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ABSTRACT The distributed denial of service (DDoS) attack is one of the most server threats to the current
Internet and brings huge losses to society. Furthermore, it is challenging to defend DDoS due to the case
that the DDoS traffic can appear similar to the legitimate ones. Router throttling is an accessible approach
to defend DDoS attacks. Some existing router throttling methods dynamically adjust a given threshold value
to keep the server load safe. However, these methods are not ideal as they exploit the information of the
current time, so the perception of time series variations is poor. The DDoS problem can be seen as a Markov
decision process (MDP).Multi-agent router throttling (MART)method based on hierarchical communication
mechanism has been proposed to address this problem. However, each agent is independent with each other
and has no communication among them, therefore, it is hard for them to collaborate to learn an ideal policy
to defend DDoS. To solve this multi-agent partially observable MDP problem, we propose a centralized
reinforcement learning router throttling method based on a centralized communication mechanism. Each
router sends its own traffic reading to a central router, the central router then makes a decision for each
router to choose the throttling rate. We also simulate the environment of the DDoS problem more realistic
while modify the reward function of the MART to make the reward function of more coherent. To decrease
the communication costs, we add a deep deterministic policy gradient network for each router to decide
whether or not to send information to the central agent. The experiments validate that our proposed new
smart router throttling method outperforms existing methods to the DDoS instruction response.

INDEX TERMS Distributed denial of service, router throttling, Markov decision process, multi-agent router
throttling, hierarchical communication, centralized communication, communication costs.

I. INTRODUCTION
Denial of Service attacks constitute one of the major cyber
threats and among the most complicated security problems
in today’s Internet [1]–[3]. Of particular concerns are Dis-
tributed Denial of Service (DDoS) attacks, whose impact can
be proportionally severe. With little or no advance warn-
ing, a DDoS attack can easily exhaust the computing and
communication resources of its victim server within a short
period of time [4], [5]. What is worse, with the increase
of Internet bandwidth and the continuous release of various
DDoS hacking tools, the implementation of DDoS attacks is
becoming easier [6], and the events of DDoS attacks are on
the rise [2], [7]. Due to a variety of factors such as commercial
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competition, retaliation, and network extortion, many com-
mercial sites, game servers, chat networks, and other network
service providers have long been plagued by DDoS attacks.

The DDoS threat is challenging to defend for many reasons
[4], [8]. First, the traffic is generated from terminals spreading
all over the Internet, and then all traffic is aggregated at the
victim server. Second, the large volume of the aggregated
traffic is unlikely to be stopped by a single defense point near
the victim. Third, the DDoS traffic can appear to be similar
to the legitimate one since the damage may cause by the total
volume of traffic and not the traffic content.

If we could know the legitimate traffic percentage, we can
easily solve the problem by Linear Programming (LP). As we
can know the total traffic reading of each throttling router and
suppose that we could not distinguish the legitimate traffic
from attack traffic. Thus, how to reduce the total traffic to
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the victim server to allow the server work properly while
ensuring traffic of legitimate user to access the server as much
as possible is an urgent problem to be solved.

Router throttling [9] is a popular approach to defend
against DDoS attacks, where the victim server signals a set
of upstream routers to throttle traffic. The key element in the
defense system is to allocate appropriate throttling rates at the
distributed routing points. The appropriate throttles should
depend on the current demand distributions, so dynamically
negotiation is indispensable between the server and network
routers. There are two baseline methods, Server-initiated
Router Throttle (SIRT) algorithm and Fair Router Throttle
(FRT) algorithm [9]. Both of SIRT and FRT adjust a given
threshold value to keep the server load within [Ls,Us], Ls
is the low-water mark of the server load and Us is the load
limits of the victim server. However, as these two methods
only based on the traffic reading itself, and could not reuse
the experience of past time. Thus, it is hard to make an ideal
decision to set the throttling rate.

The DDoS problem can be formalized as a Markov Deci-
sion Process (MDP) [10], [11]. Thus, the agents can do
actions based on current traffic information as well as its
previous experience with the network environment. Malialis
and Kudenko [12], [13] introduceMulti-agent Reinforcement
Learning (MARL)method based on hierarchical communica-
tion mechanism, where multiple independent reinforcement
learning agents are installed on a set of upstream routers
and learn to throttle traffic towards the victim server. There
is no communication between different router agents and
each agent can only get information from its parent nodes in
the network. As each agent is independent with each other,
the only link is the global reward of all agents. Each agent
treats the other agents as part of its environment and makes
a decision of throttling rate. However, the strategies of other
agents are uncertain and changing as training progresses [14],
so the environment becomes unstable from the perspective
of any individual agent and thus it is hard for agents to
collaborate to learn an ideal policy.

Motivated by existing research about distributed router
throttling methods, we propose a Centralized Reinforce-
ment Learning Router Throttling with Less Communication
(CRLRT-LC)method to learn a better policywhile decreasing
the communication costs.

The organization of the paper is as follows. Section II
introduces the DDoS attack problem and some existing
router throttling methods. Details of our proposed CRLRT-
LCmethod and its design details are introduced in Section III.
Data preparation, experimental settings, performance evalua-
tion, and the follow-up discussion are presented in Section IV.
Conclusions are given in Section V.

II. DISCUSSION DDOS PROBLEM AND ROUTER
THROTTLING METHODS
In this section, the DDoS attack problem and some existing
router throttling methods (SIRT, FRT, and MART) will be
introduced.

A. DDOS PROBLEM DEFINITION
The strategy behind the DDoS attack is described by the
DDoS attack model [15]. The terminals are compromised
by the attacker, which constitute the botnet. Specifically,
the attacker installs malicious software on vulnerable termi-
nals to compromise them, thus being able to communicate
with and control them. The attacker communicates with the
handlers, which in turn control the terminals in order to
launch a DDoS attack.

Router throttling is a framework for DDoS instruction
response as shown in Fig.1. The Environment is the network
topology, a server responds the request from users (or ter-
minals). When the attack is happening, some users may be
controlled by the attacker. This may lead the traffic accumu-
lated in throttling router contains much attack traffic, which
may lead the server crashed. The Agents are the throttling
agents, they get State information from the environment, then
respondAction to the environment and get feedbackReward
from the environment. The purpose of router throttling is to
keep the server work and let as much legitimate user request
the server. So before the accumulated large amount of traffic
reaching to the server, the throttling router should drop some
traffic.

The DDoS attacks can be viewed as a resource manage-
ment problem. Assume x it is the legitimate traffic reading
of router i at moment t , yit is the attack traffic, ait is the
throttling rate, the goal is to maximize the passing rate of
legitimate traffic of all nodes during a time T as shown in
Equation (1), N is the number of router agents. And subject
to the conditions that the passed total traffic is less than the
load limits Us as shown in Equation (2).

max
T∑
t=0

∑N
i=0 x

i
t (1− a

i
t )∑N

i=0 x
i
t

(1)

s.t.
N∑
i=0

(x it + y
i
t )(1− a

i
t ) ≤ Us (2)

As in reality, we could not know the exact value of the legit-
imate traffic x it . And we can only get the sum value of x it +y

i
t .

The DDoS problem cannot be solved by Linear Programming
(LP) method [16], [17] to get the optimal router throttling
rate ait for each router. Thus, if we want to make decisions
based on incomplete, vague information, we need to get some
feedback information from the network environment to tell us
whether the decision we just made is efficiency.

B. SERVER-INITIATED ROUTER THROTTLE ALGORITHM
For Server-initiated Router Throttle (SIRT) algorithm, all
routers share the same throttling rate at ∈ [0, 1]. Each router
throttles a fraction at of traffic, to make sure the traffic to
victim server is within [Ls, Us] during the DDoS attack. The
fraction at is adjusted according to current server congestion.
The fraction at is zero when no throttle is in effect. If Zt
(the total traffic transfered to victim server at moment t ,
as shown in Equation (3)) is more than Us, this method will
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FIGURE 1. The framework of router throttling method. The throttling router (agent) will get some information (state) from the
environment and decide the throttling rate of the router (action) by its own policy. Then get some feedback (reward) from the
environment. The interaction data (state, action, reward, new state) will be stored in a memory buffer. The data can help the
agent improve its policy.

increase the throttling rate at . If Zt is less than Ls, it will
decrease the throttling rate at , as shown in Equation (4). Here,
α, β ∈ [0, 1].

Zt =
N∑
i=0

(x it + y
i
t )(1− a

i
t ) (3){

at+1 = 1− (1− at )(1− α) Zt > Us
at+1 = 1− (1− at )(1+ β) Zt < Ls

(4)

As all routers share the same throttling rate at , this SIRT
algorithm is very simple to conduct. But it is not fair because
it penalizes all routers equally, irrespective of whether they
are greedy or well behaving.

C. FAIR ROUTER THROTTLE ALGORITHM
For the Fair Router Throttle (FRT) algorithm, all routers do
not share the same throttling rate. Each router throttles a
fraction ait of traffic (a

i
t ∈ [0, 1]), to make sure the traffic to

victim server is within [Ls, Us]. Here, given a threshold value
Rts for each router, then the throttling rate a

i
t for each router is

updated as Equation (5), the threshold value Rs(t) is updated
as Equation (6). Here, α, β ∈ [0, 1].

ait+1 =
x it + y

i
t − Rs(t)

x it + y
i
t

x it + y
i
t > Rs(t)

ait+1 = 0 x it + y
i
t ≤ Rs(t)

(5)

{
Rs(t + 1) = Rs(t)(1− α) Zt > Us
Rs(t + 1) = Rs(t)(1+ β) Zt < Ls

(6)

For attack traffic is much more than legitimate traffic,
the FRT algorithm is better than the SIRT algorithm. But if the
attack traffic is as much as legitimate traffic. This algorithm
may get a bad result. In reality, some legitimate traffic is much
more than others, for such problem, this FRT method may
fail.

D. MULTI-AGENT ROUTER THROTTLING METHOD
Malialis and Kudenko [12], [13] introduce Multi-agent
Router Throttling (MART) method based on hierarchi-
cal communication mechanism, where multiple indepen-
dent reinforcement learning agents are installed on a set
of upstream routers and learn to throttle traffic towards the
victim server.

1) REINFORCEMENT LEARNING
Consider a standard Markov Decision Process (MDP)
[18], [19], which is represented by a tuple:

M = 〈S,A,P,R, γ 〉 (7)

S is the state space and A is the action space. The
dynamic transition is specified by P(·) = Pr(st+1|st , at )
and R(·) = r(st , at ) assigns reward for state-action pairs.
By interacting with the environment, agents generate tra-
jectories: (s1, a1, r1, s2, · · · , sT ). The goal of reinforcement
learning is to maximize cumulative reward, as Equation (8)
shows, where discounted factor γ is designed to make sure
cumulative reward is bound.

max
T∑
t=1

γ t−1rt (8)
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Similarily, Multi-agent Reinforcement Learning (MARL)
is specified by a tuple:

〈N , {Oi}Ni=1, S, {Ai}
N
i=1,P,R, γ 〉 (9)

Here, N is the number of agents. For specific agent i,
oti ∈ Oi is its observation at the time t , ai ∈ Ai is its action
at the time t . Different from the standard MDP, single agent
cannot get access to global information st ∈ S. What’s more,
dynamic process and joint reward is determined by all agent’s
behaviors, which means that P(·) = Pr(st+1|st , {ait }

N
i=1) and

R(·) = r(st , {ait }
N
i=1). Although the team goal of MARL

remains to maximize cumulative joint reward, but the target
of one agent moves when other agents’ polices change, which
makes the optimization of MARL intractable.

2) HIERARCHICAL COMMUNICATION MECHANISM
Assume the communication condition is ideal. The victim’s
router signals its local traffic reading to the team leaders.
The team leaders signal both their local traffic reading and
the received reading from the server to their intermediate
routers. Similarly, the intermediate routers signal their local
traffic reading and the two received readings to their throttling
routers. This is depicted in Fig.2(a) and Fig.2(b) by the un-
directional arrows.

State Space (S): the state of each throttling router agent is
the traffic reading from the server to router agent along the
un-directional arrows in Fig.2. For example, router agent R3
in Fig.2(b)) has four-dimensional, they are the traffic reading
of server Rs, team leader R1, intermedia router R2 and the
traffic reading of itself R3. Thus, for throttling router agent
R3, its state is [Rs, R1, R2, R3].

Action Space (A): each router applies to throttle via prob-
abilistic traffic dropping. For example, action 0.2 means that
the router will drop 20% of its aggregate traffic towards the
victim server. The available action space is [0, 1].

Reward Function (R): for the basic Multi-agent Router
Throttling (MART) [9], [16] method, each agent receives the
same reward or punishment. The system has two important
goals, which are directly encoded in the reward function as
shown in Equation (10). The first goal is to keep the victim
server operational, that is, to keep its load below the upper
boundary Us. When this is not the case, the system receives a
punishment of -1. The second goal of the system is to allow as
much legitimate traffic as possible to reach the victim server
during the DDoS attack.R =

∑N
i=0 x

i
t (1− a

i
t )∑N

i=0 x
i
t

Zt ≤ Us

R = −1 Zt > Us

(10)

3) DEEP DETERMINISTIC POLICY GRADIENT
The Deep Deterministic Policy Gradient (DDPG) is a model-
free [20]–[22] off-policy actor-critic algorithm using deep
function approximators that can learn policies in high-
dimensional, continuous action spaces. It combines the

FIGURE 2. Team structure based Hierarchical communication structure.

actor-critic approach with insights from the recent success of
Deep Q Network (DQN) [23]–[25].

The Reinforcement Learning algorithms can be divided
into three groups [26]. (i) Actor-only methods typically work
with a parameterized family of policies over which opti-
mization procedures can be used directly, such as policy
gradient methods [27]. (ii) Critic-only methods that use tem-
poral difference learning have lower variance in the estimates
of expected returns, such as Q-learning. (iii) Actor-critic
methods aim to combine the advantages of actor-only
and critic-only methods. Actor-critic [28], [29] algorithm
was generally believed that learning value functions using
large, non-linear function approximators was difficult and
unstable.

DQN algorithm is capable of human-level performance
on many Atari video games using unprocessed pixels for
input [24]. However, it can only handle discrete and low-
dimensional action spaces. And cannot be straightforwardly
applied to continuous domains since it relies on finding the
action that maximizes the action-value function, which in
the continuous-valued case requires an iterative optimization
process at every step.
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DDPG combines the previously successful DQN struc-
ture to improve the stability and convergence of actor-critic.
DDPG can learn competitive policies using low-dimensional
observations using the same hyper-parameters and network
structure. A key feature of the approach is its simplicity:
it requires only a straightforward actor-critic architecture and
learning algorithm with very few ‘‘moving parts’’, making it
easy to implement and scale to more difficult problems and
larger networks. Therefore, in this paper, we adopt DDPG as
a base reinforcement learning method.

4) MULTI-AGENT DEEP DETERMINISTIC
POLICY GRADIENT METHOD
For the DDoS problem, each throttling agent gets its own
partially observation and chooses an action from action space.
Then each agent gets a reward from the environment to
improve the Reinforcement Learning (RL) policy. This is a
cooperative task, all agents cooperate to make the largest
reward, as shown in Equation (8).

Here, we adopt the Multi-agent Deep Deterministic Policy
Gradient (MADDPG) method [30], [31] as learning agents to
solve this problem. MADDPG is one of the state-of-art tech-
niques in Multi-agent Reinforcement Learning (MARL). The
code refers (https://github.com/openai/maddpg). MADDPG
is an extension of the actor-critic [29], [32] model. However,
MADDPG has to train an independent policy network for
each agent, where each agent would learn a policy special-
izing specific tasks [33] based on its own observation, and
the policy network easily overfits to the number of agents.
Therefore, MADDPG can hardly solve large-scale MARL
problems.

III. PROPOSED NEW SMART
ROUTER-THROTTLING METHOD
In this section, we first give an introduction to our pro-
posed Centralized Reinforcement Learning Router Throttling
(CRLRT) method, then introduce our less communication
method.

A. CRLRT WITH CENTRALIZED COMMUNICATION
1) CENTRALIZED COMMUNICATION
Effective communication is a key ability for collaborative
multi-agent systems. For the above MART method, each
router agent picks action solely based on local observations.
It is a cooperativemulti-agent extension of a Partially Observ-
able Markov Decision Process (POMDP) [34], [35]. As it is
hard for those independent agents to conduct consistent to
pass as much legitimate traffic as possible and at the same
time make sure the total traffic is less than Us.
We adopt a centralized communication mechanism.

Centralized communication tackles the partial observability
problem, where distributed agents cannot sense all of the
relevant information necessary to complete a cooperative
task. And a centralized decision is probably better than a
decentralized decision to some extent. The state space of

central agent is consisted of the traffic reading of N router
agents, the server available bandwidth U t

s (refer (11), will be
introduced below) and the server upper boundary Us. Here,
the state space is N + 2 dimensional and the action space is
A ∈ [0, 1] (ai = 0 means all traffic of router i will be sent to
servers; ai = 1 means all traffic will be throttled).

FIGURE 3. The framework of our Centralized Reinforcement Learning
Router Throttling method. Each throttling router sends its state to the
centralized agent, then the centralized agent makes decisions for each
throttling router.

The overall framework of our CRLRT is illustrated
in Fig.3. First of all, each agent (throttling router) gets
state information from the Environment (network topol-
ogy as shown in Fig.1) and sends its own traffic reading
Si to the central agent (Central DDPG). Then the central
agent stores the received message into a Message Pool and
makes the decision of the throttling actions for each router
agent based on the message pool. After that, the central
agent sends the action message Ai to each agent i, each
throttling router (agent) throttles part of traffic based on the
action message Ai, and sends the left traffic S ′i to the server,
here S ′i = Si(1 − Ai). In the end, the environment will
send back a reward R for the Central DDPG. We will store
the [S0, . . . , SN ,A0, . . . ,AN ,R, S ′0, . . . , S

′
N ] into a memory

buffer. The Central DDPG can improve its policy with the
stored information in the memory buffer.

2) MODIFIED REWARD FUNCTION
There is some problem with the reward function of Multi-
agent Router Throttling (MART) method. For the DDoS
problem (refer (1) and (2)). In a given state S, if agents can
get excellent actions A, it can get a high reward, but if agents
get actions near the optimal action and lead the total traffic
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more than Us, it will get a punishment-reward of −1. Thus,
the reward function R(S,A) is an incoherent function for state
action pair. What’s more, the actions have no effect on the
state of next time, thus, it is not a classical reinforcement
learning problem.

To solve the above problems, we introduce the concept of
the server available bandwidth U t

s (U
0
s = Us) at moment t ,

it is updated as shown in Equation (11). If the total traffic
Zt (after routers throttling) is more than U t

s , the bandwidth
of next time U t+1

s will be reduced. Otherwise, it will be
increased (should be below the upper boundaryUs).When the
next time U t+1

s is less than 0, the server will be crashed, and
we should restart the server. Therefore, if we add the server
available bandwidthU t

s into the state information, the actions
can have an effect on the state of next time.

U t+1
s = min{2× U t

s − Zt ,Us} (11)

Our modified reward function is shown as Equation (12),
this is a coherent function for state action pair. If the total
traffic Zt (after routers throttling) is less than U t

s , the reward
function is the same as Equation (10). If the total traffic Zt is
more thanU t

s , some traffic cannot be responded by the server,
so the reward function should be reduced by multiplied by
U t
s/Zt (smaller than 1).

R =

∑N
i=0 x

i
t (1− a

i
t )∑N

i=0 x
i
t

Zt ≤ U t
s

R =

∑N
i=0 x

i
t (1− a

i
t )∑N

i=0 x
i
t

×
U t
s

Zt
Zt > U t

s

(12)

3) CURRICULUM LEARNING
As the reading of attack traffic can be as similar to legiti-
mate traffic. It is difficult for agents to learn an ideal policy.
We adopt curriculum learning [36], [37] to solve this problem.
The main idea of curriculum learning is to decompose a hard
learning task (target task) into several simple ones (subgoal
tasks) [38]. Then, the learning agent can master subgoal tasks
and reuse the gathered information to solve the target task.
Which is faster than directly learning in the hard task from
scratch. Here, we gradually increase the variance of normal
traffic, so that at the beginning we can learn a policy much
more easily, then gradually increase the difficulty.

B. CRLRT WITH LESS COMMUNICATION
As each throttling router (agent) needs to send information
to the central agent, each time the central agent needs to
receive N (the number of router agents) times communica-
tion information. Thus, we add a DDPG network (the detail
introduction refers Section II-D.3) for each agent to decide
whether or not to send information Mi to the central agent,
as shown in Fig.4, which is based on Fig.3.

The input of the DDPG network for each throttling router
is the pool (get from the prior time) and Si, the output space of
each agent is [−1,1], if the information of this time is similar
to the prior information in the information pool, the router

FIGURE 4. CRLRT with less communication structure. To decrease the
communication cost, each throttling agent makes a decision of whether
to send state to the centralized agent by a DDPG network.

agent will not send information, otherwise it will send state
information to the central agent. Then the central agent makes
the decision of the throttling actions for each router agent
based on the message pool and sends the action message Ai
to each agent i, each throttling router (agent) throttles part of
traffic based on the action message Ai, and send the left traffic
S ′i to the server. In the end, the environment will send back
a reward R for the Central DDPG. The Central DDPG can
improve its policy with the stored information in the memory
buffer.

IV. EXPERIMENTS AND RESULT ANALYSIS
In this section, we illustrate the performance of our proposed
CRLRT architecture compared to SIRT, FRT, MART, and
LP in both fixed attack location setting and dynamic attack
location setting. All our experiments are conducted in an
Ubuntu server with 64GB of RAM.

A. DATA COLLECTION AND EVALUATION METRICS
1) DATA COLLECTION
Prior experimental setup is based on Yau’s work [9]. Each
terminal is independently chosen to be a legitimate user and
to be an attacker with probability to be 0.6 and 0.4. Legitimate
users and attackers are to send traffic randomly and to uni-
formly choose from the given range [0, 1] and [2.5, 6] Mbit/s,
respectively. However, this environment setting is too simple
and ideal, in a real environment, the attack traffic can be as
much as legitimate traffic to avoid been detected.

To validate the effectiveness of our proposed CRLRT
method architecture, we adopt OPNET [39], [40] as our
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FIGURE 5. Network simulator based on OPNET.

network simulator to generate traffic data for our experiment.
We simulate a national backbone network with 27 cities and
each city has four throttling routers (total 108 router agents).
As shown in Fig.5. There is a server located in the central
city. In a real network, the legitimate traffic from different
scale cities is different from each other. Thus, we choose
20 throttling routers as large-scale city routers and also
choose 20 throttling routers as small-scale city routers, the left
routers are media-scale city routers.

We simulate server episodes of data. Each episode lasts
for 500 time steps, the attack traffic lasts for 300 time steps,
at each time step each router generates some new traffic
to the server. At the beginning of each episode, randomly
choose Natt (54) throttling routers from the total N (108)
throttling routers as the attack traffic. At each time, throttling
routers (agents) can only sense the sum of legitimate traffic
x it and attack traffic yit , but cannot distinguish between the
two, and can select router throttling action ait from the action
range [0, 1]. The throttling action ait = 1 means that all
traffic is dropped, and ait = 0 means all traffic can pass to
the server. As heavy attack traffic can be detected easily, thus
the attack traffic can be as much as legitimate traffic to avoid
being detected. The legitimate traffic x it and attack traffic yit
is considered to obey normal distribution. The load limits Us
of the victim server is shown as Equation (13).

Us = δ(x × N + y× Natt ) (13)

Here, x is the average of legitimate traffic, y is the average
of attack traffic. δ ∈ [0, 1], N is the number of all the router
agents, Natt is the number of router agents been attacked.

2) EVALUATION METRICS
During our experiment, there are three metrics, the reward
curve during training and test period, the passing rate of
legitimate traffic and the efficiency of action Eaction.

For a Reinforcement Learning (RL) method, the reward
function (10) is important to the training progress. In this
paper, we will compare the reward curve (the change of
reward in different time steps) of different methods to show
the efficiency of methods.

For the DDoS problem, our goal is to keep the server not
crashed and has less effect on legitimate users. Thus, the aver-
age passing rate of legitimate traffic Plegitimate is the main
evaluation metrics as Equation (14). Here, x it is the legitimate
traffic reading of router i at moment t , ait is the throttling rate,
T is a period of time steps, N is the number of router agents.

Plegitimate =
1
T

T∑
t=0

∑N
i=0 x

i
t (1− a

i
t )∑N

i=0 x
i
t

(14)

We also analyze the efficiency of actions. The definition
of the average attack passing rate Pattack is similar to (14),
as shown in Equation (15), here yit is the attack traffic of
router i at moment t . As the upper boundary of the server is
given (Us), which means that the total (legitimate and attack)
passing traffic should be controlled under Us, we hope more
and more legitimate traffic is passing to the server and at
the same time the attack traffic passing rate will be reduced.
Therefore, if the average legitimate passing rate Plegitimate is
muchmore than the average total passing ratePtotal (as shown
in Equation (16)), and the average attack passing rate Pattack
is much less than total passing rate Ptotal , then the actions of
the method are efficiency.

Pattack =
1
T

T∑
t=0

∑N
i=0 y

i
t (1− a

i
t )∑N

i=0 y
i
t

(15)

Ptotal =
1
T

T∑
t=0

∑N
i=0(x

i
t + y

i
t )(1− a

i
t )∑N

i=0(x
i
t + y

i
t )

(16)

The efficiency of action is defined as Equation (17).
We hope the legitimate passing rate Plegitimate is much
more than the attack passing rate Pattack , at the same time,
we should alsomake sure the legitimate passing ratePlegitimate
is as much as possible.

Eaction =
Plegitimate − Pattack

1− Plegitimate
(17)

B. BASELINES AND PARAMETER SETTING
We compare our CRLRT method with baseline methods
(SIRT, FRT, MART, and LP) in both fixed attack location
setting and dynamic attack location setting.

1) BASELINES
• Server-initiated Router Throttling (SIRT). As intro-
duced in Section II-B. Each router agent shares the same
throttling rate [9]. The server adjusts the throttling rate
to make sure the accumulated traffic is within [Ls,Us]
and sends back throttling rate information to each router
agent.

• Fair Router Throttle (FRT). As introduced in II-C.
Each throttling router has a different throttling rate [9].
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Each throttling agent adjusts its own throttling rate to
make sure the accumulated traffic is within [Ls,Us].

• Multi-agent Router Throttling (MART). This method
relies on only local information and there is no commu-
nication between each router.

• Linear Programming (LP). For the simulated environ-
ment, we can get the legitimate traffic x it and attack
traffic yit . Thus, we can get the optimal result by LP as
Equation (1) and (2). Note that LP is hardly impossible
to implement in reality, we only use it as an upper bound
for all kinds of router throttling algorithms.

2) PARAMETER SETTING
During our experiment, the parameter of Us is set δ = 0.85
(refer (13)), the number of total router N = 108, the number
of attack router Natt = 54, the legitimate traffic x it and attack
traffic yit is sampled from a different Gaussian distribution,
the legitimate traffic of large-scale x it ∼ N (1000,100), media-
scale x it ∼ N (800,100), and small-scale x it ∼ N (600,100),
yit ∼ N (800,100).
To make fair comparisons, we adopt a grid search

[41], [42] to find the optimal parameter for each algorithms.
The optimal parameter of SIRT is a0 = 0, β = 0.05, α = 0.2,
Ls = 0.9 × Us, we can refer (4) for detail definition. The
optimal parameter of FRT is Rs(0) = Us/50, β = 0.05,
α = 0.5, Ls = 0.8×Us, we can refer (6) for detail definition.
Our reinforcement learning algorithm is DDPG, the DDPG
framework and parameter during training period are shown
in Table.1. Each layer is connected with an ReLU [43], [44]
function, the optimizer of the network is Adam [45]. The
explore noise is begin with 0.2, and each step decrease with
0.2/Menory-size, end with 0.001.

TABLE 1. DDPG framework and paremeters.

The training period lasts for 900 episodes, and the test
period lasts for 100 episodes, each episode lasts for 500 time
steps, the attack traffic occurs in the first 300 time steps.
We compare the metrics of different methods in both fixed
attack location setting and dynamic attack location setting.

C. FIXED ATTACK LOCATION
For the fixed attack location setting, the location of attack
agents is fixed during training and test period and with the

FIGURE 6. The comparison of MART and CRLRT during training period.

same reward function. To validate the centralized decision is
better than the decentralized decision in this environment set-
ting, we plot the reward curve of MART and CRLRT during
the test period, as illustrated in Fig.6, here, yit ∼ N (800,100),
δ = 0.85. The training period of reinforcement learning is
a little different from supervised learning, as reinforcement
learning need to explore new action during training, the learn-
ing curve will rise volatility. From the darker area of Fig.6,
we can see that the training period of our CRLRT method
tends to be more stable than the MART method. And our
method can learn an ideal policy faster than MART, as our
CRLRT can get the reward of 0.9 in the first 10000 steps.

We then compare curriculum learning with directly learn-
ing. Here, yit ∼ N (800,100), δ = 0.85. We plot the
training period of curriculum learning and directly learn-
ing in Fig.7(a). Here, we plot the average reward of each
1000 time steps for display and comparison more clearly.
We also plot the test period in Fig.7(b), here we just show
the first 10 episode result for display and comparison more
clearly. From Fig.7(a), we can see that the training period
of our CRLRT with curriculum learning tends to be more
stable than directly learning. From Fig.7(b), we can see that
the policy learned by CRLRT with curriculum learning is
much better than directly learning, the test reward result of
our CRLRT with curriculum learning is around 0.9, while the
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FIGURE 7. The comparison of curriculum learning and directly learning.

directly learning reward is very unstable, and the reward is
around 0.8, much less than our reward result of 0.9.

We also compared our reward function with prior reward
function of MART. Here, yit ∼ N (800,100), δ = 0.85. From
Fig.8(a), we can see that our training stage is not stable as the
stage of prior reward, this is due to our environment setting
is more complicated and more reality than prior environment
setting, but the average reward of our reward function is a
little higher than the prior reward function. From Fig.8(b),
we can see that the policy learned by CRLRT with our
reward function is a little better than the prior reward function
of MART.

The test reward of different methods is shown in Fig.9.
Here, in order to show more clearly, we just plot the first
10 episodes of reward. From the result, we can see that the
performance of CRLRT is best among these methods besides
Linear Programming (LP). The LP method can achieve a
very high reward because it supposes that we could know
the legitimate traffic x it and attack traffic yit in advance, but
in reality, we can not know this information in advance. The
result of the LP method can just be an optimal result for
comparison. The reward curve of CRLRT-LC is a little worse
than CRLRT, as the central agent of CRLRT-LCmethod used
less information than CRLRT. There is still a big gap between
our result with the optimal result got by LP.

FIGURE 8. The reward function comparison of our method and prior
method.

FIGURE 9. The reward curve comparison in fixed attack location.

In order to analyze the efficiency of actions learned by
each method. We list the total passing rate Ptotal , the legit-
imate passing rate Plegitimate, and the attack passing rate
Pattack (refer (14)). They are used to calculate the action effi-
ciency Eaction (refer (17)) during test period. We hope Ptotal ,
Plegitimate andEaction to be as large as possible, thePattack to be
as small as possible. The metrics result of different methods
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TABLE 2. Metrics of different router throttling methods in fixed attack
location, the Total is the average passing rate of total traffic during test
period, Legitimate and Attak are the average passing rate of legitimate
and attack traffic respectively, Eaction is the efficiency of actions taken by
each method.

is shown in Table.2. We can see that the action efficiency of
SIRT, FRT and,MART is quite poor.We save the action result
of MART and can find that all agents take similar actions,
which indicates that the actions are useless, thus the action
efficiency of MART is the worst of all. The action efficiency
Eaction of LP, our CRLRT, and CRLRT-LC is consistent with
the result showed in Fig.9. Our CRLRT is better than other
methods besides the LPmethod, and our CRLRT-LC is a little
worse than CRLRT as CRLRT-LC uses less information.

D. DYNAMIC ATTACK LOCATION
As in reality, the attacker can dynamically change the attack
location to avoid been detected. For dynamic attack location
setting, the location of attack agents is dynamically changed
for each episode and test period. The parameter setting is the
same as the fixed attack location environment. We first gen-
erate 200 different attack locations. During the 900 episodes
training period, use the first 100 attack location repeatedly.
During test 100 episodes, use the left 100 attack location for
the test of the learned policy.

FIGURE 10. The reward curve comparison in dynamic attack location.

The test reward of different methods in the dynamic attack
location setting is shown in Fig.10. Here, we also just plot the
first 10 episodes of reward. From the result, we can see that
the reward of each method is similar to Fig.9. In the dynamic
attack location, the reward of Linear Programming (LP) has
an obvious fluctuation. CRLRT is still best among these

TABLE 3. Metrics of different router throttling methods in dynamic attack
location.

methods besides LP. The LP method can still achieve a very
high reward. The reward of CRLRT with less communication
(CRLRT-LC) is a little worse than CRLRT, as the central
agent of this method used less information than CRLRT.

In order to analyze the efficiency of actions learned by
each method in the dynamic attack location setting. We also
list the total passing rate Ptotal , the legitimate passing rate
Plegitimate, and the attack passing rate Pattack , and the action
efficiency Eaction during test period as shown in Table.3. The
table setting is similar to Table.2. We can see that the result
of SIRT, FRT, MART, and LP in dynamic attack location
setting is similar to the fixed attack location setting, but
the result of our CRLRT and CRLRT-LC in dynamic attack
location setting is much less than fixed attack location setting.
This is mainly because that the SIRT, FRT, and LP only use
the traffic reading itself, do not care about the location of
attack routers. But our CRLRT and CRLRT-LC are influ-
enced by the attack location, as different attack location will
lead to a quite different state for agents. The result of LP, our
CRLRT, and CRLRT-LC is consistent with the result showed
in Fig.10. The LP result is still the best, our CRLRT is better
than other methods besides the LP method, and CRLRT-LC
is a little worse than CRLRT.

V. CONCLUSION
In this paper, to solve the Partial Observability Markov Deci-
sion Problem of the DDoS attack, we make three contri-
butions to mitigate the effect of the DDoS attack. First,
we propose a Centralized Reinforcement Learning Router
Throttling with Less Communication (CRLRT-LC) method
to defend DDoS attacks. The central router makes a deci-
sion for each router to choose the throttling rate. Second,
we simulate the environment of the DDoS problem more
realistic and modify the reward function of MART to make
the reward function more coherent. Third, we add a DDPG
network for each router to decrease the communication time.
For this DDoS problem, experimental results validate that our
methods outperform existing router throttling methods. But
there is still a big gap between our result with the optimal
result produced by Linear Programming (LP), especially in
dynamic attack location setting.

In future work, first, we will try to adopt imitate learn-
ing to imitate the policy of LP. Second, we will extend
our work to a larger scale network using Hierarchical
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Reinforcement Learning. Third, we will add communication
delay to the communication to make the environment setting
more realistic.
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