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Abstract

The lack of high-resolution measurements of 3D ecosystem structure across broad spatial
extents impedes major advancements in animal ecology and biodiversity science. We aim
to fill this gap by using Light Detection and Ranging (LiDAR) technology to characterize the
vertical and horizontal complexity of vegetation and landscapes at high resolution across
regional to continental scales. The newly LiDAR-derived 3D ecosystem structures will be
applied in species distribution models for breeding birds in forests and marshlands, for
insect  pollinators  in  agricultural  landscapes,  and  songbirds  at  stopover  sites  during
migration.  This  will  allow novel  insights  into  the hierarchical  structure  of  animal-habitat
associations,  into  why  animal  populations  decline,  and  how  they  respond  to  habitat
fragmentation and ongoing land use change. The processing of these massive amounts of
LiDAR point  cloud data  will  be  achieved by  developing  a  generic  interactive  eScience
environment  with  multi-scale  object-based  image  analysis  (OBIA)  and  interpretation  of
LiDAR point clouds, including data storage, scalable computing, tools for machine learning
and  visualisation  (feature  selection,  annotation/segmentation,  object  classification,  and
evaluation),  and  a  PostGIS  spatial  database.  The  classified  objects  will  include  trees,
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forests, vegetation strata, edges, bushes, hedges, reedbeds etc. with their related metrics,
attributes  and  summary  statistics  (e.g.  vegetation  openness,  height,  density,  vertical
biomass distribution etc.). The newly developed eScience tools and data will be available to
other disciplines and applications in ecology and the Earth sciences, thereby achieving
high impact. The project will foster new multi-disciplinary collaborations between ecologists
and eScientists and contribute to training a new generation of geo-ecologists.
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Science: background, research questions, approach, and

innovation

Humans have a tremendous impact  on the natural  environment.  For  instance,  human-
modified landscapes are now dominating our planet and the conversion, degradation and
loss of habitat leads to species extinctions and severely affects the distribution of species
and ecosystems and the services they provide to humanity Hoekstra et al. 2005, Cardinale
et al. 2012, Ceballos et al. 2015, Newbold et al. 2015. Hence, national and international
programmes —such as those related to  the Group on Earth  Observations Biodiversity
Observation  Network  (GEO  BON),  the  United  Nations  (UN)  Convention  on  Biological
Diversity  (CBD),  or  the  Intergovernmental  Science-Policy  Platform  on  Biodiversity  and
Ecosystem Services (IPBES)— demand to quantify ecosystem structure and changes in
land use and their effects and impacts on biodiversity to better assess progress towards
achieving policy targets, such as the Aichi Biodiversity Targets for 2020 set by the CBD
(Pereira et al. 2013, Kissling et al. 2015, Skidmore et al. 2015).
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A major bottleneck for predictive biodiversity modelling is the current lack of high-resolution
(i.e. fine-scale) measurements of habitat structures and 3D characteristics of vegetation
across regions and continents  (Davies and Asner  2014,  Dantas de Paula  et  al.  2016,
Lausch et al. 2016). Animals depend on the vertical and horizontal distribution of plants at
different spatial scales (Fig. 1), ranging from regional habitat distributions to 3D vegetation
structure within local habitats (Cody 1985, Wiens 1989, Buler et al. 2007, Kissling et al.
2008, Fuller 2012). However, current studies usually do not account for this hierarchical
nature of animal-habitat associations (Kristan III 2006) because they either use only coarse
habitat information (e.g. CORINE land cover types) over large spatial extents or very local
information with a fine grain but a small spatial extent. For instance, the CORINE Land
Cover database (http://land.copernicus.eu/pan-european/corine-land-cover), a widely used
data source, provides consistent geographical information on land cover across Europe,
but only distinguishes 44 coarse land cover classes (e.g. only three forest and five wetland
types). Small and scattered habitats such as reedbed and linear elements (e.g. hedges) in
agricultural  landscapes  are  generally  not  well  represented,  and  the  3D  structural  and
compositional characteristics of land cover types are not captured at all. This is insufficient
for modelling species distributions of animals because their abundances as well as nesting
and  foraging  requirements  depend  on  the  fine-scale  structure  of  the  landscape  (e.g.
density, cover and openness of vegetation, edges) (Cody 1985) and on the specific 3D
characteristics  of  the  habitats  (e.g.  vertical  and  horizontal  distribution  of  biomass)
(MacArthur and MacArthur 1961, Goetz et al. 2010, Lesak et al. 2011, Zellweger et al.
2013) (Fig. 1). Hence, high-resolution measurements of 2D and 3D ecosystem structures
at fine grain sizes are needed across broad spatial extents (regional to continental) to make
major  advancements  in  animal  ecology  and  biodiversity  science  (Wulder  et  al.  2004,
Kissling et al. 2008, Vierling et al. 2008, Zhang et al. 2013, Dantas de Paula et al. 2016,
Zellweger et al. 2016).

 
Figure 1.  

The  vertical  and  horizontal  distribution  of  plants  influences  habitat  structure  and  3D
characteristics of vegetation for animals. Illustrated are examples for (a) forests, (b) agricultural
and open landscapes, and (c) reedbeds and marshlands. The height, openness and density of
vegetation as well as specific habitat features (e.g. tree species, hedges etc.) are key aspects
of animal habitat and space use.
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An  exciting  opportunity  to  improve  predictive  biodiversity  modelling  is  the  increasing
availability of high-resolution remote sensing (RS) data on ecosystem structures derived
from Light Detection and Ranging (LiDAR). LiDAR data enable us to fill the existing data
gap by providing fine-scale habitat information across large spatial extents (Lim et al. 2003,
Wulder  et  al.  2012,  Davies  and  Asner  2014).  To  date,  LiDAR-derived  3D  ecosystem
structures  have  mainly  been  applied  in  local-scale  ecological  studies  at  small  spatial
extents (Davies and Asner 2014). Quantified across regions and continents, the vertical
and horizontal complexity of forests (e.g. tree heights, densities, canopy cover and gaps
etc.) and the extent and structure of open habitats (e.g. hedges in agricultural landscapes,
shrub  density  and  coverage,  height  and  density  of  reedbeds  etc.)  can  be  used  for
predictive biodiversity modelling.  For instance, LiDAR-derived habitat  data can be used
together with other abiotic variables (e.g. climate, topography, soil and land cover types)
(Kissling  et  al.  2012,  Eskildsen  et  al.  2013,  Aguirre-Gutiérrez  et  al.  2016)  in  species
distribution  models  (SDMs)  (Elith  and  Leathwick  2009)  to  predict  the  abundance  and
distribution of animals with unprecedented detail and accuracy. This is particular relevant
for  animal  species that  depend on complex vegetation structures (e.g.  3D structure  of
forests) as well as those that rely on linear habitats in agricultural landscapes (e.g. hedges)
or on small  and scattered habitat types (e.g. marshlands) that are underrepresented in
current land cover maps.

The aim of this project is to use LiDAR technology to quantify fine-scale 3D ecosystem
structures across broad spatial extents. Across Europe, we will focus on (1) ground-nesting
breeding birds in forests (e.g. Wren, Wood Warbler, Common Nightingale etc.) for which
the  3D forest  structure  (e.g.  forest  height,  stem density,  canopy  openness,  density  of
understory  etc.)  is  of  key relevance (Fig.  1a),  and (2)  breeding birds in  reedbeds and
marshlands (e.g.  Great  Bittern,  Purple Heron,  Great Reed Warbler,  Savi’s  Warbler  and
Bearded Reedling) which are a prime target of conservation and for which high-resolution
data on 3D habitat features of reedbeds (e.g. reed height, reed and shrub density, ground
dryness  etc.)  have  been  lacking  to  quantify  the  effects  of  reedbed  management  (e.g.
desiccation,  mowing  and  reed  harvesting)  on  population  declines  (Fig.  1c).  We  have
access  to  the  largest  amount  of  bird  data  available  across  Europe  (www.ebcc.info),
representing presence-absence information as well as (relative) abundances of breeding
birds derived from standardized observation methods. Covering most parts of Europe, the
data represent bird census and monitoring data (at fixed locations), national distribution
atlases (with 5×5, 10×10 or 50×50 km grid cell size resolution), and site level data (i.e. the
number and breeding locations of bird species in specific areas such as nature reserves
and Natura2000 sites). We will use these high-quality bird census data together with the
newly  quantified LiDAR-derived 3D ecosystem structures  to  model  the  distribution  and
abundance  of  these  bird  species  with  unprecedented  reality.  This  will  be  achieved  by
developing an interactive eScience environment for object-based image analysis (OBIA)
and interpretation of LiDAR point clouds (see below).

We  will  expose  the  developed  eScience  infrastructure  to  two  other  ongoing  research
projects, thus increasing the impact, generating user feed-back, and identifying bottlenecks
for  wider  applicability.  Postdoc  J.  Aguirre-Gutiérrez  focuses  on  the  impact  of  land-use
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change on the distribution and loss of NW-European pollinators. This includes insects such
as bees, butterflies, and hoverflies. Predictive modelling is currently restricted to coarse-
scale 2D habitat  characterization (Aguirre-Gutiérrez et  al.  2015, Aguirre-Gutiérrez et  al.
2016)  and  new 3D-vegetation  characterization  (e.g.  amount  of  hedges,  habitat  edges,
flower strips etc.) has high potential to improve pollinator models as well as prediction of
pollination  services  to  European  fruits  and  vegetables  (Steffan-Dewenter  et  al.  2002,
Tscharntke et  al.  2012,  Jha and Kremen 2013).  Postdoc A.  M.  Dokter  focuses on the
locations of  stop-over  sites  of  European migratory  song birds  (e.g.  warblers,  thrushes,
starlings etc.) as identified from weather radar data (Dokter et al. 2011). A major challenge
is to assess the habitat preferences of these migratory birds at stopover sites because
multi-scale habitat data (at patch and landscape scale) are usually lacking (Buler et al.
2007).  This  requires  to  quantify  the  density  of  trees/thickets/shrubs,  forest  understory
structure, vertical structure of open habitats, marshland habitats etc. to assess en route
requirements for these migrating land birds.

The proposed project will enable scientific breakthroughs in predicting animal populations
and species distributions at much finer resolution and higher accuracy than ever has been
previously  possible.  This  will  strongly  push  the  frontiers  of ecology,  biogeography  and
conservation by providing new data and novel insights into the distribution of biodiversity
and ecosystems. The availability of LiDAR-derived 3D ecosystem structures across broad
spatial  extents  will  have  a  major  impact,  maybe  comparable  to  the  influence  of  the
WorldClim dataset (Hijmans et al. 2005) on biological and geo-ecological research (>8500
Google  Scholar  citations  in  10+  years).  Our  developed  methodology  will  be  broadly
applicable to  other  animal  species and regions,  and of  major  relevance to  other  fields
dealing with massive amounts of LiDAR point cloud data. We are therefore convinced that
this  project  will  contribute  to  transform and rapidly  advance  current  basic  and  applied
research.

eScience: technologies, methods, and expected impact on the

research

We are witnessing changes in remote sensing (RS) from grid cell-based approaches to
object-based approaches (Blaschke and Strobl 2001, Heumann 2011, Aguirre-Gutiérrez et
al.  2012).  Because  grid-cells  merge  information  of  various  objects,  the  object-based
approach  provides  more  accurate  information  and  enhances  quantitative  analysis  of
traditional pixel-based approaches (Blaschke 2010, Blaschke and Strobl 2001). With the
increasing density of point clouds, ever smaller objects can accurately be identified using
the characteristic features of the point data that make up the object. Consequently, LiDAR
point clouds and high-resolution RS imagery now allow to accurately characterize geo-
vegetation objects (Aguirre-Gutiérrez et  al.  2012),  a key for  animal  biodiversity  science
(Davies and Asner 2014). However, handling of these massive amounts of data creates
immense  challenges  related  to  data  storage,  management,  analysis,  processing,  and
visualization (van Oosterom et al. 2015).

6 Kissling WD et al



The  methodological  and  technological  aim  of  the  proposed  project  is  to  develop  a
workbench that supports the workflow for handling, storage, and interactive object-based
image  analysis  (OBIA)  of  massive  amounts  of  LiDAR  point  cloud  data  (Fig.  2).  This
includes preprocessing of data (data exploration, projecting, tiling, mosaicking), storage of
LiDAR  files,  interactive  machine  learning  and  visualization  of  point  data  (e.g.  feature
selection, annotation/segmentation, classification and evaluation), scalable computing, and
a PostGIS spatial database (Fig. 2). Together with other data (e.g. bird data, climate data,
other  remote  sensing  layers  etc.),  the  LiDAR  data  can  then  be  used  for  ecological
applications, including species distribution modelling of birds and insect pollinators (Fig. 2).
The  handling  and  analysis  of  the  LiDAR data  to  obtain  3D-vegetation  and  landscape
structures at  high resolution over an unprecedented spatial  extent  (regions,  continents)
requires a multi-disciplinary collaboration of ecologists and eScientists.

We already have many TeraBytes of LiDAR-data (NL, BE, AUT), we are in contact with
some other countries (GB, DE), and many European countries have LiDAR data that are
available for scientific research (e.g. ES, FIN, DK, SI). We will take care of the differences
between data sets in terms of point cloud density and information type (e.g. full wave form,
intensity,  only first  return,  additional  parallel  sensors).  Uniform  global  LiDAR  data will
become accessible when the GEDI sensor is installed on the International Space Station in
2018  (https://www.nasa.gov/content/goddard/new-nasa-probe-will-study-earth-s-forests-
in-3-d/#.VzWjAr4T5fA). Besides LiDAR, we have access to bird distribution and abundance
data,  climate data,  and other  remote sensing layers such as Sentinel  imagery (https://

 
Figure 2.  

Generic workflow for object-based image analysis (OBIA) of LiDAR point clouds and proposed
ecological applications. A workbench (blue) will be developed to handle the data storage, data
exploration, and interactive OBIA of the massive LiDAR point clouds. Combined with datasets
of bird distributions, climate, and other remote sensing layers (orange), the LiDAR data will be
applied to several ecological case studies, e.g. by using species distribution modelling of birds
and insect pollinators (green).
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scihub.copernicus.eu),  Landsat  imagery  (http://landsat.gsfc.nasa.gov),  and  SPOT
vegetation products such as NDVI (http://www.vgt.vito.be/index.html). These will be needed
for species distribution modelling. For ground truthing of LiDAR data and derived objects,
we  will  use  specific  test  areas  in  flat  as  well  as  mountainous  regions  (e.g.  cultural
landscapes in the Netherlands vs. steep slopes in the Alps) to assess the accuracy of the
identification  of  trees,  understory  density,  shrubs,  hedges,  marshland  habitats  etc.  in
different environments. We will then develop and test the workflow for supervised OBIA to
capture the full variation of vegetation across Europe.

LAStools (https://rapidlasso.com/lastools/) are indispensable for efficient LiDAR processing
(i.e.  converting,  tiling,  filtering, and  clipping  the  many  TeraBytes  of  data).  However,
additional tools are needed for efficient and transparent object-based classification. We aim
to  combine  OBIA  with  scalable  computing  in  an  interactive  environment  for  data
exploration, segmentation, classification and interpretation of LiDAR data. The following
elements for developing the workflow are essential:

1. Scalable storage. We will use existing file-based LAStools for storing LiDAR data.
In addition, we will develop a PostgreSQL/GIS database for storing the metadata of
the LiDAR and other RS data, and for storing classified objects with their attributes
and summary statistics. It should be easy for a user to add new schemas and new
objects to the data base. Objects may have different spatial scales (e.g. single trees
in a forest, the forest as a whole, hedges or other linear structures, reedbeds etc.).
Attributes  of  e.g.  a  tree  may  be  tree  metrics  such  as  height, crown  diameter,
biomass, species identity etc.. The data base with objects will be made available to
scientists (ecologists, environmental scientists, meteorologists) which we expect will
increase the impact of our work enormously (see deliverables below).

2. Tools for machine learning. Traditional tools for geospatial analyses are not yet
ready  for  point  clouds.  eCognition  (http://www.ecognition.com/)  is  a  suite  of
commercial software for interactive OBIA (including point clouds), but capabilities
are  still  very  limited  and  classification  algorithms  are  (partly)  hidden  and  thus
inappropriate for scientific innovation. The challenge in the proposed project is to
make  use  of  existing  open  source  software  such  as  the  Point  Cloud  Library
(Aldoma  et  al.  2012,  http://pointclouds.org/),  CloudCompare  (http://
www.danielgm.net/cc/),  and Orfeo (https://www.orfeo-toolbox.org/)  and to  include
machine learning; to closely monitor and make use of new developments; and to
complement this by developing new software. From our previous research we have
good experience with the WEKA software (Jakubowski  et  al.  2013, Frank et  al.
2010) which covers various machine learning algorithms and data preprocessing
tools.  We therefore  know that several  existing  machine learning algorithms can
provide good results for pattern recognition as long as annotation, segmentation
(see Box 1 for  an example) and data features are optimally taken care of.  The
development of algorithms to calculate new features as well as feature selection
have emerged as key steps. We will therefore mainly invest in tools for interactive
feature  selection  and  annotation/segmentation  relevant  for  object  classification
(Anders et al. 2011).
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3. Visualization.  In  the  iterative  process  of  feature  selection,  annotation/
segmentation, and object classification and evaluation, the visualization is of utmost
importance, especially when working on the improvement of methodologies. To be
able to visually judge the quality of methodologies and to understand mismatches,
we will adapt existing software such as Point Cloud Library (Aldoma et al. 2012, htt
p://pointclouds.org/)  and  Potree  (http://potree.org/wp/)  for  the  visualization  of
merged objects and point clouds.

4. Computation.  Once the  models  and  methods  for  classification  of  objects  (e.g.
trees,  bushes,  hedges,  reedbeds etc.;  Fig.  2)  have been developed,  we aim to
apply  them to  large  areas  (regions  to  continents).  This  will  require  to  develop
scalable computing solutions.

The eScience engineers will develop the proposed workbench (we envisage a combination
of LAStools, Point Cloud Library, CloudCompare, Orfeo, QGIS, Potree, as well as newly
developed tools) in close collaboration with the PhD student who will characterize the 3D
ecosystem  structures  for  breeding  birds  (see  above),  while  the  postdocs  working  on
pollinators (Aguirre-Gutiérrez et al. 2015, Aguirre-Gutiérrez et al. 2016) and bird migration
(Dokter et al. 2011, Shamoun-Baranes et al. 2014) will provide feed-back. The combination
of this eScience infrastructure and expertise on LiDAR, OBIA, ecology and modelling will
further  strengthen  our  position  at  the  cutting  edge  of  eEcology  (technology  enhanced
Ecology).

Box 1: Identifying trees in a forest

LiDAR data can be used to delineate individual trees in forests (Jakubowski et al. 2013, Hu
et al. 2014, Duncanson et al. 2014). In a preparatory study (BSc project), we tested an
efficient methodology to segment single trees in a dense forest from LiDAR point clouds.

LiDAR  returns  were  filtered  from  the  point  cloud,  smoothed  and  rasterized  to  a  1m
resolution Canopy Height Model (CHM). Locations of tree tops were determined using a
local maximum filter and the minimum distance between trees. The CHM was then flipped
with tree tops becoming sinks. An existing algorithm (Duncanson et al. 2014) was used
(originally developed to calculate flow direction and delineation of hydrological catchments)
to select cells that contribute to a particular sink. This allowed to assign cells to the tree top
and thus to segment the tree crowns within the canopy. The resulting tree crown objects
were stored in a data base.

Our example shows how tree crowns and tree tops can be calculated from LiDAR data
(Fig. 3). Additional tree metrics could be calculated, including tree height, tree biomass and
crown diameter.  This  example  illustrates  how existing  methodologies  can  be  improved
(Jakubowski et al. 2013) by adapting an algorithm and taking into account the information
of the LiDAR point cloud. A further improvement of the algorithm would be needed for the
proposed applications (Fig. 2) to reliably identify different types of trees in a mixed forest,
canopy openness etc..
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Re-use, sustainability, dissemination, and collaborations

The use of LiDAR point clouds is dramatically increasing. A generic challenge across many
disciplines and applications is the storage and handling of massive amounts of data, the
visualization,  and  the  automated  identification  of  objects  (models)  prior  to  the  actual
interpretation or  analysis (van Oosterom et  al.  2015).  This approach (LiDAR/RS data -
object  modelling  -  application)  is  generic,  whether  it  is  about  the  identification  of  3D-
vegetation structures (Heumann 2011, Vierling et al. 2008, Jakubowski et al. 2013, Hu et
al.  2014)  or  3D  subsurface  structures  from  geophysical  data  (Fadel  et  al.  2015);
operational flood mapping (Brown et al. 2016); detection of snow avalanches (Eckerstorfer
et al. 2016) or landslides (Stumpf and Kerle 2011, Li et al. 2015); identification of illegal
forest clearings or land use change (Collins and Mitchard 2015); city planning (Pang et al.
2014), or identifying buildings and their distinct sub-elements such as roofs and facades
(Le et al.  2016, Vetrivel et al.  2015). Our new eScience tools will  be available to other
disciplines and applications and thus achieve broad impact. We will re-use the database
knowledge and visualization tools developed in the past NLeSC PointCloud project (van
Oosterom et al. 2015) and the gateway that we developed in EUBrazilCloudConnect (Elia

 
Figure 3.  

Example of identifying trees in a forest from LiDAR data. Illustrated is a small plot of poplar
trees  in  Flevoland,  The  Netherlands,  for  which  tree  crowns  and  tree  tops  have  been
calculated.
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et  al.  2016).  We  also  build  upon  existing  open  source  software  for  RS,  OBIA,  and
visualization.

Our research group is active in both the Geo- and Bio-world. We will promote the eScience
approach and disseminate the results through publications in both disciplines. Since 2008
we organize one or two international PhD summer schools every year. We envisage to
organize  a  future  summer  school  on  'OBIA  of  LiDAR  point  clouds  for  ecological
applications'. LiDAR and OBIA also play an important role in education at the University of
Amsterdam where we contribute to the eScience training of the next generation of geo-
ecologists. Macroecology and RS are important and promising research directions of our
permanent staff members. A follow-up with new (international) projects is thus guaranteed
and as the developed infrastructure is crucial it will be maintained after the project.

Use of the national e-infrastructure

We have agreed with SurfSara (https://www.surf.nl/en/about-surf/subsidiaries/surfsara/) to
use the National  e-Infrastructure of  the Netherlands (e-Infra).  The project  will  require a
substantial storage for all raw data and LiDAR files (max 0.5 PB). Since we have a very
good  experience  with  the  central  hosting  of  data  at  SurfSara,  the  PostgreSQL/GIS
database of  the proposed research will  be hosted by e-Infra.  In the beginning,  we will
collect LiDAR data and store these in a file-based archive. During the development phase,
we will then use subsets of the LiDAR data from different countries. The vast majority of the
LiDAR data will only be used when upscaling the analysis to Europe for relevant ecological
applications (Fig.  2).  In  addition to  data storage,  we will  need Virtual  Machines in  the
SURFCloud for various components of the workbench. For the large-scale classification of
objects, we will  use the e-Infra Research Capacity Compute Service (www.surf.nl/rccs).
This combines Cloud, Cluster, Grid and Hadoop computing. The best scalable computing
for the classification of high resolution objects at large spatial extents has to be identified
during the project.

Workplan and time table

The suggested workplan and time table is illustrated in Fig. 4. eScience engineers will work
closely  together  (over  the  first  ~3  years)  with  the  PhD  student  who  will  do  the  3D
ecosystem characterization for breeding birds. The role of the eScience engineers is to
develop and implement the four elements mentioned above and to integrate these with
existing software in an interactive workbench. The PhD will contribute to the workbench
developments and generate feed-back from a user perspective. The PhD will then use the
workbench  to  analyze  the  data  of  test  areas  in  flat  and  mountainous  regions  and  to
produce the objects that are needed for the species distribution modelling in the 4th year.
The associated researchers can make use of the workbench and generate feed-back.
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We  envisage  that  we  need various  expertise  of  eScience  engineers.  We  will  take
advantage  of  the  existing  knowledge  in  the  Netherlands  eScience  Center  (NLeSC)
regarding handling, storing and visualizing of LiDAR data. NLeSC knowledge and skills on
machine learning and scientific visualization are essential as eScience engineers will take
the lead in developing the workbench. This will  be in close collaboration with the PhD
student and the supervisors who will be involved in the design and will generate feed-back
during the various phases in the development process. At the end of the 3rd year when
OBIA is applied to large areas the PhD student will probably need some help with scalable
computing. We also envisage several brainstorms with the involved eScience engineers,
the PhD student, supervisors and associated researchers to design the workbench as a
whole  and  to  discuss  the  requirements.  After  three  years  with  contributing  to  the
methodological and technological challenges, the involvement of eScience engineers will
be limited to their input to scientific publications and outreach. The PhD will then finish his/
her research by using the classified objects for species distribution models. We foresee
that the eScience engineers will be mainly working at NLeSC with frequent meetings (at
least one per week as our institute is just across the street) with the PhD student and one
of the supervisors.

Deliverables

1. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis (provided
as report), with evaluation of existing open source software that can be used for the
workbench, both from the developer and user point of view.

2. A file-based archive with LiDAR point cloud data
3. Data base for LiDAR meta data, object models, and classified objects with their

metrics, attributes and summary statistics. The data base will also include climate
data, other remote sensing layers and bird data that are needed for developing

 
Figure 4.  

Time table for the eEcoLiDAR project (assuming a start in March 2017). The work plan covers
tasks  for  the  NLeSC engineers,  the  proposed PhD student,  and  two  associated  Postdoc
projects.
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species distribution models. The LiDAR objects information in the data base will be
made available to the scientific community.

4. Workbench focusing on Object Based Point Cloud Analysis, tested by user(s)
5. PhD-thesis with 4-5 scientific publications focusing on 1) methodology of Object-

Based  Point  Cloud  Analysis  (incl.  case  applications);  2)  workbench  design  for
Object-Based Point Cloud Analysis; 3) data publication(s) providing the classified
objects  from  different  LiDAR  datasets,  4)  the  added  value  of  3D  vegetation
information  for  distribution  modelling  of  ground  nesting  forest  birds;  and  5)
identification of reedbeds from LiDAR data and its application to the distribution and
abundance of birds in reedbeds and marshlands.

6. PhD summer school on 'OBIA of LiDAR point clouds for ecological applications'
7. Presentations at conferences and workshops and general outreach.
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