
sensors

Review

A Comprehensive Review on Critical Issues and Possible
Solutions of Motor Imagery Based Electroencephalography
Brain-Computer Interface

Amardeep Singh * , Ali Abdul Hussain , Sunil Lal and Hans W. Guesgen

����������
�������

Citation: Singh, A.; Hussain, A.A.;

Lal, S.; Guesgen, H.W. A

Comprehensive Review on Critical

Issues and Possible Solutions of

Motor Imagery Based

Electroencephalography

Brain-Computer Interface. Sensors

2021, 21, 2173. https://doi.org/

10.3390/s21062173

Academic Editor: Yvonne Tran

Received: 28 December 2020

Accepted: 16 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Fundamental Sciences, Massey University, 4410 Palmerston North, New Zealand;
A.abdulhussain@massey.ac.nz (A.A.H.); S.Lal@massey.ac.nz (S.L.); H.W.Guesgen@massey.ac.nz (H.W.G.)
* Correspondence: A.Singh1@massey.ac.nz

Abstract: Motor imagery (MI) based brain–computer interface (BCI) aims to provide a means of
communication through the utilization of neural activity generated due to kinesthetic imagination
of limbs. Every year, a significant number of publications that are related to new improvements,
challenges, and breakthrough in MI-BCI are made. This paper provides a comprehensive review
of the electroencephalogram (EEG) based MI-BCI system. It describes the current state of the art
in different stages of the MI-BCI (data acquisition, MI training, preprocessing, feature extraction,
channel and feature selection, and classification) pipeline. Although MI-BCI research has been going
for many years, this technology is mostly confined to controlled lab environments. We discuss recent
developments and critical algorithmic issues in MI-based BCI for commercial deployment.

Keywords: motor imagery; brain–computer interface (BCI); BCI illiteracy; adaptive BCI; online BCI;
asynchronous BCI; BCI calibration; BCI training; electroencephalography (EEG)

1. Introduction

Numerous people with serious motor disorders are unable to communicate properly
if at all. This significantly impacts their quality of life and ability to live independently.
In this respect, brain–computer interface (BCI) aims to provide a means of communication.
BCIs translate the acquired neural activity into control commands for external devices [1].
Primarily, BCI systems can be cast into various categories that are based on interactions
with a user interface and neuroimaging technique applied to capture neural activity. Based
on users’ interaction with brain-computer interface, the EEG-BCI system is categorized
into synchronous and asynchronous BCI. In the synchronous BCI system, brain activity
is generated by the user, which is based on some cue or event taking place in the system
at a certain time. This cue helps in differentiating between intentional neural activity for
a control signal from unintentional neural activity in the brain [2]. On the other hand,
asynchronous BCI works independently of a cue. The asynchronous BCI system also
needs to differentiate between neural activity that a user intentionally generates from the
unintentional neural activity [3].

Based on neuroimaging techniques, BCI systems fall into invasive and non-invasive
categories. In an invasive BCI, neural activity is captured under the skull, thus requiring
the surgery to plant the sensors in different parts of the brain. This results in a high-quality
signal, is but prone to scar tissue build-up over time, resulting in a loss of signal [4].

Additionally, once the implanted sensors cannot be moved to measures the other
parts of the brain [5]. In contrast to this, non-invasive BCI captures brain activity from
the surface of the skull. A signal that is acquired through non-invasive technologies
has a low signal to noise ratio. Electrocorticography (ECoG) and micro electrodes are
some examples of invasive neuroimaging techniques. Electroencephalography (EEG),
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and
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functional near infrared (fNIR) are examples of non-invasive neuroimaging techniques [6].
All of these methods work on different principles and they provide different levels of
portability, spatial, and temporal resolution [7]. Among these brain imaging methods, an
EEG is widely employed because of its ease of use, safety, high portability, relatively low
cost, and, most importantly, high temporal resolution.

Electroencephalography (EEG) is one of the non-invasive and portable neuroimaging
techniques that records electrical activity generated due to the synchronized activity of cere-
bral neurons. Primarily, pyramidal neurons’ activity contributes more to EEG recordings
because of their very stable orientated electric field to the cortical surface [6]. This is due to
the perpendicular orientation of pyramidal cells with respect to the cortical surface. As a
result, the electrical field is projected stably towards the scalp in contrast to the other brain
cells whose electrical field is very dispersed and cancels out [7]. The measured EEG signal
is due to the complex firing pattern of billions of neurons in the brain. Owing to this pattern,
the EEG signal is a combination of various rhythms that reflect certain cognitive states of
the individual [7]. These rhythms have different properties, like frequency, amplitude, and
shape etcetera. These properties depend upon individual, external stimulus, and the inter-
nal state of the individual. Broadly, these rhythms are classified into various categories that
are based on their frequency, amplitude, shape, and spatial localization [6]. Furthermore,
these rhythms are broadly categorized under six frequency bands: delta band (1–4 Hz),
theta band (4–8 Hz), alpha band (8–12 Hz), mu band (8–12 Hz), beta band (13–25 Hz), and
gamma band (>25 Hz). EEG control signals can be categorized as evoked and spontaneous.
An evoked signal corresponds to neural activity that is generated due to external stimuli.
Examples of evoked control signals are steady-state visual-evoked potentials (SSVEP),
visual-evoked potentials (VEP), and P300 [4]. On the other hand, a spontaneous control
signal is due to voluntarily neural activity without any aid of external stimulus. Slow
cortical potentials (SCPs) and sensorimotor rhythms (SMRs) are such control signals [4]. As
mentioned above, an evoked control signal requires external stimulus, thus the user needs
to focus on presentation to generate neural activity. This continuous focus causes fatigue
in users. Nevertheless, much less training is required to generate evoked control signals.
Spontaneous control signals offer natural control over neural activity, but they require long
training to master self regulation of brain rhythms. To do so, different cognitive tasks are
employed to generate spontaneous control signals.

Motor imagery (MI) is one of the most widely used cognitive tasks, which corresponds
to sensorimotor rhythms (SMRs) as a control signal. Motor imagery has advantages for
the brain–computer interface in both synchronous and asynchronous mode. MI can be
defined as the user sending a command to a system through the imagination of a kinesthetic
movement of his/her limbs. For example, a user moving a prosthetic arm by imagining
his/her left/right hand moving. The imagination of movement creates a similar brain
activity to that of an actual movement, which decreases the percentage of power relative
to a reference baseline in both the mu and beta frequencies over the sensorimotor cortex;
this is known as event related desynchronization (ERD) [8]. Immediately after the user’s
imagination task, the user’s brain activity can experience an event-related synchronization
(ERS), which is the increase to the percentage of power relative to the reference baseline [8].
Because ERD/ERS are mixed with other brain activity created unintentionally by the user,
such as involuntarily muscle movements and eye blinks, the signal to noise ratio (SNR)
is low. The algorithm that is designed for MI-BCI must be able to differentiate between
MI activity for control signal from other involuntary activity. In doing so, the MI-BCI
pipeline consists of many stages, like data acquisition, preprocessing, feature extraction,
and classification. Therefore, the objective of this manuscript is to review the MI based BCI
system with regards to algorithms that were utilized at different stages of MI-BCI pipeline.
This brief survey is structured under an architectural framework that helps in mapping
the literature to each component of the MI-BCI pipeline. In doing so, this article identifies
critical research gaps that warrant further exploration along with current developments to
mitigate these issues.
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Figure 1 breaks down the contents of the entire article. This review article is
divided into two parts. The first part of this article introduces the Architecture of MI
based BCI. More specifically, how the EEG signal is captured from the brain is described
under Section 2.1. In Section 2.2, we discuss how during the calibration phase the user
acquires skills to modulate brain waves into control commands. The signal pre-processing
subsection explains how unwanted artifacts are removed from the EEG signal to improve
the signal to noise ratio. Section 2.4 discusses different approaches to extract information
that is related to a motor imagery event in terms of features that are finally classified into
control commands. Subsection on Sections 2.5 and 2.6 deals with issues related to finding
optimal channels or features and reducing dimensionality of feature space in order to
improve BCI performance. Section 2.7 provides details of how features are classified into
control commands. Lastly, Section 2.8 covers how to evaluate the performance of BCI. The
last part of this article discusses the key issues that need further exploration along with the
current state of the art that address these research challenges.

Figure 1. Breakdown of the article.

2. Architecture of MI Based BCI

We present a framework of MI-BCI pipeline encompassing all of the components
that are responsible for its working in Figure 2. In short, MI-BCI works in calibration and
online mode, respectively. During calibration mode, the user learns voluntary ERD/ERS
regulation in the EEG signal and BCI learns ERD/ERS mapping through temporal, spectral,
and spatial characteristics of the user’s EEG signal. In online mode, the user’s characteristics
are translated into a control signal for external application and feedback is given to the user.
In framework, optional steps that are enclosed in yellow box, such as channel selection,
feature selection, and dimensionality reduction. This framework is also helpful in mapping
the literature to different components of the MI-BCI pipeline in order to understand the
current research gaps.

2.1. Data Acquisition

The signal acquisition unit is represented by electrodes whether they are invasive or
non-invasive. In the non-invasive approach, electrodes are usually connected with the skin
via conductive gel to create a stable electrical connection for a good signal. The combination
of conductive gel and electrode attenuate the transmission of low frequencies, but take a
very long time to setup. Another alternative is dry electrodes, which make direct contact
with skin without conductive gel. Dry electrodes are easy and faster to apply, but are more
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prone to motion artifacts [5]. EEG signals are usually acquired under unipolar and bipolar
modes. In unipolar mode, a potential difference between all the electrodes with respect
to one reference are acquired. Each electrode-reference pair form one EEG channel. On
the contrary, in bipolar mode, the potential difference between two specified electrodes
are acquired and each pair make a EEG channel [9]. To standardize positions and naming,
electrodes are placed on the scalp under international 10–20 standard. This helps in reliable
data collection and consistency among different BCI sessions [10].

Figure 3 shows the international 10–20 electrodes’ placement scheme from the side
and top view of the head. Once the potential difference has been identified by the EEG
electrodes, it is amplified and digitized in order to store it in a computer. This process can
be expressed as taking one sample (discrete snapshots) of the continuous cognitive activity.
This discrete snapshot (sample) depends on the sampling rate of the acquisition device. For
example, an EEG acquisition device with a sampling rate of 256 Hz can take 256 samples
per second. High sampling rates and more EEG channels are used to increase the temporal
and spatial resolutions of an EEG acquisition device.

Figure 2. Block diagram showing the typical structure of MI-based brain–computer interface (BCI).

Figure 3. The international 10–20 standard electrode position system.The left image presents a left
side view of the head with electrode positions, and the right image shows a top view of the head.
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2.2. MI Training

During calibration phase, the user learns how to modulate EEG signals with MI task
pattern. Just as with any skill, MI training helps in acquiring the ability to produce a
distinct and stable EEG pattern while performing the different MI tasks [11]. The Graz
training paradigm is the standard training approach for motor imagery [8,11]. The Graz
approach is based on machine learning, where the system adapts with the user’s EEG
pattern. During this training paradigm, the user is instructed through a cue to perform a
motor imagery task, such as left and right-hand imagination. EEG signals that are collected
during different imagination tasks are used to train the system differentiate between the MI-
tasks from the EEG pattern. Once the system is trained, users are instructed to perform MI
tasks, but this time feedback is provided to the user. This process is repeated multiple times
over different sessions. Each session has further multiple runs of the Graz training protocol.

The trial time vary depending on scenario. Typically, one trial of graz training protocol
lasts eight seconds, as illustrated in Figure 4. At the outset of each MI trail, which is t = 0 s,
a fixation cross is displayed to instruct the user that the trial has started. After a two-second
break (t = 2 s), a beep is used to prepare the user for the upcoming MI task. This 2 s break
acts as a baseline period to see the MI task pattern in the EEG signal in the upcoming
MI task at t = 3 s. After three seconds, an arrow appears on the screen indicating the
MI task. For example, the arrow in the right direction means right hand motor imagery.
No feedback is provided during the initial training phase. After the system is calibrated,
feedback is provided for four seconds. The direction of the feedback bar shows recognition
of the MI pattern by system and the length of the bar represents confidence of the system
in its recognition of the MI class pattern.

Figure 4. An illustration of one trial’s timing in the Graz protocol [11].

Various other extensions of the Graz paradigm is proposed in the literature, mostly
focusing on providing alternative MI instructions and feedback from the system. For
example, the bar feedback is replaced by auditory [12] and tactile [13] feedback to reduce the
workload on the visual channel. Similarly, virtual reality based games and environments
are explored to provide MI instructions and feedback for training [14,15].

2.3. Signal Pre-Processing and Artifacts Removal

Artifacts are nothing but unwanted activities during signal acquisition. They are
comprised of an incorrect collection of signal or signals acquired from areas other than
the cerebral origin of the scalp area. Generally, artifacts are classified into two major
categories, termed as endogenous and exogenous artifacts. Endogenous artifacts are
generated from the human body excluding the brain, and extra-physiologic artifacts are
generated from external sources (i.e., sources from outside the human body) [7]. Some of
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the common endogenous and exogenous artifacts that accrue during EEG signal acquisition
are bad electrode position, poor ground electrode, obstructions to electrode path (e.g., hair),
eye blinks, electrode impedance, electromagnetic noise, equipment problem, power line
interference, ocular artifacts, cardiac artifacts, and muscle disturbances [16]. The signal
pre-processing block is responsible for the removal of such exogenous and endogenous
artifacts from the EEG signal. MI-BCI systems mainly rely on a temporal and spatial
filtering approach.

Temporal filtering is the most commonly used pre-processing approach for EEG sig-
nals. Temporal filters are usually low pass or band pass filters that are used to restrict
signals in the frequency band where neurophysiological information relevant to the cogni-
tive task lies. For MI, this usually means a Butterworth or Chebyshev bandpass filter of
8–30 Hz frequency. This bandpass filter keeps both the mu and beta frequency bands as
they are known to be associated with motor-related tasks [8]. However, MI task-related
information is also present in the spatial domain. Similar to temporal filters, spatial filters
extract the necessary spatial information associated with a motor-related task embedded in
EEG signals. A common average reference (CAR) is a spatial filter that removes the com-
mon components from all channels, leaving channels with only channel specific signals [17].
This is done by removing the mean of all k channels from each channel xi:

xCAR
i = xi −mean(xi). (1)

CAR benefits from being a very computationally cheap approach. An updated version
of CAR is the Laplacian spatial filter. The Laplacian spatial filter aims to remove the
common components of neighboring signals, which increases the difference between
channels [18]. The Laplacian spatial filter is calculated through the following equation:

VLAP
i = VER

i − ∑
j∈Si

gijVER
j (2)

gij =
dij

∑j∈Si
dij

(3)

where VLAP
i is the ith channel that is filtered by the Laplacian method, VER

i is the poten-
tial difference between ith electrode and reference electrode, Si is the set of neighboring
electrodes to the ith electrode, and dij is the Euclidean distance between ith and jth elec-
trode [18].

2.4. Feature Extraction

Measuring motor imagery through an EEG leads to a large amount of data due to
high sampling rate and electrodes. In order to achieve the best possible performance, it
is necessary to work with small values that are capable of discriminating MI task activity
from unintentional neural activity. These small values are called “features” and the process
to achieve these values is called “feature extraction”. Formally, feature extraction is the
mapping of preprocessed large EEG data into a feature space. This feature space should
contain all of the necessary discrimination information for a classifier to do its job. For
MI-BCI, the feature extraction methods can be divided into six categories: (a) time do-
main methods that exploit temporal information embedded in the EEG signal; (b) spectral
methods extract information that is embedded in the frequency domain of EEG signals;
(c) time-frequency methods works together on information in the time and frequency
domain; (d) spatial methods extract spatial information from EEG signals coming from
multiple electrodes; (e) spatio-temporal methods works together with spatial and tem-
poral information to extract features; (f) spatio-spectral methods use spatial and spectral
information of the multivariate EEG signals for feature extraction; and, (e) Riemannian
Manifold methods, which are essentially a sub category of spatio-temporal methods that
exploits manifold properties of EEG data for feature extraction. Table 1 summarizes all of
the feature extraction methods discussed in the following subsections.
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Table 1. This table provides a summary of the feature extraction methods.

A Summary of Feature Extraction Methods

Temporal
methods

Statistical Features [19,20]

Mean(x̄) = 1
T ∑T

t=1 |xt |,
Std.Dev(σ) =

√
1
T ∑T

t=1(xt − x̄)2

Variance(x) = 1
T ∑T

t=1(xt − x̄)2

skewness =
1
T ∑T

t=1(xt−x̄)3

σ3

kurtosis =
1
T ∑T

t=1(xt−x̄)3

σ4

Hijorth features [21]
Activity = ∑T

t=1(xt−x̄)2

T
Mobility = Var(x̂t)

Var(xt)

Complexity = Mobility(x̂t)
Mobility(xt)

RMS [20] RMSt =
√

1
N ∑N

i−1 x2
i

IEEG [20] IEEGt = ∑N
i=1 |xI

Fractal Dimension [22] D =
log(L/a)
log(d/a)

Autoregressive modeling [21] xt = ∑
p
i=1 ai xt−i + εt

where {a for i = 1,. . . , p} are AR model coefficients and p is the model order

Peak-Valley modeling [23,24] Cosine angles, Euclidean distance between neighbouring peak and valley points

Entropy [25,26] S = −∑N
i=1 pi ln pi

Quaternion modeling [27]

Mean(µ) = ∑(qmod)
N

Variance(σ) = (∑(qmod)
2−µ)2+∑(qmod)

2

2N

Contrast(con) = ∑(qmod)
2

N
Homogeneity(H) = ∑ (1)

1+(qmod)2

ClusterShade(cs) = ∑(qmod − µ)3

Clusterprominence(cp) = ∑(qmod − µ)4

Spectral
methods

Band power [19]
F(s) = ∑N−1

n=0 xne
−2π

N sn , s = 0, 1, ..., N − 1
Pow(s) =

∫ fh igh
fl ow F(s)2ds

Spectral Entropy [26]
SH = −∑

f 2
f 1 P̂( f ) log(P̂( f ))

P̂( f ) = P( f )/ ∑
f 2
f 1 P( f ), P(f) is PSD of signal

Spectral statistical
Features[19] Mean Peak Frequency, Mean Power, Variance of Central Frequency etc.

Time-frequency
Methods

STFT [28] S(m, k) = ∑N−1
n=0 s(n + mN)w(n)e−j 2π

N nk

Wavelet transform [29] ψs,τ(t) = 1√
s ψ
( t−τ

s
)

EMD [30] x(t) = ∑n
i=1 ci(t) + rn(t)

Spatial Methods

CSP [31] J(w) = wT C1w
wT C2w

BSS [32,33]
x(t) = As(t)
s′(t) = Bx(t)
Approaches like ICA , CCD estimate s′(t)

Spatio-temporal
methods

Sample covariance matrices [34] Ci =
Xi XT

i
tr(Xi XT

i )

Where Ci is covariance matrix of single trial

2.4.1. Time Domain Methods

An EEG is a non-stationary signal whose amplitude, phase, and frequency changes
with SMR modulations. Time domain methods investigate how the SMR modulation
changes as a function of time [35]. Time domain methods work on each channel individually
and extract temporal information related to the task. The extracted features from different
channels are fused together to make a feature set for a single MI trial. In MI-BCI literature,
statistical features, like mean, root mean square(RMS),integrated EEG (power of signal),
standard deviation, variance, skewness, and kurtosis, are vastly employed to classify MI
tasks [19,20]. Other alternative time domain methods that are based on variance of signal
are Hjorth parameters. A Hjorth parameter measures power (activity), mean frequency
(mobility) and change in frequency (complexity) of EEG signal [21]. Similarly, fractal
dimension (FD) is non-linear method that measures EEG signals complexity [22]. Auto-
regressive (AR) modeling of the EEG signal is another typical time domain approach. The
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AR models signal from each channel as a weighted combination of its previous samples
and AR coefficients are used as features. An extension of AR modelling is adaptive
auto regressive modelling (AAR) and it is also used for MI-BCI studies. Unlike AR, the
coefficients in AAR are not constant and, in fact, varies with time [21]. Information theory-
based features, like entropy, are also used in time domain to quantify complexity of the
EEG signal [25]. Temporal domain entropy works with amplitude of EEG signal [26].

Another way of extracting temporal information is to represent the signal in terms of
peaks (local maximum) and valley (local minimum) [23]. In this peak-valley representa-
tion, various features points are extracted between neighbouring peak and valley points.
Using the peak-valley model, Yilmaz et al. [24] approximated EEG signal in 2D vector
that contains cosine angle between transition points (peak or valley) and normalized the
ratio of Euclidean distance in a left/right transition (peak or valley) points. In the same
vein, Mendoza et al. [27] proposed a quaternion based signal analysis that represents a
multi-channel EEG signal in terms of their orientation and rotation then obtained statis-
tical features for classification. Recently, EEG signal analysis based on graph theory and
functional connectivity (FC) is employed in MI-BCI [36]. These methods take advantage
of the functional communication between the brain regions during cognitive task like MI.
In graph based methods, the EEG data are represented through graph adjacency matrices
that correspond to temporal correlations (correlation approaches used like Pearson or
Correntropy) between different brain regions (electrodes). Features are extracted from this
graph in terms of the graph node’s importance, such as centrality measure [17].

The advent of data driven approaches, like deep learning, has largely alleviated
the need for hand crafted features. In these approaches, a raw or preprocessed EEG
signal is passed through different convolution and pooling layers to extract temporal
information [37]. In the same vein, Lawhern et al. [38] proposed EEGNET deep learning
architecture that works with raw EEG signals. It starts with a temporal convolution layer
to learn the frequency filters (equivalent to preprocessing), another depth-wise convolution
layer is used to learn frequency-specific spatial filters. Lastly, a combination of a depth-wise
convolution along with point wise convolution are used to fuse features coming form
previous layers for classification. Instead of using a raw or preprocessed signal, another
approach is for the signal to be approximated and then passed to a deep neural network
model. A one dimension-aggregate approximation (1d-AX) is one way of achieving this [39].
1d-AX takes a signal from each channel in a single trial, normalizes it, and applies linear
regression. These regression results are passed as features to the neural network.

2.4.2. Spectral Domain Methods

Spectral methods extract information from EEG signals in the frequency domain.
Similar to the temporal method, statistical methods are also applied in the frequency
domain. Samuel et al. [19] used statistical methods in both time and frequency domain
to decode motor imagery. The most used spectral method is the power (energy) of EEG
signals in specific frequency band. Usually, spectral power is calculated in mu (µ), beta (β),
theta (θ), and delta (δ) frequency bands. This is done by decomposing the EEG signal into
its frequency components at the chosen frequency band while using Fast Fourier Transform
(FFT) [28,40]. The other frequency domain based method is Power Spectral Density (PSD).
PSD is the measure of how the power of a signal is distributed over frequency. There are
multiple methods of estimating it, such as Welch’s averaged modified periodogram [41],
Yule–Walker equation [42], or Lomb–Scargle periodogram [43]. Spectral entropy is another
spectral feature that relies on PSD to quantify information in the signal [44].

2.4.3. Time-Frequency Methods

Time-frequency (t-f) methods works simultaneously in both temporal and spectral
domains to extract information in signal. One of the approaches used in t-f domain is
the short Term Fourier Transform (STFT), which segments the signal into overlapping
time frames on which FFT is applied by the fixed window function [28]. Another way
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to generate t-f spectra is through a wavelet transform [29], which decomposes the signal
into wavelets (finite harmonic functions (sin/cos)). This captures the characteristics in the
joint time-frequency domain. Another similar method in the t-f domain is empirical mode
decomposition (EMD) [30]. However, instead of decomposing the signal into wavelets, it
decomposes a signal x(t) into simple oscillatory functions, called Intrinsic Mode Functions
(IMFs) [45]. IMFs are a orthogonal representation of signals, such that first IMF captures a
higher frequency and subsequent IMFs capture lower frequencies in EEG signals. Table 1
sums up all the t-f methods.

2.4.4. Spatial Domain Methods

Unlike temporal methods that work with only one channel at a time, spatial domain
methods work with multiple channels. Spatial methods try to extract features by finding
a combination of channels. This can be achieved while using blind source separation
(BSS) [46]. BSS assumes that every single channel is the sum of clean EEG signals and
several artifacts. Mathematically, this looks like the following:

x(t) = As(t)

where x(t) is the channels, s(t) is the sources, and A is mixing matrix. They aim to find a
matrix B that reverse the channels back into their original sources:

s′(t) = Bx(t).

Examples of a BSS algorithms are Cortical current density (CCD) [32] and independent
component analysis (ICA) [33]. BSS methods are unsupervised; thus, relations between the
classes and features are unknown. However, there exist a supervised method that extract
features based on class information, and one of such method is Common Spatial Pattern
(CSP). CSP is based on the simultaneous diagonalization of two classes of EEG of their
two respective estimated covariance matrices. CSP aims at learning a projection matrix W
(spatial filters) that maximizes the variance of signal from one class while minimizing the
variance from the other class [31]. This is mathematically represented as:

J(w) =
wTC1w
wTC2w

where C1, C2 represent the estimated co-variance matrix of each MI class. The above
equation can be solved while using the Lagrange multiplier method. CSP is known to
be highly sensitive to noise and performs poorly under small sample settings, thus a
regularized version has been developed [31]. There are two ways to regularize the CSP
algorithm (also known as regularized CSP), either by penalizing its objective function
J(w), or regularizing its inputs (covariance matrices) [31]. One can regularize the objective
function by adding a penalty term to the denominator:

J(w) =
wTC1w

wTC2w + αP(w)

where P(.) is a penalty function, and α is a constant that is determined by the user (α = 0
for CSP) [31]. While CSP inputs can be regularized by:

C̃c = (1− γ)C̄c + γI

C̄c = (1− β)stCc + βGc

where st is a scalar and Gc is a “generic” covariance matrix [31]. CSP performance becomes
limited when the EEG signal is not filtered in the frequency range appropriate to subject. To
address this issue, the filter bank CSP (FBCSP) algorithm is proposed that passes the signal
though multiple temporal filters and CSP energy features are computed from each band [47].
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Finally, CSP features from sub-bands are fused together for classification. This results in a
large number of features, which limits the performance. To address this alternative method,
sub-band common spatial pattern (SBCSP) is proposed, which employs linear discriminant
analysis (LDA) to reduce the dimensionality. Finding multiple sub-bands to compute CSP
energy features increases the computational cost. To solve this, discriminant filter bank
CSP (DFBCSP) is proposed, which utilizes the fisher ratio (FR) to select most discriminant
sub-bands from multiple overlapping sub-bands [48].

2.4.5. Spatio-Temporal and Spatio-Spectral Methods

Spatio-temporal methods are algorithms that manipulate both time and space (chan-
nels) domains. The main spatio-temporal methods that are used in past MI-BCI studies
are Riemannian Manifold-based methods (discussed in the next section). Other spatio-
temporal methods are usually based on deep learning. Echeverri et al. [46] proposed one
such approach, which uses the BSS algorithm to separate the input signal x(t) from a
single channel into an equal number of estimated source signals ŝ(t). These source signals
are sorted, based on a correlation between their spectral components. Finally, continious
wavelet transform is applied to sorted source signals to achieve t-f spectra images that are
further subjected to a convolution neural network (CNN) for classification. In the same
vein, Li et. al. [49] proposed an end-to-end EEG decoding framework that extracts the
spatial and temporal features from raw EEG signals. In a similar manner, Yang et al. [50]
proposed a combination long short-term memory network (LSTM) and convolutional
neural network that concurrently learns temporal and spectral correlations from a raw EEG
signal. In addition, they used discrete wavelet transformation decomposition to extract
information in the spectral domain for classification of the MI task.

Like spatio-temporal methods, spatio-spectral methods extract information from
spectral and spatial domains. Temporal and spatial filters are usually learned in sequential
(linear) order, whereas, if they are learned simultaneously, a unified framework will be
able to extract information from spatial and spectral domains. For instance, Wu et al. [51]
employed a statistical learning theory to learn most discriminating temporal and spectral
filters simultaneously. In the same vein, Suk and Lee [52] used a particle-filter algorithm
and mutual information between feature vectors and class labels to learn spatio-spectral
filters in a unified framework. Similarly, Zhang et al. [53] proposed a deep 3-D CNN
network that was based on AlexNet that learns spatial and spectral EEG representation.
Likewise, Bang et al. [54] proposed a method that generates 3D input feature matrix
for the 3-D CNN network by stacking multiple-band spatio-spectral feature maps from
multivariate EEG signal.

2.4.6. Riemannian Geometry Based Methods

Sample covariance matrices (SCM) calculated from EEG signals are widely used in BCI
algorithms. SCM lie in the space of symmetric positive definite (SPD) matrices P(n) = {P =
PT , uTPu > 0, ∀u ∈ Rn} which forms a Riemannian Manifold [34]. Unlike the Euclidean
space, the distance in the Riemannian manifold are curves, as shown in Figure 5. These
curves can be measured while using Affine invariant Riemannian metric (AIRM) [55]: Let
X, Y ∈ Sn

+ be two SPD matrices. Then, the AIRM is given as

δ2
r (X, Y) = ‖Log(X−1/2YX−1/2)‖2

F = ‖Log(X−1Y)‖2
F .

Thus, methods in the Euclidean space can not be directly applied to SCMs. One way of
using Euclidean methods to deal with SCMs is to project the SCM into a tangent space (see
Figure 5). Because the Riemannian manifold (in fact any manifold) locally looks Euclidean,
a reference point Pre f for the mapping that is as close as possible to all data points must be
chosen. This reference point is usually a Riemannian mean Pre f = σ(Pi).
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Figure 5. An image of the Riemannian Manifold displaying an example of a geodesic (the shortest distance between two
Riemannian points), tangent space, and tangent mapping.

2.5. Channel and Feature Selection

EEG data are usually recorded through a large number of locations across the scalp.
This provides a higher spatial resolution and benefits in identifying optimal locations
(channels) that are relevant to BCI application or task. Here channel selections techniques
significantly contribute to identify optimal channels for particular BCI application. Finding
optimal channels not only reduces the computational cost of the system, but also reduces
the subject’s inconvenience due to the large number of channels. Thus, the main objective
of channel selection methods is to identify optimal channels for the BCI task for improving
the classification accuracy and reducing computation time in BCI. The channels’ selection
problem is similar to that of feature selection, where a subset of important features are
selected from a vast number of features. Therefore, channel selection techniques are derived
from feature selection algorithm. Once the channels are selected, we still need to extract
features for classification of the BCI task. We are sometimes even required to use the feature
selection algorithm on selected channels to improve the performance of the system. Feature
or channel selection algorithms have many stages. Firstly, a candidate subset of features
or channels are generated from an original set for evaluation purposes. This candidate
subset is evaluated with respect to some selection criterion. This process is repeated for
each candidate subset until a stopping criterion is reached. The selection criteria are what
differentiates feature selection approaches. There are two stand-alone feature selection
approaches filter approach and wrapper approach. A combination of both is sometimes
used to make hybrid approaches also known as embedded approach. The embedded
method exploits the strengths of both filter and wrapper approaches by combining them in
feature selection process. Figure 6 shows a flow diagram of the above-mentioned feature
selection techniques.
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Filter methods starts with all the features and selects the best subset of features based
on some selection criteria. Usually this selection criteria is based on characteristics such as
information gain, consistency, dependency, correlation, and distance measures [57]. The
advantage of filter methods are their low computational cost and selection of features is
independent of the learning algorithm (classifier). Some of the most widely employed
filter methods are correlation criteria, and mutual information. Correlation detects linear
dependence between variables xi (features) and target Y (MI task classes). It is defined as:

R(i) =
cov(xi, Y)√

var(xi)var(Y)

where cov() is the covariance and var() the variance. Mutual information (I) and its
variant are widely used feature selection filter approaches in the MI-BCI literature. Mutual
Information [58] I(ci; f ) is the measure of the mutual dependence and uncertainty between
two random variables: the features f and the classes ci. This is measured by subtracting
the uncertainty of the class H(ci) (also called initial uncertainty) from the uncertainty of
the class given the features H(ci| f ):

I(ci; f ) = H(ci)− H(ci| f )
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2.5.1. Filter Approach

Filter methods starts with all of the features and selects the best subset of features
based on some selection criteria. This selection criteria are usually based on characteristics,
such as information gain, consistency, dependency, correlation, and distance measures [56].
The advantage of filter methods are their low computational cost and selection of features is
independent of the learning algorithm (classifier). Some of the most widely employed filter
methods are correlation criteria and mutual information. Correlation detects the linear
dependence between variables xi (features) and target Y (MI task classes). It is defined as:

R(i) =
cov(xi, Y)√

var(xi)var(Y)

where cov() is the covariance and var() the variance. Mutual information (I) and its
variant are widely used feature selection filter approaches in the MI-BCI literature. Mutual
Information [57] I(ci; f ) is the measure of the mutual dependence and uncertainty between
two random variables: the features f and the classes ci. This is measured by subtracting the
uncertainty of the class H(ci) (that is also called initial uncertainty) from the uncertainty of
the class given the features H(ci| f ):

I(ci; f ) = H(ci)− H(ci| f )

Class uncertainty H(ci) and class uncertainty, both given the features H(ci| f ), can be
measured using Shannon’s information theory entropy:

H(ci) = −
2

∑
i=1

P(ci) log P(ci)

H(ci| f ) = −
N f

∑
f=1

P( f )

(
2

∑
i=1

P(ci| f ) log P(ci| f )
)
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where P(ci) is the probability density function of class ci, and P(ci| f ) is the conditional
probability density function. When mutual Information is equal to zero I(ci| f ) = 0, the
class ci and the feature f are independent, and, as MI gets higher, the more relevant feature
f to class ci. Thus, MI can be used to select the features by relevance.

Similarly, t-test [58] measures the relevance of a feature to a class. It achieves this by
examining mean µi,j and σi,j variance of a feature f j between class i = {1, 2} through the
following equation:

T( f j) =
|µ1,j − µ2,j|√

σ2
1,j

n1
+

σ2
2,j

n2

where ni (n1 and n2) is the number of trials in class i = {1, 2}. This is then used to
select a subset using the highest scoring features. Correlation based feature selection
(CFS) [59] evaluates subsets of features based on the hypothesis that a good subset is
the one that contains features that are highly correlated with the output classes and not
correlated between them. This is computed using heuristic metric MetricS that divides the
productiveness of k feature subset S by the redundancy that exists in the k features that
compose the subset S:

MetricS =
krc f√

k + k(k− 1)r f f

where rc f is the mean of the class-feature correlation, r f f is the mean of the inter-
feature correlation.

F-score [60] is another feature selection approach that quantifies the discriminative
ability of variables (features) based on the following equation:

F− scorei =
∑c

k=1

(
x̄k

i − x̄i

)2

∑c
k=1

[
1

Nk
i
− 1 ∑

Nk
i

j=1

(
xk

ij − x̄k
i

)] (i = 1, 2..., n)

where c is the number of classes, n is the number of features, Nk
i number of samples of

feature i in class k, and xk
ij is the jth training sample for feature i in class k. Features are

ranked based on F-score, such that a higher F-score value corresponds to most discrimina-
tive feature.

2.5.2. Wrapper Approach

Wrapper approaches select a subset of features, present them as input to a classifier for
training, observe the resulting performance, and stop the search according to a stopping
criterion or propose a new subset if the criterion is not satisfied [56]. Algorithms that fall
under the wrapper approach are mainly searching and evolutionary algorithms. Searching
algorithms start with an empty set and add features (remove features) until a maximum
possible performance from the learning algorithm is reached. Usually, a searching algo-
rithm’s stopping criteria is until the number of features reaches a maximum size that is
specified for the subset. On the other hand, evolutionary algorithms, such as particle
swarm optimization (PSO) [61], differential evolution (DE) [62,63], and artificial bee colony
(ABC) [64,65], find an optimal feature subset by maximizing fitness function’s performance.
Wrapper methods find a more optimal feature subset when compared to filter methods,
but the computational cost is very high, thus not being suitable for very large data-sets.

2.6. Dimensionality Reduction

In contrast to feature selection techniques, dimensionality reduction methods tends
to reduce the number of features in data, but they do so by creating new combinations
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(transformation) of features, whereas feature selection methods, achieve this by including
and excluding features from the original feature set. Mathematically, dimensionality reduc-
tion can be defined as the transformation of high dimensional data (X ∈ RD) into a lower
dimensional data (Z ∈ Rd), where d << D. The dimensional reduction techniques can be
categorized based on their objective function [66]. Those that are based on optimizing an
convex (no local optima) objective function are convex techniques where as techniques
whose optimization function may have local optima are non-convex techniques. Further-
more, these techniques can be linear or non-linear based on the transform function used
to map high dimensional to low dimension. The most used linear-convex technique is
the Principal Component Analysis (PCA), which transforms data in a direction that maxi-
mizes the variance in the data set [67,68]. In a similar vein, Linear Discriminant Analysis
(LDA) [69] is a linear dimensional reduction technique that finds a subspace that maximizes
the distance between multiple classes. To do so, it uses class labels whereas PCA is an unsu-
pervised technique. Independent Component Analysis (ICA) is another linear method that
is found in EEG-BCI literature for dimensionality reduction, which works on the principle
that the EEG signal is a linear mixture of various sources and all sources are independent
of each other [70]. To address the non-linearity in a data-points structure, PCA can be
extended by embedding it with a kernel function (KPCA) [70]. KPCA first transforms
the data from the original space into kernel space using non-linear kernel transformation
function, and then PCA is applied in kernel space. Likewise, Multilayer Autoencoders (AE)
is an unsupervised, non-convex. and non-linear technique fpr reducing the dimensionality
of data [66]. AE [71] takes the original data and reconstructs into lower dimensional output
using the neural network. The drawback of the above discussed methods is that they do
not consider the geometry of data prior to transformation. Thus, manifold learning for
dimensionality reduction has recently gained more attention in MI-BCI research.

Manifold learning-based methods recover the original domain structure in reduced
dimensional structure of data. Generally, these methods are non-linear and divided into
global and local categories based on data matrix used for mapping high-dimensional to
low-dimensional. Global methods used full EEG data covariance matrix and aim to retain
global structure, and do not take the distribution of neighbouring points into account [72].
Isometric feature mapping (Isomap) [73,74] and diffusion maps [73,75] are some of these
global methods. In order to preserve global structure of manifold, isomap and diffusion
maps aim to preserve pairwise geodesic distance and diffusion distance between data-
points, respectively. In contrast, local methods use a sparse matrix to solve eigenproblems,
and their goal is to retain the local structure of the data. Locally, Linear Embedding [76,77],
Laplacian eigenmaps [74], and local tangent space alignment (LTSA) [78] are some of these
local methods. LLE assume manifold is linear locally and thus reconstruct data point from
linear combination of its neighbouring points. Similar to LLE, Laplacian Eigenmaps [74]
preserve the local structure by computing low-dimensional subspace, in which the pairwise
distance between a datapoint and its neighbours is minimal. Similarly, the LTSA [78] maps
datapoints in high dimensional manifold to its local tangent space and there reconstruct
the low dimensional representation of the manifold. All of the above methods are designed
for a general manifold, thus approximating the geodesic distance without information of
the specific manifold. The EEG covariance matrix lies in Riemannian manifold; therefore,
more methods focused on dimensionality reduction are developed.

When considering the space of EEG matrices in Riemannian manifold, Xie et al. [78]
proposed bilinear sub-manifold learning (BSML) that preserve the pairwise Riemannian
geodesic distance between the data points instead of approximating the geodesic distance.
Likewise, Horev et al. [55] extended PCA in Riemannian manifold by finding a matrix
W ∈ Rn×p that maps the data from the current Riemannian space to a lower dimension
Riemannian space while maximising variance. Along the same context, Davoudi et al. [79]
proposed a nonlinear dimensionality reduction methods that preserves the distances to the
local mean (DPLM) and takes the geometry of the symmetric positive definite manifold into
account. Tanaka et al. [80] proposed creating a graph that contains the location electrodes



Sensors 2021, 21, 2173 15 of 35

and their respective signals, and later applies the graph Fourier transform (GFT) to reduce
the dimensions.

2.7. Classification

Classification is the mapping of the feature space (Z ∈ Rd) into the target space
(y ∈ TargetSpace). This mapping is usually created by three things: a mapping function f ∈
FunctionSpace, an objective function J(w), and a minimization/maximization algorithm
(iterative or by direct calculation). Each of these has a role in the classifications process.
The mapping function f determines both the space at that is being worked on and the
approximation abilities of the classifier, whereas the objective function J(w) describes the
problem that the classifier aims to solve. Finally, the minimization/maximization algorithm
aims at finding the best (optimal) mapping function f : FeatureSpace → TargetSpace
that maps the data to its targets based on the objective function J(w). The classification
algorithms fall into Euclidean and Riemannian manifold based on how they interpret EEG
feature space.

2.7.1. Euclidean Space Methods

Euclidean space Rn is the space of all n-dimensional real number vectors. Most of
the classification algorithms work in this space. One of such algorithms is Decision Trees
(DT) [81]. DTs creates a tree structure where each node f (x) (shown in Table 2) is a piece-
wise function that outputs a child based on a feature xi and threshold c. Both the feature
xi and the threshold c are determined by maximising (i.e., greedy algorithm) an objective
function (e.g., gain impurity or information gain). This process is then repeated for each
child output. If an output child does not improve the objective function, the node f (x)
outputs a class ∈ {1,−1} instead.

Linear discriminant analysis (LDA) [82] is an algorithm that creates a projection vector
w that maximises the distance between classes SB and minimizes the variance within a
class SW

(
JLDA(w) = maxw∈Rn

wTSBw
wTSW w

)
. This is done by finding a generalized eigenvector

of SBw = λSWw. The classification is achieved by finding a threshold c that separates both
classes, such as, if the dot product is below the threshold c, it belongs to class 1; otherwise
it belongs to class 2. Duda et al. [83] described extension of LDA for multi-class problem.

The support vector machine (SVM) is another classification algorithm that works in the
Euclidean space [82]. We later discuss the extension of this algorithm into the Riemannian
manifold. SVM works by projecting the data points {xi}M

i=1 onto a hyperplaneH {φ(xi)}M
i=1.

A plane in the hyperplane H is then created by solving the objective function (shown in
Table 2) subject to αi ≥ 0 and ∑i αiyi = 0 using quadratic programming where <,>H is
the dot product in hyperplaneH. This plane is then used to distinguish between classes
fSVM(x) = sgn(b + ∑i yiαik(x, xi)), where k(x, xi) =< φ(xi), φ(xj) >H is the hyperplane
kernel. Different kernels exist for hyperplanes, such as the linear kernel k(x, xi) = xTxi, the
polynomial kernel k(x, xi) = (xTxi + c)d, where c is a constant, and the exponential kernel
k(x, xi) = exp (−γ‖x− xi‖2).

While DT, LDA and SVM have limited approximation abilities, multilayer perceptron
(MLP) has no limits, as it is a universal approximate function. MLP f (x) = ∑i w(2)

i ψ
(1)
i

(∑j w(1)
j xj + b), as the name suggests, is a multilayer algorithms with each layer containing

perceptrons that can fire ψ(.). The layers are connected by weights w that are trained
using a minimization algorithm, such as stochastic gradient descent (SGD) or Adam
algorithm. A convolutional neural network (CNN) is an extension to MLP. It extends the
MLP algorithm by adding a convolution and pooling layers. In the convolution layer, the
high-level information is extracted by using a matrix kernel that is applied to each part of
the data matrix. While in the pooling layer, it extracts dominant features and decreases
the computational power that is required to process the data by finding the maximum or
average of the sub-matrices.
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2.7.2. Riemannian Space Methods

A Riemannian manifold is created when the EEG data are taken and converted
into sample covariance matrices (SCM). This Riemannian manifold differs for the Eu-
clidean space. For example, a metric for measuring distances between two points in
the Riemannian manifold is not equivalent to its Euclidean counterpart. The minimum
distance to Riemannian mean (MDRM) is the most popular classification algorithm in
the Riemannian manifold [34]. MDRM is the extension of the Euclidean classification
algorithm in the Riemannian manifold. This algorithm take in the data in the form of sam-
ple covariance matrices (SCM) and then calculates the Riemannian mean σ(P1, . . . , Pm) =
arg minP∈P(n) ∑m

i=1 δ2
R(P, Pi) for each class using it to label data where δR(P1, P2) =

‖Log(P−1
1 P2)‖F =

[
∑n

i=1 log2 λi

]1/2
is the Riemannian distance. The Riemannian mean

equation could be thought of as its objective functions J(P), while the algorithm that is used
to find it could be conceptualised as a minimisation algorithm. MDRM has the following
mapping function:

fMDRM(Pm+1) = arg min
j∈{1,2,... }

δR(Pm+1, PΩj)

where PΩj is the mean of class j. Similarly, Riemannian SVM (R-SVM) [34], is the natural
extension of SVM algorithm into the Riemannian manifold. It uses the tangent space of a
reference matrix Cref as its hyper plane. This results in the following kernel:

kR(vect(Ci), vect(Cj)); Cref) =< φ(Ci), φ(Cj) >Cref

where vect(C) = [C1,1;
√

2C1,2; C2,2;
√

2C1,3;
√

2C2,3; C3,3; . . . ; CE,E] is the vectorized form of
a symmetric matrix, φ(C) = LogCref

(C) is the map from the Riemannian manifold to the
tangent space of Cref, and < A, B >C= tr(AC−1BC−1) is the scalar product in the tangent
space of Cref.

Table 2. This table provides a summary of the classification methods described in the Section 2.7.

Mapping Function Objective Function Min/Max Algorithm

DT f (x) =
{

child1 xi ≤ c
child2 otherwise

Gain impurity, information gain greedy algorithm

LDA f (x) =
{

1 wT x < c
−1 otherwise

J(w) = maxw∈Rn
wT SBw
wT SW w Eigen value solver

SVM
f (x) = sgn(b + ∑i yiαik(x, xi)) maxα∈Rm

(
∑i αi − 1

2 ∑i,j αiαjyiyjk(xi , xj)
)

Quadratic Programming
R-SVM

MLP f (x) = ∑i wiψi(.) MSE, Cross entropy, Hinge SGD, Adam
CNN f (x) = conv + pool + MLP

MDRM f (P) = arg minj∈{1,2,... } δR(P, PΩj ) J(PΩ) = arg minPΩ∈P(n) ∑i δ2
R(PΩ , Pi) Averaging approaches

2.8. Performance Evaluation

The general architecture of motor-imagery based brain–computer interface is well
understood, yet numerous novel MI based interfaces and strategies are proposed to enhance
the performance of MI-BCI. Thus, performance evaluation metrics play an important role
in quantifying diverse MI strategies. Accuracy is the most widely used performance
evaluation, which measures the performance of algorithm in terms of correctly predicting
target class trials. Accuracy metrics are mostly employed where the number of trials for all
classes are equal and there is no bias towards a particular target class [84]. In the case of
unbalanced (unequal number of trials) classes, Cohen’s kappa coefficient is employed [85].
The Kappa coefficient equates an observed accuracy with respect to an expected accuracy
(random chance). If kappa coefficient is 0, it means that there is no correlation with the
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target class and predicted class, where, as kappa coefficient, 1 denotes perfect classification.
If the MI classification is biased towards one class, then the confusion matrix (CM) is an
important tool to quantify the performance of the system. Table 3 illustrates the confusion
matrix for a multi-class problem. Metrics, like sensitivity and specificity, can be obtained
from CM to identify the percentages of correctly classified trials from each MI class.

Table 3. Multi class Confusion matrix.

Prediction

Class1 Class2 Classk Classn

Target

Class1 D11 D12 D1k D1n
Class2 D21 D22 D2k D2n
Classk Dk1 Dk2 Dkk Dkn− − − − −
Classn Dn1 Dn2 Dn3 Dnn

MI-BCI can be interpreted as a communication channel between user and machine,
thus the information transfer rate (ITR) of each trial can be calculated in order to measure
the bit-rate of the system. ITR can be obtained through CM (based on Accuracy) according
to Wolpaw et al.’s [86] method as well as based on the performance and distribution of each
MI classes [87]. The metrics discussed above are summarized in Table 4 and applicable
for both synchronized and self-placed (asynchronized) as well as multi-class MI-BCIs. As
a BCI can be defined as an encoder-decoder system where the user encodes information
in EEG signals and the BCI decodes it into commands. The above metrics evaluate how
well the BCI decode user’s MI task into commands, but it does not quantify how well the
user modulates EEG patterns with MI tasks [88]. Therefore, there is room for improving
performance metrics that measure user MI skills or a user’s encoding capability.

Lotte and Jeunet [88] have proposed stability and distinctiveness metrics to address
some of the limitations mentioned above. Stability metrics measure how a stable MI EEG
pattern is produced by a user. It is done by measuring the average distance between each
MI task trial covariance matrix and mean covariance matrix for this MI task (left/right etc.).
Distinct metrics measure the distinctiveness between MI task EEG patterns. Mathematically,
distinct metrics is defined as the ratio of the between class variance to the within class
variance. Stability and distinct metrics are both defined in the Riemannian manifold, as
described in Table 4.

Table 4. Summary of all the Metrics.

Metrics Two Class Multi Class (N-Class)

BCI decoding capabilty

Accuracy D11+D22
Nall

∑N
i=1 Dii
Nall

, where Nall = ∑N
i,j=1 Dij

Kappa Accuracy−expected accuracy
1−expected accuracy , expected accuracy(Ae) =

∑i=1 N
Di: D:i

sensitivity D22
D21+D22

Dkk
Nk

, where Nk = ∑N
i=1 Dk,i

ITRWolpaw ITRWolpaw = log2 N + Acc. log2(Acc) + (1− Acc) log2(
1−Acc
N−1 )

User encoding capability

Stability 1
1+σCA

Distinct ∑N
1 δr(

¯CAi , ¯̄CA)

∑N
1 σ

CAi

3. Key Issues in MI Based BCI

MI based BCI still face multiple issues for it to be commercially usable. A usable MI
based BCI should be plug and play, self paced, highly responsive, and consistent, so that
that everybody can use it. This could be achieved by solving the following challenges:

3.1. Enhancement of MI-BCI Performance

A high performance MI-based BCI is important, as it increases the responsiveness of
the device and prevents user frustration, hence improving the users experience. Improving



Sensors 2021, 21, 2173 18 of 35

the performance could be achieved by improving its pre-processing stage, channel selection
stage, feature selection stage, dimensionality reduction stage, or a combination of them.

3.1.1. Enhancement of MI-BCI Performance Using Preprocessing

Recent enhancements in the pre-processing step have revolved around two aspects:
enhancing the incoming signal or enhancing the filtering of the signal. The former can
be achieved by reconstructing the signal [89,90], enhancing the spatial resolution [91], or
adding artificial noise [92]. In Casals et al. [89], they reconstructed corrupted EEG channels
by using a tensor completion algorithm. The tensor completion algorithm applied a mask
to this corrupted data in order to estimate it from observed EEG data. They found that this
reconstructed the data of the corrupted channels and improved the classification perfor-
mance in MI-BCI, whereas Gaur et al. [90] used multivariate empirical mode decomposition
(MEMD) to decompose the EEG signal into a set of intrinsic mode functions (IMFs). Based
on a median frequency measure, a set of IMFs is selected to reconstruct EEG signals. The
CSP features are extracted from the reconstructed EEG signal for classification. One can
enhance the spatial resolution of the EEG signal by using local activities estimation (LAE)
method [91]. The LAE method estimates the recorded value of an EEG channel based on
the weighted sum of local values of all EEG channels. The weights that are assigned to
each channel for a weighted sum are based on the distance between channels. Similarly,
enhancing the filtering of the signal can be achieved by automated filter (subject specific)
tuning based on optimization algorithm like particle swarm optimization (PSO), artificial
bee colony (ABC), and genetic algorithm (GA) [93]. Kim et al. [94] and Sun et al. [95] both
proposed filters that are aimed to remove artifacts. Kim et al. [94] removed ocular artifacts
by using an adaptive filtering algorithm that was based on ICA. Sun et al. [95] removed
EOG artifacts by a contralateral channel normalization model that aims at extracting EOG
artifacts from the EEG signal while retaining MI-related neural potential through finding
the weights of EOG artifact interference with the EEG recordings. The Hijorth param-
eter was then extracted from the enhanced EEG signal for classification. In contrast to
the above methods, Sampanna and Mitaim [92] have used the PSO algorithm to search
for the optimal Gaussian noise intensity to be added in signals. This helps in achieving
higher accuracy when compared to a conventionally filtered EEG signal. The Signal that
is reliable at run time is very important for online evaluation of MI-BCI. To address this,
Sagha et al. [96] proposed a method that quantifies electrode reliability at run time. They
proposed two metrics that are based on Mahalanobis distance and information theory to
detect anomalous behaviour of EEG electrodes.

3.1.2. Enhancement of MI-BCI Performance Using Channel Selection

Channel selection can both remove redundant and non-task relevant channels [97]
and reduce power consumption of the device [98]. Removing channels can improve
performance by reducing the search space [97], while reducing the power consumption can
increase the longevity of a battery-based device [98]. Yang et al. [99] selected an optimal
number of channels and time segments to extract features based on Fisher’s discriminant
analysis. They used the F score to measure discrimination power of time domain features
obtained from different channels and different time segments. Jing et al. [100] selected
high quality trials (free from artifacts) to find an optimal channel for a subject based on
the “maximum projection on primary electrodes”. These channels are used to calculate
ICA filters for MI-BCI classification pipeline. This method has shown good improvement
in classification accuracy even in session to session and subject to subject transfer MI-BCI
scenarios. Park et al. [101] applied particle swarn optimization algorithm to find subject
specific optimal number of electrodes. These electrodes’ EEG data is further used for
classification. Jin et al. [102] selected electrodes that contain more correlated information.
To do this, they applied Z-score normalization to EEG signals from different channels,
and then computed pearson’s cofficients to measure the similarity between every pair of
electrodes. From selected channels, RCSP features are extracted for SVM model based
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classification. This significantly improves the accuracy compared to traditional methods.
Yu et al. [103] used Fly optimization algorithm (FOA) to select the best channel for subject
and then extracted CSP features from these channels for the classification. They also
compared FOA performance with GA and PSO. Ramakrishnan and Satyanarayana [98]
used a large (64) and small (19) number of channels in data acquisition for training and
testing phase, respectively. They calculated inverse Karhunen Loeve Tranform (KLT) matrix
from training trials. This inverse KLT matrix is used to reconstruct all the missing channels
in the testing phase. Masood et al. [104] employed various flavors of the CSP algorithm [31]
to obtain the spatial filter weights of each electrode. Based on maximal values of spatial
pattern coefficients, electrodes are selected to compute features for MI-CSP classification.

3.1.3. Enhancement of MI-BCI Performance Using Feature Selection

Similar to channel selection, feature selection improves the performance by finding the
most optimal features. Similarly, Yang et al. [105], in their study, decomposed EEG signals
from C3,Cz, and C4 channels into a series of overlapping time-frequency areas. They
achieved this by cutting the filtered signals from filter bank of width 4 Hz and step 1 Hz
(e.g., 8–12,9–13,...26–30) into multiple overlapping time segments. They used an F-score to
select optimal time-frequency areas to extract features for MI-BCI classification. Rajan and
Devassy [106] used a boosting approach that improved the classification by a combination
of feature vectors. Baboukani et al. [107] used an Ant Colony Optimization technique to
select a subset of features for SVM based classification of MI-BCI. Wang et al. [108] divided
all of the electrodes in several sensor groups. From these sensor groups, CSP features are
extracted to calculate EDRs. These EDRs are fused together, based on information fusion to
obtain discriminate features for ensemble classification. Liu et al. [109] proposed a feature
selection method that is based on the firefly algorithm and learning automata. These
selected features are used to classify by a spectral regression discriminant analysis (SRDA)
classifier. Kumar et al. [110] used the mutual information technique to extract suitable
features from CSP features from filter banks. Samanta et al. [111] used an auto encoder-
based deep feature extraction technique to extract meaningful features from images of a
brain connectivity matrix. The brain connectivity matrix is constructed based on mutual
correlation between different electrodes.

3.1.4. Enhancement of MI-BCI Performance Using Dimensionality Reduction

Xie et al. [112] learned low dimensional embedding on the Riemannian manifold
based on prior information of EEG channels. Where, as, She et al. [113] extracted IMFs from
EEG signals, and then employed Kernel spectral regression to reduce the dimension of
IMFs. In doing so, they constructed a nearest neighbour graph to model the IMFs intrinsic
structure. Özdenizci and Erdoğmuş [114] proposed the information theory based linear
and non-linear feature transformation approach to select optimal feature for multi-class
MI-EEG BCI system. Pei et al. [71] used stacked auto-encoders on spectral features to
reduce the dimension and achieve high accuracy in a multi class asynchronous MI-BCI
system. Razzak et al. [115] applied sparse PCA to reduce the dimensionality of features for
SVM based classification. Horev et al. [55] extended the PCA to SPD manifold space, such
that it preserved more variance in data while mapping SPD matrices to a lower dimension.
Harandi et al. [116] proposed an algorithm that maintains the SPD matrices geometry while
mapping it in a lower dimension. This is done by preserving the local structure’s distance
with respect to the local mean. In addition to it, this mapping minimizes the geodesic
distance in samples that belong to the same class as well as maximizes the geodesic distance
between samples belonging to a different class. Davoudi et al. [79] adapted Harandi’s
geometry preserving the dimensionality reduction technique in an unsupervised manner.
Similarly, Tanaka et al. [80] proposed graph fourier transform for reducing dimensionality
of SPD matrices through Tangent space mapping. This method has shown improvement in
the performance for a small training dataset.
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3.1.5. Enhancement of MI-BCI Performance with Combination of All

Li et al. [117] used the TPCT imaging method to fix the electrode positions and
assigned time-frequency feature values to each pixel in the MI-EEG image. This way
promotes feature fusion from the time, space, and frequency domains, respectively. These
high dimensional images are fed to the modified VGG16 network [118]. Wang et al. [119]
extracted a subset of channels from the motor imagery region. From these extracted
channels, a subject-specific time window and frequency band is obtained to extract CSP
features for classification. Sadiq et al. [120] manually selected the channels from the
sensory motor cortex area of the brain. The EEG signal from these selected channels
is decomposed into ten IMFs using adaptive empirical wavelet transform. The most
sensitive mode out of ten is selected based on PSD and the Hilbert transform (HT) method
extracts the instantaneous amplitude (IA) and instantaneous frequency (IF) from each
channel. The statistical features are extracted from IF and IA components for classification.
Selim et al. [121] used the bio-inspired algorithm (attractor metagene (AM)) to select the
optimal time interval and CSP features for classification. Furthermore, they used the
Bat optimization algorithm (BA)) to optimize SVM parameters to enhance the classifier’s
performance. Athif and Ren [122] proposed the wave CSP technique that used wavelet
transform and CSP filtering technique to enhance the signal to noise ratio of the EEG signal
and to obtain key features for classification. Li et al. [123] optimized the spatial filter by
employing Fisher’s ration in objective function. This not only avoids using regularization
parameters but also selects optimal features for classification. Li et al. [124] designed a
spectral component CSP algorithm that utilized ICA to extract relevant motor information
from EEG amplitude features that were obtained from CSP. Liu et al. [125] proposed an
adaptive boosting algorithm that selects the most suitable EEG channels and frequency
band for the CSP algorithm.

3.2. Reduce or Zero Calibration Time

Every day, a BCI user is required to go through a calibration phase for him/her to
use BCI. This can be inconvenient, annoying, and frustrating. This section describes an
on-going research solution to reduce the calibration phase or completely remove it. There
are three categories of solutions: subject specific methods, transfer learning methods, and
subject independent methods.

3.2.1. Subject-Specific Methods

Subject-specific methods for the reduction of calibration time mostly aim at more effi-
ciently extracting features (i.e., with a small amount of training data). This can be achieved
by the particle swarm optimization based learning strategy to find optimal parameters
for spiking neural model (SNM) (deep learning model) [126]. This method automatically
adjusts the parameters, removes the need for manual tuning, and increases the efficiency of
SNM. However, this requires very subject-specific optimization of the parameters for best
results [127]. Whereas, Zhao et al. [128] proposed the use of a framework that transforms
EEG signals into three-dimensional space to preserve the temporal and spatial distribution
of EEG signal and uses multi-branch 3D convolutional neural network to take advantage of
temporal and spatial features in EEG signal. They showed that this approach significantly
improves the accuracy under a small training dataset. Another approach of reducing
calibration time is by a subject specific modification of the CSP algorithm. For example,
Park and Chung [129] improved CSP by electing the CSP features from good local channels,
rather than all channels. They selected good local channels that are based on the vari-
ance ratio dispersion score (VRDS) and inter-class feature distance (ICFD). Furthermore,
they extended this approach in Filter Bank CSP by selecting good local channels for each
frequency band, whereas Ma et al. [130] optimized SVM classifier’s kernel and penalty
parameters through a particle swarm optimization algorithm to obtain optimal CSP fea-
tures. Furthermore, Costa et al. [131] proposed an adaptive CSP algorithm to overcome the
limitation of CSP in short calibration sessions. They iteratively update the coefficients of
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the CSP filters while using a recursive least squares (RLS) approach. This algorithm can
be enhanced based on right channel selection and training free BCI system by modifying
the algorithm with unsupervised techniques. Kee et al. [25] proposed Renyi entropy as a
new alternative feature extraction method for small sample setting MI-BCI. Their method
outperforms conventional CSP and regularized CSP design in small training datasets. Lotte
and Guan [31] proposed Weighted Tikhonov Regularization for the CSP objective function
that gives different penalties for different channels based on their degree of usefulness to
classify a given mental state. They also extended the conventional CSP method for a small
sample setting in [132] by penalizing the CSP objective function through prior information
of EEG channels. Prior information of EEG channels was also used by Singh et al. [133]
to obtain a smooth spatial filter in order to reduce the dimension of covariance matrices
of trials under a small training set. They used MDRM for the classification of covariance
matrices. This approach has shown higher performance under a high dimensional small
sample setting.

3.2.2. Transfer Learning Methods

An investigation on inter-session and inter-subject variabilities in multi-class MI-based
BCI revealed the feasibility of developing calibration-free BCIs in subjects sharing common
sensorimotor dynamics [134]. Transfer learning methods have been developed based on
this concept of using other subjects/sessions. Transfer learning methods aim to use other
subjects data either to increase the amount of data that the classifier can be trained on or to
regularize (prevent overfitting) the algorithm. The former can be seen in He and Wu [135],
Hossain et al. [136], and Dai et al. [137]. He and Wu [135] used Euclidean-space alignment
(EA) on the top of CSP to enable transfer learning from other subjects. EA projects all
subjects into a similar distribution while using the Euclidean mean. Hossain et al. [136]
extended FBCSP by adding selective informative instance transfer learning (SIITAL). The
SIITAL trains the FBCSP with both source and target subjects by iteratively training the
model and selecting the most relevant samples of the source subjects based on that model.
Dai et al. [137] proposed unified cross-domain learning framework that uses the FBRCSP
method [138] to extract the features from source and target subjects. This is achieved by
ensemble classifiers that are trained on misclassified samples and contribute to the overall
model based on their classification accuracy, while the latter can be seen in Azab et al. [139],
Singh et al. [140,141], Park and Lee [138], and Jiao et al. [142]. Azab et al. [139] proposed
a logistic regression-based transfer learning approach that assigns different weights to a
previously recorded session or source subject in order to represent similarities between
these sessions/subjects features distribution and the new subject features distribution.
Based on Kullback–Leibler divergence (KL) metrics, similar source/session feature space
to target subject is chosen to obtain subject-specific common spatial patterns features for
classification. Singh et al. [140,141] proposed a framework that takes advantage of both
Euclidean and Riemannian approaches. They used a Euclidean subject to subject transfer
approach to obtain optimized spatial filter for the target subject and employed Riemannian
geometry-based classification to take advantage of the geometry of covariance matrices.
Park and Lee [138] extended the FBCSP with regularization. They obtained an optimized
spatial filter for each frequency band using information from other subjects’ trials. The CSP
features from each frequency band are obtained and, finally, based on mutual information
most discriminate CSP features are selected for classification. Jiao et al. [142] proposed
Sparse Group Representation Model for reducing the calibration time. In their work, they
constructed a composite dictionary matrix with training samples from source subjects and
target subject. A sparse representation-based model is then used to estimate the most
compact representation of a target subject samples for classification by explicitly exploiting
within-group sparse and group-wise sparse constraints in the dictionary matrix. The former
has the advantage of being applicable to all the trained subjects over the latter.
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3.2.3. Subject Independent Methods

Subject-independent methods aim to eliminate the calibration stage, allowing for the
user to plug and play the BCI device. One way of achieving this is by projecting all different
subjects/sessions’ data into a unified space. Rodrigues et al. [143] proposed the Riemannian
Procrustes Analysis as a projection based method. It transforms subject-specific data into
a unified space by applying a sequence of geometrical transformations on their SCMs.
These geometrical transformations aim to match the distribution of all subjects in high-
dimensional space. These geometrically transformed SCMs are then fed to the MDRM
classification model to discriminate the MI tasks. However, this method still requires the
creation of the geometrical transformations that are based on the targets’ session; thus, it is
not entirely calibration-free, but it paves the way for fully subject independent MI-BCIs.
Another way of achieving subject-independence is to create a universal map that can take
in any subject data and output the command. Zhu et al. [144] proposed a deep learning
framework for creating a universal neural network, called separate channel CNN (SCCN).
SCCN contains three blocks: the CSP block, Encoder block, and recognition block. The
CSP block was used to extract the temporal features from each channel. The encoder block
then encodes those extracted features, followed by a concatenation of the encoded features
and feeding them into the recognition block for classification. Joadder et al. [145] also
proposed a universal MI-BCI map that extracts sub-band energy, fractal dimension, Log
Variance, and Root Mean Square (RMS) features from spatial filtered EEG signal (CSP)
for Linear Discriminant Analysis (LDA) classification model. They evaluated their design
on a different time window after cue, different frequency band and different number of
EEG channels and obtained good performance as compared to existing subject-dependent
methods. Although both Zhu et al. [144] and Joadder et al. [145] classifiers are subject-
independent, the CSP extracted features are not. Zhao et al. [146] hypothesized that there
exists a universal CSP that is subject-independent. They used a multi-subject multi-subset
approach where they took each subject in the training data and randomly picked samples
to create multiple subsets and calculated a CSP on each subset. This was followed by a
fitness evaluation-based distance between these CSP vectors (density and distance between
highly dense vectors). They also proposed a semi-supervised approach as a classifier;
however, unlike the universal CSP, it required unlabelled target data. In the same vein,
Kwon et al. [147] followed the same universal CSP concept. Unlike Zhao et al. [146], they
only trained one CSP on all of the available source subject’s data and, since they had a
larger dataset, they assumed that it would find the universal CSP. Mutual information and
CNN was then used for a complete subject-independent algorithm.

3.3. BCI Illiteracy

BCI illiteracy subject is defined as the subject who cannot achieve a classification
accuracy higher than 70% [11,148–153]. BCI illiteracy indicates that the user is unable to
generate required oscillatory pattern during MI task. This leads to poor performance of
MI-BCI. Some of the researchers focus on predicting whether a user falls under BCI illiterate
category or not. This can help us to design a better algorithm for decoding MI or designing
better training protocol to improve user skills. For instance, Ahn et al. [154] demonstrated
that self-assessed motor imagery accuracy prediction has a positive correlation with actual
performance. This can be valuable information to find BCI inefficiency in the user. While,
Shu et al. [149], in their work, proposed two physiological variables, which is, laterality
index (LI) and cortical activation strength (CAS), to predict MI-BCI performance prior
to clinical BCI usage. Their proposed predictors exhibited a linear correlation with BCI
performance, whereas Darvishi et al. [155] proposed a simple reaction time (SRT) as the BCI
performance predictor. SRT is a metric that reflects the time that is required for a subject
to respond to a defined stimulus. Their results indicate that SRT is correlated with BCI
performance and BCI performance can be enhanced if the feedback interval is updated in
accordance with the subject’s SRT. In the same vein, Müller et al. [156] has theoretically
shown that adaptation that is too fast may confuse the user, while an adaptation that is
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too slow might not be able to track EEG variabilities due to learning. They created an
online co-adaptation BCI system by ever-changing feedback according to the user and the
system’s learning. In the same vein, the co-adaptive approach to address BCI illiteracy
has also been proposed by Acqualagna et al. [150]. Their paradigm was composed of two
algorithms: a pre-trained subject independent classifier based on simple features, and a
supervised subject optimized algorithm that can be modified to run in an unsupervised
setting based manner. The approach of Acqualagna et al. is based on the classification of
users put forth by Vidaurre et al. [157]. Vidaurre et al. [157], in their study, classified users
in three categories: for category I users (Cat I), the classifier can be successfully trained and
they gain good BCI control in the online feedback session. For Category II users (Cat II),
the classifier can be successfully trained; however, good performance cannot be achieved
in the feedback phase. For Category III users (Cat III), successful training of the classifier
is not achieved. In the same vein, Lee et al. [158] found that that a universal BCI illiterate
user does not exist (i.e., all of the participants were able to control at least one type of BCI
system). Their study paves way to design a BCI system based on user’s skill.

Another way of addressing BCI illiteracy problem is to design novel solutions that can
improve performance, even in the case of BCI illiterate user. Similarly, Zhang et al. [153]
addressed BCI illiteracy through a combination of CSP and brain network features. They
constructed a task-related brain network by calculating the coherence between EEG chan-
nels, the graph-based analysis showed that the node degree and clustering coefficient have
intensity differences between left and right-hand motor imagery. Their work suggests that
there is a need to explore more feature extraction methods to address the BCI illiteracy
problem. Furthermore, Yao et al. [148] proposed a hybrid BCI system to address the BCI
inefficiency that is based on somatosensory attentional (SA) and motor imagery (MI) modal-
ities. SA and MI are generated by attentional concentration intention (at some focused
body part) and mentally simulating the kinesthetic movement, respectively. SA and MI
are reflected through EEG signals at the somatosensory and motor cortices, respectively.
In their work, they demonstrate that the combination of SA and MI would provide dis-
tinctive features to improve performance and increase the number of commands in a BCI
system. In the same vein, Sannelli et al. [159] created an ensemble of adaptive spatial filters
to increase BCI performance for BCI inefficient users. External factors can also improve
BCI accuracy. For instance, Vidaurre et al. [160] proposed assistive peripheral electrical
stimulation to modulate activity in the sensorimotor cortex. It is proposed that this will
elicit short-term and long-term improvements in sensorimotor function, thus improving
BCI illiteracy among users.

3.4. Asynchronised MI-BCI

MI-based BCI is usually trained in a synchronous manner, which is, there exists a
sequence of instructions (or cue) that a user follows to produce an ERD/ERS phenomenon.
However, in a real-world application, user want to execute control signal at his own will
rather than waiting for cue. Therefore, there has been an increasing interest in creating
an asynchronous MI. That is, MI-based BCI can detect that the user has an intention
to undertake motor imagery, and then classifies MI task. This is done by splitting the
incoming data into segments with overlapping periods. Each segment represents a po-
tential MI command. One way of determining whether this potential MI command is an
actual MI command is to build a classifier for that purpose. For example, the study of
Yu et al. [161] presents the self-paced operation of a brain–computer interface (BCI), which
can be voluntarily used to control a movement of a car (starting the engine, turning right,
turning left, moving forward, moving backward, and stopping the engine). The system
involved two classifiers: control intention classifier (CIC) and left/right classifier (LRC).
The CIC is implemented in the first phase to identify the user intention being “idle” or “MI
task-related”. If an MI task-related is identified, a second phase follows the first phase by
classifying it. Similarly, both Cheng et al. [162] and Antelis et al. [163] proposed a deep
learning method that is trained to distinguish between resting state, transition state, and
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execution state. However, Cheng proposed a convolutional neural network, followed by
a fully connected network (CNN-FC), while Antelis proposed Dendrite morphological
neural networks (DMNN). Another approach is to let the subject achieve a set number of
consistent right/left classification within a set period for an action to be taken, thus confirm-
ing the command and avoiding randomness [164], both adding a classifier and classifying
multiple times, adds computational time and complexity to the system, with the latter also
adding the time required for classification. Sun et al. [165] suggested a method that avoids
these constraints by using a threshold on an existing classifier that separates idle from MI
task-related. He et al. [166] proposed a similar approach for continuous application, such
as mouse movement. This is achieved through moving the object (in this case a mouse)
by the confidence level of the classifier. The threshold-based method of addressing this
challenge requires defining a threshold that could be difficult and user-dependent. This
brings us to the last methodology of addressing this challenge, which is, by adding an idle
class into the classifier [167–170]. All of the above-motioned methods, except the method
proposed by Yousefi et al. [170], use a target-oriented paradigm where the user is asked to
perform a task and the algorithm is evaluated based on the user’s ability to achieve that
task. However, Yousefi et al. [170] tested their algorithm by giving the user a specified
time interval to perform any task the user desired and after the time has passed, the user
provides feedback as to whether the algorithm responded to his commands. In conclusion,
all of the algorithms can run asynchronously, given that they have a reasonable run time.

3.5. Increase Number of Commands

More diverse and complex applications, like spellers etcetera, can be developed with
high ITR and increased number of classes in MI-BCI. Traditionally, MI-BCI was designed
as binary class (left and right) problem. The first way to extend MI-BCI into multi-class is
by employing a hybrid approach during which the MI paradigm is complemented with
other mental strategies. For example, Yu et al. [171] proposed a hybrid asynchronous brain–
computer interface that is based on sequential motor imagery (MI) and P300 potential to
execute eleven control functions for wheelchairs. The second way to achieve multi-class MI-
BCI is algorithmically. For example, the traditional CSP algorithm is extended to recognize
four MI tasks [172]. In the similar manner, Wentrup and Buss [173] proposed information
theoretic feature extraction frameworks for CSP algorithm by extending it for multiclass
MI-BCI system. In the same vein, Christensen et al. [174] extended FBCSPs for five class
MI-BCI system. Similarly, Razzak et al. [175] proposed a novel multiclass support matrix
machine to handle multiclass MI imagery tasks. Likewise, Barachant et al. [176] presented
a new classification method based on Riemannian geometry that uses covariance matrices
to classify multi-class BCI. Faiz and Hamadani [177] controlled humonoid robotic hand
gentures through five class online MI BCI while using a commercial EEG headset. They
user AR and CSP feature extractions and PCA to reduce the dimension of AR features.
Finally, CSP and AR features are concatenated and trained by a SVM classifier to achieve
multi-class recognition.

3.6. Adaptive BCI

The consistency of the accuracy of the classifier during long sessions is one of the is-
sues still being worked in EEG based MI-BCI. This is because EEG is a non-stationary signal
that get impacted over time as well as when there is change in recording environment and
state of mind (e.g., fatigue, attention, motivation, emotion, etc). Adaptive methods have
been proposed to address this challenge. For instance, Aliakbaryhosseinabadi et al. [178]
demonstrated that it is possible to detect a user’s attention diversion during a MI task,
whereas Dagaev et al. [179] extracted the target state (LH, RH) from background state (en-
vironment, emotional, and cognitive condition, etc.). This was achieved by asking subjects
in the training stage to open and close their eyes during the trials. These instructions act as
the two different background conditions. The methods that detect cause of change in user
signals other than the MI task could pave the way for adaptive MI-BCI by giving both the



Sensors 2021, 21, 2173 25 of 35

user real-time neurofeedback and giving the adaptive algorithm additional information to
work with while decoding MI task.

Another way to address this challenge is to modify the training protocol or extracting
more information during it. Mondini et al. [180] and Schwarz et al. [181] both modified the
training protocol. By creating an adaptive training protocol, Mondini et al. [180] fulfiled
three tasks: (a) adapt the training session based on the subject’s ability, which is, make the
training short and restart the training from the beginning with different motor imagery
strategy if the system performance is lower than a certain threshold; (b) present training cue
(left/right) in a biased manner that is present left cue more often manner if the left imagery
performance is low when compared to the right; and, (c) keep challenging the performance
of the user by only giving feedback if it exceeds an adaptive threshold. Schwarz et al. [181]
proposed a co-adaptive online learning BCI model that uses the concept of semi-supervised
retraining. The Schwarz model uses a few initial supervised calibration trials per MI tasks
and then performs recurrent retraining by using artificially generated labels. This ensures
feedback to the user after a very short training and engages the user in mutual learning
with the system. Information gathered during training protocol, such as command delivery
time (CDT) and the probability of the next action, could be used to address this challenge.
Saeedi et al. used CDT [182] to provide a system that delivers adaptive assistance, which is,
if the current trial is long, then the system will slow down to give enough time to the user
to execute the MI tasks. Their study suggests that the brain pattern is different for short,
long and time-out commands. They were able to differentiate between command type
using only one second before the trial started, while Perdikis et al. [183] proposed using
the probability of next action to adapt the classifier. Specifically, they implemented an
online speller based on the BrainTree MI text-entry system that uses probabilistic contextual
information to adapt an LDA classifier. The final method observed in the literature to
address this challenge was to create an adaptive classifier. Faller et al. [184] proposed
an online adaptive MI-BCI that auto-calibrates. Their system in regular interval not only
discriminates features for classifier retraining, but also learns to reject outliers. Their
system starts to provide feedback after minimal training and keeps improving by learning
subject-specific parameters on the run. Raza et al. [185] proposed an unsupervised adaptive
ensemble learning algorithm that tackles non-stationary based co-variate shifts between
two BCI sessions. This algorithm paves the way for online adaption to variabilities between
BCI sessions. In the same vein, Rong et al. [186] proposed an online method that handles
the statistical difference between sessions. They used an adaptive fuzzy inference system.

3.7. Online MI-BCI

After an adaptive BCI, the BCI mode is one key factor that determines MI based
system’s usability and efficacy. MI-BCI systems are operated in offline or online mode
through cue-based paradigms, where self-placed (asynchronous) are mostly online sys-
tems. Mostly, the literature proposed improvements in offline mode of MI-BCI systems;
very few test their proposed algorithms in the online environment. In online BCI studies,
Sharghian et al. [187] proposed MI-EEG, which uses sparse representation-based classifica-
tion (SRC). Their approach obtains an online dictionary learning scheme from the extracted
band power from a spatial-filtered signal. This dictionary leads to reconstruction of sparse
signal for classification. In the same vein, Zhang et al. [188] proposed an incremental linear
discriminant analysis algorithm that extract AR features from preferable incoming data.
Their method paved way for fully auto-calibrating an online MI-BCI system. Similarly,
Yu et al. [167] proposed an asynchronous MI BCI system to control wheelchair navigation.
Perez [189] extended the fuzzy logic framework for adaptive online MI-BCI system and
evaluated it through the realistic navigation of a bipedal robot. Ang and Guan [190] intro-
duced an adaptive strategy that continuously computes the subject-specific model during
an online phase. Abdalsalam et al. [191] controlled the screen cursor through a four class
MI-BCI system. Their results suggest that online feedback increases ERDs over the mu
(8–10 Hz) and upper beta (18–24 Hz) band, which results in a higher cursor control success
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rate. Many studies have demonstrated the efficiency of virtual reality (VR) and gaming
environment in a online BCI [192]. Achanccaray et al. [193] in the same vein, verified
that virtual reality based online feedback has positive effects on the subject. It has been
observed that motor cortex increases its activation level (in alpha and beta band) due to an
immersive VR experience. This is very helpful in supporting upper limb rehabilitation of
post-stroke patients. Similarly, Alchalabi and Faubert [194] used VR based neurofeedback
in the Online MI-BCI session. Cubero et al. [195] proposed an online system that is based on
an endless running game that runs on three class MI-BCI. They used graphic representation
of EEG signals for multi-resolution analysis to take advantage of spatial dimension, along
with temporal and spectral dimensions.

3.8. Training Protocol

Similar to other normal user skills, BCI control is also a skill that can be learned
and improved with proper training. A typical BCI training protocol is a combination
of user instructions, cues on screen to modulate the user’s neural activity in a specific
manner, and, lastly, a feedback mechanism that represents confidence of the classifier in
recognition of the mental task to user. Unfortunately, standard training protocol does not
satisfy the psychology of human learning; usually being boring and very long. Meng
and He [196] studied the effect of MI training on users. They found out that, with a
few hours of MI training, there is change in electrophysiological properties. Their study
suggested design engaging training protocol and multiple training sessions, rather than a
long training session for low BCI performers. In the same vein, Kim et al. [197] proposed a
self placed training protocol, in which the user performs MI task continuously without an
inter-stimulus-interval. During each trial, the user has to imagine a single MI task (e.g.,
RH for 60 s). The results of this protocol showed that it reduces the calibration time when
compared to conventional MI training protocol. Jeunet et al. [198] surveyed the cognitive
and psychological factors that are related to MI-BCI and categorized these factors into three
categories (a) user-technology relationship, (b) attention, and (c) spatial abilities. Their
work is very useful for designing a new training protocol that takes advantage of these
factors. Furthermore, in another study, Jeunet et al. [11] found that spatial ability plays
an important role in BCI performance of a subject. They suggested having pre-training
sessions to explore spatial ability for BCI training.

Many studies proposed new training strategies that use other mental strategies to
compliment MI training (kinesthetic imagination of limbs). For instance, Zhang et al. [199]
proposed a new BCI training paradigm that combines conventional MI training protocol
with covert verb reading. This improves the performance of MI-BCI and paves the way for
utilizing semantic processing with motor imagery. Along the same lines, Wang et al. [200]
proposed a hybrid MI-paradigm that uses speech imagery with motor imagery. In this
paradigm, the user repeatedly and silently reads move (left/right) cues during imagina-
tion. Standard training protocols are fixed that are not tailored made to user’s need and
experience. With respect to this, Wang et al. [201] proposed MI training with visual-haptic
neurofeedback. Their findings validate that their approach improves cortical activations
at the sensorimotor area, thus leading to an improvement in BCI performance. Liburk-
ina et al. [202] proposed a MI training protocol that gives cue to perform and feedback
to the user through vibration. Along the same lines, Pillette et al. [203] designed an
intelligent tutoring system that provides support during MI training and enhance user ex-
perience/performance on MI-BCI system. Skola et al. [204] proposed a virtual reality-based
MI-BCI training that uses a virtual avatar to provide feedback. Their training helps in
maintaining high levels of attention and motivation.Furthermore, their proposed method
improves the BCI skills of first time users.

4. Conclusions

In this paper, we have provided an extensive review of methodologies for designing an
MI-BCI system. In doing so, we have created a generic framework and mapped literature
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related to different components (data acquisition, MI training, preprocessing, feature
extraction, channel and feature selection, classification, and performance metrics) in it.
This will help in visualizing gaps to be filled by future studies in order to further improve
BCI usability.

Despite many outstanding developments in MI-BCI research, some critical issues still
need to be resolved. Mostly, studies are on synchronized MI-BCI in offline mode. There is a
need to have more studies on online BCI. Typically, researchers use performance evaluation
metrics, as per their convenience. It would be better to have general BCI standards that
can be widely adhered by researchers. Our literature survey found that enhancing the
performance is still a critical issue even after two decades of research. Due to availability of
high computational resources, present studies employ methods based on deep learning
and Riemannian geometry more than traditional machine learning methods. With current
advancement in algorithms, future research should concentrate more on eliminating or
reducing long calibration in MI-BCI. Future studies should focus on more diverse BCI
applications that can be developed with increased number of commands. Our review
shows that BCI illiteracy is a critical issue that can be addressed either by using better
training protocol that suit users’ requirements or through smart algorithms. Finally, EEG is
a non-stationary signal that changes over time as user’s state of mind changes. This causes
inconsistency in the BCI classifier’s performance; thus, it is important to make progress in
development of adaptive methods in order to address this challenge in an online settings.
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