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ABSTRACT Sleep recognition refers to detection or identification of sleep posture, state or stage, which
can provide critical information for the diagnosis of sleep diseases. Most of sleep recognition methods are
limited to single-task recognition, which only involves single-modal sleep data, and there is no generalized
model for multi-task recognition on multi-sensor sleep data. Moreover, the shortage and imbalance of sleep
samples also limits the expansion of the existing machine learning methods like support vector machine,
decision tree and convolutional neural network, which lead to the decline of the learning ability and over-
fitting. Self-supervised learning technologies have shown their capabilities to learn significant feature
representations. In this paper, a novel self-supervised learning model is proposed for sleep recognition,
which is composed of an upstream self-supervised pre-training task and a downstream recognition task.
The upstream task is conducted to increase the data capacity, and the information of frequency domain and
the rotation view are used to learn the multi-dimensional sleep feature representations. The downstream task
is undertaken to fuse bidirectional long-short term memory and conditional random field as the sequential
data recognizer to produce the sleep labels. Our experiments shows that our proposed algorithm provide
promising results in sleep identification and can further be applied in clinical and smart home environments
as a diagnostic tool. The source code is provided at: ‘‘https://github.com/zhaoaite/SSRM ’’.

INDEX TERMS Sleep recognition, sleep diseases, multi-sensor, self-supervised learning, bidirectional
LSTM, CRF, feature representations, temporal information.

I. INTRODUCTION
Sleep quality is a proven biometric that plays an eminent
role in health status evaluation of patients with mental or
physical disorders. According to the survey of the World
Health Organization (WHO), about 1/3 of people in the world
have sleep problems, and the global sleep disorder rate is
27%, which seriously affect people’s health and quality of
life [1]. In order to better evaluate and monitor sleep quality
and state, we are committed to establishing a reliable and safe
sleep model for analysis and diagnosis of sleep state.

Sleep recognition problem is divided into three levels:
sleep posture recognition, sleep stage recognition and insom-
nia detection. Sleep quality is directly related to sleep posture.
Supine sleeping positions will not suppress organs such as
viscera and organs, and can effectively relieve symptoms of
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pain in the neck and back. However, this kind of sleeping
posture is easy to lead to the fall of the tongue root and block
breathing, which is not suitable for people who often snore or
have respiratory diseases. Lying on the right side is conducive
to the normal operation of the gastrointestinal tract and will
not compress the heart, but it can affect the movement of the
right lung [2]. On the other hand, monitoring the sleep stage is
also an important way to evaluate sleep state. In the period of
90-100 minutes, there are two different stages: non-rapid eye
movement sleep (NREMs), and rapid eye movement sleep
(REMs) [3]. Insomnia is the most prominent and frequent
manifestation of sleep disorders. Our paper provides an effec-
tive method for the diagnosis of insomnia, as well as the
monitoring and classification of sleep posture and stage.

For sleep recognition, multiple sensors have been applied
in gathering data. Some visual sensors or pressure sensors can
be used to capture sleep posture. In this paper, two different
types of pressure sensing mats are used to collect in-bed pose
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pressure data for sleep posture recognition. In sleep stage
recognition, polysomnography (PSG) [4] is a sleep diagnostic
tool which uses electroencephalogram (EEG), electroocu-
logram (EOG), electromyogram (EMG), electrocardiogram
(ECG), and other physiological sensors to collect data and
diagnose sleep disorders. However, it is not convenient to
use many sensors during sleep. Sleep experiments in special
sleep facilities due to the psychological pressure may not
accurately reflect the real sleep problems. Therefore, we use
wrist-worn wearable devices to obtain heart rate and motion
information to monitor sleep state. For insomnia detection,
bioradar is installed for non-contact sleep monitoring and
bioradiolocation signals acquisition.

Based on the multi-sensor sleep data, a large quantity of
feature representation and classification methods have been
applied in the field of sleep recognition. Histogram of ori-
ented gradients (HoG) and local binary patterns (LBP) from
data, restricted Boltzmann machines (RBM), convolutional
neural network (CNN), k-nearest neighbour (KNN), support
vector machines (SVM), have been involved to perform the
in-bed posture classification [5]–[7]. Besides, there are also a
number of studies that make efforts to identify sleep stages,
such as hand-crafted feature classification, k-means and ran-
dom forests [8]–[10]. These methods are also suitable to
distinguish insomnia patients.

Although these methods have shown promising perfor-
mance in classifying sleep data, most of them are only
applied to one type of sleep dataset, and do not involve
multi-modal sensor data like images and signals. They are
also used for single task recognition, with end-to-end recogni-
tion characteristics without a pre-training process. In the case
of insufficient samples or uneven sample distributions, these
methods are even less able to learn effective feature represen-
tations, and deep learning frameworks may also experience
over-fitting.

To solve these shortcomings, we put forward a
self-supervised sleep recognition model (SSRM), which uti-
lizes frequency information and spatio-temporal information
of sleep signals as the evidence of recognition. Additionally,
it is noticed that the self-supervised sleep model can increase
the amount of data, which enables a deep learning model to
be successfully used with relatively little or unbalanced data.
It can also enhance the capacity of each class of data and
reaches the optimal state of the training model.

The upstream task is the pre-training stage and feature rep-
resentation stage of sleep recognition. After having collected
sleep data, we extract the frequency-domain and rotation
features of the data to generate new labels together with
the original data. We build a four-layer CNN which can
learn nonlinear spacial information to generate sleep feature
representations through pre-training based on multi-modal
sleep data. The features in various classes generated by this
self-supervisedmodel will be integratedwith the original data
to participate in the downstream classification task.

In the downstream task, we describe a dynamic bidirec-
tional long-short term memory (BiLSTM) approach to model

the temporal sleep data. The fused sleep data is the input of
BiLSTM, and the time step is also part of the input with
varied length sequences. BiLSTM can not only learn the
temporal features, but also consider the context. Moreover,
the conditional random field (CRF) is the suffix of BiLSTM,
which improves the efficiency of the model. The prediction
probability of BiLSTM is regarded as the input of CRF to
further learn parameters.

The main contributions of this paper are summarized as
follows:

• We study the problem of sleep recognition aiming
at three levels: sleep position recognition, sleep stage
recognition and insomnia detection, including the anal-
ysis and understanding of multi-sensor sleep data.

• A self-supervised sleep recognition model (SSRM) is
proposed to solve the problem of multi-sensor sleep
recognition, including upstream pre-training, feature
interpretation and downstream recognition tasks. Data
capacity and feature representation can be realized
through pre-training, and label prediction and recogni-
tion can be realized through BiLSTM-CRF. To a certain
extent, this method successfully solves the problem of
multi-level sleep recognition.

• The proposed method achieves superior performance
on three challenging datasets for multi-sensor sleep
recognition.

After introducing the related work in Section II,
we present the proposed self-supervised sleep recogni-
tion model (SSRM) in Section III, and experiments that
include various similarity criteria, and several advanced
approaches on three sleep datasets in Section IV. Finally,
Section VI shows limits and advantages of our method, and
Section 6 concludes the paper.

II. RELATED WORK
After motivating our choice of a self-supervised model,
we will discuss related works exploring the latent space of
sleep recognition methods.

A. SLEEP POSTURE RECOGNITION
Xu et al. proposed a new distance measurement method for
sleep posture differencing. By projecting the pressure distri-
bution to the horizontal and vertical directions, distribution
differences can be identified and it achieved 90.78% high
accuracy through a KNN classifier [11]. They improved the
model and proposed a novel matching-based approach in
the next year achieving 91.21% accuracy [12]. To estimate
body postures reliably and comfortably, the ballistocardio-
gram (BCG) signals were collected for sleep posture recog-
nition, and a Bayesian classifier with piecewisesmoothing
correction was used for classification [13].

A multi-stream CNN was also applied in this field, which
was based on depth images for identifying ten sleep pos-
tures with high accuracy [14]. A sleep monitoring system
by embedding radio frequency identification (RFID) tags
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was proposed for sleeping posture recognition and body
movement detection, which used a convolutional neural net-
work (CNN) to identify the sleeping postures.Meanwhile, the
movements and their durations can also be detected by using
k-means [15].

B. SLEEP STAGE RECOGNITION
Walsh et al. presented the evaluation of an under-mattress
sleep monitoring system for non-contact sleep/wake dis-
crimination, which compared different classifiers (SVM,
KNN, ANN and LDA) based on the extracted temporal,
spatial, and statistical features [16]. By using electroen-
cephalogram (EEG) signals, the structural graph similarity
and the k-means (SGSKM) are combined to identify six sleep
stages, and four existing methods and the support vector
machine (SVM) classifier were compared with the proposed
method [17]. An importance weighted kernel logistic regres-
sion (IWKLR) was applied for classification of the EEG,
EOG and EMG signals [18].

The multi-taper spectral analysis was presented to create
visually interpretable images of sleep patterns from EEG
signals as inputs to a deep convolutional network trained to
solve visual recognition tasks and the classification of sleep
stages [19]. Furthermore, ANN and HMM also contributed
to the macro-sleep stages (MSS) detection by using full night
audio time series, which took advantages of differences in
sound properties within each MSS due to breathing efforts
(or snores) and body movements in bed [20].

C. INSOMNIA DETECTION
In paper [21], a support vector machine (SVM) classifier
was employed to distinguish the control group and insomnia
patients. A k-means classifier was presented using Hjorth
parameters extracted from the central electroencephalo-
gram (EEG) signals to accurately detect insomnia [22].

Abdullah et al. used an artificial neural network (ANN) to
extract linear and nonlinear features from the denoised signals
such as sleep EEG and ECG signals, and classify healthy
people and insomnia patients [23]. Moreover, deep neural
networks (DNNs) for insomnia detection was trained, which
were fed by a set of temporal and spectral features derived
from 2 EEG channels [24].

It can be seen that the combination of hand-crafted features
and statistical methods with a traditional machine learning
classifier has become the mainstream means of sleep recog-
nition, and the application of deep learning model in this field
is still lacking.

III. THE SELF-SUPERVISED SLEEP RECOGNITION MODEL
Self-supervised learning aims to input a group of unsu-
pervised data and construct new labels artificially through
the structure or characteristics of the data itself. With new
labels, we can train the input data using supervised learning.
Self-supervised learning has been firstly adopted within the
computer vision community to learn representations by solv-
ing various auxiliary tasks, such as colorize gray scale images

or solving puzzles from image patches. Self-supervised learn-
ing has also been applied successfully in language model-
ing, leading to models like BERT [25]. In this problem, the
self-supervised learning model can increase the data capacity
very well, so that the model can be trained using unlabeled
data.

In this section, we design a self-supervised model and
present the insights gained from doing so. We first conduct a
pre-training task for feature representation, adopting the fea-
ture of rotation and frequency domain, which can enlarge the
data capacity to 2-5 times of the original data. The frequency
spectrum describes the frequency structure of the signals and
the relationship between the frequency and the amplitude
of frequency signals, so we use the Fourier transform [26]
to calculate the frequency characteristics of the signal. The
features in the frequency domain and rotation are fed into a
four-layer CNN for supervised training by using new added
labels. After training, we concatenate the features extracted
by CNN as the input of the downstream tasks.

The downstream task is BiLSTM-CRF [27]. The sleep
data is collected continuously according to the chronological
order, which fully fits the function of the expandable nodes
of the BiLSTM. RNN and LSTM can only predict the output
at the next moment in terms of the temporal information of
the previous moment. However, in some problems, the output
of the current time is related to the previous state, as well
as the future state. For example, to calculate the pressure
signal output at a certain time point, it is necessary to analyse
the previous information and consider the later content. The
BiLSTM consists of two RNNs stacked up and down, and the
output is determined by the status of the two RNNs.

First of all, we show the framework and formulation of the
proposed self-supervised model. The structure is illustrated
in FIGURE 1. Sleep data from the sensors are the input of
the upstream pre-training model, including the raw data and
four workers. Workers are used to extract features X0 − X4
of different dimensions of the raw data, create new labels and
feed them into the four-layer CNN together with features in
order. The results are sent to the BiLSTM-CRF model for
feature acquisition of time series.

Assuming the input data is X0 ∈ RN , N is the sample
number of the raw data. After the pre-processing of the
input, we obtain multiple features Xm1 , and the final output
Im = {Im ∈ RN ,m = 0, 1, 2, 3, 4} is calculated by a
four-layer CNNmodel. By the fusion of all the features, in the
downstream process, In = {In ∈ RK , n = 0, 1, 2, . . . ,N },
K is the sequence length of feature in one sample, which is
fed into BiLSTM model with corresponding label sequences
Ln = {Ln ∈ RN , n = 0, 1, 2, . . . ,N }.

A. PRE-TRAINING AND FEATURE REPRESENTATIONS
In the process of pre-training and feature representations,
we consider two types of transformations for self-supervised
data augmentation, rotation (3 transformations) and fre-
quency domain feature, as illustrated in FIGURE 2. We take
the sleep posture data as the input of the pre-training model.
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FIGURE 1. The structure of the self-supervised sleep recognition model (SSRM). The whole model is divided into self-supervised pre-training model
and downstream recognition model. The pre-training process includes the input of the original sleep data X0 in the first layer, the rotation and
frequency-domain feature extraction of the original data using four workers in the second layer to get Xm

1 , and the generation of corresponding
labels. The third layer uses a standard CNN model to pre-train and expand the data to get Im. The first layer of the downstream task sends the
features extracted from the pre-training to BiLSTM, and the second layer uses CRF to analyze the prediction probability of the BiLSTM, so as to get
the correct identification label C .

FIGURE 2. The self-supervised pre-training process. We take the pose
image in the pressure map dataset as an example to introduce the
self-supervised pre-training process. First, the original input X0 is rotated
at different angles to get X1

1 − X3
1 and get X4

1 through FFT, generating
labels 0-4. A four-layer CNN with 2 hidden layers and one input-output
layer, which uses 5 * 5 convolution kernel for convolution operation,
we take the output of the second hidden layer as the final result Im of
pre-training.

First, the input data is rotated to 90 degrees, 180 degrees
and 270 degrees respectively. Fourier transform is used to
extract frequency-domain features, and after that, 5 × labels
and samples are generated for self-supervision. Then the
four-layer CNN, which is composed of two hidden layers,
an input layer and an output layer, is constructed for super-
vised training.

1) ROTATION SELF-SUPERVISION
For data augmentation, e.g., rotation or cropping, which
systematically enlarge the training dataset by explicitly
generating more training samples, have been popularly used

to improve the generalization performance of deep neural
networks [28].

A novel method for self-supervised feature learning is
presented. By training the CNN model, we can recognize
four rotation degrees (0◦, 90◦, 180◦, 270◦) applied to its input
image [29]. It successfully forces the CNNmodel trained on it
to learn semantic features useful for various visual perception
tasks, such as object recognition, object detection and object
segmentation. LetX0 be an input, the output matrix of rotation
is Xm1 ,m = 0, 1, 2, 3.

2) FREQUENCY DOMAIN SELF-SUPERVISION
In the frequency domain, frequency is the independent vari-
able, which has the horizontal axis of the frequency and
the vertical axis of the amplitude. The frequency spec-
trum describes the frequency structure of the signal and the
relationship between frequency and amplitude of the fre-
quency signal.

When analyzing signals in the time domain that the sig-
nals are exactly the same. Because the signal changes with
time, as well as frequency, phase and other information. It is
necessary to further analyze the frequency structure of the
signal. The dynamic signal is from the time domain to the
frequency domain mainly by Fourier series and Fourier trans-
form. Therefore, we utilize fast Fourier transform to extract
the frequency domain features of the input data. The fast
discrete Fourier transform (FFT) is the first choice because
the input of each frame is discrete points. The calculation of
FFT is shown in Eq.(1).

Xm1 = X (k) =
N−1∑
n=0

X0(n)W kn
n

m = 4, k = 0, 1 . . . ,N − 1, WN = e−j
2π
N (1)
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FFT decomposes X (k) into the sum of even and odd
sequences, the length of x1(n) and x2(n) is N/2, x1(n) is an
even sequence, and x2(n) is an odd sequence. The output
Xm1 ,m = 4 of FFT is shown as follows:

X (k) = X1(k)+W k
NX2(k), k = 0, 1 . . . ,N − 1

=

N
2 −1∑
n=0

x1(n)W kn
N/2 +W

k
N

N
2 −1∑
n=0

x2(n)W kn
N/2 (2)

3) CNN MODEL
In order to extract the spatial features of the input data, we use
CNN with two hidden layers and a full connection layer for
training. The objective function is as follows:

l1 = σ (W1Xm1 + b1)
l2 = σ (W2l1 + b2)
. . .

Im = ld = σ (Wd ld−1 + bd )

(3)

where l1, l2, . . . , ld are the output of each layer in CNN, W
denotes the shared weight of neuron, σ is activation function.
The Im is obtained after the convolutional operation.

4) LOSS FUNCTION
This section introduces the loss function of the pre-training
process, which is determined by KL divergence and cross
entropy function, and is gradually reduced by Adam opti-
mizer with a learning rate of 0.001. The specific calculation
is illustrated in Ep.(4).

KL divergence works for representing the similarity
between I1 − I4 and corresponding raw data I0, and cross
entropy loss is calculated to represent the similarity between
the generated real and the predicted labels. These two types of
losses are minimized simultaneously to ensure the separabil-
ity of the self-supervised data and the aggregation of similar
data. Algorithm 1 shows the process of the self-supervised
pre-processing model.

L = α ∗ lkl + (1− α) ∗ lcross, α ∈ [0, 1]

= α ∗

(∑
x

p(x) log
p(x)
q′(x)

)

+(1− α) ∗

(
−

∑
x

p(x) log q(x)

)
(4)

where lcross represents the classification loss of the data while
lkl represents the similarity of the self-supervised features and
the raw data. p(x) is the the true label sequence y, q(x) is
the probability of prediction label y′ through softmax, q′(x) is
the prediction probability of the self-supervised feature label
after softmax. αmeans the loss weight coefficient from 0 to 1.
In the optimization process, Adam optimizer is applied to
process the first and secondmoments of the gradients in order
to reduce the loss quickly.

Algorithm 1 Self-Supervised Pre-Processing Model
Require: The sleep data, X0;
Output: Fused features In extracted from the raw data;
1: Rotating the raw sleep data X0 to Xm1 ,m = 0, 1, 2, 3

according to different angles 0◦, 90◦, 180◦ and 270◦.
2: Using FFT to describe the frequency information of the

sleep data X4
1 ;

3: Generating label Lm,m = 0, 1, 2, 3, 4 and extract feature
Im using a four-layer CNN;

4: Concatenating the feature vectors Im to In;
5: return In;

FIGURE 3. The downstream recognition task of the model. After
concatenating features, we use the extended BiLSTM to model these time
series, and the score probability of labels is used as the unnormalized
emission probability in the CRF model for parameter learning. Moreover,
the output of all BiLSTM will be the input of the CRF layer, and the final
prediction result will be obtained by learning the order dependence
information between labels.

B. DOWNSTREAM SLEEP RECOGNITION
1) TEMPORAL FEATURE MODELING
After obtaining the output feature In = {In ∈ RK , n =
0, 1, 2, . . . ,N } of the upstream task, the downstream task
uses BiLSTM to model it and input the integrated temporal
features into the network under the expandable memory unit.

The standard recurrent neural network often ignores the
future context information in the processing sequence. The
bidirectional recurrent neural network proposes that each
training sequence is two recurrent neural networks, one is
forward and the other is backward, and both of them are con-
nected with an output layer. This structure provides complete
past and future context information for each point in the input
sequence of the output layer. It is worth noting that there is no
information flow between the forward and backward hidden
layers, which ensures that the expansion graph is acyclic.

For the hidden layer of the bi-directional recurrent neural
network, forward prediction is the same as that of an uni-
directional recurrent neural network (RNN), except that the
input sequence is in the opposite direction for the two hidden
layers, and the output layer does not update until all the input
sequences have been processed by the two hidden layers.
The backward prediction of the bi-directional recurrent neural
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network is similar to that of the standard RNN through time
propagation. All the output layer activation functions are
estimated first, and then return to two different directions of
the hidden layer.

In this section, we improve the structural path of the inter-
nal expanded node of the bidirectional long-shot term mem-
ory (BiLSTM). The structure of the GRU node is simpler than
that of the basic LSTM, but it ignores the consideration of
front and rear time states. With contextual information from
two directions, we can get more relevant spatio-temporal
content at the current node.

The calculation process of the internal nodes is illustrated
as follows:

zt = σ (Wz · [Ot−1, Int ]) rt = σ (Wr · [Ot−1, Int ])
h̃t = tanh(W · [rt � Ot−1, Int ])
ctemp = tanh(Wctemp · [Ot−1, Int ])
ct = (1− zt )� h̃t + zt � Ot−1
Ot = ct � σ (ctemp)

Pt = g(W [
−→
Ot ,
←−
Ot ]+ b)

(5)

where Int and Ot−1 are the current input and previous output
in the LSTM node. σ and tanh are the activation functions.
zt denotes the output of the update gate at time step t ∈
{1, 2, 3 . . . ,T }, which determines whether or not the hidden
state will be updated with hidden state h̃. rt denotes the reset
gate. ctemp is a temporary state in order to determine Int and
Ot−1 while ct denotes the final state of the original node.
BiLSTM is composed of two LSTMs stacked up and down
calculating Pt ∈ RN×C (C is the number of classes and N is
the sample number) as the final output of BiLSTM. Finally,
the output Pt is obtained as the input of CRF.

2) SLEEP RECOGNITION
The conditional random field (CRF) [30] layer takes the
output of the BiLSTM layer as the input, which can modify
the output of the BiLSTM by learning the transfer probability
between different labels in the dataset. BiLSTM extracts the
features and inputs them to the conditional random field,
calculates the likelihood of the label sequence as the loss, and
then uses Viterbi method to predict the labels of the current
batch [31].

The output dimension of the BiLSTM layer isN×C , which
is equivalent to the emission probability value of feature
i mapped to class j. The output matrix of BiLSTM is Pt ,
where Pi,j represents the non-normalized probability of the
feature i mapped to class j. For CRF, we assume that there
is a transition matrix A, then Ai,j represents the transition
probability of class i to class j.
For the output label sequence y corresponding to the input

sequence X , the score is defined as:

s(X , y) =
n∑
i=0

Ayi,yi+1 +
n∑
i=0

Pi,yi (6)

Given the feature X , the probability of getting the real label
y is p(y|X ), and YX represents all possible label sequences

FIGURE 4. The input bioradiolocation data of one subject.

corresponding to X . In order to maximize the probability of
X corresponding to the real tag sequence, the loss function
log(p(y|X )) needs to be minimized. The computing process
is demonstrated in Eq.(7).p(y|X ) =

es(X ,y)∑
ỹ∈YX e

s(X ,y)

log(p(y|X )) = s(X , y)− log(
∑

ỹ∈YX e
s(X ,̃y))

(7)

Algorithm 2 shows the process of the supervised temporal
sleep recognition model.

Algorithm 2 Supervised Temporal Sleep Recognition Model
Require: The sleep time series data, In; Labels of sleep time

series data, Lt ;
Output: The classification result is the corresponding label

C of the data;
1: Reshaping the data to (input*time step), and feeding

them based on the expanded nodes in BiLSTM.
2: The predictions Pt is fed into CRF to calculate the log

likelihood loss.
3: Using viterbi algorithm to predict label sequence Lp.
4: Computing the max score of BiLSTM, which is the

output of the softmax function.Clabel = argmax(scores);
return Clabel ;

To sum up, the pre-training process of our proposed
sleep recognition method can extract representative fea-
tures, as well as expand the dataset, and successfully apply
self-supervised learning in the field of sleep recognition.
The downstream recognition task highlights the identification
process based on time series features. The two tasks closely
cooperate with each other to achieve better results than the
existing methods.

IV. EXPERIMENT
The experiment is divided into three parts: data introduction,
experimental settings and the results. The data used in the
experiment is publicly accessible on the PhysioNet website.
The existing methods for comparisons are based on the latest
work of these sleep data.

A. DATASETS
Three sleep datasets were used in the experiment, including
sleep bioradiolocation dataset (bioradar) [32], pressure map
dataset [33] and polysomnography (PSG) dataset [34].

Sleep Bioradiolocation Dataset contained 32 records of
non-contact sleep monitoring by a bioradar which was devel-
oped at the Remote Sensing Laboratory of Bauman Moscow
State Technical University. The records were accompanied
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FIGURE 5. The in-bed posture pressure data in the dataset.

FIGURE 6. The acceleration data and heart rate of one subject in the
dataset. The fluctuation value of x,y,z in the left image changes greatly
twice, and the corresponding heart rate also shows in the center of the
right image.

by results of sleep scoring and all subjects were free from
sleep-disordered breathing and sleep related movement dis-
orders. There were 4 subjects diagnosed as Insomnia. The
type of bioradar is continuous waves by a quadrature receiver.
The radar adopts the modulation mode of stepped frequencies
from 3.6GHz to 4.0 GHz with the maximum emitted power
of 3mW and the sampling rate of 50Hz.

Pressure Map Dataset were collected from adult partic-
ipants using two types of pressure sensing mats, including
various sleeping postures and pressure data from two sepa-
rate experiments. And we also deal with the corresponding
pressure data according to these two groups of experiments.

Experiment I: The pressure data was obtained from 13 par-
ticipants in 8 standard postures and 9 additional states. Data
was collected by a pressure mat - Vista Medical FSA Soft-
Flex 2048 with the size of 32*64. Its output figure was in the
range of [0,1000] with a sampling rate of 1Hz. Each output
file contained approximately 2minutes (120 frames) of image
frames. As shown in FIGURE 5, the three images on the
right demonstrate the supine, right and left postures in this
experiment, and there are two subjects in one sample.

Experiment II: The pressure data was obtained from 8 par-
ticipants in 29 different states of 3 standard postures. Data
was collected by two pressure mats (both sponge and air
mattresses). The type of pressure mat was Vista Medical
BodiTrak BT3510 with the size of 27*64. Its output figure
was in the range of [0,500] for each sensor with a sam-
pling rate of 1Hz. Each output file contained the average
of around 20 frames. As illustrated in FIGURE 5, the three
images on the left demonstrate the supine, right and left
postures in this experiment.

PSG Dataset contained acceleration (in units of g) and
heart rate (bpm, measured from photoplethysmography)
recorded from the Apple Watch, as well as the labeled sleep
data scored from gold-standard polysomnography. There
were 31 subjects wearing Apple Watch to collect their ambu-
latory activity patterns for a week before spending one
night in a sleep lab. Each type of data recorded from the
Apple Watch and the labeled sleep from polysomnography
was saved in a separate file, tagged with a random subject
identifier.

In addition, there were 5 sleep stages in this dataset: Wake,
NREM 1 (N1), NREM 2 (N2), NREM 3 (N3), REM (wake
= 0, N1 = 1, N2 = 2, N3 = 3, REM = 5). We did different
classifications based on the specific condition.

The features, acceleration and heart rate, of the sleep data
are shown in FIGURE 6. We can see that the peaks of the two
sets of data are similar.

B. EXPERIMENTAL SET-UP
This section introduced the implementation details and set-
tings of the experiment. The experiments were conducted
with Tensorflow [35] and Python [36] libraries. In addition,
mean testing time for the best experimental results of the three
datasets were 0.95s (bioradar), 0.76s (pressure map I), 0.12
(pressure map II), 0.66s (PSG) which ran on the system of
GTX1050Ti GPU, i5-7300HQ CPU and 8G RAM. In order
to reduce noise and differences presented in the sleep data,
the data was normalized to [0, 1].

1) SLEEP BIORADIOLOCATION DATASET
For the sleep bioradiolocation dataset, we first undertook data
preprocessing, combined all sleep data and created corre-
sponding labels, which were divided into two classes: healthy
subjects and insomnia.

In the pre-training process, we only fed 80%of the data into
the upstream model for training, after frequency-domain fea-
ture extraction, temporary labels 0,1 (the number of workers
was 2) were generated. The four-layer CNN was trained with
the hidden layers of 32 and 64, kernel size (1,1), input-output
layer of 4 and 2, dropout of 0.5, batch size of 128 and loss
weight of 0.5. The downstream recognitionmodel was trained
by the BiLSTM-CRFwith true labels, and the time step of 20,
input dimension of 4 and learning rate of 0.001.

2) PRESSURE MAP DATASET
For the experiment I of the pressure map dataset, we reshaped
the input dimension of each sample into 2048 due to the
size of pressure mat was 32*64, and merge all files in the
order of three sleep postures (supine, right side and left side).
Because the posture dataset was in the form of gray images,
we enabled rotation and frequency-domain feature extraction
to generate temporary labels 0-4 (the number of workers was
5). The input and output layers of the four-layer CNN were
2048d and 5d, kernel size (5,5), the hidden layers were 128d
and 64d, dropout was 0.5, batch size was 128, and loss weight
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FIGURE 7. The confusion matrix of different classifiers compared with SSRM on sleep bioradiolocation dataset.

TABLE 1. Performance of classification of insomnia patients and healthy
subjects compared with state-of-the-art models on sleep
bioradiolocation dataset.

was 0.5. BiLSTM-CRF was trained with a learning rate of
0.001 with time step of 32 and the input dimension of 64.

In experiment II, we reshaped the input dimension of each
sample into 2048 due to the size of the pressure mat was
27*64. Five workers were employed before training the CNN
with 1728d (1728-dimension) of the input dimension, kernel
size (5,5), 0.5 of the dropout, 128d of the hidden output
and 5 of the final output dimension. Some parameters in
BiLSTM-CRF were the time step of 27, input dimension
of 64 and learning rate of 0.001.

3) PSG DATASET
In the PSG Dataset, there were three classifications. In order
to remove the noisy data, we utilized the source code of
[37] provided with the dataset to preprocess and extract
four-dimensional features: cosine feature, heart rate, time
feature and count feature. In the light of the settings of
literature [34], we choose 70% data for training and 30% for
testing.

To conduct the two-classification wake-sleep task, we fed
the data into the self-supervised model by frequency-domain
feature extraction. The four-layer CNN was trained with hid-
den layers of 64 and 32, kernel size (1,1). The dimensions
of the input and output layers were 4 and 2, dropout was
0.8, batch size was 128 and loss weight was 0.5. The time
step and input dimension of BiLSTM-CRF were 20 and 4.
For the classification of wake, NREM and REM, the settings
of the self-supervised model and BiLSTM-CRF remained
unchanged, except that the final classification output dimen-
sion was 3. The third experiment was classification of wake,
N1/N2, N3 and REM, with the final output dimension
of 4.

FIGURE 8. The ROC curve of different models and classes on sleep
bioradiolocation dataset.

C. EXPERIMENTAL RESULTS
The experimental results of the three datasets will be illus-
trated in this section. We have compared the classification
outcomes of different classifiers on these three datasets, ran-
dom forest (RF), decision tree (DT), logical regression (LR),
k-nearest neighbor (KNN), gradient boosting decision tree
(GBDT), and the recognition rates of some popular deep
learning frameworks, convolutional neural network (CNN),
gate recurrent unit (GRU), long-shot term memory (LSTM),
and BiLSTM.

1) RESULTS ON SLEEP BIORADIOLOCATION DATASET
The purpose of this experiment is to distinguish insomnia
patients and healthy subjects. According to the experimental
settings, the experimental results on this dataset are repre-
sented in FIGURES 7 and 8 by confusion matrix and ROC
curve respectively. In FIGURE 7, we can see that the sample
number of the healthy subjects is significantly larger than that
of insomnia patients, which leads to the low classification
accuracy and over-fitting of some classifiers. KNN and RF
show superiority than other classifiers like LR. As shown
in FIGURE 8, we calculate the micro-average value of the
multiple classifiers, SSRM outperforms the others and AUC
of ROC curve of two classification is 0.998, which proves that
the model can reach the best classification performance.

The experimental results of the deep model are shown in
TABLE 1, which demonstrates the classification accuracy of
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FIGURE 9. The confusion matrix of different classifiers compared with SSRM on pressure map dataset I.

different models for insomnia patients and healthy subjects.
Comparedwith other classifiers, KNNachieves the best result
which is a little lower than SSRM. However, the performance
of deep model like CNN and LSTM are not satisfactory,
do not exceed KNN and other traditional classifiers due to
the small dimension of the input features and the extracted
features have poor separability. Over-fitting of LR andGBDT
results in a low detection rate of insomnia. To conclude, apart
from SSRM, the most accurate model for the classification
of healthy subjects is RF, and for the detection of insomnia
patients is KNN, which reflects the applicability of KNN
and RF.

2) RESULTS ON PRESSURE MAP DATASET
The pressure map dataset includes two sub datasets. Exper-
iments I and II are implemented according to these two
datasets respectively. Dataset I contains more than 2 × 104

samples, and dataset II contains more than 400 samples.

a: RESULTS OF THE CLASSIFICATION OF SLEEP POSTURE IN
EXPERIMENT I
The task of this section is to distinguish three different sleep
positions: supine, right side and left side. The confusion
matrix and ROC curve of pose recognition are shown in
FIGURES 9 and 10. In terms of the sample distribution of
the three postures, supine posture accounts for the largest
proportion, and its correct identification samples will also be
more relative, leading to the accuracy higher than the other
two postures. The classification results of all the classifiers
and the deep models for the three postures are all over 95%,
and the SSRM is 99.9%. The separability of the data is
confirmed. FIGURE 10 illustrates that the ROC of the three
postures are all over 99.9%, which verifies the stability of
our proposed model. The AUC of SSRM is higher than that
of other models.

In TABLE 2, for the classification of supine posture, KNN
performs the best among the traditional classifiers and SSRM
outperforms other deep models. LR, GBDT and SSRM are
the best for right and left postures.

b: RESULTS OF THE CLASSIFICATION OF SLEEP POSTURE IN
EXPERIMENT II
This section describes the recognition of sleep postures cap-
tured by different mattresses. The three postures are the same

FIGURE 10. The ROC curve of different models and classes on pressure
map dataset I.

TABLE 2. Performance of classification compared with state-of-the-art
models on pressure map dataset I.

as those presented in the previous sections. As is illustrated in
FIGURE 11, supine data accounts for the largest proportion.
Because of the small number of samples, some classifiers can
not determine a certain sleep posture very well. For example,
the probability of LR recognizing left posture is only 28.57%,
and the recognition rate of DT on right posture is 58.33%.
SSRM uses self-supervised expansion method to surpass all
the classification results, and it can recognize left and right
posture samples better, which is preferable than the existing
advanced methods. FIGURE 12 represents the performance
of our proposed model, the AUC area of SSRM is larger than
that of other classifiers reaching 99.2%.

TABLE 3 shows the recognition accuracy of all the learn-
ing models. For the classification of the supine position,
SSRM and CNN are superior to other models because CNN
can rely on convolution to check the pressure data collected
by 27 * 64 mattresses for spatial feature analysis. Several
different types of LSTM can extract the temporal features
of sleep data without any fitting phenomenon. It is clear that
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FIGURE 11. The confusion matrix of different classifiers compared with SSRM on pressure map dataset II.

FIGURE 12. The ROC curve of different models and classes on pressure
map dataset II.

TABLE 3. Performance of classification compared with state-of-the-art
models on pressure map dataset II.

FIGURE 13. The proportion of the subject.

the input data features are rich and the separability is strong,
resulting in better experimental results. Furthermore, SSRM
has also expanded the data capacity and achieved outstanding
results.

FIGURE 14. The ROC curve of different models and classes on PSG
dataaset (Wake/Sleep).

TABLE 4. Performance of classification compared with advanced models
on PSG dataaset (Wake/Sleep).

3) RESULTS ON PSG DATASET
In this experiment, one dataset is divided into different
classes for sleep stage recognition. The classified objects of
two-classification are wake and sleep, for three-classification
are wake, NREM and REM, for four-classification are wake,
N1/N2, N3 and REM. Non rapid eye movement (NREM)
can be further divided into three sub stages: N1, N2 and N3
according to different brain waves. Generally speaking, N1
and N2 are light sleep, and N3 is deep sleep.

It should be noted that there is data imbalance in this
dataset, which leads to the decline of recognition accuracy,
as well as the inapplicability of some models. As is shown
in FIGURE 13, N1 and N2 account for 57% of the samples,
more than half of the whole dataset, while the proportion of
wake is only 8%, which will directly lead to the over-fitting
of the experimental result. SSRM method extends the exper-
imental data and solves this problem to a certain extent.

a: RESULTS OF THE CLASSIFICATION OF WAKE/SLEEP
For the classification of sleep and wake, we also use the tradi-
tional classifier and deep model to learn the sample features.
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FIGURE 15. The confusion matrix of different classifiers compared with SSRM on PSG dataaset (Wake/Sleep).

FIGURE 16. The confusion matrix of different classifiers compared with SSRM on PSG dataaset (Wake/NREM/REM).

TABLE 5. Performance of classification compared with advanced models
on PSG dataaset (Wake/NREM/REM).

The partial confusion matrix is shown in FIGURE 15, and the
ROC curve FIGURE 14 also explains the outstanding effect
of SSRM. The imbalance of data can be observed clearly. The
recognition rate of SSRM to the wake data is higher than that
of all the classifiers, and KNN to the wake state is superior
to other classifiers. It can also be seen from the calculation of
the micro-average AUC value that SSRM and KNN rank first
and second.

In order to compare our method with other deep learning
approaches, we illustrate the results in TABLE 4. For sleep
classification, the accuracy of all the models are over 90%,
while for wake classification, most of them are less than 50%,
and the depth model CNN’s accuracy is only 8.8%. There is
severe over-fitting, and the average recognition rate of the
time series model is also lower than the traditional model,
which shows that the learning efficiency of the deep model
is limited under the condition of uneven samples. Although
SSRM can recognize the wake state better, there is a big gap
between SSRM and sleep recognition rate, and there is a large
space for improvement.

b: RESULTS OF THE CLASSIFICATION OF WAKE/NREM/REM
In terms of the three-classification of wake, NREMandREM,
the largest number of the samples of NREM leads to the best
classification of each classifier here. The experimental results
are shown in FIGURES 17 and 16. Some classifiers have
limitations, for example, the accuracy of LR and GBDT for
classification of REM state is too low, and the samples with
accurate classification are all focused on the NREM class,
which is obviously over fitting. In FIGURE 17, the perfor-
mance of SSRM is better than that of the other classifiers
based on the value of micro-average AUC. Looking at the
ROC curve of three states, the trend of NREM is different
from that of other states due to the largest number of samples.
The lowest AUC of REM state also indicates the lowest
recognition accuracy.

TABLE 5 demonstrates the accuracy of the three stages
of different model identification. For the deep models, the
most stable performance is achieved by the temporal model
BiLSTM, CNN appears the same situation as LR, because the
recognition rate of REM is 3.81%. RF and KNN outperform
all the deep learning models, which proves the advantages of
the traditional classifier. Moreover, excluding the over-fitting
model, themost of the excellent models forWake, NREMand
REM classification are SSRM, GBDT and RF respectively.

c: RESULTS OF THE CLASSIFICATION OF
WAKE/N1,N2/N3/REM
The classification results are shown in FIGURES 18 and 19.
Similar to the previous two experiments, each machine learn-
ing model has the highest classification accuracy for N1
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FIGURE 17. The ROC curve of different models and classes on PSG
dataaset (Wake/NREM/REM).

FIGURE 18. The ROC curve of different models and classes on PSG
dataaset (Wake/N1N2/N3/REM).

TABLE 6. Performance of classification compared with advanced models
on PSG dataaset (Wake/N1N2/N3/REM).

and N2, and the recognition rate for the other three cate-
gories is relatively average. But there are also models like
LR experienced over-fitting problem that have no discrim-
ination ability to identify REM stage. RF and KNN still
perform well and steadily surpassing most models. In terms
of AUC values, SSRM, RF and KNN sit on the top rank-
ing places. For the trend of the ROC curve, N1/N2 class
differes from the other three classes (Wake/N3/REM) due
to the large quantity, the AUC value of REM ranks the last
and the result is the worst due to the small amount of sleep
samples.

The recognition rates of ten machine learning models for
four sleep stages are shown in TABLE 6. In addition to the
severely over fitted LR and CNN models, the models with
the highest discrimination performance for wake, N1/N2, N3

and REM stages are SSRM, GBDT, DT and RF, respectively.
The number of accurate samples identified by SSRM is the
largest, and the overall recognition performance of SSRM
will be explained in the next section.

4) PERFORMANCE OF THE SPLIT COMPONENTS IN SSRM
In this section, we describe the performance of SSRM by
self-supervised pre-training and recognition process.

a: THE PRE-TRAINING PROCESS
The self-supervised model is used to increase the data capac-
ity, and the four-layer CNN is used as the training model
to extract the original data features. We use the data visu-
alization tool t-SNE (t-stochastic neighbour embedding) to
reduce the high-dimensional data to 2 dimensions (dimen-
sion reduction), to compare the original features and the
features extracted by self-supervised pre-training. Experi-
ments show that the features extracted by self-supervised
model are more separable, and the specific results are
shown in FIGURE 20. Different colors represent different
classes.

FIGURES 20(a) and 20(b) represent the sample distribu-
tion after dimensionality reduction of the original data and
the features obtained after using the self-supervised model
respectively on the bioradar dataset. It can be seen from
the color distribution that FIGURE 20(a) has many scat-
tered points of insomnia samples. FIGURE 20(b) aggre-
gates these insomnia samples, indicating that the similarity
between the same classes and the distance between different
classes are increased. Because of the large number of samples
(9× 105 +), t-SNE costs much time. Insomniac samples are
much smaller than healthy samples, so the sample distribution
is not obvious.

FIGURES 20(c) and 20(d) show the comparison of data
dimension reduction in experiment I of the pressure map
dataset. Obviously, the correct boundaries of different sleep
postures are clearer after using the self-supervised model.
In experiment II, due to the small amount of data, we can
see a significant aggregation effect. It is difficult to identify
the three postures in FIGURE 20(e) when they are fused
together, and it is easier to identify the class type of sample
points in FIGURE 20(f) when they are close to the same
class.

For the PSG dataset, we can see that the dimension reduc-
tion representation of the original data is chaotic, which
makes all four colors merge together, indicating that its sep-
arability is poor. After the processing of the self-supervised
model, the similar classes around have been generally aggre-
gated, and the boundaries of different classes have become
discriminative (FIGURES 20(g) and 20(f)).

These four experiments are enough to prove the effec-
tiveness of the upstream self-supervised model. Although
there is no true labels used for classification, the rotation and
frequency-domain features can make the original data more
separable and promote the implementation of the downstream
tasks.
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FIGURE 19. The confusion matrix of different classifiers compared with SSRM on PSG dataaset (Wake/N1N2/N3/REM).

FIGURE 20. Dimension reduction visualization of features extracted from the pre-training process. (a) and (b) represent the original data and
extracted features on the bio-radar dataset. (c), (d) and (e), (f) show the results of experiment I and II on the pressure map dataset. (g) and (h) show
the results of the four-class (wake/N1,N2/N3/REM) data on the PSG dataset.

b: DOWNSTREAM SLEEP RECOGNITION
Referring to the description in the above section, the down-
stream task employs BiLSTM-CRF to train and extract the
supervised temporal series features, and regards the predic-
tion probability of CRF as the final accuracy. The classifi-
cation results of ten learning models on all the datasets are
described in TABLE 7. SSRM stays ahead of other learning
approaches on all the datasets, so we will discuss other mod-
els later.

For insomnia detection on the bio-radar dataset, KNN and
GRU outperform the other models, which can represent the
best results of traditional classifiers and deep learning mod-
els. GRU and BiLSTM among the deep models are slightly
better than CNN, which shows that they are more suitable for
continuous temporal sleep data.

For sleep posture recognition on the pressure map dataset,
experiment I shows the notable data separability, which
makes all the classifiers distinguish different sleep postures
successfully. In experiment II, although the amount of the
data is small, the average result of the deep model surpasses
that of traditional model. Because each sample contains rich
spatio-temporal features, deep model can be more sensitive
to analyze non-linear spatio-temporal information.

For sleep stage recognition on the PSG dataset, the results
of the four-classification are far inferior to those of the
two-classification because of the data imbalance. Further-
more, the average classification outcome of KNN and RF
is superior to that of all the deep models, which shows the
advantages of the traditional classifier in dealing with the
unbalanced data. However, the excellent results obtained by
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TABLE 7. Performance of classification compared with advanced models.

SSRM verify the suitability of the deep learning algorithm on
this dataset.

In addition, we compared the results of other studies
on these three datasets, as shown in TABLE 7. Davoodnia
and Etemad et al. [38] utilizes a convolutional neural net-
works (CNN) to classify sleeping posture, which consists
of four main blocks is designed to convert the pressure
map data manifold into a feature space. Matar et al. [5]
extracted HoG and LBP features of sleep postures and trained
a feed-forward artificial neural network for classification.
Olivia et al. [34] adopted multiple classifiers for sleep stage
recognition. Inspired by the combination of the traditional
classifier and the deep network, the SSRM algorithm pro-
posed in this paper has achieved satisfying results.

V. DISCUSSION
As mentioned above, SSRM has been proposed for sleep
recognition and achieved remarkable results. In the three
tasks, the results of insomnia detection and sleep posture
recognition are much better than that of sleep stage detection.
It can be seen that it is difficult to judge different sleep
stages, because the boundaries of different sleep stages are
not clear and there are certain gaps between different stages.
In particular, the recognition rate of wake/N1,N2/N3/REM is
only 71.01%, and there is still a lot of room for improvement.

The investigation of different sleep stages is helpful for
researchers and medical experts to treat some insomnia dis-
orders. By locating different sleep stages and studying the
changes of brain waves in these stages, doctors can stimulate
the neurons in the cerebral cortex and increase the duration
of N3 (deep sleep stage) through non-drug and physical ther-
apy, such as transcranial magnetic stimulation (TMS), low
frequency impulse electrical therapy, etc.

VI. CONCLUSION
In this work, we have proposed a novel sleep recognition
method enabling self-supervised approach for medical sleep
data obtained from different sensors. To the best of our
knowledge, the use of a self-supervised model for sleep
recognition is a novel solution. We have considered sleep
data from multiple sensors which is input to a BiLSTM-CRF
classifier after performing self-supervision. To evaluate the

quality of the learned features, a dimension reduction method
t-SNE is adopted to regulate the feature representation of the
self-supervised model and the original data, and show the
recognition results of several state-of-the-art deepmodels and
traditional classifiers, which verifies the effectiveness of our
proposed model.

A number of open explorations still remain, for instance,
the choice of using an image generation technology such
as GAN to make artificial dreams to solve insomnia is an
interesting future work. Monitoring different sleep stages and
calculating a state transition probability to evaluate sleep
quality is also an interesting future direction. Considering the
deep learning algorithm based on multi-sensor prediction of
sleep heart rate, blood pressure and other biological parame-
ters, improving the prediction accuracy is also an interesting
work in the future.
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