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Abstract: Fractional Brownian motion (FBM) is a generalization of the classical Brownian
motion. Most of its statistical properties are characterized by the self-similarity (Hurst) index
0 < H < 1. In nature one often observes changes in the dynamics of a system over time.
For example, this is true in single-particle tracking experiments where a transient behavior is
revealed. The stationarity of increments of FBM restricts substantially its applicability to model
such phenomena. Several generalizations of FBM have been proposed in the literature. One of
these is called multifractional Brownian motion (MFBM) where the Hurst index becomes a function
of time. In this paper, we introduce a rigorous statistical test on MFBM based on its covariance
function. We consider three examples of the functions of the Hurst parameter: linear, logistic,
and periodic. We study the power of the test for alternatives being MFBMs with different linear,
logistic, and periodic Hurst exponent functions by utilizing Monte Carlo simulations. We also
analyze mean-squared displacement (MSD) for the three cases of MFBM by comparing the ensemble
average MSD and ensemble average time average MSD, which is related to the notion of ergodicity
breaking. We believe that the presented results will be helpful in the analysis of various anomalous
diffusion phenomena.

Keywords: multifractional Brownian motion; autocovariance function; power of the statistical test;
Monte Carlo simulations

1. Introduction

Over the last decades, massive advances in single-particle tracking (SPT), partially based on
superresolution microscopy of fluorescently tagged tracers, or fluorescence correlation spectroscopy
allow experimentalists to obtain insight into the motion of submicron tracer particles or even single
molecules in complex environments, such as living biological cells, down to nanometer precision and
at submillisecond time resolution [1,2].

The observed data obtained by SPT experiments often show pronounced deviations from
Brownian motion, namely, anomalous diffusion of the power-law form

EX(t)2 ' Kαtα (1)

of the mean-squared displacement (MSD) is observed [3–8]. Kα is the anomalous diffusion coefficient.
Depending on the magnitude of the anomalous diffusion exponent α we distinguish subdiffusion
for 0 < α < 1 from superdiffusion with α > 1 [5,8]. Subdiffusion is typically observed for
submicron particles in both bacterial and eukaryotic cells [6,9–13], in artificially crowded [14,15] and
structured [16–19] liquids, in pure and protein-crowded lipid bilayer systems [12,20–25], as well as
in groundwater systems [26]. Superdiffusion occurs in the presence of active motion, for instance,
in living biological cells [27–29] or due to bulk-surface exchange [30,31]. While typically anomalous

Entropy 2020, 22, 1403; doi:10.3390/e22121403 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-3637-5501
https://orcid.org/0000-0002-1754-4472
http://www.mdpi.com/1099-4300/22/12/1403?type=check_update&version=1
http://dx.doi.org/10.3390/e22121403
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1403 2 of 17

diffusion refers to the power-law behavior (1) with a fixed α, an increasing number of systems are
reported in which the local scaling exponent of the MSD (1) is an explicit function of time, α(t).
Such transient behavior has, for instance, been observed for green fluorescent proteins in cells or for
the motion of lipid molecules in protein-crowded bilayer membranes [25,32].

Fractional Brownian motion (FBM) introduced by Kolmogorov in 1940 and rediscovered by
Mandelbrot and van Ness in 1968 [33–35] is a generalization of the classical Brownian motion (BM).
Most of its statistical properties are characterized by the self-similarity (Hurst) index 0 < H < 1. FBM is

H-self-similar, namely for every c > 0 we have BH(ct) D
= cH BH(t) in the sense of all finite dimensional

distributions, and has stationary increments. It is the only Gaussian process satisfying these properties.
FBM is the overdamped description for viscoelastic motion and thus intimately connected to the
fractional Langevin processes, an attractive framework for many physical systems [36], for instance,
of lipid molecules in bilayer membranes [22,25,37]. The second moment of FBM reads EB2

H(t) = σ2t2H ,
where EB2

H(1) = σ2 > 0. As a consequence, for H < 1/2 we obtain subdiffusive dynamics with
persistent motion, whereas for H > 1/2, the process is superdiffusive and antipersistent. Since FBM
is the classical model for power-law dependence a number of statistical tests have been already
introduced for this process in the literature. Let us mention here the tests based on the autocovariance
function (ACVF), MSD, and detrending moving average statistics [38–40].

FBM has stationary increments that do not allow us to model processes whose regularity of
paths and “memory depth” change in time [41]. Several generalizations of FBM have been proposed
recently. One of these, called multifractional Brownian motion (MFBM), was proposed by Peltier and
Véhel [42] with time-varying Hurst exponent H(t) which is a Hölder function. The variance at time
t of the MFBM BH(t)(t) is given by Var(BH(t)(t)) = σ2t2H(t) [43]. The time-varying Hurst exponent
H(t) characterizes the path regularity of the process at time t: sample paths near t with small Ht,
close to 0, are space-filling and highly irregular, while paths with large Ht, close to 1, are very smooth.
The variance constant σ2 determines the “energy level” of the process. This natural extension of FBM
results in some loss of some of FBMs basic properties, in particular, the increments of MFBM are
non-stationary and the process is no longer self-similar.

Other, similar generalizations are limited to a piecewise constant H [44] but, what is important
from a data analysis point of view, is that they lead to continuous Gaussian processes with stationary
increments. Let us also mention an idea involving an appropriate class of covariance functions.
Ryvkina [45] uses such covariance functions to define Gaussian processes to extend FBM and MFBM
to a class of fractional Brownian motions with a variable Hurst parameter parameterized by a set
of all measurable functions with values in (1/2, 1), and different from MFBMs. However, from a
biological data point of view, such a range for H values is not practical since it only corresponds to a
superdiffusive (long-range dependent) case.

MFBMs have become popular as flexible models in describing real-life signals of high-frequency
features in geoscience, microeconomics, and turbulence, to name a few [43]. They are closely related to
the notion of transient diffusion dynamics observed in biological experiments. The article is structured
as follows. In Section 2, the MFBM is defined and its basic properties are presented. We also recall
formulas for the ensemble average MSD, time average MSD, and present three Hurst exponent
functions that will be analyzed in the sequel. In Section 3, the main results are presented. We introduce
a statistical test on MFBM based on its ACVF which is presented as a quadratic form. Next, the power
of the test is studied for the three cases corresponding to different Hurst exponent functions. We show
the areas where the test is very strong in distinguishing between the processes and the cases when it
fails in this respect. Finally, Section 4 summarizes and concludes our work.

2. Model and Methods

Let us start with a definition of the MFBM.
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Definition 1. (Multifractional Brownian motion). Process
(

BH(t)(t)
)

t≥0
is called a multifractional Brownian

motion (MFBM) if it is a centered Gaussian process with covariance function

Cov(BH(t)(t), BH(s)(s)) = D(H(t), H(s))
(

tH(t)+H(s) + sH(t)+H(s) − |t− s|H(t)+H(s)
)

, (2)

where

D(x, y) =
σ2
√

Γ(2x + 1)Γ(2y + 1) sin(πx) sin(πy)

2Γ(x + y + 1) sin
(

π
x+y

2

) (3)

for some σ > 0 and Hölder function H : [0, ∞)→ [a, b] ⊂ (0, 1) of some exponent β > 0 [46].

The second moment of MFBM scales as E
(

B2
H(t)(t)

)
= σ2t2H(t). Hence, we will call H(t) the

Hurst exponent function. Furthermore, for H(t) ≡ H ∈ (0, 1) MFBM becomes standard FBM.

In general, MFBM has non-stationary increments. Its increment process Y(t)
de f
= BH(t+1)(t + 1) −

BH(t)(t) possesses the long-range dependence property, in the sense that

∀δ > 0, ∀s ≥ 0
∞

∑
k=0
|Corr (Y(s), Y(s + kδ)) | = +∞,

where Corr is the correlation function, i.e., Corr(Y(t), Y(s)) = Cov(Y(t),Y(s))√
E2Y(t)E2Y(s)

[46].

Furthermore, the function H(t) can be pointwise interpreted as a local self-similarity
parameter, i.e.,

lim
ε→0+

(
BH(u+εt)(u + εt)− BH(u)(u)

εH(u)

)
t∈R+

= s(u) (BH(t))t∈R+
,

where BH is a fractional Brownian motion with index H ≡ H(u), s(u) is a scaling function [47] and
the convergence is on the space of continuous functions endowed with the topology of the uniform
convergence on compact sets.

2.1. Mean-Squared Displacement

Let us now recall different estimators of the MSD for a sample of n trajectories X1, X2, . . . Xn,
each with N observations, that is, Xi consists of Xi(t1), Xi(t2), . . . , Xi(tN) equally spaced in time,
i = 1, 2, . . . , n. Ensemble average MSD (EAMSD) is defined as follows:

EAMSD(τ = m∆t) =
1
n

n

∑
k=1

(Xk(t1 + τ)− Xk(t1))
2 , (4)

where m = 1, . . . , N and ∆t = t2 − t1. Time average MSD (TAMSD) is defined for each trajectory as

TAMSD(τ = m∆t, k) =
1

N −m

N−m

∑
j=1

(
Xk(tj + m∆t)− Xk(tj)

)2 . (5)

Finally, we consider ensemble and time average MSD (EATAMSD) which is an average of TAMSDs:

EATAMSD(τ) =
1
n

n

∑
k=1

TAMSD(τ, k). (6)

Physicists often observe systems where EA and EATAMSD are different. Such behavior is called
weak ergodicity breaking. In mathematics, the notion of ergodicity is restricted to stationary
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processes. Since the increments of MFBM lack stationarity, when analyzing the results, one has
to be exceedingly meticulous.

2.2. Three Cases of the Hurst Exponent Function

Following [48], we consider three basic families of the function H(t), namely

linear H(t) = at + b, t ∈ [0, T],

logistic H(t) =
c− b

1 + exp
{
−d t−t0

T

} + b, t ∈ [0, T],

periodic H(t) = a sin
(

4π
t
T

)
+ b, t ∈ [0, T]

for some time horizon T > 0. Furthermore, in the sequel we consider only case with parameter σ2 = 1
in (2). Such functions are continuous and as a consequence satisfy the Hölder condition, so in order
to MFBM be properly defined we only require H(t) ∈ (0, 1), for all t ∈ [0, T] [42]. Such choice of
considered functions can be interpreted as follows. In the linear case, MFBM can switch steadily
from short- to long-range dependence or vice versa, whereas in the logistic case such change is
quite rapid and it happens between two levels. The latter case closely resembles instantaneous
change in dependence or jump-type regime switching (such cases would lead to non-Hölder
function). An alternative function to the logistic which is also considered is the literature is the
arctan function [49]. Finally, the periodic case represents a situation where such changes are gradual
and repetitive.

In the paper, we focus on the following special cases with specified parameters:

linear function : H(1)(t) =
0.3

1000
t + 0.3, t ∈ [0, 1000],

logistic function : H(2)(t) =
0.3

1 + exp
{
−100 t−500

1000
} + 0.3, t ∈ [0, 1000],

periodic case : H(3)(t) = 0.15 sin
(

4π
t

1000

)
+ 0.45. t ∈ [0, 1000].

We choose those specific parameters so that all of the cases have a similar “average” behavior of the
function H(t), i.e., its mean is close to 0.45, and the function itself has values in the interval [0.3, 0.6].
We illustrate those cases in Figures 1–3. On the top left panel of each of these figures, we can see three
simulated trajectories. The function H(t) is presented on the top right panel, whereas on the bottom
panel we can see a behavior of the corresponding MSDs. It is important to note that EAMSD (blue line)
is directly related to the variance of the model at time τ, i.e., EAMSD(τ) = V̂ar(X(τ)), thus, from (2),
it should behave like τ2H(τ).

For the linear case, see Figure 1, since H(1)(t) increases steadily from 0.3 to 0.6 we can see
trajectories exhibit more variability for bigger times. This is also related to the EAMSD dynamics.
In addition, such a model exhibits weak ergodicity breaking behavior (i.e., lack of equality between
EATAMSD and EAMSD), which can be inferred from the bottom panel.

Next, for the logistic case, see Figure 2, H(2)(t) increases quite rapidly from 0.3 to 0.6 near t = 500.
As a consequence, we can see a switch in the behavior of simulated trajectories: for times t < 500
they exhibit far less variability than for t > 500. Intuitively, for times t < 500 trajectories locally
exhibit short-range dependence, whereas for t > 500 they locally exhibit long-range dependence.
Again, we can see weak ergodicity breaking on the bottom panel.
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Figure 1. MFBM with the linear Hurst exponent function. Top left panel: three simulated trajectories.
Top right panel: illustration of the function H(t) used in simulations. Bottom panel: comparison of
EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence interval (red shaded
area). EAMSD and ETAMSD with confidence interval were calculated on the basis of 1000 simulated
trajectories of MFBM.

Figure 2. Cont.
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Figure 2. MFBM with the logistic Hurst exponent function. Top left panel: three simulated trajectories.
Top right panel: illustration of the function H(t) used in simulations. Bottom panel: comparison of
EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence interval (red shaded
area). EAMSD and ETAMSD with confidence interval were calculated on the basis of 1000 simulated
trajectories of MFBM.

Finally, for the periodic case, see Figure 3, H(3)(t) varies between 0.3 and 0.6. We can clearly
see two different regimes of behavior: for times when H(3)(t) is bigger, trajectories are smoother and
generally have larger values, in contrast to times when H(3)(t) is smaller. Despite lack of stationarity,
here, EAMSD almost always lies in the confidence region of EATAMSD, which could suggest there is
no weak ergodicity breaking.

Figure 3. MFBM with the periodic Hurst exponent function function. Top left panel: three simulated
trajectories. Top right panel: illustration of the function H(t) used in simulations. Bottom panel:
comparison of EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence
interval (red shaded area). EAMSD and ETAMSD with confidence interval were calculated on the basis
of 1000 simulated trajectories of MFBM.
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3. Results

In applications, it is crucial to be able to check whether a stochastic model describes empirical
data well. Despite dedicated identification methods for the MFBM [50–53], to the best of the authors’
knowledge, there is no rigorous statistical test designed for such process. Here, we propose an
approach using a simple test statistic which also contains useful information about the process itself.

3.1. Test

For the testing purposes, we follow an approach based on the ACVF which was introduced by
Balcerek and Burnecki [38]. ACVF is a very popular statistic and it is also one of the simplest quadratic
forms. For a random sample XN = {X(1), X(2), . . . , X(N)} and τ ∈ {1, 2, · · · , N − 1}, it is defined
as follows:

ACVFN(τ) =
1

N − τ

N−τ

∑
i=1

X(i + τ)X(i). (7)

Here, we only consider a version of ACVF without subtracting the sample mean as it does not
influence performance of tests based on this statistic for a centered process [38] and it makes the
formulas much simpler.

Let us now introduce a matrix A(τ) = {a(τ; i, j)}N
i,j=1, where

a(τ; i, j) =


1
N I(i = j) if τ = 0
1
2

1
N−τ I(|i− j| = τ) if τ = 1, 2, . . . , N − 1

0 otherwise,

(8)

and I is the indicator. To summarize, the matrix A(τ) is either diagonal (for τ = 0) with elements 1
N

on diagonal or Toeplitz, with only two nonzero subdiagonals (starting at (1 + τ)th row and (1 + τ)th
column) with elements 1

2
1

N−τ . The statistic ACVFN can be now expressed as a quadratic form (as shown
in [38]) as a generalized χ2 distribution, that is

ACVFN(τ) =
N

∑
i=1

λi(τ)Z2
i , (9)

where Zis are i.i.d standard normal variables (so Z2
i has a χ2

1 distribution) and λk(τ) are eigenvalues
of the matrix ΣN(τ) = Σ1/2A(τ)Σ1/2 with Σ being the (theoretical) autocovariance matrix of our
trajectory XN . It is important to note that this result is true regardless of whether the considered model
is stationary or not.

Let us now formulate a test for checking whether a random sample XN comes from the MFBM
with function H : [0, T]→ (0, 1), where T is the time horizon:

H0 : sample comes from the model with function H(t)

versus

H1 : sample comes from the model with function different than H(t).

We will use ACVFN as a test statistic with its distribution given by Equation (9) to calculate critical
regions of such test for a given significance level. Naturally, eigenvalues λi(τ) depend on the matrix
A(τ) as well as on the matrix Σ. Elements of Σ are given by ACVF (2) and are calculated using the
function H(t) from the null hypothesis.
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3.2. Three Power Case Studies

The power of the test is the probability to reject the null hypothesis when the alternative is
true. The power is an important characteristic of any statistical test. We consider the following null
hypotheses, which correspond to the examples presented in Figures 1–3.

linear function null hypothesis H0 : H(t) = H(1)(t) t ∈ [0, 1000],

logistic function null hypothesis H0 : H(t) = H(2)(t), t ∈ [0, 1000],

periodic case null hypothesis H0 : H(t) = H(3)(t), t ∈ [0, 1000].

In our studies, for all considered cases, we calculate the power of the test by using Monte Carlo
simulations. We assume that the significance level is equal to 5%. In our Monte Carlo simulations
we consider the time horizon T = 1000 and equally spaced time points t = 1, 2, . . . , 1000. For each
set of parameters from the alternative hypothesis, we simulate n = 1000 trajectories, calculate test
statistic (7), and check if the null hypothesis is rejected at 5% significance level. In the test statistic, we
consider only τ = 1 since other choices of τ lead to worse results. Finally, we estimate the power of
this test for each considered case by calculating the fraction of rejected null hypotheses.

We present the results in the form of power functions with arguments being the parameters of the
function H(t) from the alternative hypothesis. For all of the cases, we considered the alternative coming
from the same family of functions as the function H(t) in the null hypothesis, i.e., linear alternative for
linear null, etc.

First, let us consider testing MFBM with the linear Hurst exponent function. We can see the
power function related to that case in Figure 4. The left panel presents the power function with
respect to parameters a and b from the alternative hypothesis H1 : H(t) = at + b, the right panel the
corresponding heat map. We can see “layers” (regions on the heat map with the same color) for which
our test has a very similar power. For example, the deep blue region on the right panel corresponds
to the processes indistinguishable from the null hypothesis process. We believe that the shape of the
region is related to the construction of our test, namely our test statistic ACVFN takes into account all
addends X(t)X(t + τ) with the same weight, thus it is not that relevant whether t is big or not. In the
case of MFBM, for which neither the process nor its increments are stationary, it might be an important
factor. As a consequence, we can see that the test has a difficulty in distinguishing between MFBMs with
increasing and decreasing Hurst exponent functions if their means are similar. However, this conjecture
is not very precise, namely the mean case H ≡ 0.45, which matches the alternative hypothesis with
a = 0, b = 0.45, yields a much higher power of the test than the significance level. We also note that for
parameters from the null hypothesis: a = 0.3, b = 0.3 power of such test is approximately equal to 5%,
which is the assumed significance level. On the heat map, white regions represent areas for which the
process MFBM is not well-defined, i.e., H(t) /∈ (0, 1) for some t ∈ [0, 1000].

Let us now consider the second case, that is MFBM with the logistic function H(t). We can observe
the power function in Figure 5. Left panel presents the power function with respect to parameters b
and c from the alternative hypothesis H1 : H(t) = c−b

1+exp
{
−d t−t0

T

} + b, the right panel the corresponding

heat map. The parameter b is related to the local self-similarity parameter for t < 500, and c for t > 500.
Similarly to the case with the linear function null hypothesis, here we can observe “layers” in which
parameters b and c are almost symmetric (e.g., the null hypothesis case where b = 0.3 and c = 0.6 is
closely related to the case b = 0.6 and c = 0.3). Moreover, we can see that the power function seems to
be quite high in the cases when a tested sample has the b parameter close to the value 0.3 from the null
hypothesis, but c is far from 0.6, or vice versa.
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Figure 4. Power of the introduced test for the linear Hurst exponent function H(t) = at + b with
respect to parameters a and b. The null hypothesis is a = 0.3

1000 and b = 0.3. The right panel depicts the
results in the form of a heat map with the red ’x’ sign representing parameters in the null hypothesis.
White regions represent areas for which MFBM is not well defined. The powers were calculated by
means of Monte Carlo simulations on the basis of simulated data from the MFBM with different as
and bs.
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0.6

0.8

1

Figure 5. Power of the introduced test for the logistic Hurst exponent function H(t) =
c−b

1+exp{−100 t−500
1000 }

+ b with respect to parameters c and b. The null hypothesis is c = 0.6 and b = 0.3.

The right panel depicts the results in the form of heat map with the red ’x’ sign representing parameters
in the null hypothesis. White regions represent areas for which MFBM is not well defined. The powers
were calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM
with different cs and bs.

Lastly, let us consider the case of MFBM with the periodic function H(t). We can observe the
power function in Figure 6. The left panel presents the power function with respect to parameters a
and b from the alternative hypothesis H1 : H(t) = a sin

(
4π t

T
)
+ b, the right panel the corresponding

heat map. Parameter b is related to the “mean” behavior of the function H(t), whereas the parameter a
corresponds to its amplitude. Again, similarly to the two previous null hypotheses, we can observe
“layers” of similar power values. Those layers are symmetric with respect to a = 0. This means that
for alternatives with opposite parameters a the test seems to return the same power. Let us note that
this is not intuitive, namely such opposite as are related to completely different local behaviors of the
self-similarity parameter. On the heat map, white regions represent areas for which process MFBM is
not well defined, i.e., H(t) /∈ (0, 1) for some t ∈ [0, 1000].
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Figure 6. Power of the introduced test for the periodic Hurst exponent function H(t) = a sin
(
4π t

1000
)
+

b with respect to parameters a and b. The null hypothesis is a = 0.15 and b = 0.45. The right panel
depicts the results in the form of heat map with the red ’x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different as and bs.

Finally, we would like to emphasize that the introduced test requires MFBM parameters to be
fixed (we test if the data follow MFBM with fixed parameters). In practice, when analyzing empirical
data the parameters are often estimated. In the literature, methods for estimation of the Hurst exponent
function H(t) in the MFBM framework have been already introduced [50–52] and later combined to
improve both the goodness of fit and the computational speed of the algorithm [53].

4. Discussion and Conclusions

For power-law anomalous diffusion of the form (1) with constant anomalous diffusion
exponent α a number of models exist, including continuous-time random walks, fractional Langevin
equation motion, FBM, or scaled Brownian motion [8]. These models all have different physical
properties such as the PDF or their ergodic and aging properties [8].

In this paper, we concentrated on MFBM which is a generalization of FBM for Hölder continuous
functions H(t) that allows the Hurst exponent to vary in time. The time-varying Hurst exponent has
an impact on both the statistical properties of the process and trajectory characteristics. MFBM helps
to model phenomena whose regularity of paths and anomalous diffusion exponent change in time.
The process has no longer stationary increments and it is not self-similar but the variance scales in a
natural way as t2H(t).

Following the idea of testing FBM based on the ACVF statistic [38], in this paper, we introduced a
rigorous statistical test on MFBM with the ACVF statistic presented as a quadratic form. We derived
the distribution of the statistic which is the generalized χ2. In order to study the efficiency of the test,
we took into consideration three possible classes of the Hurst exponent function, namely linear, logistic,
and periodic. For those cases, we conducted power studies with the help of Monte Carlo simulations.
As alternatives, we considered MFBMs within the same class of the Hurst exponent function but with
different parameters.

We found ranges of the parameters where the test is more sensitive to differences and ranges
where it fails to distinguish between the models. It appears that for the linear Hurst exponent function
the test is most sensitive to changes in the mean of the function. If the means are similar then the
test often fails, even if the functions have completely different patterns, namely, one is increasing and
the other decreasing. The latter observation may sound like a serious objection for using the test,
but, in practice, an experimentalist knows whether the anomalous diffusion exponent increases or
decreases in time. In the logistic case, the situation is different, namely the mean does not matter
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much as for the linear case. Now, the test is most sensitive to deviations from the true values of the
two levels (c and b) with the exception that replacing c with b does not change the power of the test
(so, again, it does not matter if the function increases or decreases). For the periodic case, we have
again a different situation. The test is sensitive to the changes of the amplitude of the sine function and
the value of the free term but it does not detect a sign of the parameter related to the magnitude.

Finally, we note that we checked the behavior of the test for other sets of parameters of the null
hypotheses and different sample lengths, and the conclusions were similar. We only found that the
range of possible H values from the null hypothesis has an influence on the width of the acceptance
regions (the wider the range the wider the acceptance region, which is reasonable). We present some
of the additional tests’ power simulation studies in Appendix A. Figure A1 presents different cases of
the null hypothesis for the linear case, Figure A2 for the logistic case, and Figure A3 for the periodic
case. Tests for the linear case were performed for length N = 1000, whereas logistic and periodic cases
were studied for length N = 200.

In sum, we introduced a rigorous statistical test for MFBM based on ACVF statistic presented as a
quadratic form. We highlighted the weak and strong points of the test. Improving the efficiency of the
test will be a subject of our future studies. We believe that the obtained results can help to understand
the mechanisms underlying various anomalous diffusion phenomena.
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Abbreviations

The following abbreviations are used in this manuscript:

SPT Single-particle tracking
FBM Fractional Brownian motion
MFBM Multifractional Brownian motion
MSD Mean-squared displacement
TAMSD Time average mean-squared displacement
EAMSD Ensemble average mean-squared displacement
EATAMSD Ensemble and time average mean-squared displacement
ACVF Autocovariance function

Appendix A

In Figures A1–A3, we present power functions of tests related to different null hypotheses.
In Figure A1, we consider H0 : H(t) = −0.3

1000 t + 0.7 (top panel), so a case in which function H begins in
the superdiffusive regime and then decreases linearly to value 0.4; H0 : H(t) = −0.4

1000 t + 0.5 (middle
panel), so a case in which function H begins in the diffusion regime and then decreases linearly to
value 0.1; and H0 : H(t) = 0.6

1000 t + 0.2 (bottom panel), so a case in which function H begins in the
strong subdiffusive regime and then increases linearly to 0.8.
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Figure A1. Power of the introduced test for the linear Hurst exponent function H(t) = at + b with
respect to parameters a and b. The null hypotheses are: a = −0.3

1000 and b = 0.7 (top panel), a = −0.4
1000 and

b = 0.5 (middle panel), a = 0.6
1000 and b = 0.2 (bottom panel). All of the panels depict the results in the

form of a heat map with the red ‘x’ sign representing parameters in the null hypothesis. White regions
represent areas for which MFBM is not well defined. The powers were calculated by means of Monte
Carlo simulations on the basis of simulated data from the MFBM with different as and bs.

In Figure A2, we consider H0 : H(t) = −0.4
1+exp{−100 t−500

1000 }
+ 0.5 (top panel), so a case in which

function H begins in the diffusive regime and ends in the strong subdiffusive regime; H0 : H(t) =
−0.3

1+exp{−100 t−500
1000 }

+ 0.6 (middle panel), so a case in which function H begins in the superdiffusive

regime and ends in the subdiffusive regime; and H0 : H(t) = 0.6
1+exp{−100 t−500

1000 }
+ 0.2 (bottom panel),

so a case in which function H begins in the strong subdiffusive regime and ends in the strong
superdiffusive regime.
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Figure A2. Power of the introduced test for the logistic Hurst exponent function H(t) =
c−b

1+exp{−100 t−500
1000 }

+ b with respect to parameters c and b. The null hypotheses are: c = 0.1 and b = 0.5

(top panel), c = 0.3 and b = 0.6 (middle panel), c = 0.8 and b = 0.2 (bottom panel). All of the panels
depict the results in the form of heat map with the red ‘x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different cs and bs.

In Figure A3, we consider H0 : H(t) = 0.1 sin
(
4π t

1000
)
+ 0.8 (top panel), so a case in which

function H varies periodically between 0.7 and 0.9, i.e., in the strong superdiffusion regime; H0 :
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H(t) = 0.2 sin
(
4π t

1000
)
+ 0.7 (middle panel), so a case in which function H varies periodically between

0.5 and 0.9, i.e., in the superdiffusion regime; and H0 : H(t) = 0.5 sin
(
4π t

1000
)
+ 0.4 (bottom panel),

so a case in which function H varies periodically between 0.1 and 0.9, i.e., in the whole spectrum of
anomalous diffusion.
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Figure A3. Power of the introduced test for the periodic Hurst exponent function H(t) =

a sin
(
4π t

1000
)
+ b with respect to parameters a and b. The null hypotheses are: a = 0.1 and b = 0.8

(top panel), a = 0.2 and b = 0.7 (middle panel), a = 0.5 and b = 0.4 (bottom panel). All of the panels
depict the results in the form of heat map with the red ‘x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different as and bs.
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