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ABSTRACT Lumbar-pelvic movements (LPMs) are generally performed in the clinical setting to identify
limitations in a range of movements. Continuous monitoring of these movements can provide real-time
feedback to both patients and medical experts with the potential of identifying activities that may precipitate
symptoms of low back pain (LBP) as well as improving therapy by providing a personalised approach.
Recent advances in mobile computing technology and wearable sensors have paved the way for developing
mobile physical activity monitoring applications with more advanced and complex algorithms, such as deep
neural network (DNN) based models. However, there is a lack of prior studies that focus on real-time
LPMs detection with multimodal sensory data. Meanwhile, most research in the area of body movement
detection do not consider the potential transition logic of the constituent low-level body movements (e.g.,
LPMs) within their corresponding high-level physical activity. This information could significantly increase
accuracy of detection results. Further, current studies mainly perform deep learning-based movement
detection in the cloud (or a backend server) that could increase network bandwidth and response time.
To address these limitations, this paper proposes a novel LPMs detection approach using an enhanced and
adapted hybrid DNN model, which includes a convolutional neural network followed by a long-short term
memory recurrent network (CNN-LSTM), and performs detection locally on the mobile device. The results
of a comparative evaluation of the proposed model and baseline models are described. We also introduce
a set of domain-specific pre-defined rules, based on the transition logic information, to reconstruct the
detection outputs to further improve the detection accuracy.

INDEX TERMS Deep Neural Networks, Domain Adaptation, Lumbar-Pelvic Movement Detection,
Mobile Platform, On-device processing, Temporal-wise Attention

I. INTRODUCTION

LUMBAR-PELVIC movements (LPMs) play a key role
in the development of low back pain (LBP) and are

important targets in the management of LBP [1]. The LPMs
include flexion, extension, left and right lateral flexion, right
rotation and left rotation. Dissecting how an individual un-
dertakes activities of daily living such as cleaning or gar-
dening, or recreational activities that may precipitate LBP
in that person can provide granular and useful physiological
parameters (such as speed, acceleration, intensity and range
of movement) about the LPMs and the corresponding activ-
ity. Quantifying these parameters provides the opportunity

to identify movements most likely to precipitate LBP and
also are targets for therapy, providing the opportunity for a
personalised approach to the management of LBP. This is not
currently possible in clinical practice.

Out-of-hospital physical activity monitoring is one of the
most widely discussed research topic among all the exist-
ing telehealth applications [2]. Recent advances in mobile
technology and wearables have made objectively continuous
monitoring of LPMs in out-of-hospital settings possible. This
has the potential to empower patients through provision of
objective data and the ability to co-develop personalised
self-management goals in collaboration with their healthcare
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provider. Movement detection systems of LPMs can also be
further extended to allow remote monitoring by healthcare
providers and clinicians. Exercises can also be adapted based
on real-time feedback from the patients. Patients may partic-
ipate in the development of their programs through shared
decision making and undertake activities at convenient loca-
tions reducing travel costs and waiting time in clinics.

LPMs are low-level body movements. These low-level
movements form high-level daily physical activities, such as
cleaning, cooking, jogging and cycling [3]. One of the major
differences between high-level physical activities and low-
level body movements is the level of granularity. High-level
physical activities can be performed for a relatively longer
time and consist of a series of short time and sequential low-
level body movements.

Different individuals may perform the same high-level
physical activity in different ways. Thus, this research de-
veloped an approach that focuses on detecting the low-
level body movements (LPMs in this case), to provide more
granular details about an activity (e.g., the number of times
an individual performing right rotation movements while
standing). By further using data fusion techniques [4], [5], the
physiological parameters of specific low-level body move-
ments, such as speed and acceleration, can be also retrieved
based on the detection results. In this way, the high-level
physical activities can be quantified and described by the
physiological parameters of their constituent low-level body
movements (i.e., understanding how the corresponding high-
level physical activity is performed).

Moreover, existing approaches also failed to consider the
logical sequence (i.e., the transition logic) of low-level body
movements within a high-level activity. For example, in a
high-level physical activity like playing basketball, a player
has to pick up the ball and raise it above the shoulder before
he/she can throw it to the basket. As this example shows, the
body movements are sequential and have a higher transition
frequency compared to the high-level physical activities.
Additionally, the relationship between the adjacent body
movements within a high-level physical activity is strong and
important. There is normally some prior knowledge about
the order of the adjacent body movements in certain high-
level physical activities (e.g., first picking up the ball and then
throwing it in playing basketball). Knowledge about the body
movement transition logic is not generic, and commonly
acquired based on the experience of domain experts and
literature. It varies from domain to domain and changes
from case to case. Developing a method for detecting and
monitoring low-level body movements as parts of high-level
activities is therefore a useful research challenge, which can
inform a better and more personalised clinical practice.

Thus, this work proposed a domain specific rule-based
method to find and model the relationship between adjacently
detected body movements (i.e., the logic/order of body move-
ments transition within their constituent high-level physical
activity), by consulting the medical experts and reviewing
literature. This method can potentially correct the wrongly

detected LPMs to improve the detection accuracy.
Another limitation of the exist physical activity recog-

nition methods is that while they use mobile devices to
collect sensory data, they perform inference and detection
at the backend server or in the cloud, mainly when using
deep learning-based approaches [6]. This type of computing
infrastructure increases response time in real-time systems
due to the need for a massive data transmission between
sensors, the mobile device and the server [7].

Taking advantage of edge computing to perform deep
learning and detection locally on-device (on the smartphone)
can significantly reduce the data transmission and response
time in cloud computing. It can also address the data privacy
problem by locally processing patients’ sensitive medical
data. Therefore, edge computing is a promising computing
paradigm for out-of-hospital body movement monitoring ap-
plications.

Despite its importance and urgency, there is a scarcity of
reliable deep learning-based approaches for detecting LPMs
on mobile devices in an out-of-hospital setting using wear-
able sensors and most existing deep learning-based systems
have limited ability to run movement detection on mobile
devices and support edge computing. To address these re-
search gaps, we propose an enhanced and adapted convo-
lutional neural network integrated with a long-short term
memory recurrent network (CNN-LSTM) model which is
also using domain adaptation technique and global temporal-
wise attention mechanism to detect six key LPMs on mobile
device in real-time, by using dual inertial measurement units
(IMUs) sensory data. The paper also provides a detailed
comparative evaluation of our proposed CNN-LSTM model
with benchmark models on both PC and mobile platforms
for LPMs detection. As part of this detection approach,
we also introduce a rule-based method for reconstruction
of movement segments to improve the on-device detection
accuracy of the proposed model. The contributions of this
research are as follows:

1) An enhanced and adapted CNN-LSTM model, based
on domain adaptation technique and global temporal-
wise attention mechanism, for improving dual-IMUs
sensory data inference performance (i.e., accuracy, pro-
cessing speed and power consumption).

2) Combining the proposed model with a real-time on-
device rule-based method to reconstruct movement
segments and reclassify misclassified segments to im-
prove the overall on-device inference accuracy.

The remainder of this paper is organised as follows. We
introduce the related works in Section II. In Section III, we
thoroughly explain the proposed framework, the enhanced
CNN-LSTM model with domain adaptation technique and
global temporal-wise attention mechanism and the concept
of the post-detection rule-based reconstruction method. We
illustrate the experimental evaluation experiments’ design in
Section IV and discuss the comparison of performances in
Section V. Finally, we present the conclusions and elaborate
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on the limitations of this research as well as the future works
in Section VI.

II. RELATED WORKS
Various wireless sensors and wearables have been used for
measuring LPMs. One of the most widely used sensors is
IMUs [8]. The IMUs are normally composed of a 3-axis
accelerometer and a 3-axis gyroscope, and sometimes a 3-
axis magnetometer. IMUs have been proven to be reliable and
accurate for many body movement measurement tasks [8],
[9]. Based on the number and type of the IMUs, these sensing
systems can be further divided into three categories: single
IMU based systems, dual-IMU based systems and multi-IMU
based systems.

Single IMU based systems are mostly designed for spinal
posture and simple spinal movement monitoring. Most of
these systems have bio-feedback functions to help individual
to improve their awareness of inappropriate spinal postures
and movements, such as Spineangel [10], Lumo Lift [11],
and Upright posture trainer [12].

Dual-IMU based systems enhance the possibility of mea-
suring complex body movements with better accuracy. This
is because single IMU system can only reflect a single point
movement in three dimensional spaces. However, the lumbar-
pelvic area is a soft surface which moves simultaneously with
the spine [13]. Thus, the dual-IMU based systems provide
an additional measurement point within the lumbar-pelvic
area, which can better simulate the LPMs and provide more
accurate measurements. Several dual IMU sensor-based sys-
tems have been developed for monitoring LPMs, including
ViMove [4], Valedo Motion [14], and RIABLO [15].

Multi-IMU based systems usually have more than three
IMU sensor nodes attached on different parts of human
body to measure different body movements [16], [17]. Since
many of these systems sew sensor nodes on the garments,
this type of system is also known as the garment inte-
grated sensing system, such as the Xsens MVN system
[18]. Comparing to the dual-IMU based systems, they have
more three-dimensional measurement points attached on the
human body parts. Thus, the multi-IMU based systems are
capable of providing more accurate measurement for various
complex body movements [19].

This research aims to detect the six standard LPMs in real-
time using dual-IMU sensors. It can be seen that single IMU
based system is not capable of providing accurate measure-
ment for these LPMs. On the other hand, although the multi-
IMU based system is capable of providing more accurate
measurement for the LPMs, the calibration steps for this type
of system can be complicated [20], and more sensors may not
necessarily increase the measurement accuracy. Moreover,
attaching more sensors on human body may make the users
feel uncomfortable for long-time monitoring [13]. Therefore,
this study chooses ViMove [4], a dual-IMUs based sensor
system available on the market, for LPM data collection. It
is capable of measuring all the six standard LPMs with high
accuracy. ViMove also has been clinically validated against

the VICON system [21], which is the gold standard in related
research fields.

Recently, the HAR research community has started to
apply DNN for more complex modelling and inference tasks.
The two most widely used DNN models are CNN (convolu-
tional neural network) and RNN (recurrent neural network)
[22]. CNNs are capable of capturing the local connections
of multimodal sensory data [23]. Researchers normally use
CNNs to extract the multimodal features. The sensing modal-
ity fusion can be categorised into three types: early fusion
(EF), sensor-based late fusion (SB-LF), Channel-based late
fusion (CB-LF) and Shared filters hybrid fusion (SF-HF)
[24].

On the other hand, RNNs are suitable for extracting
temporal dependencies and learning information incremen-
tally through time intervals, so they are normally used for
analysing streaming data (i.e., time-series data). Among
all the existing RNNs, LSTM (Long Short Term Memory)
network has gained increasing attention because it enables
the gradients to easily flow through the time, which solves
the gradient vanishing/exploding problems of the tradition
RNNs [25]. There is also a research trend that combines the
advantages of both CNNs and RNNs together into a hybrid
model to explore different views of temporal dynamics [23].

Many studies have taken advantage of these DNN models
to recognise various high-level physical activities with higher
accuracy, including 1D CNNs [26], CNN-LSTM [27] and
Bidirectional LSTM [28]. However, existing studies present
three major drawbacks: 1) unlike the CNN models, LSTM-
based DNN models are computationally intensive [25]. This
is why most of previous studies on resource-constraints sys-
tems, such as embedded device and smartphones, are only
using CNNs. Recent advances in smartphone hardware and
DNNs optimisation technologies on mobile platforms have
significantly overcome this obstacle [29]. With increasing
computing power on mobile devices, computationally inten-
sive models such as LSTM can be run on a mobile device
like a mobile phone. 2) most of these DNN models only
focus on the sensor-level (e.g., accelerometer, gyroscope and
magnetometer in the IMU device) multimodal data fusion
[24]. There is a lack of studies considering device-level
feature augmentation with DNNs. 3) In specific domain, two
adjacent body movements may follow certain transition log-
ics. However, existing studies fail to consider these potential
transition logics between the two adjacent body movements.

III. THE PROPOSED APPROACH
This study proposes a DNN based mobile approach for
detecting LPMs by using dual-IMUs. The paper describes the
design and development of this approach and its performance
evaluation. The proposed approach overview is shown in
Figure 1. It consists of three main procedures, including Data
Pre-Processing, LPM Detection and Rule-based Reconstruc-
tion. This section explains the functionality and components
of each procedure.
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FIGURE 1. Approach Overview

A. DATA PRE-PROCESSING
Data pre-processing is responsible for transforming raw mul-
tivariate time series data into DNN model processable time
series data. The standard data pre-processing procedures in-
volve de-noising, calibration, unit conversion, normalisation
and synchronisation [30]. Nowadays, some sensors run these
pre-processing procedures on-board [4] and directly present
processed data to the users, while other sensors only provide
raw data. Since mobile devices are resource-constraint, only
necessary data pre-processing procedures should be selected
and run on-device. The on-device processing speed and ac-
curacy are two key values for selecting necessary procedures.
Another important task for the data pre-processing is to slice
the data into data chunks for further detection and classifica-
tion. The slicing procedures are controlled by slicing window
size and overlap rate. Detailed pre-processing procedures
used in this paper are illustrated in Section IV.

B. LPM DETECTION MODEL
LPM detection is responsible for the classification of pre-
processed data into different LPM categories. Generally, this
procedure consists of feature extraction on pre-processed
data and running a pre-trained classification model on ex-
tracted features [31]. This paper uses DNN based models
to perform feature extraction and classification. These DNN-
based models usually contain a number of hidden layers that
can be used for feature extraction and a fully connected layer
as well as an output layer that are used for classification.
Previous results show that DNN-based models outperform
models that are fed with hand-crafted time-domain and
frequency-domain features [32]. Therefore, our work directly
uses the pre-processed data and transforms it into the input
shape of the DNN models for the detection of LPMs. The

FIGURE 2. Proposed CNN-LSTM with Domain Adaptation and Global
Temporal-Wise Attention

implementation of the DNN model should consider the actual
requirement and specification of the detection system.

In this paper, we propose an enhanced and adapted CNN-
LSTM model for on-device LPM detection. This model has
two main components including: domain adaptation with
early fusion and CNN-LSTM with global temporal-wise at-
tention mechanism. The detailed architecture of the proposed
model is shown in Figure 2. We choose this architecture
based on the following reasons. Firstly, LSTM has a better
performance in terms of dealing with time series data. Sec-
ondly, using CNN to generate an appropriate compressed rep-
resentation of the dataset before fed into the LSTM network,
which can significantly improve the on-device inference
speed comparing to other LSTM-based models (A detailed
comparison of the performance is shown in Section V).
Lastly, the layers are empirically optimised for this specific
task (i.e., more layers do not improve the accuracy any further
and slow down the real-time processing speed).

1) DOMAIN ADAPTATION WITH EARLY FUSION

This study uses dual-IMUs based ViMove PC software to
collect the data. Each IMU has one accelerometer, one gy-
roscope and one magnetometer. Altogether, there are 18 fea-
tures including 6 readings of 3-axis from two accelerometers,
6 readings of 3-axis from two gyroscopes and 6 readings
of 3-axis from two magnetometers. Due to the fact that the
two IMUs are identical but the features of these two IMUs’
data are different for the same LPM, we consider each IMU
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as a domain and apply a domain adaptation technique to
extract domain invariant super features that could benefit the
classification in individual domains. This domain adaptation
technique was proposed in [33]. It partitions the model to deal
with common patterns (exists in all domains) and domain
specific patterns. Assuming there are N domains (i.e., anal-
ogous to the two IMUs in our case), the idea of this method
is to expand the feature space with a duplicated (N + 1)th
domain-combined input < domain1 + · · · + domainN +
domain(N + 1) > that has the general features across all N
domains. By using this (N + 1)th network to train this new
input, the overall model not only can learn domain-specific
features but also the domain-invariant super features across
all domains. This method has been successfully applied in
many NLP tasks. With the similar idea, we adopt this domain
adaptation technique from NLP to LPMs detection tasks and
proposed a model that is able to extract super features of the
three individual sensors within each IMU device (i.e., do-
main). Our model considers IMU device 1 and IMU device 2
as two domains. It consists of N+1 CNN-LSTMs: two CNN-
LSTMs are respectively trained only on the corresponding
domains (the two IMU devices), and an additional CNN-
LSTM is trained on all domains (device1 and device2).

On the other hand, Noori et al. [34] proved that an
early fusion method outperforms a sensor-based late fusion
method for CNN-based models in sensory data inference
(Early fusion refers to data fusion at input level in the first
convolutional layer, while late fusion refers to data fusion in a
fully connected layer after feature extraction). Therefore, we
decide to use early fusion to fuse the three individual sensory
data (including accelerometer, gyroscope and magnetometer)
within one device and the domain adaptation technique for
feature augmentation before the training process.

2) CNN-LSTM WITH GLOBAL TEMPORAL-WISE
ATTENTION MECHANISM
The main architecture of the proposed model is a CNN-
LSTM neural network. The processed inputs are fed into two
stacked time-distributed 1-D convolutional layers followed
by 1-D max pooling and dropout layers (drop probability is
set to be 0.5 to avoid overfitting). All the 1-D convolutional
layers use Rectified Linear-Units (ReLU) as activation func-
tions. The temporal max pooling operation is used to keep
salient information in the outputs of convolutional layers,
while reduce the dimensions. The output of the CNN is then
flattened and passed into LSTM network to capture time
dependencies on features. A drop probability of 0.5 is also
applied on this layer to avoid overfitting. The domain-specific
features (device-wise features) and all-domain features (com-
mon features) that are captured by the CNN-LSTM are
concatenated and fed into a process called global temporal-
wise attention mechanism to obtain attention map.

Attention mechanism has been widely used on neural
machine translation (NMT) tasks for capturing the context
from all possible feature combinations [35]. Due to similar-
ity between NMT tasks and HAR tasks, the utilisation of

attention mechanism for HAR has been explored in [36].
The uses of attention mechanism for HAR are to 1) make
the model more interpretable [37], which is normally used
in wireless body sensor network systems to identify which
sensors are active during specific tasks such as running. and
2) incentivise the model to generate and place the weights
on the context which is relevant for classification decision to
improve the performance of the model [36]. In our case, only
two IMUs are used for detecting LPMs. Both of the IMUs
are active when individuals performing LPMs. Therefore, the
focus of this paper is to utilise the attention mechanism to
improve the overall model performance.

To do this, we combine the LSTM networks with the
global temporal-wise attention mechanism. This mechanism
is used to create context vectors using the combination of
past and current hidden state outputs of the LSTM layer and
learn parameters to rank them based on their importance for
classifying the corresponding LPMs in the sliding window.

ats =
exp((ht)

T · hs)∑
s exp(ht · hs)

(1)

ct =
∑

s ats · hs (2)

ht = tanh(W [ct;ht]) (3)

Equation (1) above is used to obtain the attention weight
ats. ht refers to the current hidden state of the precedent
LSTM layer, hs refers to the past context and ct is the context
vector. (2) represents a weighted summation based on the
relative importance of past context. The ranking (attention
vector) is calculated in (3) above. It creates a representation
of the past context and current in the sliding windows, which
are used as feature inputs of the two stacked dense layers
(i.e., fully connected layers) for classification. W represents
the 2D matrix in the linear layer.

C. DOMAIN SPECIFIC RECONSTRUCTION METHOD
The rule-based reconstruction method is developed to reduce
detection errors and re-detect mis-detected movements based
on pre-defined rules [38].

In sequential LPMs detection, the inputs are sliced into
overlapped data chunks, so the outputs of detection are
dependent: previous detection result has relationships with
the subsequent detection results. Based on the relationships,
three pre-defined rules are generated. The rule-based recon-
struction method uses the pre-defined rules to rectify the
wrongly detected results, which makes them suitable for
further analysis.

Rule 1 is designed to eliminate the error that a single wrong
classification exists in a correct classification series. This is
a generic rule which can be used for any other movement
detection scenarios. Rule 2 is designed to determine the
category of transition inputs correctly. This rule can be ap-
plied to other sequential movement detection tasks. Rule 3 is
designed specifically for sequential LPM movements with a
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static position (e.g., standing straight) in between, which can
be found in rehabilitation progress or home-based exercises.

Rule 1: If the previous classification (Ot−1) is the same
as the subsequent classification (Ot+1), current classification
(Ot) should be the same as these two classifications. This is
because each input data is overlapped data with an overlap
rate of aoverlap. This rate is a pre-set value determined by
the requirement of different tasks. The previous input (It−1)
and the subsequent input (It+1) both contain parts of the
current input (It). Then, the current input can be represented
as Equation (4) and (5). Here, the aoverlap · It−1 means the
latter aoverlap part of It−1 and aoverlap · It+1 means the
former aoverlap part of It+1. Both of them partially contain
information of It. Most related studies set the overlap rates
greater than 50% [28], [39]. When aoverlap is greater than
50%, the residual C is equal to or greater than zero. It means
current input can be fully represented by using previous input
and subsequent input. Therefore, the current classification is
very unlikely to be different when the previous classification
is equal to the subsequent classification. It should be the same
as the previous classification and the subsequent classifica-
tion.

It = aoverlap · It−1 + aoverlap · It+1 − C (4)

C =

(2 · aoverlap − 1) · It, when aoverlap < 50%
0, when aoverlap = 50%

It−1 ∩ It+1, when aoverlap > 50%
(5)

Rule 2: If the current classification equals either previous
classification or subsequent classification, it is very likely that
the current status is in movement transition (e.g., changing
from flexion to extension). In order to correctly classify the
current status into the right category, the current input is
separated into two new inputs, It_previous and It_subsequent,
by up-sampling based on the overlap rate aoverlap. Then
these two new inputs are sent back to the LPM detec-
tion and classification module to generate two new classi-
fications, Ot_previous and Ot_subsequent. When Ot_previous
equals Ot−1 and Ot_subsequent does not equal Ot+1, it can
be assumed that the current classification has a stronger
relationship with the previous classification, so the current
classification is set as the value of Ot_previous, and vice versa.
For any remaining situation, current classification stays the
same (i.e., equals to Ot).

Rule 3: In addition to Rule 2, we consider if a movement
transition is detected (i.e., Ot 6= Ot−1), then Ot−1and Ot+1

are compared. If both Ot−1 and Ot+1 are not equal to zero,
(zero means the category of static status), Rule 2 is performed
with the following new condition: If reclassified previous
output Ot_previous equals zero and reclassified subsequent
output Ot_subsequent equals Ot+1, then Ot−1 is corrected as
zero (i.e., static status) and vice versa. For any remaining sit-
uations, the current classification stays the same (i.e., equals
to Ot).

FIGURE 3. ViMove System Components [40]

Based on our experimental evaluation, this rule-based
method can improve all the performance metrics, in terms
of accuracy, precision and F1 score, in on-device LPMs
detection. Details of the evaluation are illustrated in Sec-
tion V. The serial numbers in Figure 1. indicates how this
rule-based reconstruction method works on detected lumbar-
pelvic movements sequence.

IV. EXPERIMENT DESIGN
This section depicts the design of the experiments which
evaluate the performance of the proposed frameworks on
LPMs detection and classification.

A. EXPERIMENTAL HARDWARE SETTINGS
Sensor preparations: This study used ViMove system as
the data collection interface. As shown in Figure 3, ViMove
system consists of four parts: motion sensors (The upper one
is located at L1 and the lower one is located at PSIS), surface
EMG sensors (The left one and right one are located on
each side of the spine around L3), a recording and feedback
device and a PC LIVE monitoring software. Each Motion
sensor contains one IMU, which includes one accelerometer,
one gyroscope and one magnetometer. ViMove system also
provides low back fitting templates, which can be used to
help users to easily attach the sensors on human back. The
templates are designed based on human heights. In the mean-
time, to avoid the potential soft tissue artefact (STA), this
study used DAP-M adhesive material, provided by ViMove,
to attach the sensor on human skin. This type of material
can last 24 hours for providing accurate measurement. This
experiments only focus on monitoring LPMs, so the surface
EMG sensors are not used. The sample rate of ViMove is
20Hz.

PC platform settings: This work used the PC platform
to train the DNN models. Tensorflow was used as backend
because it provided APIs and plugins to build and convert the
models into tflite graphs. The generated tflite graphs could
be running on mobile devices directly. On PC platform, the
models were saved in HDF5 format. The proposed post-
detection rule-based reasoning algorithm was also imple-
mented on the PC platform for performance evaluation. The
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TABLE 1. PC/Mobile Platform Specifications

PC Mobile Device
CPU Intel Core i7-

6700HQ@2.60GHz
Qualcomm Snapdragon 835 /
Octa-core (4 × 2.35 GHz, 4 ×
1.9 GHz) Kryo

RAM 16Gb 2133MHz SODIMM 4Gb LPDDR4X
GPU External GPU: RTX 2070 /

8GB GDDR6 Connected by
Thunderbolt 3 operating @
40Gbps

Adreno 540

OS Windows 10 Android 10
Battery N/A 3520mAh

TABLE 2. Participants’ Demographics

ID Age(yrs) Height(cm) Weight(kg) Gender
1 28 160 54 Female
2 27 159 50 Female
3 20 175 85 Male
4 25 162 50 Female
5 28 176 100 Male
6 29 158 50 Female
7 23 165 47 Female
8 26 164 70 Female
9 31 183 80 Male
10 28 166 62 Female
11 31 183 120 Male
12 25 173 50 Female
Max/Min 31/20 183/159 120/47 N/A
Summary
(avg/std) 26.8/3.2 168.7/9.0 68.2/23.6 4 Male and

8 Female
avg = average, std = stand deviation.

detailed specifications of the PC system are described in
Table 1.

Mobile platform settings: This study also evaluated and
compared the performance of the proposed framework with
the DNN models on the mobile platform. Google Pixel 2 XL
was used as the mobile platform test device. All the modules,
which were illustrated in Section III, were implemented and
evaluated on this device. The detailed specifications of the
mobile device are also illustrated in Table 1.

B. EXPERIMENTAL PROTOCOLS
To evaluate our proposed approach, a set of experiments were
designed to simulate clinical-level LBP patients’ rehabilita-
tion progress assessment [41]. 12 participants were recruited
for this experiment. All participants completed the entire
experiment. The details of each participant’s demographics
are shown in Table 2.

Participants were instructed to perform six LPMs in se-
quence, including flexion, extension, left lateral flexion, right
lateral flexion, left rotation and right rotation. The instructor
was trained by musculoskeletal medical experts. Each partici-
pant performed each type of LPM for 15 times before starting
another LPM. The flexion and extension refer to individuals
bend or extend their torso forward or backward within the
sagittal plane. The lateral flexions refer to individuals per-
form side flexion (i.e., left and right) within the coronal plane.
The rotations refer to individuals rotate their torso (towards
left and right) while the pelvic area facing forward. This

type of LPM is performed within the transverse plane. After
performing each LPM, participants had to return to their
static position (i.e., standing in a relaxed manner) for a few
seconds before continuing to perform the next movement.
Participants could choose to withdraw or stop to rest at any
time during the experiments. In order to make the experiment
comparable to real life scenario, participants are instructed to
perform the LPMs at any speed with any bending or turning
angles. This study has been approved by Monash University
Human Research Ethics Committee.

C. DATA PROCESSING

All data was collected from ViMove system. The ViMove
PC software has already applied a zero-phase, second-order
Butterworth filter, and cut-off frequency of 5Hz to eliminate
the noise of accelerometer and gyroscope readings. On top
of that, we added another low pass Butterworth filter with
a corner frequency of 0.3Hz on accelerometer readings to
reduce the gravity acceleration signal interference and obtain
the linear acceleration readings (also known as body acceler-
ation signal in other literature [42]).

In order to generate DNN processable data, we first needed
to slice the raw data into data chunks by using the suitable
combination of sliding window size and overlap rate. Some
studies suggest setting the overlap rate to 90% [39] can
increase the accuracy of the models, while other studies
suggest using 50% [28]. In order to determine the suitable
choices of these two variables for different models, the slid-
ing window size and overlap rate comparison experiment was
first conducted on the PC platform with the three standard
LSTM-based DNN models (Vanilla models).

In this experiment, 15 datasets were generated from the
raw data files by using 15 combinations of five sliding win-
dow sizes (e.g., 1 sec, 1.5 sec, 2 sec, 2.5 sec and 3 sec) and
three overlap rates (e.g., 30%, 50% and 70%). DNN models
are stochastic models. They use randomness while being fit
on a dataset, such as random initial weights and random
shuffling of data during each training epoch and stochastic
gradient descent [43]. This may result in different model
performance after each training. Therefore, the evaluation
experiments were repeated for five times, and the mean
accuracy (grand mean) and standard error of the model on
test datasets were calculated for the comparison.

As shown in Table 3, the most suitable sliding window
size was 3.0 seconds because it produced the highest mean
accuracy for all the models. However, the most suitable
overlap rates of these three models were not consistent (50%
for CNN-LSTM and LSTM, and 70% for Bidir-LSTM), if the
highest mean accuracy was used as the only metric. Hence,
the standard error was taken into considerations. We noticed
that the lower the standard error, the more stable the model
performance. According to this principle, 50% overlap rate
seemed to be the most suitable choice for this task because all
these three models produced a relatively lower standard error
and higher mean accuracy with 50% overlap rate. Therefore,
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TABLE 3. Overlap Rate and Sliding Window Size Comparison

CNN-LSTM
(Vanilla) LSTM Bidir-LSTM

O
ve

rl
ap

R
at

e

30
%

Sl
id

in
g

W
in

do
w

Si
ze

(S
ec

on
d)

1.0 78.15%
±1.01

78.67%
±1.03

77.62%
±1.33

1.5 79.47%
±0.96

81.29%
±0.87

79.90%
±1.46

2.0 82.79%
±0.83

83.45%
±0.40

82.12%
±1.20

2.5 83.47%
±0.67

84.07%
±0.71

83.53%
±0.51

3.0 84.36%
±0.62

83.71%
±1.78

84.39%
±0.74

50
%

1.0 77.93%
±0.99

78.57%
±0.42

77.43%
±0.61

1.5 80.31%
±0.98

81.13%
±0.87

80.46%
±0.78

2.0 82.19%
±0.81

83.18%
±0.70

82.30%
±0.67

2.5 84.19%
±0.48

84.08%
±0.37

84.29%
±0.36

3.0 84.56%
±0.58*

85.23%
±0.36*

84.79%
±0.44**

70
%

1.0 76.82%
±1.77

76.41%
±1.85

76.31%
±1.62

1.5 78.32%
±1.23

81.03%
±0.63

79.52%
±1.30

2.0 81.36%
±1.41

81.42%
±1.11

81.28%
±1.51

2.5 83.89%
±1.11

84.03%
±0.33

83.78%
±1.10

3.0 84.33%
±0.89

85.17%
±0.79

85.03%
±1.00*

The bolded line texts refer to the selected combination of overlap
rate and sliding window size, and their corresponding accuracies. The
highest values are marked with single asterisk and the second highest
value of Bidir-LSTM are marked with two asterisks since it has been
selected.

3 seconds as the sliding windows size and 50% as the overlap
rate were chosen in this study.

Unlike the other movement detection studies [9], [44],
this research used the majority voting scheme to label the
data [45]. This is because other low-level movement studies
instruct the participant to finish one movement “B” within a
time frame and label the entire data chunk in this time frame
as “B” without considering the actual time consumed for
performing this movement [9]. However, our work allowed
participants to perform each LPM at any speed, this led to
various time consumptions for different participant perform-
ing different LPMs. According to our statistics, the shortest
time for participants performing single LPM was under two
seconds, while the longest time could be 15 seconds. There-
fore, the majority voting scheme was the suitable method for
this work. Altogether, there were seven labels of the data,
including static (0), flexion (1), left lateral flexion (2), right
lateral flexion (3), left rotation (4), right rotation (5) and
extension (6).

V. PERFORMANCE EVALUATION
In this section, we discuss a set of experimental evaluation
that was conducted to compare the performance of proposed
model and baseline models as well as the rule-based recon-

TABLE 4. Single IMU Setting Data VS Dual IMUs Setting

IMU Settings Accuracy Precision F1-Score

CNN-LSTM Single IMU 83.07% 82.11% 82.31%
Dual IMU 85.81% 85.04% 85.09%

LSTM Single IMU 82.75% 81.94% 82.17%
Dual IMU 84.72% 83.66% 83.84%

Bidir-LSTM Single IMU 80.84% 80.12% 80.33%
Dual IMU 85.27% 84.56% 84.60%

struction method on both PC and mobile platforms. All the
hyperparameters of each model, which is presented in this
section, were empirically optimised and the hyperparame-
ters of the LSTM layer in each model were set identically
for comparison. This study was a multinomial classification
problem, so the following performance metrics were used to
evaluate each model: normalised confusion matrix, accuracy,
precision and F1 score [46]. All datasets were processed with
window size 3 seconds and overlap rate 50%.

A. LPM DETECTION AND CLASSIFICATION ON PC
PLATFORM
On the PC platform, we conducted three experimental perfor-
mance evaluations. Firstly, the performance comparison of
using single and dual IMU sensory data on LPM detection
has been conducted to demonstrate why the dual IMUs
system was chosen for this specific task (i.e., LPM detection).
Secondly, a detailed comparison of the proposed model and
baseline models on LPM detection performance has been
demonstrated. Thirdly, the domain specified post-detection
rule-based reconstruction method was applied after the detec-
tion and the corresponding performance with selected models
were compared.

1) PERFORMANCE OF USING SINGLE AND DUAL IMU
SENSORY DATA

According to the discussion in Section II, the dual IMUs-
based sensor system is identified as the suitable choice for
detecting and classifying lumbar-pelvic movement in an out-
of-hospital setting. However, there is still lack of evidence
that quantifies the difference of the performance of using
single and dual sensory data on this specific task. Therefore,
we designed this experiment to show how much the dual
IMUs-based sensor system could improve the detection per-
formance in terms of accuracy, precision and F1 score.

The performance of the lumbar-pelvic movements detec-
tion is highly related to sensor placements. ViMove is pro-
fessional measurement system for this type of movements,
so we used the same sensor placement based on its low
back fitting template (ViMove Motion Sensors attached on
L1 and L5 regions of the human back). On the other hand,
we chose to attach the single IMU sensor (one of the ViMove
Motion Sensors) on the L5 region of human back, because
many studies and commercialised products have identified
this position had a strong relationship with human low back
area movements [11], [47].
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As shown in Table 4, the experimental results demonstrate
that dual-IMUs settings can improve the detection perfor-
mance of all the three LSTM-based DNN models. However,
for each model, the level of improvement is different. For
instance, the Bidir-LSTM is more sensitive to different sen-
sory data compared to the other models. It has more than
4% improvements of all the performance metrics. In contrast,
LSTM and CNN-LSTM produce similar results (around 2%
improvement) in terms of the performance metrics improve-
ment level when using dual-IMU sensory data. To reveal the
classification performance of each LPM category, we also
compute the confusion matrix which is shown in Figure 4 (a)
to (f). Comparing to the other LPMs, the confusion matrixes
show that all the three models do not perform well on the left
and right rotations with either a single IMU sensor setting or
dual IMUs sensor setting. However, CNN-LSTM with dual
IMU sensor setting can largely improve accuracy of detecting
the left rotation compared to the other two models with the
two sensor settings, see Figure 4 (a) and (b).

Therefore, the dual IMU sensor setting can be considered
as more suitable than a single IMU sensor setting for detect-
ing and classifying LPMs, because not only it can improve
the overall performance of different DNN models but also po-
tentially improve the detection accuracy for certain lumbar-
pelvic movement category using certain DNN models.

2) PERFORMANCE OF PROPOSED MODEL AND
BASELINE MODELS
To evaluate the accuracy of proposed model on this dataset,
we compare our proposed CNN-LSTM model with four
traditional machine learning models including (kNN, CART,
SVM and Naïve Bayes) and four LSTM-based DNN models
including (standard CNN-LSTM with early fusion [24], [27],
standard CNN-LSTM with sensor-based late fusion [24],
[27], LSTM [25] and Bidir-LSTM [28]).

According to [38], subject cross validation is a more
suitable choice for the performance evaluation based on our
dataset than standard k-fold cross validation. Therefore, this
paper split the raw data into training, validation and testing
datasets by participants. A random selection procedure was
used to choose 3 participants’ data as the test dataset and
remaining data (9 participants) as the training and validation
dataset. In order to further investigate the performance of
models based on different ratios of training and validation
dataset, we randomly selected 5, 7 and 9 participants’ data
respectively from the training and validation dataset and
applied a 5-fold leave-one-subject-out-cross-validation (5-
LOSOCV) on these three datasets for each type of models
respectively. Each fold has been repeated for 3 times and
the mean accuracy was calculated for the 5-LOSOCV. The
results of 5-LOSOCV on the three selected training and vali-
dation datasets are shown in Figure 5, 6 and 7 respectively.

This experiment is designed to demonstrate the robust-
ness of proposed model on different size and ratio of
training/validation samples. It can be seen that our pro-
posed model produces similar results regardless of the train-

FIGURE 4. Single and Dual IMU Normalised Confusion Matrix
Comparison

FIGURE 5. 5-Fold LOSOCV on 5 Subjects’ Dataset

ing/validation dataset size. The accuracy slightly increases
and the standard error decreases while the training dataset
size getting larger. Although the CART shows the smallest
standard error in the 9 subjects’ dataset, the accuracy of the
CART is significantly smaller than the proposed method.
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FIGURE 6. 5-Fold LOSOCV on 7 Subjects’ Dataset

FIGURE 7. 5-Fold LOSOCV on 9 Subjects’ Dataset

Additionally, the models which has the best performance on
each training and validation datasets are selected to evaluate
its performance on the test dataset. The results are shown in
Table 5.

Additionally, the proposed CNN-LSTM model also has
the highest performance on the test dataset. It improves
around 10% and 3% in detection accuracy comparing to the
standard CNN-LSTM and around 4% difference in terms
of accuracy between our proposed model and the LSTM /
Bidir-LSTM model. Since the accuracy of the conventional
ML methods (kNN, CART, SVM and Naïve Bayes) and the
standard CNN-LSTM model with late fusion are much lower
than the remaining models, the top four models with higher
accuracy (marked with *) are selected for further evaluations
and comparisons.

TABLE 5. Test Datasets’ Performance Comparison

5 Subjects 7 Subjects 9 Subjects
Acc
(%)

Pre
(%)

F1
(%)

Acc
(%)

Pre
(%)

F1
(%)

Acc
(%)

Pre
(%)

F1
(%)

C-L
(p)*

84.
79

83.
96

84.
01

86.
18

86.
05

85.
98

88.
04

87.
70

87.
76

C-L
(e)*

81.
34

80
.16

80.
22

82.
89

81.
79

81.
68

84.
25

83.
11

83.
17

C-L
(l)

71.
93

70.
82

70.
89

73.
22

72.
02

71.
98

76.
02

74.
97

75.
02

L* 81.
25

79.
75

79.
82

83.
37

81.
82

81.
71

84.
72

83.
66

83.
84

B-L
*

81.
45

79.
91

79.
94

83.
84

82.
73

82.
89

85.
27

84.
56

84.
60

kN
N

68.
56

68.
89

66.
34

73.
63

74.
04

71.
95

73.
53

73.
72

72.
00

CA
RT

69.
20

68.
94

67.
82

67.
83

68.
19

67.
38

71.
09

70.
79

70.
37

SV
M

66.
05

71.
01

62.
55

72.
99

76.
42

70.
59

74.
26

76.
66

72.
15

NB 58.
02

62.
29

58.
55

57.
68

64.
51

59.
99

63.
97

69.
17

65.
58

C-L = CNN-LSTM, (p) = proposed, (e) = with early fusion; (l) = with
late fusion, L = LSTM, B-L = Bidir-LSTM, NB = Naïve Bayes, Acc =
Accuracy; Pre = Precision; F1 = F1 Score.

3) PERFORMANCE OF DOMAIN SPECIFIC
POST-DETECTION RULE-BASED RECONSTRUCTION
METHOD
As discussed in Section III, the rule-based reconstruction
method uses prior knowledge to rectify the detection outputs
of the models and improve the overall performance. To eval-
uate the performance of the proposed reconstruction rules for
each model, we applied these rules to the outputs of the four
models and compared the change of performance metrics
between the original detection outputs and reconstructed
outputs.

The results are shown in Table 6 and the confusion ma-
trixes of the four models with the rule-based method are
shown in Figure 8 (a) to (h). It can be seen that the rule-
based method can improve all performance metrics of all
the models, in terms of accuracy, precision and F1 score.
Note that the detection errors are different due to the fact
that different models could generate different abstract fea-
tures and DNN models are stochastic models. Therefore, we
acknowledge that the performance of the proposed rule-based
method may produce different results with different DNN
models. Compared to the performance of the proposed CNN-
LSTM, LSTM and Bidir-LSTM have slightly better per-
formance improvement after adding the rule-based method.
This indicates that the method has a better performance for
models with lower accuracy. This feature is important for on-
device inference because after the performance of the models
will drop to some extent after conversion. The details are
illustrated in the next sub-section.

By further analysis of the confusion matrix, we also found
that a number of rotations had been misclassified as static
position. This is because the data was labelled based on video
recordings, and the identification of the start and end of the
transition for each rotation from a static position might have
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TABLE 6. With Rule-Based Method VS Without Rule-Based Method (PC)

Settings Accuracy Precision F1-Score
CNN-LSTM
(Proposed)

No-Rule 88.04% 87.70% 87.76%
Rule 88.37% 87.92% 87.81%

CNN-LSTM
(Early Fusion)

No-Rule 84.25% 83.11% 83.17%
Rule 86.10% 85.41% 85.34%

LSTM No-Rule 84.72% 83.66% 83.84%
Rule 86.14% 85.30% 85.05%

Bidir-LSTM No-Rule 85.27% 84.56% 84.60%
Rule 86.22% 85.54% 85.37%

FIGURE 8. Normalised Confusion Matrix for PC Platform Evaluations
(With and Without Rules)

contained errors. Also, the body rotation was mainly detected
by the gyroscope. The measurement error may increase when
the gyroscope moves too slowly.

B. LPM DETECTION AND CLASSIFICATION ON MOBILE
PLATFORM
In this sub-section, we describe LPMs detection on a mobile
platform. We first converted the previously trained models
into TFLite graphs which were designed for limited com-
putational power devices such as mobile devices [48]. Then
we compared the LPMs detection and classification perfor-
mance, in terms of accuracy, precision, F1-score, execution
time and power consumption, of these converted models as
well as the proposed rule-based reconstruction method.

TFLite library is part of Google’s Tensorflow [49]. It offers
a significantly reduced binary size and kernels optimized
for on-device inference [29]. TFLite is also supported by
Android Neural Networks API (NNAPI) which can utilise
the on-device AI hardware acceleration resources (such as the
mobile GPUs) directly to improve the inference performance.
However, TFLite is still lacking the support of some vital
deep learning operators, especially for RNNs such as LSTM
[50]. Therefore, this work used the TensorFlow Lite plugin,
which contained the standard Tensorflow operators [29], to
implement and convert these selected DNN models for LPM
detection and classification on the mobile devices.

To thoroughly investigate the on-device performance of
these three models as well as the proposed rule-based
method, we separated the evaluation of the performance into
two parts: 1) selected DNN models’ performance compari-
son; 2) on-device processing performance comparison.

1) PERFORMANCE OF SELECTED DNN MODELS WITH
AND WITHOUT RULE-BASED RECONSTRUCTION
METHOD
This sub-section compares the performance metrics, includ-
ing accuracy, precision and F1 score, of the four converted
DNN models with and without the proposed rule-based re-
construction method.

As shown in Table 7, the performance metrics of all
the models dropped after the conversion. The Bidir-LSTM
has the sharpest drop while the LSTM has the smallest
decrease level. CNN-LSTM based models also has a larger
decrease (≈ 3%) comparing to the LSTM. This is because
the quantised inference was used in this work instead of
the floating-point inference [29]. Quantised inference needs
to convert the model from a 16-bit floating point type to
int-8 format to reduce the size and random-access memory
(RAM) consumption by a factor of 4 [29]. This mechanism
may reduce the execution time by 2 or 3 times. In addition,
integer computations can significantly decrease the energy
consumption on most of the mobile devices [49]. In order
to make the models suitable for the general mobile devices,
we chose to use this type of inference. However, the bit-
width network weights reduction may lead to different level
of accuracy losses for different tasks [48]. This could explain
why all the performance metrics of the models dropped after
the conversion.

After applying the rule-based method to improve the de-
tection accuracy, the performance results for all the models
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TABLE 7. Model Performance Comparison on Mobile Device

Settings Accuracy Precision F1-Score
CNN
-LSTM
(Proposed)

PC 88.04% 87.70% 87.76%
Mobile 85.11% 84.87% 84.52%
Mobile (Rules) 86.23% 85.77% 85.92%

CNN
-LSTM
(Early Fusion)

PC 84.25% 83.11% 83.17%
Mobile 81.56% 81.52% 81.17%
Mobile (Rules) 83.29% 83.44% 82.91%

LSTM
PC 84.72% 83.66% 83.84%
Mobile 84.01% 82.97% 83.21%
Mobile (Rules) 85.17% 84.20% 84.38%

Bidir
-LSTM

PC 85.27% 84.56% 84.60%
Mobile 36.88% 42.98% 32.39%
Mobile (Rules) 44.53% 50.18% 39.98%

PC = PC Platform, Mobile = Mobile Platform, Mobile (Ru) = Mobile
Platform with Rule-based Method.

TABLE 8. Mobile Platform Processing Performance Comparison

Settings
Average
Processing
Time (ms)

Processing Power
Consumption
(3hrs/With Rules)

CNN-LSTM
(Proposed)

No-Rule 2.74 ±0.79 1297.9 mAhRule 9.53 ±1.89
CNN-LSTM
(Early Fusion)

No-Rule 1.89 ±0.88 1213.6 mAhRule 4.21 ±1.75

LSTM No-Rule 4.14 ±0.64 1372.8 mAhRule 12.91 ±2.23

Bidir-LSTM No-Rule 16.91 ±1.52 1443.3 mAhRule 54.81 ±14.76

show different levels of improvement. The LSTM has the
smallest level of improvement while the Bidir-LSTM has the
largest level of improvement. However, the performance of
the Bidir-LSTM is still the worst because of the enormous
drop during the conversion and the LSTM even performs
better compared to PC platform (without rule-based method).
It can also be found that the rule-based method helps the
proposed CNN-LSTM to achieve the best on-device perfor-
mance of the selected models.

2) PERFORMANCE OF MOBILE PLATFORM
PROCESSING
In this sub-section, the on-device processing performance of
each model with and without the rule-based method, in terms
of execution time and power consumption, are compared.

The on-device processing evaluation only compares the in-
ferencing time and signal pre-processing time of each model
rather than the entire data transmitting and execution time,
because this study uses the ViMove PC software collected
data. The experimental evaluation procedures are as follows.
First, we randomly selected 45 mins data from the test dataset
because real-life low back movement assessment takes no
more than 45 mins [41]. Second, the data is stored into
the local storage on the smartphone and ran the on-device
inference for all the data. To simulate the real-time processing
scenario, each data line was read per 50 ms (equivalent to
the sampling rate 20Hz). Third, we calculated the average
processing time of each data chunk.

The entire process ran two times with each model, with

and without rule-based method respectively. The results are
shown in Table 8. It can be seen that the standard early fusion
CNN-LSTM has the quickest processing time (including
inferencing time and signal processing time) among the four
models. After applying the rule-based reconstruction method,
the standard early fusion CNN-LSTM is still the quickest
one. On the other hand, due to the computation complexity
of the Bidir-LSTM, it has the longest processing time, which
is more than 4 times of the LSTM and the proposed CNN-
LSTM process time, and 8 times of the stand early fusion
CNN-LSTM.

The power consumption performance evaluation test is
designed to compare the energy efficiency of using these four
models on the mobile platform. In this evaluation, we directly
used the models with the rule-based method because one of
the goals of this study was to evaluate the performance of the
proposed framework on a mobile platform and the rule-based
model is part of the framework. Each model ran consistently
for 3hrs on the mobile phone for 5 times. The phone was fully
charged (100%) at the beginning and on aeroplane model
with the screen off and all background tasks were killed
during each test. The calculation formula (6) of the power
consumption is shown as follows.

Power Consumption = (100%− remaining

power)× battery capacity
(6)

The results of the average power consumption for each
model are also shown in Table 8. All the models have a sim-
ilar power consumption level. The most energy-efficient one
is the standard early fusion CNN-LSTM, which consumes
average 1213.6 mAh. The worst one is Bidir-LSTM which
consumes average 1443.3 mAh. We acknowledge that differ-
ent smartphones may result in different power consumption
performances.

By considering the trade-off between on-device processing
speed, power consumption and detection accuracy, the over-
all results show the proposed CNN-LSTM is the most energy
efficient for on-device real-time LPM detection and classifi-
cation, comparing to other selected DNN models. Although
the standard early fusion CNN-LSTM model has a quicker
on-device execution speed and less power consumption than
other models, its accuracy as well as other performance met-
rics are significantly lower than the proposed CNN-LSTM
model. On the other hand, the Bidir-LSTM suffers from a
huge accuracy loss when applied on a mobile platform, which
makes it not suitable for any mobile platform computing at
this stage.

VI. CONCLUSION AND FUTURE WORK
This paper presented a DNN based approach to detect
LPMs, including flexion, lateral flexion, rotation and exten-
sion, locally on-device, where the data was collected from
a clinically validated dual IMUs sensor system. We also
proposed an enhanced adapted CNN-LSTM model which
utilises domain adaptation for feature augmentation and
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global temporal-wise attention mechanism for additional
context information processing. Additionally, a rule-based
reconstruction method was developed and integrated into
the approach to increase the accuracy of the detection per-
formance. Our experimental evaluation results demonstrated
that adding domain adaptation technique and attention mech-
anism can significantly improve the performance of CNN-
LSTM on our dataset. Additionally, the proposed model is
suitable for processing multiple IMUs sensory data and the
presented approach has a promising real-time on-device de-
tection performance including efficient power consumption
rate (sufficient battery life for 8 hours monitoring in this case)
and acceptable LPM detection accuracy based on the medical
experts’ feedback.

In the future work, we plan to conduct more experiments
with different real daily living scenarios (such as cleaning
floor and washing dishes) to collect a wide range of real data
for establishing a robust DNN model to detect LPMs in hu-
man random daily activities. Other DNN models and adaptive
sliding window size techniques to increase the accuracy in
detecting the left/right rotation also need to be considered.
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