suggested that if a gene has similar characteristics to a known disease causal gene, it 
might also be associated with this same disease.

Disease-gene association prediction is a process of mining and discovering candi-
date genes that may be associated with disease through the data set of known actual 
disease-gene association. And computational methods can greatly accelerate the process 
of research in the field of biological information. In recent years, a lot of related work 
emerge. Some works [3, 4] are from data sources (such as gene expression data, KEGG, 
etc.) to manually extract features, then uses machine learning classifier to train and pre-
dict the task. However, the amount of data is very large, and not all genes have the same 
extent of exploration. Therefore, except for some common genes, most of the available 
data are very scarce, which makes feature engineering only use a small number of com-
mon features. Biological data is complex, and various biological data have become a 
simple and clear form through network representation, so network-based methods [5] 
have become the mainstream direction of disease-gene association prediction. These 
methods [6–8] are used to mine new disease-gene association in biological entity net-
work, and have achieved good performance. However, due to the limited number of 
data sources, each method can be further improved through an integrated process. In 
particular, Han et al. [9] predicted the new disease-gene association through the graph 
convolution network with the features obtained by the integrated matrix decomposition 
method and the original features, which can capture the linear and nonlinear relation-
ship between diseases and genes at the same time and obtain better performance. Yang 
et al. [8] integrated from the data level, carefully selected the most favorable data sources 
to build a multi-mode network, and used Node2vec [10] to learn node representation on 
complex network, so as to measure the proximity of disease-gene node pairs and make 
prediction, or reconstruct a two-layer heterogeneous network containing only disease 
and gene nodes, which can be used for the final network prediction methods. Benefit 
from the rapid development of graph neural network, the ability of learning node repre-
sentation for downstream tasks (link prediction, etc.) directly from heterogeneous net-
works is greatly enhanced. At present, data level integration is adopted in many works 
to avoid excessive information loss in the process of model integration (a single model 
cannot capture all the feature information).

Many methods are only applicable to scenes of homogeneous networks. In fact, 
most of the scenes in real life are modeled as heterogeneous networks, that is, includ-
ing multiple node types and multiple relationship types. For example, DeepWalk [11], 
Node2vec [10], LINE [12] and other methods are designed for the purpose of pass-
ing through the network. If they are applied to heterogeneous network data, the het-
erogeneity of nodes and relationships will be ignored, thus rich semantic information 
will be lost. Therefore, it is urgent to develop heterogeneous network representation 
learning methods. Metapath2vec [13] is one of the first methods of representation 
learning from heterogeneous networks, and also the first propose place of metapath, 
where rich semantic information between different nodes is contain, but it is similar 
to those in the case of Node2vec, where it is not extendable, and relies on the struc-
tural integrity of the network. Wang et  al. [14] proposed HAN, based on the GAT 
[15] model of integrating a neighbor’s graph neural network using a self-attention 
mechanism, as well as metapath, based on the multiple sampling of neighbors, using 
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a self-attention mechanism to integrate neighbor information from metapath, and 
after the addition of a layer of semantic attention, which can fusion multiple node 
information from the different metapath pattern. Since it can alleviate the problem 
of network heterogeneity and generate node representation containing rich topologi-
cal structure information and semantic information, this architecture has become a 
classic architecture of graph neural network model for heterogeneous network. Sub-
sequently, various heterogeneous network embedding models basically retain the 
two-layer attention mechanism of HAN. However, most of the existing models con-
sider only two end node and one edge from metapath, ignoring information from 
multiple nodes in the metapath intermedia, which lead to a problem known as early 
summarization [16].

In this work, we present FactorHNE, which is a heterogeneous graph neural net-
work model architecture for aggregating multiple factor graphs for prediction tasks. 
In addition to any information available, a heterogeneous network of four different 
nodes was constructed, and based on metapath, multiple patterns were mined. In the 
node information aggregation phase, in order to alleviate the problem of early sum-
marization, we used factor diagram decomposition based on metapath reconstruc-
tion of neighborhood subgraphs to capture the multiple semantics included in the 
metapath relationship, and the effectiveness of this method was verified [17], when 
multiple relationships between nodes in the graph were mined. After any of the node 
features are mine in metapath, we  used an attention mechanism to integrate the 
semantic information in any of the metapath. By designing this model, we can make 
good use of the multi-source biological data to mine the pattern of disease-gene asso-
ciation and promote the understanding of disease pathogenesis and the development 
of therapeutic drugs. Our major contributions can be summarized as follows:

•	 Through factor decomposition of neighborhood subgraphs of nodes, we mined a 
variety of relationship information, and effectively alleviated the early summariza-
tion problem from metapath sampling.

•	 We designed a number of comparison experiments on a large-scale network, veri-
fied the performance advantage of our model over existing models, and analyzed 
the experimental results.

•	 We designed a deep learning model for heterogeneous network link prediction, 
which can effectively learn rich topological information and semantic information 
in heterogeneous networks, and can be extended to large-scale biomedical net-
work data, and verified by design experiments.

Results and discussions
In this section, we will introduce our experimental settings and result analysis in 
detail. At the same time, FactorHNE and other network embedding methods are com-
pared under fair conditions. By observing and comparing the experimental results, 
the advantages of our model in the task of disease-gene association prediction in a 
large-scale heterogeneous network are analyzed.
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Baselines
To assess the performance of a link prediction model, we adopt the AP, AUC, 
Precision@K, and Recall@K which commonly used in model evaluation. AP represents 
the area under the P–R curve drawn according to the precision and recall of the model, 
AUC represents the area under ROC curve of the model, these two indicators are com-
monly used to evaluate prediction tasks, in addition, the Precision@K and Recall@K 
denote the precision and recall are producted based on the Kth largest threshold. We 
calculate these evaluation indexes for FactorHNE model and other baselines, and then 
analyze the experimental results. And the baseline we use are shown as follows:

•	 Metapath2vec [13] is a traditional random walk based model, using metapath to 
mentor the next hop neighbor, producing a heterogeneous node sequence based on 
the specific metapath, and using the Skip-gram model to generate node embedding, 
we have tried a variety of metapath, report the best of the results.

•	 HIN2vec [18] is a model for heterogeneous network embedding. By applying opti-
mization constraints to multiple downstream tasks between node pairs, it is possible 
to train both heterogeneous nodes embedding and multiple metapath embedding, 
meaning that it will automatically try any combination of metapath to produce the 
most suitable node embedding.

•	 HERec [19] is a recommended model for heterogeneous networks, based on multiple 
metapath pattern converts the original heterogeneous network to an homogeneous 
network, then use DeepWalk model to generate node embedding from all metapath, 
and after combined ones from each metapath, a final embedding of the node will be 
generated.

•	 GAT [15] is a GNN model for homogeneous networks, where neighbor information 
is aggregated using a self-attention mechanism, and node embedding is obtained 
using semi-supervise training, it is an end-to-end model. where we show the best 
after attempted multiple metapath pattern.

•	 HAN [14] is a GNN model for heterogeneous networks, using methods similar to 
those found in HERec to convert networks to homogeneous, then using GAT to gen-
erate node embedding in each metapath semantic environment, and finally using a 
semantic-level attention to aggregate node embedding in different metapath pattern.

•	 MAGNN [20] is a heterogeneous network GNN model, which alleviates the early 
summarization problem to some extent by encoding metapath instances, and extends 
the model to larger heterogeneous networks through neighbor sampling mechanism.

All baselines can be further subdivided into unsupervised and semi supervised learn-
ing models. The first three models belong to unsupervised learning model, and the last 
three GNN models belong to semi supervised learning model. However, our dataset 
does not have node label information, so we add a loss function based on downstream 
link prediction task to GNN model, For the traditional model (the first three baselines), 
we set the parameters of random walk as follows: window set is equal to 5, walk length 
is equal to 100, each node performs 10 walks, and the number of negative samples is 5, 
We set the embedding dimension of the generation node to 64. We use the Adam opti-
mizer with a learning rate of 0.005 and a L2 penalty weight of 0.001. We use the same 
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training set and test set, and the same training method. For GNN models (MAGNN and 
FactorHNE) using neighbor sampling, the number of neighbors is fixed to 100. For fair 
comparison, our results take the average value of three runs.

Experiment analysis
The experimental results of FactorHNE and other baselines are shown in Table  1. 
Through the analysis of the experimental results, some conclusions can be drawn.

ROC and PR curves are shown in Fig. 1. Our test set contains 52,328 positive and neg-
ative edge samples(generate negative samples by randomly selecting edges that do not 
exist in the dataset), so the value of K in Precision@K and Recall@K is {1000, 10,000, 
20,000}. As can be seen from Table 1, the performance of the traditional model based 
on unsupervised learning is much lower than that of the GNN model based on semi 
supervised learning. The main reason is that they cannot carry out end-to-end learn-
ing and cannot benefit from the gradient optimization of downstream tasks. Therefore, 
the embedding generated may be stable in most of the downstream tasks, but none of 
them will be particularly excellent. Another reason is that they can only use the topology 
information in the network, ignoring the content of the node itself. Therefore, compared 
with the GNN model, the performance gap will be more obvious. After all, the informa-
tion contained is not in the same level.

In addition, by comparing the performance of several GNN models, it can be found 
that the GAT model designed for homogeneous network has great advantages over 
the traditional model, but compared with FactorHNE and HAN, it is still about 5–6% 
worse in performance. In addition, it seems that the improved metapath instance 

Table 1  Experimental results (%) of link prediction task on dataset

Bold values are the highest value of all baselines

Model P@1000 R@1000 P@10,000 R@10,000 P@20,000 R@20,000

Metapath2vec 99.60 ± 0.202 3.81 ± 0.301 95.40 ± 0.202 36.46 ± 0.023 82.65 ± 0.011 63.18 ± 0.022

HIN2vec 99.60 ± 0.051 3.81 ± 0.241 74.22 ± 0.102 28.37 ± 0.043 58.99 ± 0.031 45.09 ± 0.021

HERec 63.30 ± 0.063 2.42 ± 0.182 72.58 ± 0.035 27.74 ± 0.061 71.55 ± 0.102 54.69 ± 0.100

GAT​ 94.90 ± 0.171 3.62 ± 0.304 93.67 ± 0.043 35.80 ± 0.102 90.45 ± 0.211 69.14 ± 0.117

HAN 99.60 ± 0.093 3.81 ± 0.301 99.16 ± 0.202 37.90 ± 0.306 96.28 ± 0.130 73.59 ± 0.317

MAGNN 99.30 ± 0.122 3.80 ± 0.103 98.11 ± 0.351 37.50 ± 0.203 94.99 ± 0.033 72.61 ± 0.091

FactorHNE 99.70 ± 0.062 3.81 ± 0.202 99.07 ± 0.121 37.87 ± 0.082 96.91 ± 0.072 74.08 ± 0.145

Fig. 1  a ROC curves of all models; b P–R curve of all models
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encode component of MAGNN based on HAN does not seem to be particularly 
obvious in our problem, because MAGNN uses the strategy of sampling neighbors 
to improve scalability like FactorHNE, and the actual number of neighbors may 
exceed several orders of magnitude. The reason for poor performance may be that 
the improvement brought by the improvement is not enough to make up for the loss 
of neighbor information Missing gap. In contrast, our FactorHNE model uses the 
strategy of aggregation factor graph to mine multiple semantic information implied 
in metapath. At the same time, it uses sampling neighbor strategy to improve the scal-
ability of the model, and even outperforms HAN which uses more neighbor informa-
tion. In a word, compared with the improved strategy of MAGNN, our strategy of 
aggregation factor graph shows a good effect in solving early summation issue, and its 
performance is also ahead of all baselines in most indicators.

Experiment analysis

In this section, we will fine tune the values of the four parameters, compare the per-
formance changes of the model under different parameters, and measure the change 
degree of the model through the AUC index. The comparative experimental results of 
all parameters are shown in Fig. 5. The four parameters are as follows:

•	 Dimension of hidden embedding Figure  2a shows the influence of dimension of 
hidden embedding on the final performance of the model. We can see that the 
curve rises rapidly at the beginning, achieves the best result when reaching 128, 
and then begins to decline. We think that this is because the aggregation of mul-
tiple factor graphs requires a larger dimension to contain rich information, while 
the latter descending part may contain redundant dimensions, which produces 
noise.

•	 Number of attention head In Fig.  2b, we verify the influence degree of the long 
attention mechanism. We can see that the curve is relatively gentle, and there is a 
slow upward trend at the beginning. Therefore, the long attention mechanism has 
a certain improvement effect on the model, and ensures that the model is more 
stable, which is conducive to the recurrence of the results.

•	 Number of factor graph This parameter represents the number of factor graphs 
we use when factoring neighborhood subgraphs. In Fig. 2c, the curve is basically 
smooth, and the best performance is achieved at 16. Considering the computa-
tional overhead caused by increasing the number of factor graphs, the best per-
formance can be achieved by using fewer factor graphs, and it does not need to 
adjust parameters to get better performance.

•	 Weight of factorization loss This parameter is used to control the proportion of down-
stream task loss and factor graph decomposition loss. From Fig. 2d, we find that the 
AUC can be improved by 2–3% by increasing the decomposition loss of factor graph 
within a certain range, which indicates that the multiple semantic information mined 
by factor graph has a beneficial effect on the prediction performance of the model. 
However, excessive increase in the weight of γ will make a mockery of the impact of 
downstream task loss, resulting in performance degradation.
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Case study

In order to further analyze the biological significance of our model, we select two dif-
ferent diseases for mining analysis. The two different disease are Gait abnormality 
(CUI:C0575081) and Congenital Epicanthus (CUI:C0678230). We use our model with 
optimal performance to calculate the score of possible association between these two 
diseases and all genes in the dataset, and listed the top 20 candidate genes. The results 
are shown in Table 2.

Conclusions
In this paper, we use a new method to solve the early summation problem in hetero-
geneous network GNN model. By factoring the neighborhood subgraphs of homoge-
neous graphs transformed according to metapath, our proposed FactorHNE can mine 
a variety of semantic information in metapath complex patterns, and then generate 
excellent node embedding for link prediction through a double aggregation structure. 
The double aggregation structure first aggregates the semantic information in dif-
ferent factor graphs in a single metapath pattern, and then aggregates the semantic 
information in all metapath pattern by using the attention mechanism. In addition, 
we combine two loss functions in the optimization objective function of the model, 
and control the proportion of the two by weight coefficient to generate the most suit-
able node embedding for link prediction task. In the end, we compare the advantages 
and disadvantages of our model with a variety of baselines, and analyze some factors 
that affect the performance of the model by adjusting multiple parameters. Generally 
speaking, the FactorHNE model proposed by us shows good scalability and perfor-
mance advantages.

a b

c d

Fig. 2  Parameter analysis of FactorHNE
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Materials and methods
DataSet

We use the data set which is derived from [8] and contains four different node types: 
gene, disease, gene ontology (GO) and disease symptoms. They are shown in Table 3 
and are available at https://​github.​com/​xasdz​xc/​Facto​rHNE/​tree/​master/​data.

We collected 130,820 disease-gene association from DisGeNet, 213,888 protein–
protein interactions from Menche, 99,087 disease-symptom association from HPO 
and Orphanet, and 218,337 annotation records from STRING 10.

Table 2  Case study results

In the prediction results of the above table, the candidate genes with known association were labeled in the original DB, 
and candidate genes marked with "*" indicate newly discovered associated genes, that is, there are not exist in dataset but 
records in the latest online database. The results show that our model has the ability to mine new disease gene associations, 
such as OFD1-C057508 and FLNA-C0678230. Our model does not remember the existing associations in the original 
dataset, but predicts new candidate genes by mining the hidden patterns. This is very important, because it is difficult to 
mine new genes only by making a high score for the known associations. Therefore, our model can help to decipher the 
relationship between diseases and genes, which has certain biomedical significance

CUI Disease name CUI Disease

C0575081 Gait abnormality CUI:C0678230 Congenital Epicanthus

Gene Original DB Gene Original DB

FGFR3 FBN1

POU1F1 IKBKG

ROR2 LBR

GRM1 KCNJ2

OFD1 DisGeNet* ROR2 DisGeNet

BMPR1B SOX9

FGFR2 FLNA DisGeNet*

RPS29 GDF5

IL6 LMNA

SLC9A6 TBX3

MYH6 FOXG1 DisGeNet

RAF1 OFD1 DisGeNet

COL6A2 HDAC6

MKKS GRM1

MAP3K7 TGDS

PTCH2 WDR60 DisGeNet

KCNJ2 GJA1 DisGeNet

RAG1 OAT

LMNA DisGeNet ZMPSTE24

FAS DisGeNet TREX1

Table 3  An overview of heterogeneous network dataset

Node Number Relation Metapath

Gene (G) 21584 G–G|G–D|G–O GG|GDG|GOG

Disease (D) 15030 D–G|D–S DGD|DSD

GO  (O) 14204 O–G –

Symptom (S) 6540 S–D –

https://github.com/xasdzxc/FactorHNE/tree/master/data
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All the initial values of edge weights in the heterogeneous network are set to 1. On 
this basis, the metagraph of the heterogeneous network we built is shown in Fig. 3:

Model architecture

In this section, we introduce the implementation principles and details of the indi-
vidual components of the FactorHNE model. FactorHNE is composed of three main 
parts: neighborhood subgraph factorization, inter-metapath factor graph aggre-
gation, and multi-metapath semantic aggregation. Figure  4 illustrates the overall 
framework of the FactorHNE model.

Fig. 3  Metagraph for heterogeneous networks

N
eighborhood

Subgraph
Factorization

FactorG
raph

Aggregation

… …

Sem
antic

Attention

…

Target Node

…

Metapath-1

Metapath-n

Target Node

Factorization

Factor Graph

GAT

GAT

GAT

Neighborhood SubgraphFactorization Factor Graph Aggregationb c

a

Fig. 4  The overall architecture of FactorHNE. a Model global architecture; b neighborhood subgraph factor 
decomposition; c inter-metapath factor graph aggregation
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Neighborhood subgraph factorization

For a heterogeneous graph G = (V ,E) , It owns the node type set A relational type 
set R , two mapping functions: ϕ : V → A and ξ : E → R , and it has the property of 
|A| + |R| > 2 . heterogeneous graph G contains a variety of types of nodes, differ-
ent node contains its own features may not in the same space, such as, d1 dimension 
node features and d2 dimension another type node feature interact directly, even the 
dimension of the same case, is not reasonable, because of the feature space is differ-
ent, just meaningless calculation. In order to solve this problem, we need to all types 
of nodes are projected onto the same vector space here. Our solution is for each node 
v of type a to design a linear transformation matrix Ma ∈ R

d′×da , where d′ denotes the 
dimension of all node type feature vector after the projection, and da represents the 
original feature vector dimension of node type a, so we have the following procedure:

where xav represents the original feature of node v ∈ Va,Va represents the set of all nodes 
belonging to type a ∈ A , and h′v represents the vector representation of node v after pro-
jected into the same space. In this way, it not only solves the problem caused by the 
heterogeneity of heterogeneous network, but also unifies the dimension of model input 
feature vector.

Next, we will define a collection of multiple metapath M, for one of the 
mp = a1 →

r1 a2 →
r2 . . . an−1 →

rn−1 an can be abbreviated to a1 · a2 . . . an−1 · an , 
where the source node connects to the target node through a range of different nodes 
and relationships using a defined pattern, which called “metapath”, and for each 
ml ∈ M , the heterogenous graph G is converted into a homogeneous graph gml

 , where 
l  is index of the different metapaths is included. For each homogeneous graph g from 
one metapath converts, before our neighbor information in aggregate phase to fac-
torization so that can capture a variety of semantic information implied in metapath 
instance edge, the key idea is homogeneous graph based on the transformation of 
metapath only focus on two end node and a synthesis edge, which can cause early 
summarization issue. With the factorization step, the model can capture a variety of 
relations information implied in a single edge at a simple figure, so as to solve early 
summarization issue. For this issue, our solution is to reconstruct the edge weight of 
homogeneous graph g with the same operation for many times, based on the follow-
ing formula:

where We denotes new weight matrix after refactoring with g each edge, e is fac-
tor graph, σ(·) is sigmod function that used for standardize weights, S

(

h′v , h
′
u

)

 com-
pute a score between node v and u (we use a single layer MLP as the implementation) 
because the focus is on the edge, so maintaining the features of nodes, we can get the 
factor graph G =

(

We, h
′
)

 . If we just repeat this step to obtain multiple factor graphs, 
we will not be able to distinguish the information of each factor graph, which will 
only increase the stability of the model and not be able to mine the multiple semantic 
information contained in the single metapath edge. So we need to apply constraints 

(1)h′v = Ma · x
a
v

(2)We = σ
(

S
(

h′v , h
′
u

))
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that will include different information from each factor graph in order to obtain the 
rich semantic information in the metapath instance edge [17]. A discriminant loss 
function for any factor graph is added here, after any label information is included

For each factor graph, we first coded it according to its new edge weight matrix We and 
the original node feature set h′ to obtain a form that is convenient for classifier F(·) pro-
cessing. The classifier adopted is a single-layer full connection layer. Then, after stand-
ardization by the Softmax layer, cross entropy is used to calculate the discriminant loss 
of multiple factor graphs

where N  represents the number of factor graphs, and Ne represents the number of dif-
ferent labels contained in all factor graphs, which we set to Ne = N  in order to distin-
guish each factor graph. I(·) represents the indicator function, and the probability that 
the i th factor graph with label y represented by Pe

i [y] . Through these operations above, 
several factor graphs containing different semantic information can be finally obtained, 
as shown in Fig. 4b.

Inter‑metapath factor graph aggregation

In order to include multiple semantic information from any of the factor graphs, we 
used neighbor information aggregation from each factor graph, and after combining 
the feature information from each of the factor graph to produce any of the specific 
node information from metapath, this part have two steps, shown in Fig. 4c.

As for the single factor graph e, we use the self-attention mechanism proposed in 
the work of Veličković et al. [15] to aggregate the neighbors of the target node on the 
factor graph e. Specifically, we first calculate the attention weight between the target 
node and neighbor j ∈ N  , N represents the set of all neighbors, as shown in the for-
mula follow

where wm
ij  represents the attention weights from nodes 

(

i, j
)

 in factor graph e with the 
metapath m connection, and Attention(·) is used to integrate feature vectors from nodes 
i and j after projection with an attention vector, after the standardization of any neigh-
bor attention weights from the target nodes from metapath m . the process is as follows

Once the attention weights of all the neighbors have been generated, the aggregation 
operation can be performed, as shown in Fig. 5. The formula is as follows:

(3)Ye = Softmax
(

F
(

EnCoder
(

We, h
′
)))

(4)LFactor =
1

N

N
�

i





Ne
�

y=1

−I
�

e = y
�

log
�

Pe
i [y]

�





(5)wm
ij = Attention

(

h′i, h
′
j ,m

)

(6)αm
ij = Softmax

(

wm
ij

)

=
exp(wm

ij )
∑|N |

k=1 exp(w
m
ik )
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N here includes the target node itself. In order to guarantee the aggregation process can 
maintain stability, we adopted multi-head attention mechanism. Meanwhile, it still can 
expand capacity of the model is based on repeat K  times attention aggregation process, 
then K  results concatenate together in the end, all the factors graph generated feature 
vector concatenate together as a representation vector with metapath m.

Multi‑metapath semantic aggregation

Previous sections illustrate a full process based on single metapath m , therefore, we need 
to integrate the semantic information and structural information from different metapath 
{m1,m2, . . . ,ml} . Now we have all node embedding set 

{

Z
m1
v ,Z

m2
v , . . . ,Z

ml
v

}

 generated by 
different metapath pattern. In particular, we averaged any of the target node embedding 
from any metapath as follows

where Wa is a linear transformation matrix that specific to a certain node type a, εa is 
corresponding to the bias of the linear transformation, both are trainable parameter. Va 
denote all node of type a in homogeneous graph based on metapath mi . Similar to the 
process of calculate weight neighbor’s attention weight in section above, for each of the 
metapath mi attention while computing information fusion weights, the formula is as 
follows.

(7)Zm
i =

|N |
∑

j

αm
ij · h

′
j

(8)Pmi =
1

|Va|

∑

v∈Va

tanh
(

WaZ
mi
v + εa

)

(9)wmi =
〈

Q,Pmi

〉

Fig. 5  An example of node aggregation based on self-attention mechanism
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where Q is an attention vector at the single metapath level, �·� is an inner product, ωmi is 
an attention weight of metapath mi and Hv is an embedding vector of the final heteroge-
neous network node v with multi-metapath semantic information.

Optimization

We aim to obtain a heterogeneous network embedding model that dedicated to dis-
ease-gene association prediction. Some previous models based on random walk usu-
ally divide generated node embedding and link prediction into two parts, which leads 
to final node embedding lack of optimization information of link prediction task. Our 
FactorHNE model benefits from the underlying architecture of neural network and 
can combine link prediction task in an end-to-end model. We calculate a similarity 
score by designing the decoder for the node pairs that need to be predicted. Here we 
directly set the decoder as the inner product, and then we have

For the loss function of the model, we adopt the binary cross entropy function, the spe-
cific form is shown as follows

where � is the edge set exist in original network dataset, �−  is a set of gene and disease 
node pairs from negative sampling [21] in original dataset, so that our model can enjoy 
optimization based on downstream tasks. we mentioned before, set up a loss function 
LFactor for graph factorization and as a result, we disposed by setting the weight γ to con-
trol the balance of the loss function from two parts, we have the final optimization goal 
as follows
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