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Hierarchical Taxonomy-Aware and Attentional
Graph Capsule RCNNs for Large-Scale

Multi-Label Text Classification

Hao Peng, Jianxin Li, Member, IEEE, Senzhang Wang, Lihong Wang, Qiran Gong,

Renyu Yang, Member, IEEE, Bo Li, Philip S. Yu, Fellow, IEEE, and Lifang He, Member, IEEE

Abstract—CNNs, RNNs, GCNs, and CapsNets have shown significant insights in representation learning and are widely used in

various text mining tasks such as large-scale multi-label text classification. Most existing deep models for multi-label text classification

consider either the non-consecutive and long-distance semantics or the sequential semantics. However, how to coherently take them

into account is still far from studied. In addition, most existing methods treat output labels as independent medoids, ignoring the

hierarchical relationships among them, which leads to a substantial loss of useful semantic information. In this paper, we propose a

novel hierarchical taxonomy-aware and attentional graph capsule recurrent CNNs framework for large-scale multi-label text

classification. Specifically, we first propose to model each document as a word order preserved graph-of-words and normalize it as a

corresponding word matrix representation preserving both the non-consecutive, long-distance and local sequential semantics. Then

the word matrix is input to the proposed attentional graph capsule recurrent CNNs for effectively learning the semantic features. To

leverage the hierarchical relations among the class labels, we propose a hierarchical taxonomy embedding method to learn their

representations, and define a novel weighted margin loss by incorporating the label representation similarity. Extensive evaluations on

three datasets show that our model significantly improves the performance of large-scale multi-label text classification by comparing

with state-of-the-art approaches.

Index Terms—Multi-label classification, document modeling, graph rcnn, attention network, capsule network, taxonomy embedding

✦

1 INTRODUCTION

As a fundamental text mining task, text classification aims
to assign a text with one or several category labels such
as topic labels and sentiment labels. Traditional approaches
represent the text as sparse lexical features due to the sim-
plicity and effectiveness [1]. For example, bag-of-words and
n-gram are widely used to extract textual features, and then
a general machine learning model such as Bayesian, logistic
regression or SVM is utilized for text classification. Recent
advances in deep learning techniques [2], [3] have enabled
numerous variants of neural network based models from a
large body of innovations, encompassing recurrent neural
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networks [4], [5], [6], [7], diversified convolutional neural
networks [8], [9], [10], [11], [12], [13], capsule neural net-
works [14] and adversarial structures [15], [16]. These deep
models have achieved inspiring performance gains on text
classification due to their powerful capacity in representing
the text as a fix-size feature map with rich semantics.

Recently, three popular deep learning architectures have
attracted increasing research attention for representation
learning of textual data, i.e., recurrent neural networks
(RNNs) [6], [17], [7], [18], convolutional neural networks
(CNNs) [8], [12], [10] and graph convolutional networks
(GCNs) [11], [9]. Despite RNNs are suitable for capturing
the semantics of short text [19], they are less effective to
learn semantic features of long documents. Although the bi-
directional block self-attention networks are proposed [7] to
better model text or sentence, they consider documents as
natural sequences of words, and ignore the long-distance se-
mantic between paragraphs or sentences. CNNs and capsule
networks simply evaluate the semantic composition of the
consecutive words extracted with n-gram. However, n-gram
may lose the long-distance semantic dependencies among
the words [20]. Compared with RNNs and CNNs, GCNs
can better capture the non-consecutive phrases and long-
distance word dependency semantics [11], [9], but ignore
the sequential semantic. To sum up, there is still a lack of a
model that can simultaneously capture the non-consecutive,
long-distance and sequential semantics of text. Meanwhile,
as the text labels of some real-world text classification tasks
are characterized by large hierarchies, there may exist strong
dependencies among the class labels [21], [22], [23]. Exist-
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ing deep learning models cannot effectively and efficiently
leverage the hierarchical dependencies among labels for
improving the classification performance, either.

It is non-trivial to obtain a desirable performance for
large-scale multi-label text classification due to the follow-
ing challenges: First, although there are many methods
for document modeling, how to represent a document by
fully preserving its rich and complex semantic information
still remains an open problem [24]. It is challenging to
come up with a document modeling method that can fully
capture the semantics of a document, including the non-
consecutive, long-distance and sequential features. Second,
limited by different document modeling methods, existing
CNNs, RNNs and GCNs models can only capture partial
semantic feature. It is imperative to design a deep learning
model that can simultaneously capture multiple types of
textual features mentioned above. Third, although some
recursive regularization based hierarchical text classification
models [25], [26], [11], [27] consider the pair-wise relation-
ship between labels, they fail to consider their hierarchical
relationships. The computation of the above regularized
models is also expensive due to the use of Euclidean con-
straints. Therefore, how to make full use of the hierarchical
label-dependencies among labels to improve the classifi-
cation accuracy and reduce the computational complexity
becomes extremely challenging.

To address these challenges, we propose HE-
AGCRCNN, a novel Hierarchical taxonomy-awarE and
Attentional Graph Capsule Recurrent CNNs framework,
for large-scale multi-label text classification. Specifically,
our framework consists of three major parts: word
order preserved graph-of-words for document modeling,
attentional capsule recurrent CNNs for feature learning,
and hierarchical taxonomy-aware weighted margin loss for
large-scale multi-label text classification:

Word Order Preserved Graph-of-Words for Document
Modeling. We regard each unique word as a vertex, the
word co-occurrence relationships within a sliding window
as edges, and the positional index of a word appearing in
the document as its attribute. We can therefore build a word
order preserved graph-of-words to represent a document.
Then we select top w central words from the graph-of-
words based on the closeness centrality feature, and construct
a subgraph for each central word from neighbors by breadth
first search (BFS) and depth first search (DFS). To pre-
serve local sequential, non-consecutive and long-distance
semantics, we normalize each subgraph to blocks of word
sequences that retain local word order information, and
construct an arranged word matrix for the w sub-graphs.
To incorporate more semantic information, we use a pre-
trained word embedding vectors based on word2vec [28]
as word representation in the arranged word matrix. Finally,
each document is represented as a corresponding 3-D tensor
representation whose three dimensions denote the selected
central words, the ordered neighbor words sequence and
the embedding vector of each word, respectively.

Attentional Capsule Recurrent Convolutional Neural
Networks. An attentional capsule recurrent CNN (RCNN)
model is designed to make use of the 3-D tensor as input for
document feature learning. The proposal model first uses
two attentional RCNN layers to learn different levels of

text features with both non-consecutive, long-distance and
local sequential semantics. Here, we not only guarantee the
independence of the feature representation between sub-
graphs, but also model different impacts among different
blocks of word sequences. When the convolution kernel
slides horizontally along the combining long-distance and
local sequential ordering of words, the attentional LSTM
unit is employed to encode the output of the previous step
of CNN, and the output of current step of attentional LSTM
to produce the final output feature map in the RCNNs layer.
Subsequently a capsule network layer is used to implement
an iterative routing process to learn the intrinsic spatial re-
lationship between text features from lower to higher levels
for each sub-graph. In the final DigitCaps layer, the activity
vector of each capsule indicates the presence of an instance
of each class and is used to calculate the classification loss.

Hierarchical Taxonomy-Aware Weighted Margin Loss.
Considering the hierarchical taxonomy of the labels, we
design two types of meta-paths, and leverage them to
conduct random walk on the hierarchical taxonomy net-
work to generate label sequences. Therefore, the hierarchical
taxonomy relationship among the labels can be encoded in
a continuous vector space with the skip-gram [28] on the
sequences. In this way, the distance between two labels can
be measured by calculating the cosine similarity of their
vectors. By taking the distance between labels into consid-
eration, we design a new weighted margin loss to guide the
training of the proposed attentional capsule RCNN models.

We conduct extensive evaluations on the proposed
framework by comparing against state-of-the-art methods
on three benchmark datasets, traditional shallow models
and recent deep learning models. The results show that
our approach outperforms them by a large margin in both
efficiency and effectiveness on large-scale multi-label text
classification. The code of this work is publicly available at
https://github.com/RingBDStack/HE-AGCRCNN.

The contributions of this paper are summarized below.

• A novel hierarchical taxonomy-aware and attentional
graph capsule recurrent CNNs framework is pro-
posed for large-scale multi-label text classification.

• A new word order preserved graph-of-words
method is proposed to better model document
and more effectively extract textual features. The
new method preserves both non-consecutive, long-
distance and local sequential semantics.

• A new word sequence block level attention recurrent
neural network is proposed to better learn local
sequential semantics of text.

• A novel hierarchical taxonomy-aware weighted mar-
gin loss is proposed to better measure the distance of
classes and guide training of the proposed models.

• Extensive evaluations on three datasets demonstrate
the efficiency and effectiveness of the proposal.

The rest of the paper is organized as follows. We first re-
view related work in Section 2. We introduce the word order
preserved document modeling in Section 3, and present the
model architecture in Sections 4 and 5. The evaluation is
conducted in Section 6. Finally, conclusion and future work
are given in Section 7.
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2 RELATED WORK

As our work is closely related to traditional text classifica-
tion models, multi-label text classification, traditional deep
learning models and graph convolution networks for text
classification, the related works are four-fold.

Tradition text classification models use feature engineer-
ing and feature selection to obtain features for text classi-
fication [1]. For example, Latent Dirichlet Allocation [29]
has been widely used to extract topics from corpus, and
then represent documents in the topic space. It performs
better than bag-of-word (BOW) when the feature numbers
are small. However, when the size of words in vocabulary
increases, it does not show advantage over BOW on text
classification [29]. In addition to statistical characteristics
based TF-IDF, LDA, BMT, etc. [1], semantic role labels have
also been proven to be used to enhance text representa-
tion [30]. There are also some existing work that tried to
convert texts to graph-of-words [20]. Similar to our works,
they used word co-occurrence to construct graphs from
texts, and then they applied similarity measure on graph to
define new document similarity and features for text [20].

Multi-label text classification is the problem of assign-
ing each document a set of target labels, and is also an
application scenario of multi-label learning [31]. Multi-label
learning algorithm often needs problem transformation or
algorithm adaptation from multi-class learning models.
For instance, one-versus-rest binary support vector ma-
chines (BSVM), one-versus-rest binary logistic regression
(BLR) and one-versus-rest binary multinomial naive bayes
(BMNB) [32], [33] are typically transformed or adapted
multi-label learning models. In our hierarchical large-scale
multi-label text classification scenario, many efforts [26],
[25], [11], [27], [34] have been put on leveraging the pair-
wise relation between labels as recursive regularization to
improve the classification results.

For deep learning models, there have been RNNs, CNNs,
and capsule models applied to text classification. For ex-
ample, hierarchical RNN has been proposed for long doc-
ument classification [17] and later attention model is also
introduced to emphasize important sentences and words [6].
Similar to RNNs, the recently proposed self-attention based
sentence embedding technologies [35], [18], [7] have shown
effectively capturing both long-range and local dependen-
cies in sentiment-level tasks. For example, Bi-BloSAN [7]
is a bi-directional block self-attention network to learn text
representation and models text as sequences. Different from
the previous attention networks [6], [7], our attention model
focuses on the different importance of different blocks of
word sequences. For CNNs models, Kalchbrenner et al. [36]
and Kim et al. [8] used simpler CNN for text classification,
and showed significant improvements over traditional texts
classification methods. Zhang et al. [37] and Conneau
et al. [12] used a character level CNN with very deep
architecture to compete with traditional BOW or n-gram
models. The combination of CNNs and RNNs are also
developed which shows improvements over topical and
sentiment classification problems [38]. Capsule networks
were proposed by Hinton et. [39], [40], [41] as a kind of su-
pervised representation learning methods, in which groups
of neurons are called capsules. Capsule network has been

proved effective in learning the intrinsic spatial relationship
between features [14], [42], [43]. [14] showed that Capsule
networks can help to improve low-data and label transfer
learning. However, as mentioned in the introduction, exist-
ing textual deep learning models are not compatible with
diverse text semantic coherently learning. Compared with
our work, these previous studies only considered N-gram
or sequential text modeling, but ignored high level of non-
consecutive and long-distance semantics of text.

GCN derived from graph signal processing [44], and
the graph convolution operation has been recognized as the
problem of learning filter parameters that were replaced
by a self-loop graph adjacency matrix, updating network
weights, and extended by utilizing fast localized spectral
filers and efficient pooling operations in [45], [46]. With
the development of GCN technologies, graphs embedding
approaches, such as PSCN [47] and GCAPS-CNN [48],
have been developed in graph classification tasks. Recently,
the recursively regularized deep graph cnn [11] has been
proposed to combine graph-of-words representation, graph
CNN, and hierarchical label dependency for large-scale
text classification. Then the Text GCN model [9] has been
proposed to capture global word co-occurrence information
and perform text classification without word embeddings
or other external knowledge. Although long-distance and
non-continuous text features are fully considered in the
two graph convolution models [11], [9], they ignore the
continuous and sequential semantics of words in the text
when converting text to graph structures. Different from
existing graph-based text classification models [20], [11], [9],
the arranged word matrix representation was first proposed
in our work. Unsupervised network representation learning
technologies [49] provide an effective way to measure the
distance between labels, which is different from the original
method of measuring the distance between labels according
to the edge relation in hierarchical taxonomy. In addition,
the recursive regularization is usually time consuming due
to the Euclidean constraint.

3 WORD ORDER PRESERVED GRAPH-OF-WORDS

FOR DOCUMENT MODELING

In this section, we introduce how we model a document
as a word order preserved graph-of-words, and how to
extract central words and sub-graphs from it. Formally, let
X denote the instance space of text and Y denote the label
space. The task of multi-label text classification is to learn
a mapping function f : X → Y from the training set
{(xi, Yi)|1 ≤ i ≤ c}. Here, xi ∈ X is an instance of text
and Yi ⊆ Y is the set of labels associated with xi. For
any unseen instance x ∈ X , the multi-label classifier f(·)
predicts f(x) ⊂ Y as the set of proper labels for x.

3.1 Word Order Preserved Graph-of-Words

In order to preserve more semantic information of text, we
model a document as a word order preserved graph-of-
words. We regard each unique word as a vertex, the word
co-occurrence relationships within a sliding window as
edges, and the positional index appearing in the document
as its attribute, as shown in the step 1 of Figure 1.
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Million

(8, 104,...)

Fig. 1. Illustration of converting a document to an arranged word matrix representation. We first construct a word order preserved graph-of-words,
and then a top w nodes (words) sequence is selected from the ranking of each node’s closeness centrality feature. For each node (word) in the
sequence, a corresponding sub-graph is extracted and normalized as a sequence of words that retain local word order information.

We first split a document into a set of sentences and
extract tokens using the Stanford CoreNLP tool. We also
employ a lemmatization of each token using the Stanford
CoreNLP, and remove the stop words. Then we construct
an edge between two word nodes if they co-occur in a
pre-defined fixed-size sliding window, and the edge weight
is the times of their co-occurrence. Meanwhile, we record
all the positional indexes where a word appears in the
document as its attribute. For example, for the first sentence
“Musk told the electric car...” shown in the document in Figure
1, we perform lemmatization on the second word “told”
to get “tell” with attribute “2”, and build a directed edge
from “Musk” to each of the words in the sliding window.
As shown in the graph-of-words of Figure 1, the word
“Company” appears at the 5-th, 19-th, 35-th, etc. positions,
respectively. Note that the graph-of-words is a weighted
and directed graph with the positional indexes as the node
attributes. For example, in the graph-of-words of Figure 1,
the weight of the edge between nodes “Company” and “Car”
is 6 meaning that “Company” and “Car” has a total of 6 co-
occurrences in the document when sliding the window.

3.2 Arranged Word Matrix Generation

We denote the word order preserved graph-of-words as
G = (V,E,W,A), where V denotes the node set and
|V | = n, E denotes the edge set and |E| = m, W denotes
the weights of the edges and A denotes the attributes of
the nodes. Based on the assumption in [50], [51], the most
relevant keywords about the content of the document tend
to have high centrality in the graph-of-words. Consider
the global and higher-order feature, we extract the top w
central words from G based on node’s closeness centrality
feature. It’ also because compared with other centrality
measures of linear computational complexity, such as de-
gree centrality, betweenness centrality, the nodes selected
by closeness centrality are more influential at node reach-
ability perspective [52]. Here, in order to calculate close-
ness centrality for each node, we use d(v, u) to denote the
shortest-path distance between nodes v and u by using the
Dijkstra algorithm. For each node v, its closeness centrality
can be calculated by Cv = (n− 1)/

∑
u∈V,u6=v d(v, u), and

we arrange the nodes in order of largest to smallest. The
larger the closeness centrality, more important the node is in
the graph. As shown in the graph-of-words of Figure 1, the
closeness centrality of word “Company” is the highest 0.3714
among the words’ in the graph. Then we select the top w

central nodes from the 1-th node “Company” to the w-th
node “Open”, as shown in the step 2 of Figure 1. Next, we
introduce how to extract sub-graph.

First, we extract the nodes and edges from the neighbor-
hood of each central node in the order of breadth first search
(BFS) and depth first search (DFS) to build a subgraph. To be
more specific, we use the BFS strategy to extract directly con-
nected edges and nodes as first-order neighborhood. And
then, we select the node with the highest closeness centrality
from the first-order neighborhood to extract the connected
edges and nodes with the DFS strategy. For example, as
shown in the first subgraph of the step 3 in Figure 1, we
extract the nodes of ”Car”, ”Electric”, ”Tesla” , ”Expect”,
”Purchase”, and ”Plan” connected to ”Company” and their
connected edges through the BFS strategy. And we start
from the node ”Purchase” and extract the nodes ”Million”
and ”common” and their connected edges according to the
DFS strategy. Meanwhile, we limit the number of nodes in
the subgraph to be no more than g. In this way, the sub-
graph G(v) contains both the non-consecutive, long-distance
and local sequential information of the central word v in
the document. To further save the above information of a
subgraph, we order the words in the sub-graph G(v) by
their nodes (words) attributes. For the most case where a
subgraph contains multiple sentences, we guarantee that
the long sentences are in the front and the short sentences
are in the back. As shown in the first line of the arranged
word matrix in Figure 1, we convert the first sub-graph G(v)
as sequences liking“electric car company plan purchase million
common and company expect ”. As a result, we normalize each
subgraph as sequences of nodes (words) that keep the same
length h. If the number of words in the sequence is less
than h, it is padded with zeros. Finally, we concatenate all
the normalized sequences of the w central words into an
arranged word matrix, as shown in step 4 of Figure 1. The
red nodes represent central words.

3.3 Unified Representation of the Documents

For better representing the original words in the word
matrix, we use word2vec [28] to incorporate as much word
semantic information as possible. Specifically, word2vec is
trained on a larger corpus, i.e., Wikipedia. All parameters
for word2vec are set to be default values. In this way,
we have a 3-D tensor representation for each document,
where the padded vectors are zero vectors with the same
dimension. Then the convolution, recurrent and capsule
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Document Modeling Attentional Graph Capsule Recurrent Convolution Neural Networks
Fig. 2. Architecture of the proposed hierarchical taxonomy-aware and attentional graph capsule recurrent convolution neural network. It consists of
document modeling, attentional capsule recurrent CNN, and hierarchical taxonomy-aware weighted margin loss. The network input is the original
document. The length of the activity vector of each capsule in DigitCaps layer indicates presence of an instance of each class.

networks introduced in the next section will be operated
over the unified representations of the documents.

4 ATTENTIONAL CAPSULE RECURRENT CNN

In this section, we introduce the proposed attentional cap-
sule recurrent CNN model. Technically, the proposed mod-
els belong to graph embedding. After converting each doc-
ument into a 3-D tensor representation, we design three lay-
ers of attention network to learn both the non-consecutive,
long-distance and local sequential feature. From the input
document to the output labels, the architecture is shown
in Figure 2. Specifically, the three layers of neural net-
works contain two major parts: two layers of attentional
recurrent convolution neural networks and one layer of
capsule network for rich feature learning. Note that this is a
general framework and the number of attentional recurrent
convolution layers can be adjusted based on specific dataset
for classification, and the parameter configuration of self-
attentional recurrent operators and capsule networks can be
customized in different text classification tasks.

4.1 Attentional Recurrent CNN

Different from the architecture of existing recurrent convo-
lutional neural networks [38], which encode sentences or
document as a dense vector for classification, our proposed
attention network encodes whole document as 3-D feature
map. The attention network takes the w × h× d size of 3-D
tensor extracted from the document and word embedding
as the input, where w is the number of central words, h is
the length of normalized sequence of words and d is the
dimension of word embedding, as shown in Figure 2. The
output of the two layers of the attention network is the other
3-D feature map as input of the proposed capsule network.

In the first layer, the convolution operator filters the
input tensor with k1 kernels of size 1×3×d with a horizontal
stride of 2 elements and a vertical stride of 1 element, which
is illustrated with the black convolution slide direction
arrow in Figure 2. We use ReLU as the activation function
to speed up the training process and avoid over-fitting.
Here, convolution kernel serves as a composition of the
semantics in the receptive field to extract the higher level
semantic features. Meanwhile, we employ a masked soft
attentional recurrent neural operator to capture the local

Block 1 Block 2
Fig. 3. Illustration of blocks of word sequences. The red word refers
to the central word for each subgraph. The words in any block are the
contexts of the central word at different locations in a document.

sequential semantic for each sub-graph G(v). The attentional
recurrent neural operator acts on each horizontal words
sequence, which is illustrated with the red recurrent slide
direction arrow in Figure 2. However, as we known, we
convert the subgraph G(v) into blocks of word sequences
according to the properties of the nodes. We give three
different blocks, as shown in Figure 3, to illustrate the
blocks of word sequences, which consist of each line of the
arranged word matrix. There are blocks of word sequences
depending on the different contexts of central words. In
order to measure the different impacts of different number
of blocks on the local sequential semantic learning, we
customize the masked attentional parameter shared in long
short-term memory units to learn the rich local sequential
semantic for each sub-graph G(v). We name the module as
Attention-LSTM.

Since our proposed framework needs to learn feature
for multiple documents, the attention-LSTM module guar-
antees that any subgraphs with the same order and the
same number of blocks share the same attention parameters.
For example, for the t-th subgraph G(u) from the docu-
ment Di, assuming that it contains the q blocks of word
sequences, the parameter of the masked attention module is
the αBt,q,1

, αBt,q,2
, . . . , αBt,q,q

. Similar, for the t-th subgraph
G(v) from the document Dj , assuming that it contains the
p blocks of word sequences, the parameter of the masked
attention module is the αBt,p,1

, αBt,p,2
, . . . , αBt,p,p

. If p and q
are equal, subgraphs G(u) and G(v) share the same attention
parameters αB , otherwise not. But, among any one block,
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each word shares the same attention parameter. For exam-
ple, in Figure 3, we assume they are converted from the top
3 subgraphs. In the 1-th block of the 3-rd subgraph, because
there are 2 blocks, the words electric, car, company, plan, and
purchase share the same masked attention parameter αB3,2,1

.
Then, after the first attentional recurrent convolution layer,
there is an w × (h− 2)× k1 size of feature map. Compared
with traditional convolution and recurrent networks on text
data [8], [12], [10], [11], [38], [7], the significant difference
of our designed attentional recurrent CNN units is that it
can integrate the long-distance, non-consecutive and local
sequential semantics of the corresponding sub-graph G(v).

The second attentional recurrent convolution layer takes
the output of the first attentional recurrent convolution as
its input, and filters it with k2 kernels of size 1 × 3 × k1
with a horizontal stride of 2 elements and a vertical stride of
1 element, which are illustrated with the black convolution
slide direction arrow and red recurrent slide direction arrow
in Figure 2. We still guarantee that each horizontal fea-
ture map characterizes the semantics of corresponding sub-
graph G(v), and the attentional recurrent and convolution
operators between different sub-graphs are independent.
In the second layer, for each sub-graph G(v), the number
of attentional parameter is same with the first layer, but
they are separated in training. After the second attentional
recurrent convolution layer’s operation, a w × (h− 4)× k2
size of feature map is generated.

More formally, we give the definitions of convolution
operator and Attentional-LSTM unit, respectively. The con-
volution operator can be defined as

xl
j = f(

∑

i∈Mj

xl−1
i · klij + blj), (1)

where xl
j represents the j-th feature map of the l-th layer

of the convolution network, and l ∈ {1, 2}. This formula
shows the convolution operation and the summation for all
the associated feature maps xl−l

i and the j-th convolution
kernel klij of layer l, and then add an offset parameter blj .
Finally, a ReLU activation function f is applied. Meanwhile,
the Attentional-LSTM unit can be defined as following:

ft =σg(WfαBxt + Ufct−1 + bf ),

it =σg(WiαBxt + Uict−1 + bi),

ot =σg(WoαBxt + Uoct−1 + bo),

ct =ftct−1 + itσc(WcαBxt + bc),

ht =otσh(ct),

(2)

where t refers to the index of the horizontal convolution
sequence, ft refers to the forgotten gate, it refers to the input
gate, ot refers to the output gate, ct is the cell state, and αB

refers to the attentional parameter. Since the output of the
convolution network is input to the LSTM, and the output
of the LSTM is the feature map, xt = xl

j and xt+1 = xl
j+1.

4.2 Capsule Network with Dynamic Routing

Since the capsule network can effectively learn some aspect
features of textual representation [42], the output of the
two layers of attentional recurrent convolution networks is
w× (h− 4)× k2 size of feature map and is input to the next
capsule networks with dynamic routing layer. In order to

independently learn the features of each subgraph into the
corresponding capsule vectors, different from existing tex-
tual capsule networks [14], our proposed capsule networks
guarantee the independence of feature between sub-graphs,
as shown in Figure 2.

The capsules contain groups of locally invariant neurons
that learn to recognize the presence of features and encode
their properties into vector outputs, with the vector length
representing the presence of the features. The primary cap-
sule layer is a convolution capsule layer with M channels
of capsules, as shown in Figure 2. Each primary capsule
contains m convolution units with a h+12

9 ×k2 size of kernel
and a vertical stride of 1, and can be seen as the output of
all w× h+12

9 ×k2 convolution units. Here, we guarantee the
independence of the representation of sub-graph G(v). In
total, the primary capsules have w×M capsule outputs, and
each output is a m-dimensional vector, as shown in Figure 2.
We can see all the primary capsules as a convolution layer
with Eq. 3 as its block non-linearity.

vj =
‖sj‖

2

1 + ‖sj‖2
·

sj
‖sj‖

, (3)

where vj is the output of capsule j, and sj is its total input.
For all but the first layer of capsules, the total input to a
capsule j is a weighted sum over all the prediction vectors
ûj|i from the capsules in the layer below, and is calculated
by multiplying the output ui of a capsule in the layer below
by a weight matrix Wij as following:

sj =
∑

i

cij ûj|i, ûj|i = Wijui, (4)

where cij is the coupling coefficient that is determined by
the iterative dynamic routing process. The coupling coeffi-
cients between capsule i and all the other capsules in the
layer above sum to 1. They are determined by a routing
softmax whose initial logits bij are the log prior probabilities
that capsule i should be coupled to capsule j. The cij can be
calculated as following:

cij =
exp(bik)∑
k
exp(bik)

. (5)

The final DigitCaps layer has n capsules per digit class
and each of these capsules receives input from all the
other capsules in the layer below. Wij is a weight matrix
between each ui, i ∈ (1,M ×w) in primary capsules and vj ,
j ∈ (1, L), where L refers to the number of classes.

As the length of the capsule’s output vector represents
the presence of a class, the length ‖vk‖ of each capsule
in the final layer can then be viewed as the probability
of the text belonging to a particular class k. The length
of the activity vector of each capsule in DigitCaps layer is
used to calculate the classification loss. This encourages the
network to learn a more general representation of text with
classification task. Different from the capsule networks [40],
[41] applied in the field of computation vision, our capsule
network abandons the use of activity vector to reconstruct
the original input data during training. We consider that
the distance between the raw text and the output of the
reconstructed representation are relatively large in the word
embedding space, and the reconstruction loss will be more
uncertainty. Next, we introduce how to design a weighted
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margin loss to measure distance of classes in hierarchy and
guide the training of Attentional Capsule Recurrent CNN.

5 HIERARCHICAL TAXONOMY-AWARE WEIGHTED

MARGIN LOSS

Intuitively, the distances between any two classes on the
hierarchy are different, but popular margin loss in capsule
network [40] and other distance measures in multi-label
learning [31] between classes did not consider the hierar-
chical relations among labels. So, we explore a hierarchical
taxonomy-aware weighted margin loss to guide the training
of the proposed model in Section 4. Note that the following
proposed weighted margin loss is not suitable for multi-
label learning tasks without dependencies between labels.

More formally, we denote the hierarchical taxonomy
structure of the labels as HG = {V, E}, where vertices
V are classes S and the directed edges E represent the
hierarchical parent-child relationship among the labels. In
large-scale multi-label text classification, for a document Ds

and corresponding positive labels set Ts, the number of
labels in Ts is usually much smaller than the number of
remaining negative ones in S, leading to a large loss of the
objective function. In fact, in hierarchical label network, the
closer the edge relationship between nodes is, the shorter
the semantic distance between labels will be. In order to
conveniently capture the relationship between labels on the
hierarchical label structure, we design two meta-paths to
guide random walk on the label structure, and generate
label sequences to learn label representation.

Figure 4 illustrates the hierarchical taxonomy structure
of the labels, where each node refers to a label/class, and
each directed edge represents a parent-child relationship.
Note that the taxonomy network is not a strict hierarchical
structure, and may contain cycles. For example, the two
hierarchical relations of “Economic”-“International trade”-
“Arms sales” and “Economic”-“Defense economy”-“Arms sales”
can form a cycle. Both hierarchical structure of taxonomy
and graph structure of taxonomy are common in practice,
and can be modeled as a hierarchical graph-of-labels. For
conveniently calculating the distance between any two la-
bels, we measure the cosine similarity through their rep-
resentation vectors. As shown in Figure 4, we extract the
following two types of meta-paths from the hierarchical
graph-of-labels, “Child1 - Father0 - Child2” and “Father1 -
Child0 - Father2”. Actually, the two types of meta-paths
control the directions of the random walk to the upper
and lower layers, respectively. So, we perform meta-paths
guided random walk to generate sequences of labels. Here,
we set that the probability of selecting two meta-paths is
equal during random walking. Similar to metapath2vec [53]
and Deepwalk [54], we also use the skip-gram negative
sampling [28] to encode the relations among the labels
into a continuous vector space. We optimize the following
objective function, which maximizes the log-probability of
observing a network neighborhood NS(l) for a node l
conditioned on its feature representation, given by g :

max
g

∑

l∈V

[− logZl +
∑

ni∈NS(l)

f(ni) · f(l)], (6)

Father 0

Child 1 Child 2

Father 1 Father 2

Child 0

(1) hierarchical and graphical structure of labels 

(2) meta-path1 (3) meta-path2 

Arms sales

Defense 

economy

Economic

International 

trade

Fig. 4. Illustrations of the hierarchical taxonomy and the two meta-paths.

where g(x) = 1
1+exp(−x) is the sigmoid function. Since it will

be time consuming to compute Zl =
∑

nl∈V exp(g(l) ·g(nl))
for large network, we approximate it using the negative
sampling technology. We optimize the Eq. 6 by using
stochastic gradient method.

Thus, given a tag label/class l ∈ V , we can approximate
the semantic distance between any other label li, i ∈ [1, L]
by calculating their cosine similarity from their embedding
vectors as following:

d(l, li) = 1− cos(vec(l), vec(li)). (7)

Next, in order to take advantage of dependencies among
labels to guide the training of the proposed attentional
capsule recurrent CNN model, we design a hierarchical
taxonomy-aware weighted margin loss objective function:

L =
L∑

k=1

[Tk max(0,m+ − ‖vk‖)
2

+ λ · p · αk · (1− Tk) ·max(0, ‖vk‖ −m−)2],

(8)

where Tk = 1 if and only if a digit of class k is present,
and m+ and m− are the given thresholds for the upper and
lower bounds. The λ down-weighting of the loss for absent
digit classes stops the initial learning from shrinking the
lengths of the activity vectors of all the digit capsules, such
as 0.5 in the original capsule networks [40], [41]. αk ∈ [0, 1]
is the minimum semantic distance from negative label k to
the positive labels set in the hierarchical label network. The
total loss is the sum of the losses of all the digit capsules.
Formally, for a document Ds, the positive label set is Ts ⊂
S . And for any negative label k, the minimum semantic
distance αk is:

αk = 1−max
t∈Ts

(cos(vec(t), vec(k))). (9)

Meanwhile, to make an unbiased and smooth overall objec-
tive function after integrating the semantic distance, we add

an adjustment factor p that satisfies
∑L

k=1 p · αk = 1. We
can approximate the distribution of the semantic distance
αk by 1 − e−x, x ∈ [1, L] to obtain an approximation of the
adjustment factor p for different datasets.
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TABLE 1
Statistics of the three datasets. Training, Validation , Testing, and Class-Labels denote the total number of training, testing samples and labels,

respectively. Words/Sample is the average number of words per sample. Labels/Sample is the average number of labels per sample, and
Sample/Labels is the average number of documents per label.

Datasets Training Validation Testing Class-Labels Depth Words/Sample Labels/Sample Samples/Label
RCV1 23,149 - 784,446 103 6 268.95 3.24 729.67

EUR-Lex 15,449 - 3,865 3,956 4 1229.77 5.32 15.59
Reuters-21578 5800 600 300 10 - 257.32 - -

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of the proposed framework. We will first intro-
duce the used datasets, the evaluation metrics, methods for
comparison, and experimental settings. Then, we will com-
pare our methods with baselines, and provide the analysis
and discussions on the results.

6.1 Datasets

Both RCV1 and EUR-Lex are the classic and widely used
multi-label datasets [55], [56], [10], [57] with unbalanced
label distribution. We use two datasets including RCV1
and EUR-Lex for large-scale multi-label text classification.
To make the baselines as competitive as possible, we use
the same instance-based thresholding strategy as proposed
and used in [58], [56], [25] to divide the RCV1 and EUR-
Lex datasets. We use the Reuters-21578 [59] to evaluate the
effectiveness of the proposed capsule network in transfer-
ring from single-label to multi-label classification [14]. The
statistics of the datasets is shown in Table 1.

• Reuters Corpus Volume I (RCV1) [55] is a manually la-
beled newswire collection of Reuters News from 1996-1997.
It consists of over 800,000 manually categorized newswire
stories by Reuters Ltd for research purposes. Multiple topics
can be assigned to each newswire story and there are 103
topics in total. The news documents are categorized with
respect to three controlled vocabularies: industries, topics
and regions. The relations among the labels are typically
graphic structure with self-loops. We use the topic-based hi-
erarchical classification because it has been widely adopted
in evaluation.

• EUR-Lex [57] is a collection of documents about
European Union law. It contains many different types of
documents, including treaties, legislation, case-law and leg-
islative proposals, which are indexed according to several
orthogonal categorization schemes to allow for multiple
search facilities. The most important categorization is pro-
vided by the EUROVOC descriptors, which forms a topic
hierarchy with almost 4000 categories regarding different
aspects of European law. Directory code classes are orga-
nized in a hierarchy of 4 levels with a typical tree structure.
Since the dataset contains several European languages, we
choose English version of documents.

• Reuters-21578 [59], [14] is a collection appeared on the
Reuters newswire in 1987. We follow [14] to choose 6,700
documents from the Reuters financial newswire service,
where each document contains either multiple labels or
a single label. And we also focus 10 popular topics, and
reprocess the corpus to evaluate the capability of capsule
networks of transferring from single-label to multi-label
text classification. For validation and training, we only use
the single-label documents in the validation and training
sets. For testing, we only uses the multi-label documents

in testing dataset. Note that this dataset is only for test-
ing the advantages of the transferring from single-label to
multi-label classification task of our capsule network that
incorporates multiple semantics.

6.2 Evaluation Metrics and Baselines

Consider the imbalance between classes, we use the stan-
dard label-based evaluation metrics [31], [56], [25], [60] to
measure the performance of all the methods.

• Micro-F1 is a metric considering the overall precision
and recall of all the labels. Let TPt, FPt, FNt denote the
true-positives, false-positives and false-negatives for the t-
th label in label set S respectively. The Micro-F1 is defined
as:

Micro-F1 =
2PR

P +R
, (10)

where:

Precision(P ) =

∑
t∈S TPt∑

t∈S TPt + FPt

,

Recall(R) =

∑
t∈S TPt∑

t∈S TPt + FNt

.

• Macro-F1 is a metric which evaluates the averaged
F1 of all the different class-labels. Different from Micro-
F1 that gives equal weight to all the instances, Macro-F1

gives equal weight to each label in the averaging process.
Formally, Macro-F1 is defined as:

Macro− F1 =
1

|S|

∑

t∈S

2PtRt

Pt +Rt

, where

Pt =
TPt

TPt + FPt

, Rt =
TPt

TPt + FNt

,

(11)

Meanwhile, we compare our model with both traditional
text classification methods and recent state-of-the-art deep
learning based text classification methods.

• Flat baselines. This type of methods generally first
extract the TF-IDF features from the document, and then
input them into the classification model such as one-versus-
rest binary support vector machines (BSVM), one-versus-
rest binary logistic regression (BLR) and one-versus-rest
binary multinomial naive bayes (BMNB) [32], [33]. For these
models, a separate binary classifier for each label would be
trained on all documents. We call them flat baselines since
they ignore both the relations among the words and the
relations among the labels.

• 3-gram, sequence-of-words or graph-of-words based
models. These methods extract 3-gram features, sequence-
of-words or graph-of-words from the document as the in-
put of classification models. These features are suitable for
deep learning models, such as CNN-non-static [8], RCNN
[38], Deep CNN [12], XML-CNN [10], DGCNN-3 [11],
Hierarchical LSTM (HLSTM) [61], Hierarchical Attention



9

Network [6] (HAN) and Bi-directional Block Self-Attention
Network [7] (Bi-BloSAN) etc. For example, HLSTM model
learns sentence representations based on words sequences,
and then use RNN models to encode document repre-
sentations based on the learned sentence representations.
HAN uses a global attention mechanism to attend useful
words and sentences. Bi-BloSAN further splits the sequence
into several blocks and employs intra-block and inter-block
self-attentions to capture both local and long-range context
dependencies, respectively.

• Hierarchical models. These methods make use of the
hierarchical or graphical label network to design hierarchi-
cal classification classifiers, such as Top-down Support Vec-
tor Machines (TD-SVM) [62], Hierarchical SVMs HSVM
[63], Hierarchically Regularized Logistic Regression (HR-
LR), Hierarchically Regularized Support Vector Machines
(HR-SVM) [26], [25], and Hierarchically Regularized Deep
Graph CNN (HR-DGCNN-3) [11], etc. Note that HSVM
model is inherently multi-class method and are not applica-
ble in multi-label scenario. We replace the softmax function
with multiple binary logistic functions.

• Sequence generation model. These methods view
the multi-label classification task as a sequence generation
problem, and apply a sequence generation model, such as
SGM+GE [64], with decoder structure to solve it.

• Capsule Neural Networks. These methods are
shown to be effective in capturing the spatial features of
text, including Capsule Networks with Dynamic Routing
(Capsule-A and Capsule-B) [14]. These capsule networks
rely on N-gram convolution networks to extract shallow
features and then use dynamic or static routing to learn the
relationships between features. Capsule-B model employs
parallel networks with different sizes of filters. It has been
proven to have a better effect than the Capsule-A.

• Variations of HE-AGCRCNN. We implement sev-
eral variants of our proposed method. The first variant
model without sorting normalization (Sorting), Long Short-
Term Memory units (LSTM), two layers of attentional
LSTM (A-LSTM), capsule network (Capsule) and hierarchi-
cal weighted margin loss (WML), was named TGCNN(No-
R). The second variant model without LSTM units, two
layers of attentional LSTM, capsule network and hierar-
chical weighted margin loss, was named TGCNN. The
third variant model without two layers of attentional LSTM,
capsule network and hierarchical weighted margin loss, was
named TGRCNN. In order to clearly present the compo-
nents of the variations of HE-AGCRCNN, we give a table 2
of models that enhance functionality. For other variations
of HE-AGCRCNN, we can see the Table 2. Here, for the
non-capsule neural network models, we use a 2-layer fully
connected networks and a sigmoid layer, and the popular
cross entropy or the hierarchical taxonomy-aware weighted
margin loss as objective function. For the capsule network
models, we use the original margin loss or hierarchical
taxonomy embedding-aware weighted margin loss as the
objective function.

For deep learning models, we employ the popular cross-
entropy loss function. We use the implementations or open
source codes of these models released by authors and other
researchers, and report the best performance of the results.

TABLE 2
Comparison of main functions among variations of HE-AGCRCNN.

Models CNNs Sorting LSTM A-LSTM Capsule WML
TGCNN(No-R) X

TGCNN X X

TGRCNN X X X

GCCNN X X X

TAGRCNN X X X

GCRCNN X X X X

AGCRCNN X X X X

HE-TGCNN X X X

HE-TGRCNN X X X X

HE-GCCNN X X X X

HE-TAGRCNN X X X X

HE-GCRCNN X X X X X

HE-AGCRCNN X X X X X

6.3 Experimental Settings

All our experiments were performed on 64 core Intel
Xeon CPU E5-2680 v4@2.40GHz with 512GB RAM and
8×NVIDIA Tesla P100-PICE GPUs. The operating system
and software platforms are Ubuntu 5.4.0 and Python 3.5.2.
The training and testing datasets are shown in Table 1. Since
the RCV1 dataset contains an average of 94.3 unique words
per document, the Reuters-21578 contains an average of 93.7
unique words and the EUR dataset contains an average of
183.8 words. In document modeling, the top w numbers of
central words are set to 100 (RCV1 and Reuters-21578) and
200 (EUR-Lex). For the sub-graph, the upper bound value g
(the maximum number of vertices) is set to 25. The length h
of the normalized word sequence is set to 20. The dimension
d of word embedding is set to 50. Here, we use word2vec
technology to train 50 dimensional word embedding over
the 100 billion words from Wikipedia corpus based on Skip-
gram with Negative Sample model with window size of 5.
For the hierarchical taxonomy embedding, we employ 50
threads to execute the random walk in parallel, and for each
walk we use 500 steps. The dimension of label embedding
vector is set to 200. For all the deep learning based models,
the common parameters of training the models are empiri-
cally set, such as batch size = 32 and learning rate = 0.001
with Adam optimization algorithm.

For capsule based models, the dimension of capsule
vector m is 16, the channel of convolution capsule M is
64, the dimensions of DigitCaps are 32 × 103 for the RCV1
dataset, 64 × 3956 for the EUR-Lex, and 32 × 10 for the
reprocessed Reuters-21578, and m+ = 0.9, m− = 0.1,
λ = 0.5. Considering the number of the class labels and the
average number of labels per sample, we set the adjustment
factor p to 0.01 for RCV1, 0.001 for EUR-Lex and 0.1 for
the reprocessed Reuters-21578 in the Eq. 8. All convolution
kernels are 1×3 in size. The numbers of convolution kernels
per layer are 64 and 128. The LSTM operator contains 128
hidden layer units. The numbers of neurons in the fully
connected layers are 1024 and 512 in RCV1, and 2048 and
4096 in EUR-Lex. Our models can achieve the best perfor-
mance results among 20 to 70 epoches. For the experiment of
transferring single-label model to multi-label classification,
on the one hand, in order to be consistent with baseline
[14], we select the same number of training, validation and
testing data as shown in Table 1. On the other hand, as the
labels of the reprocessed Reuters-21578 is part of RCV1’s,
we reuse the label embedding of RCV1 in the transferring
experiment.
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Fig. 5. The performance comparisons of reconstructing label network by the two hierarchical taxonomy embedding methods on various thresholds.

6.4 Evaluation on Label Embedding

In order to study whether the proposed meta-paths based
random walk can learn desirable label embedding that
reflects the hierarchical taxonomy relations among them,
we use the meta-paths guided random walk and traditional
random walk to generate the two label sequences respec-
tively, and then generate two label vectors by the same skip-
gram method. After obtaining the two vectors, we calculate
the cosine distance between them, and use it to reconstruct
the relations among the labels. When the distance between
two label vectors is larger than the threshold, we add a
edge between the two labels. We employ the Macro-F1 and
Micro-F1 to evaluate the performance of reconstructing the
relations in hierarchy.

Figure 5(a) and figure 5(b) show the results of the two
label embedding vectors on the relation reconstruction task
in the two datasets. One can see that overall the meta-
paths guided random walk approach performs better for
capturing the hierarchical taxonomy semantics than the
traditional random walk approach. For RCV1, the most suit-
able thresholds of meta-paths based taxonomy embedding
are 0.660 and 0.940, and the highest Macro-F1 and Micro-F1

are 0.337 and 0.310, respectively. For the traditional random
walk based taxonomy embedding, the highest Macro-F1

and Micro-F1 are 0.275 and 0.272, respectively. For EUR-
Lex, the most suitable thresholds of meta-paths based taxon-
omy embedding are 0.440 and 0.880, and the highest Macro-
F1 and Micro-F1 are 0.168 and 0.406, respectively. For the
traditional random walk based taxonomy embedding, the
highest Macro-F1 and Micro-F1 are 0.164 and 0.405, re-
spectively. One can observe that the performance difference
between the two random walk methods is relatively small
on EUR-Lex. This is probably because the taxonomy label
structure of EUR-Lex is a hierarchical tree. Although the
method of measuring the cosine similarity between any two
labels based on unsupervised heterogeneous network rep-
resentation learning vector is approximate, it’s a convenient
method to estimate label distance for any two labels.

6.5 Performance Evaluation on RCV1

Next, we evaluate the performance on the RCV1 dataset
through the multi-label text classification task. RCV1 is a
dataset that training samples are much fewer than testing
samples, as shown in Table 1.

The experiment results are shown in Table 3. Among the
traditional text classification algorithms, one can see that the
HR-SVM performs better than TD-SVM, BSVM, HSVM, HR-
LR, BLR and BMNB. For deep learning approaches, one can
see that the performance of RNN based algorithms HLSTM

TABLE 3
Comparison of results on RCV1 and EUR-Lex.

Models
RCV1 EUR-Lex

Macro-F1 Micro-F1 Macro-F1 Micro-F1

BLR 0.328 0.692 0.181 0.522
BSVM 0.330 0.691 0.185 0.551
BMNB 0.314 0.685 0.179 0.507
HSVM 0.333 0.693 0.189 0.567

TD-SVM 0.337 0.696 0.198 0.571
HR-LR 0.322 0.716 0.180 0.583

HR-SVM 0.386 0.728 0.223 0.609
HLSTM 0.310 0.673 0.183 0.562

HAN 0.327 0.696 0.184 0.566
RCNN 0.293 0.686 0.168 0.554

XML-CNN 0.301 0.695 0.179 0.583
DCNN 0.399 0.732 0.231 0.611

DGCNN-3 0.432 0.761 0.237 0.632
HR-DGCNN-3 0.433 0.762 0.241 0.649

SGM+GE 0.348 0.719 0.216 0.628
Bi-BloSAN 0.401 0.720 0.219 0.619
Capsule-B 0.399 0.739 0.226 0.600

TGCNN(No-R) 0.443 0.745 0.244 0.648
TGCNN 0.472 0.747 0.257 0.655
GCCNN 0.480 0.749 0.261 0.658

TGRCNN 0.484 0.754 0.265 0.667
TAGRCNN 0.490 0.759 0.270 0.673
GCRCNN 0.488 0.765 0.275 0.668

AGCRCNN 0.494 0.769 0.283 0.675
HE-TGCNN 0.482 0.751 0.283 0.683
HE-GCCNN 0.491 0.754 0.290 0.688

HE-TGRCNN 0.495 0.762 0.292 0.680
HE-TAGRCNN 0.504 0.773 0.298 0.685
HE-GCRCNN 0.505 0.772 0.297 0.684

HE-AGCRCNN 0.513 0.778 0.330 0.688

and HAN are comparable to BSVM and BLR. RCNN per-
forms worse on both settings. For fine-grained topical clas-
sification, the above recurrent models may not have advan-
tages because it compresses the whole document as a dense
vector for classification. The RNN models are more suitable
to sentiment classification for short text, but is not suitable
to learn features for long document [11]. For CNN models,
it is shown that XML-CNN does not perform very well on
RCV1. However, the deeper model DCNN improves the
performance by 9% in terms of Macro-F1 and 4% in terms of
Micro-F1. For capsule network, one can see that the Capsule-
B achieves comparable performance with DCNN model.
For sequence generation model, the SGM+GE improves the
performance by 2% in terms of Macro-F1 and Micro-F1 com-
pared with the XML-CNN model. For GCNN models, both
DGCNN-3 and HR-DGCNN-3 improve the performance by
4% in terms of Macro-F1 and 3% in terms of Micro-F1
compared with Capsule-B. It demonstrates that graph-of-
words representation is effective in modeling documents in
multi-label text classification. For the popular bi-directional
block self-attention network, the Bi-BloSAN improves the
performance by 8% in terms of Macro-F1 and 3% in terms
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of Micro-F1 compared with the HAN model. Among the
baselines, XML-CNN, HR-DGCNN-3 and Bi-BloSAN are
state-of-the-art methods for multi-label text classification.
Compared with these models, our model fully demonstrates
the importance of extracting multiple semantics when text
modeling and feature learning.

For the proposed models, we try different model con-
figurations listed in Table 2. The results are shown in
Table 3. One can see that the LSTM units, attentional LSTM
units, capsule networks and hierarchical taxonomy-aware
weighted margin loss are all helpful to improve the classi-
fication performance. The proposed HE-AGCRCNN model
outperforms the HR-DGCNN-3 by 8% in terms of Macro-F1.
The simplified model TGCNN(No-R) also achieves compa-
rable Macro-F1 and Micro-F1 with DGCNN-3. Meanwhile,
without attentional LSTM units, capsule network and hier-
archical label dependencies, the TGCNN also outperforms
most of the baselines. Based on the arranged word matrix
representation, LSTM units and attentional LSTM units,
the TGRCNN and TAGRCNN models achieve 5%-6% im-
provements in terms of Macro-F1 over HR-DGCNN-3. This
improvements show the importance of local sequential se-
mantics for text features. Among the proposed models, one
can see that capsule networks averagely achieve 1% gain
in both Macro-F1 and Micro-F1. Overall, the hierarchical
taxonomy-aware weighted margin loss can also improve the
performances by 2% in terms of Macro-F1 and 1% in terms
of Micro-F1. Finally, the proposed HE-AGCRCNN model
achieves the highest 0.513 Macro-F1 and 0.778 Micro-
F1 performance. The results of the different document
modeling methods show that by representing document
as arranged word matrix, the proposed model can gain
performance improvement for multi-label text classification
in RCV1. One can also see that HR-SVM, HR-DGCNN-3
and HE-AGCRCNN represent two different ways of using
the hierarchical label dependencies, and both improve the
classification performance over RCV1 dataset.

6.6 Performance Evaluation on EUR-Lex

As the number of labels in EUR-Lex is large, we use more
neurons in the fully connected layers and set a larger dimen-
sion of capsule vector in the DigitCaps layer, as presented in
Section 6.3. For the proposed models, we also try different
configurations, and the results are shown in Table 3.

From the results one can see that LSTM units, attentional
LSTM units, capsule networks and hierarchical taxonomy-
aware weighted margin loss are all helpful to improve
classification performance on the EUR-Lex dataset. HE-
AGCRCNN model achieves about 6% improvements in
terms of Macro-F1 and 4% gains in terms of Micro-F1

over the HR-DGCNN-3 model. Without using hierarchical
label dependencies, LSTM units, attentional LSTM units
and capsule networks, the TGCNN also performs better
than HR-DGCNN-3, and the results are 0.257 and 0.655 for
Macro-F1 and Micro-F1, respectively. When we do not order
the words in the sub-graph, the results of TGCNN(No-R) are
0.244 and 0.648 for Macro-F1 and Micro-F1, respectively.
The performance gap between TGCNN(No-R) and TGCNN
shows the importance of local sequential semantics for text
classification with the same three layers of Graph CNN

TABLE 4
Comparison of the transferring capacity from single-label to multi-label

text classification on the reprocessed Reuters-21578 dataset.

Models P R Micro-F1

LSTM 0.867 0.547 0.635
BiLSTM 0.823 0.559 0.643

CNN-non-static 0.920 0.597 0.704
Capsule-A 0.882 0.801 0.820
Capsule-B 0.954 0.820 0.858
GCCNN 0.962 0.856 0.905

GCRCNN 0.970 0.871 0.917
AGCRCNN 0.973 0.875 0.921
HE-GCCNN 0.965 0.862 0.910

HE-GCRCNN 0.974 0.879 0.924
HE-AGCRCNN 0.978 0.882 0.927

models. Based on the arranged word matrix representa-
tion, the LSTM units can help to improve 1% performance
comparing GCCNN and GCRCNN. The performance gap
between TGRCNN and TAGRCNN shows that the masked
attentional units can help to improve about 0.5% perfor-
mance. The hierarchical taxonomy-aware weighted margin
loss also helps to improve about 1%-3% performances in
terms of Macro-F1 or Micro-F1. Compared with the im-
provements of the hierarchical taxonomy-aware weighted
margin loss in the RCV1 dataset, the improvements in the
EUR-Lex dataset are greater by using the same weighted
margin loss. Finally, HE-AGCRCNN model achieves 0.330
Macro-F1 and 0.688 Micro-F1, which are both the highest
performance. The experimental results again demonstrate
that by representing document as an arranged word matrix
and incorporating the proposed deep models, one can gain
benefits from non-consecutive, long-distance and sequential
semantics for topical multi-label text classification.

6.7 Performance Evaluation on Reuters-21578

A significant advantage of capsule network is that it per-
forms much better in the transferring single-label to multi-
label classification task [14]. Different from traditional clas-
sification models that are based on fully connected network,
capsule networks use activity vectors of each capsule in
DigitCaps layer to indicate the presence of an instance of
each class. We also perform the model transfer capacity
experiment of the proposed capsule network on the repro-
cessed Reuters-21578 dataset [14].

The comparison results are shown in Table 4. Since
the traditional multi-label learning methods, such as BSVM,
TD-SVM, HSVM, HR-SVM, BLR, HR-LR and BMNB, cann’t
transfer single-label to multi-label classification. We ignore
the traditional machine learning models in the current
experiment. The baseline results are also reported from
the work [14], and HE-AGCRCNN outperforms all the
baselines. Compared with capsule-based models, the per-
formances of LSTM, BiLSTM and CNN-non-static are the
worst. From the results one can see that the proposed mod-
els all have achieved about 5%-7% improvements in terms
of Micro-F1 over the existing best baseline Capsule-B. Even
without the attentional LSTM units, the simplified GCCNN
can achieve 0.905 performance in terms of Micro-F1. Com-
pared with the popular Capsule-A and Capsule-B models,
the proposed models integrate more non-consecutive, long-
distance and local sequential semantics, and make use of the
hierarchical label dependencies. Finally, the proposed HE-
AGCRCNN model achieves the highest 0.927 performance
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Fig. 6. The attention visualization and output capsule vectors for the 3093newsML sample in RCV1. The left one is parts of attention visualization
on blocks of word sequences. We show the importance weight of the top-3 central words in different contexts at the two layers of attention network.
The right one is the length of output capsule vectors.

TABLE 5
Comparison of time consumption(hr.).

Models RCV1 EUR-Lex Reuters-21578
Preprocess 0.612 1.264 0.151

TGCNN 0.166 1.100 -
GCCNN 0.537 3.415 0.131

TGRCNN 0.381 2.579 -
TAGRCNN 0.382 2.580 -
GCRCNN 1.116 6.327 0.267

AGCRCNN 1.117 6.328 0.267
HE-TGCNN 0.167 1.167 -
HE-GCCNN 0.542 3.421 0.132

HE-TGRCNN 0.385 2.583 -
HE-TAGRCNN 0.386 2.584 -
HE-GCRCNN 1.118 6.334 0.136

HE-AGCRCNN 1.119 6.335 0.136

in terms of Micro-F1. The experimental improvements again
prove the effectiveness of our proposed capsule models in
learning rich textual features.

6.8 Efficiency Evaluation

To evaluate the training efficiency of the model, we next
show the preprocessing and training time of the pro-
posed model and its variants on both RCV1, EUR-LEX and
Reuters-21578 datasets in Table 5. Here, for the RCV1, since
the number of samples in the test set is about 34 times larger
than the number of samples in the training set, as shown in
Table 1, we perform the testing by using multi-core CPUs.
The preprocessing includes document modeling, converting
the original text into 3-D tensor representation, and hierar-
chical taxonomy embedding. We run the document mod-
eling and hierarchical taxonomy embedding on different
devices, and then count the maximum time consumption.
For the Reuters-21578, we only test the training time of
the model with capsule network because only the capsule
network could achieve the transferring capacity from single-
label to multi-label text classification.

For the pre-processing with 64 core multi-threading,
RCV1 takes 0.612 hours, ERU 1.264 hours and Reuters-21578
0.151 hours. Although the number of training sample in
EUR-LEX is smaller, the average words of its text is larger
than that of RCV1, which leads to longer preprocessing
time in EUR-LEX. Due to the minimum amount of training
sample, the pre-processing time of Reuters-21578 dataset
is 0.151 hours. Compared with the improvement of the
proposed models, the time consumption of preprocessing
is worth it. One can observe that most of these models can
quickly achieve a promising classification result with less
than 3 hours except for the models with the LSTM or capsule
unites. For example, the TGCNN and HE-TGCNN models
converge quickly with less than 0.2 hours on RCV1 dataset
and less than 1.2 hours on EUR-Lex dataset. Meanwhile, the

training time on RCV1 dataset is much less than EUR-Lex.
This is mainly because the EUR-Lex dataset has a larger
document representation and more parameters, according
to Table 1. We also verify that the models integrating more
feature extraction operators, such as LSTM units, attentional
LSTM units and capsule networks, will take longer time to
train for achieving a desirable classification performance.
Although HE-AGCRCNN model takes 1.119 hours, 6.335
hours, and 0.136 hours to train for RCV1, EUR-Lex and
Reuters-21578 datasets, respectively, it achieves the highest
classification performance. One can also see that the hierar-
chical taxonomy-aware weighted margin loss does not add
much computational time compared with the recursively
regularized optimization models [11], [26], [25]. Usually,
the time consumptions of the above recursive regulariza-
tion based models are expensive for the large number of
parameters and constraints on the Euclidean distance of the
parameters. In particular, the time consumptions of recur-
sive regularization optimized deep learning model, such as
HR-DGCNN-3, is generally measured in days [11].

6.9 Case study

To gain a closer view of what’s the two attention layers
and output capsules in a document captured by our models,
we visualize parts of the attention probability or alignment
score by heatmaps in Figure 6. The red words are central
words in the document, each block of word sequence is con-
text of central words. For each central word, there are two
layers of masked attention. We choose the blocks of word
sequences from the 1-th, 2-nd and 3-rd central words. One
can see that the weights of the upper left parts are higher
than other places. This is probably because the contextual
semantics of the front central words are more representative
of the subject of the article. For the output capsule vectors,
there are 4 vectors whose modulus length is greater than 0.9,
corresponding to the category of output. Note that Sports
category comes out due to the words game, match, defeat
and win, although chess is not really a physical activity.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a novel end-to-end hierarchi-
cal taxonomy-aware and attentional graph capsule recur-
rent CNN framework for large-scale multi-label text clas-
sification. We first propose to convert each document as
an arranged word matrix that preserves both the non-
consecutive, long-distance and local sequential semantics
for fully representing the document. Based on our docu-
ment modeling, we next propose a HE-AGCRCNN model
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to coherently learn multiple types of textual features. In
order to better learn local sequential semantics, we design
a masked attentional LSTM to model the different impacts
among different blocks of word sequences, and enhance
the sequential feature learning. To incorporate the hierar-
chical relations among the labels, we further propose a
novel hierarchical taxonomy-aware weighted margin loss to
improve the performance of multi-label text classification.
The advantageous performance of our proposed models
over other competing methods is evident as it obtained the
best results on all the RCV1 and EUR-Lex datasets in our
comparative evaluation. Compared to the N-gram based
textual capsule networks, we verify the effectiveness of our
proposed capsule models in learning rich textual features
in transferring single-label to multi-label classification task.
The experimental results show the effectiveness and effi-
ciency of our model in multi-label text classification.

In the future, we plan to invest more centrality measures,
stratified sampling, self attention models [7], [18], BERT [65]
pre-training based models and less memory consumption,
and popularize to other complex text classification datasets
and applications.
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[51] A. Onan, S. Korukoğlu, and H. Bulut, “Ensemble of keyword
extraction methods and classifiers in text classification,” Expert
Systems with Applications, vol. 57, pp. 232–247, 2016.

[52] R. Goldstein and M. S. Vitevitch, “The influence of closeness
centrality on lexical processing,” Frontiers in psychology, vol. 8, p.
1683, 2017.

[53] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in SIGKDD,
2017, pp. 135–144.

[54] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in SIGKDD, 2014, pp. 701–710.

[55] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new bench-
mark collection for text categorization research,” JMLR, 2004.

[56] S. Gopal and Y. Yang, “Recursive regularization for large-scale
classification with hierarchical and graphical dependencies,” in
KDD, 2013, pp. 257–265.

[57] E. Loza Mencı́a and J. Fürnkranz, “Efficient pairwise multilabel
classification for large-scale problems in the legal domain,” in
ECML/PKDD, 2008, pp. 50–65.

[58] S. Gopal and Y. Yang, “Multilabel classification with meta-level
features,” in SIGIR, 2010, pp. 315–322.

[59] D. D. Lewis, “An evaluation of phrasal and clustered representa-
tions on a text categorization task,” in SIGIR, 1992, pp. 37–50.

[60] A. F. Giraldo-Forero, J. A. Jaramillo-Garzón, and C. G. Castellanos-
Domı́nguez, “Evaluation of example-based measures for multi-
label classification performance,” in ICBBE, 2015, pp. 557–564.

[61] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu, “Neural sentiment
classification with user and product attention,” in EMNLP, 2016.

[62] T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and W. Ma, “Support
vector machines classification with a very large-scale taxonomy,”
SIGKDD Explorations, vol. 7, no. 1, pp. 36–43, 2005.

[63] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output vari-
ables,” JMLR, vol. 6, pp. 1453–1484, 2005.

[64] P. Yang, X. Sun, W. Li, S. Ma, W. Wu, and H. Wang, “Sgm: sequence
generation model for multi-label classification,” in ACL, 2018.

[65] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in NAACL, 2019, pp. 4171–4186.

Hao Peng is currently an Assistant Professor in
the State Key Laboratory of Software Develop-
ment Environment, Beijing Advanced Innovation
Center for Big Data and Brain Computing, and
School of Cyber Science and Technology at Bei-
hang University. His research interests include
representation learning, text mining and urban
computing.

Jianxin Li is currently a Professor in the State
Key Laboratory of Software Development Envi-
ronment, Beijing Advanced Innovation Center for
Big Data and Brain Computing, and School of
Computer Science and Engineering at Beihang
University. His current research interests include
machine learning, distributed system, trustwor-
thy computing.

Senzhang Wang is currently an Associate Pro-
fessor in the Collage of Computer Science and
Technology at Nanjing University of Aeronautics
and Astronautics, Nanjing. His current research
interests include data mining, urban computing
and social network analysis.

Lihong Wang is a professor in National Com-
puter Network Emergency Response Technical
Team/Coordination Center of China. Her current
research interests include information security,
cloud computing, big data mining and analytics,
information retrieval and data mining.

Qiran Gong is currently a B.E. candidate in
the State Key Laboratory of Software Develop-
ment Environment at Beihang University, Beijing,
China. His research interests include social net-
work mining and text mining.

Renyu Yang is a research fellow in University
of Leeds, UK. He received BSc and PhD de-
gree from Beihang University in 2011 and 2017.
His research interests include reliable distributed
systems and data analytics.

Bo Li , is currently an Associate Professor in
the State Key Laboratory of Software Develop-
ment Environment, Beijing Advanced Innovation
Center for Big Data and Brain Computing, and
School of Computer Science and Engineering at
Beihang University. His current research inter-
ests include big data computing theory, machine
learning and computer security.

Philip S. Yu is a Distinguished Professor and the
Wexler Chair in Information Technology at the
Department of Computer Science, University of
Illinois at Chicago. Before joining UIC, he was at
the IBM Watson Research Center, where he built
a world-renowned data mining and database de-
partment. He is a Fellow of the ACM and IEEE.
Dr. Yu has published more than 1,100 referred
conference and journal papers cited more than
103,000 times with an H-index of 155. He has
applied for more than 300 patents. Dr. Yu was

the Editor-in-Chiefs of ACM Transactions on Knowledge Discovery from
Data (2011-2017) and IEEE Transactions on Knowledge and Data En-
gineering (2001-2004).



15

Lifang He is currently an Assistant Professor in
the Department of Computer Science and Engi-
neering at Lehigh University. Before her current
position, Dr. He worked as a postdoctoral re-
searcher in the Department of Biostatistics and
Epidemiology at the University of Pennsylvania.

Her current research interests include machine
learning, data mining, tensor analysis, with ma-
jor applications in biomedical data and neuro-
science.


	Introduction
	Related Work
	Word order Preserved graph-of-words for Document Modeling
	Word Order Preserved Graph-of-Words
	Arranged Word Matrix Generation
	Unified Representation of the Documents

	Attentional Capsule Recurrent CNN
	Attentional Recurrent CNN
	Capsule Network with Dynamic Routing

	Hierarchical Taxonomy-aware Weighted Margin Loss
	EXPERIMENTS
	Datasets
	Evaluation Metrics and Baselines
	Experimental Settings
	Evaluation on Label Embedding
	Performance Evaluation on RCV1
	Performance Evaluation on EUR-Lex
	Performance Evaluation on Reuters-21578
	Efficiency Evaluation
	Case study

	Conclusion and Future Work
	Acknowledgments
	References
	Biographies
	Hao Peng
	Jianxin Li
	Senzhang Wang
	Lihong Wang
	Qiran Gong
	Renyu Yang
	Bo Li
	Philip S. Yu
	Lifang He


