

A Retrieval-Based Dialogue System Utilizing Utterance
and Context Embeddings
Citation for published version (APA):

Bartl, A., & Spanakis, G. (2017). A Retrieval-Based Dialogue System Utilizing Utterance and Context
Embeddings. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)
(pp. 1120-1125). IEEE. https://doi.org/10.1109/ICMLA.2017.00011

Document status and date:
Published: 01/12/2017

DOI:
10.1109/ICMLA.2017.00011

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 27 Apr. 2021

https://doi.org/10.1109/ICMLA.2017.00011
https://doi.org/10.1109/ICMLA.2017.00011
https://cris.maastrichtuniversity.nl/en/publications/f1764f31-e341-472d-9f34-0f4e060786de

A retrieval-based dialogue system utilizing utterance
and context embeddings

Alexander Bartl and Gerasimos Spanakis
Department of Data Science and Knowledge Engineering

Maastricht University

6200MD, Netherlands

Email: a.bartl@student.maastrichtuniversity.nl,jerry.spanakis@maastrichtuniversity.nl

Abstract—Finding semantically rich and computer-
understandable representations for textual dialogues, utterances
and words is crucial for dialogue systems (or conversational
agents), as their performance mostly depends on understanding
the context of conversations. In recent research approaches,
responses have been generated utilizing a decoder architecture,
given the distributed vector representation (embedding) of the
current conversation. In this paper, the utilization of embeddings
for answer retrieval is explored by using Locality-Sensitive
Hashing Forest (LSH Forest), an Approximate Nearest Neighbor
(ANN) model, to find similar conversations in a corpus and rank
possible candidates. Experimental results on the well-known
Ubuntu Corpus (in English) and a customer service chat dataset
(in Dutch) show that, in combination with a candidate selection
method, retrieval-based approaches outperform generative ones
and reveal promising future research directions towards the
usability of such a system.

Index Terms—Dialogue Systems, Deep Learning, Information
Retrieval

I. INTRODUCTION

Text-only based Dialogue systems, also called Conversa-

tional Agents, Chatbots or Chatterbots, have become very

popular in the research community and for large companies.

The reason for the rise in popularity lies in the fact that

their ability to interact intelligently with humans has improved

significantly due to advancements in hardware technologies

and Artificial Intelligence.

One of the latest effective approaches [1] is to represent

words, phrases, or even complete dialogues as fixed-length

vectors of floating point numbers, also called embeddings

(or distributed representations or feature vectors). The Hi-

erarchical Recurrent Encoder-Decoder (HRED) [2] and its

successors [3], (as well as similar related models) are specifi-

cally designed to encode the meaning of textual conversations

regarding the special structure that originates from multiple

turn-taking speakers.

In our approach, a context embedding, a vector encoding the

meaning of a conversation up to a certain time step t, encoded

by the HRED model, serves as input to the decoder component

to generate a textual answer. We explore the performance of

a retrieval-based model that uses the utterance- and context-

embeddings, previously generated by the HRED model, to find

similar conversations and rank possible candidate answers. We

argue that a retrieval-based approach, based on embeddings,

can outperform the generative approach, as the retrieval of

similar conversations is less dependent on high quality em-

beddings and less susceptible to poorly trained embeddings.

The rest of the paper is organized as follows: We first give

an outline of current research around dialogue systems. The

proposed pipeline is discussed in Section III. Experimental

setup (datasets, evaluation metrics, models implemented and

compared) as well as the results are discussed in Section

IV. Finally, we conclude the paper by summarizing the main

findings and outline future work.

II. RELATED WORK

The purpose of Dialogue Systems (DS), often also termed

Conversational Agents (CA) or Chatterbots, is to converse

with humans to provide information, help in decision mak-

ing, perform administrative services, or just for the sake of

entertainment [4].

One of the early simpel approaches to dialogue systems was

to simply spot certain key-words or combinations of them (like

in the case of script-based chatbots). With advances in machine

learning, the development ranges from statistical modelling

of language [5], semantic parsing [6], skip-gram models [1],

and others, to approaches utilizing deep neural architectures

[7]. Neural networks have also been used to improve lan-

guage generation [8]. Recently, Dialogue Managers have made

similar advances towards automated solutions, with a focus

on reinforcement learning [9], generating policies of how to

interact with humans, based on some state representation.

With the rise of Deep Learning (DL) in recent years [10]

and an increasing company interest in chatterbots, end-to-end

Dialogue Systems, such as deep Recurrent Neural Networks,

constituting all modules in one model [2], have become one

of the major research topics for Dialogue Systems. Such a

system would generate an answer end-to-end from raw user

input.

Our proposed pipeline is a combination of a generative-

and retrieval-based approach. An encoder model, such as

the HRED model (or could be one of its more advanced

variations) is trained end-to-end on a textual corpus, using an

objective function that is based on how capable the model

is of generating the answers in the training set. After the

training however, the decoder component of the HRED model

is not used to generate answers. Instead, we argue that a

retrieval-based approach taking over the language generation

1120

2017 16th IEEE International Conference on Machine Learning and Applications

0-7695-6321-X/17/31.00 ©2017 IEEE
DOI 10.1109/ICMLA.2017.00011

part performs equally or better in both general and specific

domains.

III. MODEL DESCRIPTION

The proposed model can be split up into three individ-

ual components. The first component, the encoder, utilizes

the HRED model to encode raw conversations into embed-

dings containing the actual meaning. The second component,

a retrieval-based approach using an Approximate Nearest

Neighbor (ANN) model, is responsible for retrieving simi-

lar conversations from a database of embedding- and raw-

text-tuples. Given the context of an unfinished conversation,

suitable responses are considered to be contained in similar

conversations, retrieved by the ANN model. The last model

component receives a retrieved set and ranks possible answers

based on answer- and context-relevance. The entire pipeline

can be seen in Figure 1.

A. Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are related to Long Short

Term Memory Networks (LSTMs) in the sense that they can

encode long-term dependencies but have fewer parameters to

train and come without an additional cell state. Two gates, the

reset and update gates rt and zt, operate directly on the hidden

state, i.e., the hidden layer. Parametrized by W , U and b, while

conditioned on the current input xt and previous result yt−1,

GRU gate vectors are computed as:

zt = ϕg(Wzxt + Uzyt−1 + bz)

rt = ϕg(Wrxt + Uryt−1 + br),
(1)

with ϕg being the sigmoid function. The update gate zt
combines the function of the input and forget gate by con-

trolling how much the new hidden state (ht) is defined by

either the current input or the last hidden state, using linear

interpolation:

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (2)

with h̃t being the candidate activation. The reset gate rt is

used to calculate h̃t, controlling similarly how much of the

previous hidden state to keep:

h̃t = ϕh(Whxt + Uh(rt ◦ ht−1 + bh), (3)

with ϕh being the hyperbolic tangent function.

B. Hierarchical Recurrent Encoder-Decoder

The HRED model essentially consists of three stacked

RNNs: the utterance encoder, context encoder, and utterance

decoder, each of them depending on the result of its predeces-

sor and operating on distributed representations.

Formally, a dialogue D, the input to such a model,

can be represented as a sequence of utterances D =
(U1, ..., UM), with Um being a sequence of word indices

Um = (wm,1, ..., wm,Nm
), each of them usually pointing to a

vocabulary reference or directly to a word embedding. These

become the input to the utterance encoder.

1) Encoding steps: To better capture long-term dependen-

cies, the GRU gating function is used for the individual RNNs.

For a simplified notation, the GRU can be expressed compactly

by combining equations 1, 2 and 3:

ht = GRU(ht−1, xt), (4)

computing current hidden state ht, conditioned on the

previous, ht−1 and on current input xt. To comply with the

HRED notation, the utterance embedding hm,n of the current

utterance Um, including word wm,n, is calculated as:

hm,n = GRUutt(hm,n−1, wm,n). (5)

Applying equation 5 consecutively on word embeddings

wm,1, ..., wm,Nm , results in an equally-sized set of hidden

states hm,1, ..., hm,Nm , where the last hidden state hm,Nm is

the summary of all words in the same utterance. As such, we

denote hm = hm,Nm
to be the hidden state that represents

utterance Um.

Using this encoding approach, a set of utterances U1, ..., UM

is encoded into hidden states h1, ..., hM . Those are used as

input to the GRU-based context encoder, similar to how word

embeddings acted as input to the utterance encoder. As such,

context embeddings cm are a summary of utterances and

represent entire dialogues. They are computed as:

cm = GRUcon(cm,n−1, hm). (6)

2) Decoding step: In addition to encoding a sequence

of embeddings into a hidden state, the decoder component

generates word probabilities over a vocabulary, given some

context U1, ..., Um−1 and previous words wm,1, ..., wm,n−1.

Firstly, to condition the decoder RNN on previous utter-

ances, the initialization of its hidden state is based on the

context encoders last hidden state cm−1. If not designed

explicitly, context and decoder RNN usually have different

hidden state dimensionalities, which is why an additional

network layer is added to project context embeddings into the

decoder space:

dm,0 = tanh(D0cm−1 + b0), (7)

with parameters D0 and b0 and dm,0 being the decoder

RNN’s initial hidden state.

Given a set of words wm,1, ..., wm,n−1, having been pre-

viously generated or representing a training example, the

decoder RNN hidden state is similarly computed as it was

done for the encoder RNNs:

dm,n = GRUdec(dm,n−1, wm,n), (8)

processing words consecutively. The first iteration uses

the hidden state computed by equation 7 and a zero-value

embedding for wm,0 to predict the first word of an utterance.

Using both, the hidden state dm,n−1 and word embedding

of wm,n−1, the word embedding of current word wm,n is then

predicted as:

1121

Fig. 1. A view of the pipeline implementing the proposed approach. An HRED encoder is used to generate context and response embeddings and an ANN
model builds on previous steps to retrieve similar conversations. Finally, the best candidate is selected according to answer- and context-relevance.

w(dm,n−1, wm,n−1) = H0dm,n−1 + E0wm,n−1 + b0, (9)

with the additional parameters H0, E0 and b0. H0 and

E0 control which part of the previous context- and word

embedding contribute to the new word embedding and how

much of that part is used.

C. Retrieval Model
Using the encoded corpus as a database of vectors, a Nearest

Neighbor Search (NNS) algorithm can be used to find close

embeddings in the whole set. For this purpose, an ANN

approach has been considered, as general space-partitioning

approaches, aiming to improve the NNS performance, suffer

from the curse of dimensionality.
Locality Sensitive Hashing (LSH) [11], [12] is an ANN

approach that uses a set of hashing functions to project similar

data points into buckets and as such, significantly restricts the

search space to the size of the bucket. For a projection, a binary

string label is constructed by applying k different hashing

functions to a single data point, where the output of such a

function is either one or zero. The desired goal of a hashing

function is to output the same label for similar data points and

differing labels for dissimilar ones. Therefore, binary string

labels that are similar, indicate that also the original data points

are similar. The string label is then used as a key to index a

bucket of similar data points, where a brute force approach

can be applied on a much smaller set. A collection of buckets

is called a hash-table and l tables constitute the entire model.
One of the main issues with the basic LSH algorithm [12] is

that choosing the optimal number of hashing functions k and

number of tables l requires one to know the most suitable value

for r, the threshold separating similar and dissimilar points.

The LSH-Forest algorithm solves this issue by allowing labels

with variable length and thus, eliminating parameter k.
Instead of linking fixed-length labels to buckets, the label

string is stored in a prefix tree, a binary tree (also called ’trie’),

in which keys are not contained within nodes but derived from

the path that leads from the root to a node.
Each level of the tree is associated with a different hashing

function, sampled uniformly and with replacement from a

family of hashing functions H. Such a tree, an LSH-Tree, is

the equivalent to an LSH-based hash-table and the composition

of l trees is an LSH-Forest.

Given a query point p, finding close neighbors in a set of

LSH-Trees T1, T2, ..., Tl is performed in two phases. First, in

a top-down phase or descent, each tree Ti is searched for the

leaf node with the best match to the binary string label of q.

Inspecting the matches from all trees, the match with the

longest prefix defines the tree-level x from which the bottom-

up accumulation, the second phase, begins.

D. Candidate Selection

Given a query context of an unfinished conversation, us-

ing the previously discussed LSH-Forest algorithm, one can

retrieve a candidate set from a database of encoded conversa-

tions. Candidate answers will be scored based on the matching

degree between the retrieved and the original context in terms

of question-to-question similarity or answer relevance or other

text-based features. However, the scoring functions introduced

in this section will solely be based on vector comparison

metrics, such as the cosine similarity, as text-based comparison

is less rewarding and more difficult and tedious to implement.

For the sake of clarity, the query context embedding is defined

as cq , the textual candidates as r1, r2, ..., rk, the context

embeddings of candidates as cr1 , cr2 , ..., crk , and the utterance

embeddings of candidates as hr1 , hr2 , ..., hrk .

1) Context Relevance: The similarity of two conversations

or the distance between a query context cq and a candidate

context crk has, intuitively, a big impact on the retrieved

answer, i.e, the more two questions are similar, the higher

the probability that the answers are similar as well. If the

cosine similarity has been chosen as the distance function

D, the labels returned by the nearest neighbor search are

already sorted by context-to-context distance. Formally, given

a candidate response rx and a query context cq , the Context

Relevance (CR) cost function is defined as:

costCR(rx) = cossim(crx , cq). (10)

2) Answer Relevance: By manual inspection of near neigh-

bors, it became apparent that the correct answer is usually

represented or almost captured in many topic-related candi-

dates. Assuming that the most suitable topic for answering

is dominantly represented amongst candidates, responses are

ranked based on how much they capture the general topic.

Formally, the cost of a response rx is defined by the accumu-

lated similarity between its respective embedding hrx and the

1122

utterance embeddings of all other candidates (See Figure 2),

normalized by length k:

costAR(rx) =
1

k

k∑

i=1

cossim(hrx , hri) (11)

Fig. 2. Left: An image showing how the AR cost of a single candidate
is accumulated by computing the cosine similarity with other candidate’s
utterance embeddings. Right: A simple illustration of how CR is computed
for a single candidate.

3) Combining Context and Answer Relevance: The prob-

lem with the previous approach is that the candidates that

are off-topic still contribute to the answer relevance cost.

Therefore, in a pre-step, according to the previously described

context relevance metric, the top n candidates are accumulated

to represent the best general answer topic. In the next step,

candidates are ranked based on their similarity to these n
responses. Formally, combined Context and Answer Relevance

(CAR) is defined as:

costCAR(rx) =
1

n

n∑

i=1

cossim(hrx , hri), (12)

with n ≤ k.

IV. EXPERIMENTS

A. Datasets

The first dataset we use is the Ubuntu Dialogue Corpus

which has been studied in most state of the art systems (similar

to HRED). The ubuntu dataset contains almost 1 million multi-

turn dialogues, with a total of over 7 million utterances and

100 million words. More information can be found in [13].

The second dataset we use is the Vodafone corpus which

is created by retrieving archived conversations of the Dutch

Vodafone online customer service. Customers having problems

with their phone, want to make contractual changes or expe-

rience other product related issues, often decide to talk with a

Vodafone service agent through an online chat platform.

Every conversation that was not clearly identified as Dutch

text was filtered out of the corpus using a port of Google’s Java

language detection implemention 1. Furthermore, to guarantee

that the HRED model receives actual conversations for its

training, conversations that have less than 5 turns have also

been filtered out.

The original corpus contains phone numbers, addresses,

names, postal codes and other personal information. To

1http://code.google.com/p/language-detection/

guarantee anonymization and also to allow enough general-

ization, this data has been replaced by a meta-token, e.g.

"<street_name>" or "<city>", which is considered to

be beneficial for the performance of word embeddings. This

way many more training examples will contain these general

concepts (like "<street_name>") and the model can learn

in which context a street name should appear. This is possible

because the word embeddings of such concepts are also tuned

during the training.

The final corpus was generated by using a minimal word

occurrence threshold of 10, resulting in a dictionary size of

42892 and an average of 0.435% unknowns per dialogue. The

complete statistics for both datasets can be seen in Table I.

Ubuntu Vodafone
Language English Dutch

Total # of dialogues 487,337 384,897
Total # of turns 2,406,483 6,571,902

Total # of utterances 3,644,566 10,461,677
Total # of words 44,246,198 122,325,433

Avg. # of words per dialogue 90.792 317.81
Avg. # of turns per dialogue 4.938 17.07

Avg. # of words per turn 15.880 18.65
Avg. # of utterances per dialogue 7.479 27.18

Avg. # of words per utterance 11.264 11.58

TABLE I
STATISTICS OF UBUNTU & VODAFONE CORPUS

B. Evaluation process

A quantitative evaluation metric, the Recall@k measure-

ment [13], has been used to compare the ranking performance

of models. Given a context, a set of n possible answers is

presented to a model, which has to rank the answers by their

likelihood of being the actual response. For a single evaluation

sample, if the correct answer is ranked to be amongst the

k best, the model succeeded. The overall performance of a

model is defined as the ratio of correctly ranked answers to

all answers, i.e., the percentage of correct answers that were

ranked to be amongst the k best.

By iterating over the conversations in the held-out test set,

an evaluation sample has been created for each individual turn

or response, with the previous turns representing the context

and the current turn or response being the ground truth. In

addition to the actual response, a single example also contains

n − 1 randomly sampled answers, which the model should

preferably rank lower than the true answer.

Each of the models, generative- or retrieval-based, receives

the context of a conversation from an evaluation sample and

has to generate or retrieve a suitable answer. The utterance-

embedding of this answer is then used to compute the distance

to each of the 10 possible answers in the evaluation sample,

using the cosine similarity between utterance-embeddings. The

final ranking is based on this distance, placing similar answers

at the top.

As we wanted to have the same conditions for all models,

our ranking approach differs from the one used in [13],

where answer-embeddings have been directly predicted by an

additional network layer. Instead, we used Beam Search (using

5 beams) to generate an answer with the HRED model and

used the answer’s utterance embedding to compute the ranking

for the generative approach.

1123

C. Results and discussion

For the Ubuntu corpus, a HRED model is trained and

then the generative approach (of the original model) and the

different candidate selection methods (as described in Section

III-D) are compared. Results can be found in Table II.

Model R@1 R@2 R@5

HRED 34.8± 0.4 50.5± 0.4 78.2± 0.3

HRED-CR 32.8± 0.3 47.5± 0.4 74.1± 0.3
HRED-AR 44.1± 0.4 58.6± 0.4 80.5± 0.3
HRED-CAR 43.5± 0.4 58.0± 0.4 80.3± 0.3

TABLE II
OVERALL RANKING PERFORMANCE OF MODELS ON THE UBUNTU

CORPUS. CONFIDENCE INTERVALS (±95%) ARE SHOWN NEXT TO THE

AVERAGE PERFORMANCE.

From this Table it is obvious that AR model outperforms

other candidate selection techniques as well as the genera-

tive approach. When taking into account the context of the

whole conversation, results are slightly worse which means

that answers are better predicted by focusing on each turn

individually rather than taking into account the entire context.

For the Vodafone corpus, three HRED models have been

compared, each initialized with a different set of word em-

beddings in order to assess the effect of local/global context

in a language setting other than English. The first model, based

only on local domain knowledge, received word embeddings

trained with the gensim python library [14], a tool that, given

a corpus, will train word embeddings specifically for that cor-

pus. The second model utilized word embeddings from [15],

representing global domain knowledge. The embeddings were

trained on a corpus consisting of 4 billion words, which was

automatically generated by analyzing Dutch websites. The last

model received word embeddings that are a combination of the

two previously described sets. Both contain word embeddings

with a feature-length of 320. However, the embeddings for the

last model will have a length of 420, using a concatenation

of global embeddings with 320 features and local embeddings

with 100 features.

As with the Ubuntu corpus, the generative and retrieval

based approaches (CR, AR, CAR) are compared and ad-

ditionally in this setting, they are also tested upon different

embedding initialization approaches (HREDL, HREDG and

HREDLG) An overview of the results can be found in Table

III.

As expected, for the majority of setups, models can predict

assistant responses easier than customer responses. The CAR

candidate selection method outperforms all other techniques

when predicting assistant responses. However, the perfor-

mance of customer response prediction is slightly dominated

by AR. A reason for this could be that customers often reply

with new questions that might not be context related, making

answer relevance more important than context relevance.

Furthermore, it can be seen that initializing the HRED

model with word embeddings containing global domain

knowledge results in the best performance for candidate

selection approaches. However, combining global and local

domain knowledge has not led to the desired improvements.

This can be explained as follows: The computational graph

of the HRED model that defines its training also includes

tuning the word embeddings. As such, during the training, the

word embeddings are already altered to encode local domain

knowledge, even if they were only initialized with embed-

dings containing global domain knowledge. Adding additional

feature-length will in the worst case only add complexity to

the model.

The performance of the generative approaches, HREDL,

HREDG, and HREDLG, are relatively similar. However,

HREDL slightly outperforms the others. This is contradic-

tory, considering that the candidate selection methods, CR, AR

and CAR, clearly perform better on embeddings generated by

HREDG and HREDLG (See Table III). A reason for this

could be that utilizing global domain knowledge to generate an

answer is more difficult than using specific domain knowledge.

Especially for a very homogeneous (and domain specific)

corpus, giving standard answers can work better. Nonetheless,

similarity comparisons, used by the NNS approaches, could

still benefit from richer embeddings.

Table IV presents some examples of answers using the

Ubuntu Corpus using the generative approach (HRED) and

the proposed AR model.

V. CONCLUSION AND FUTURE WORK

End-to-End Dialogue Systems are relatively new and most

architectures are far away from being ready for deployment

in actual industry that most likely will require more years

of research. The architecture proposed in this paper can be

seen as a combination of end-to-end and modular Dialogue

System. The used retrieval based approach, utilizing dialogue

and utterance embeddings which were trained end-to-end, has

been shown to outperform the generative approach of the

HRED model.

More recently proposed end-to-end systems, the VHRED

model and Multiresolution Recurrent Neural Networks [16],

both being an improved version of the HRED model, are rais-

ing another question: Will one of these models outperform the

proposed retrieval based approach, even though all operate on

the same embeddings, i.e., at which point does the generative

approach benefit from the embeddings’ quality more than the

retrieval-based? It would be interesting to explore the perfor-

mance of other encoding models (like the VHRED model and

Multiresolution Recurrent Neural Networks). However, one

must not underestimate the importance of the proposed ranking

system, since it can directly be used by a human agent as a

means to assist communication with a client. An interesting

research direction arising from this paper would be to allow

human agents to affect the ranking score and by this way

providing feedback (in terms of reinforcement learning [17])

to the system, which then might be able to re-rank answers.

Another future direction is the simulation of conversa-

tions with a tree search, by representing context embeddings

as states (tree nodes) and utterance embeddings as actions

(connections between nodes). By this way, the search tree

can explore possible paths and score responses based on

1124

Predicting assistant
responses

Predicting customer
responses

Approach Model R@1 R@2 R@5 R@1 R@2 R@5

Beam Search
HREDL 31.2± 0.9 45.8± 0.8 73.4± 0.9 28.5± 0.7 39.8± 0.9 66.1± 0.8
HREDG 29.9± 0.7 44.3± 0.9 71.1± 0.6 27.1± 0.7 37.7± 0.9 63.1± 0.9
HREDLG 30.3± 1.0 44.2± 0.9 70.6± 0.7 28.9± 1.1 39.8± 1.1 64.6± 1.2

Context Relevance
HREDL-CR 33.4± 0.7 48.0± 0.8 75.4± 0.6 32.8± 1.0 47.5± 1.0 73.5± 0.9
HREDG-CR 34.6± 1.1 50.0± 1.0 76.2± 0.7 32.9± 0.8 47.3± 0.7 74.2± 0.8
HREDLG-CR 33.9± 0.9 48.8± 0.8 74.8± 0.8 32.5± 0.9 48.1± 0.7 74.8± 0.6

Answer Relevance
HREDL-AR 39.6± 0.7 55.7± 0.9 81.1± 0.7 40.0± 1.1 55.8± 1.0 80.4± 0.8
HREDG-AR 42.7± 0.9 58.5± 0.8 82.5± 0.7 41.0± 0.9 56.9± 0.7 81.5± 0.6
HREDLG-AR 43.0± 0.8 59.4± 0.8 82.7± 0.8 40.1± 0.9 55.7± 0.9 80.0± 0.9

Context and Answer
Relevance

HREDL-CAR 41.3± 0.8 57.2± 0.8 81.2± 0.5 39.9± 1.0 55.3± 1.0 79.6± 0.6
HREDG-CAR 44.0± 0.7 59.8± 0.9 82.6± 0.7 40.9± 0.7 56.8± 0.7 80.6± 0.7
HREDLG-CAR 43.8± 0.7 59.5± 0.8 82.6± 0.7 39.4± 0.7 55.1± 0.9 79.6± 0.6

TABLE III
OVERALL COMPARISON OF MODEL PRECISIONS (IN %). CONFIDENCE INTERVALS (±95%) ARE SHOWN NEXT TO THE AVERAGE PERFORMANCE.

TABLE IV
EXAMPLE ANSWERS OF THE HRED MODEL AND THE RETRIEVAL-BASED

APPROACH (USING AR) TO A COUPLE OF QUESTIONS FROM THE UBUNTU

CORPUS TEST SET.

Context Response

I have a netbook eou with 1gb of ram . Will ubuntu
12.04 be fine ? eou With unity of course !

(Original): barely
(AR): you don’t need much hardware to run gnome
, unity perhaps yes though
(HRED): that ’s a good idea , but it ’s not a
good idea to stick with it

Hi Guys eou I need urgent help eou I’ve been
trying all day to install Ubuntu on my Mac eou yeah
but I can’t find ANY solution eou but can someon
unknown me determining what to do ? eou My
unknown USB gives me kernel panic eou not
syncing

(Original): Why dont you use a cdrom for
installing Ubuntu ?
(AR): does your Bios support booting usb device
?
(HRED): not sure what to tell you , sorry

any help folks **unknown** eou → help with
what ? eou → ¡**unknown** ¿hello folks , ok
so i will try this again maybe someone here is able to
help me with my issue . running 12.04 on an hp
unknown laptop . when i plug my headphones sound
still comes from main speakers and my headphone , how
can i make it so that when i plug my headphone the
sound will only play thru the headphones

(Original): did you check out the **unknown**
link someone posted to you ?
(AR): make sure you have the mixer and sound
devices installed in your kernel
(HRED): that sounds like a hardware issue ,
right ?

my computer crashed ? how can I see the log ?

(Original): look in /var/log - especially at the
xorg log
(AR): somewhere in /var/log
(HRED): it should be in the menu . lst file

Question : is sshd installed by default with ubuntu
12.04 or do i need to install openssh

(Original): normally installed by default
(AR): ubuntu doesn’t install an ssh daemon by
default so yes
(HRED): it should be installed by default

is there a ” terminal service ” for linux eou i.e.
not vnc eou → X ? eou ssh ? eou

(Original): i tried it and it was rather laggy
(AR): idk it just seems lame lol ; x
(HRED): this is what I was looking for

How hard will it be to upgrade from Ubuntu 12.04 to
12.10 ?

(Original): update-manager will prompt you if
you want to upgrade when it ’s released and you press
yes
(AR): it is still there , just not installed by
default
(HRED): first you have to use sudo apt-get
dist-upgrade to get it to work

the quality of simulated conversations. Finally, the candidate

selection module of our proposed pipeline reveals new oppor-

tunities for utilizing such a ranking/similarity model in other

problems/domains such as recommender systems. Reviews

of products, services, etc. could be encoded using a model

like HRED and then based on a query (question) of a user,

recommendation can take place by ranking the most relevant

reviews (answers).

ACKNOWLEDGEMENT

We would like to thank Harry Backers and Marcel Overdijk

for their collaboration and support. We gratefully acknowledge

the support of QNH Consulting with the donation of the Nvidia

GTX 1070 GPU used for this research and for providing the

Vodafone dataset.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[2] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Build-
ing End-To-End Dialogue Systems Using Generative Hierarchical Neural
Network Models,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. AAAI Press, 2016, pp. 3776–3783.

[3] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville,
and Y. Bengio, “A Hierarchical Latent Variable Encoder-Decoder Model
for Generating Dialogues,” arXiv preprint arXiv:1605.06069v3, 2016.

[4] A. Shawar and E. Atwell, “Chatbots: are they really useful?” in Journal
for Language Technology and Computational Linguistics, vol. 22, no. 1.
GSCL German Society for Computational Linguistics, 2007, pp. 29–49.

[5] C. D. Manning and H. Schütze, “Foundations of statistical natural
language processing,” The MIT Press, 1999.

[6] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore,
and D. Moran, “Gemini: A natural language system for spoken-language
understanding,” in Proceedings of the 31st annual meeting on Associ-
ation for Computational Linguistics. Association for Computational
Linguistics, 1993, pp. 54–61.

[7] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[9] P. Shah, D. Hakkani-Tür, and L. Heck, “Interactive reinforcement
learning for task-oriented dialogue management,” in NIPS 2016 Deep
Learning for Action and Interaction Workshop, 2016.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,” in
Neural networks, vol. 61. Elsevier, 2015, pp. 85–117.

[11] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate Nearest Neigh-
bor: Towards Removing the Curse of Dimensionality.” in Theory of
computing, vol. 8, no. 1, 2012, pp. 321–350.

[12] M. Bawa, T. Condie, and P. Ganesan, “LSH Forest: self-tuning indexes
for similarity search,” in Proceedings of the 14th international confer-
ence on World Wide Web. ACM, 2005, pp. 651–660.

[13] R. Lowe, N. Pow, I. V. Serban, and J. Pineau, “The Ubuntu Dialogue
Corpus: A Large Dataset for Research in Unstructured Multi-Turn
Dialogue Systems,” in 16th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, 2015.

[14] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[15] S. Tulkens, C. Emmery, and W. Daelemans, “Evaluating Unsupervised
Dutch Word Embeddings as a Linguistic Resource,” in Proceedings
of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016), N. C. C. Chair), K. Choukri, T. Declerck,
M. Grobelnik, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and
S. Piperidis, Eds. Paris, France: European Language Resources
Association (ELRA), may 2016.

[16] I. V. Serban, T. Klinger, G. Tesauro, K. Talamadupula, B. Zhou, Y. Ben-
gio, and A. Courville, “Multiresolution Recurrent Neural Networks:
An Application to Dialogue Response Generation,” arXiv preprint
arXiv:1606.00776, 2016.

[17] J. D. Williams and G. Zweig, “End-to-end lstm-based dialog control
optimized with supervised and reinforcement learning,” arXiv preprint
arXiv:1606.01269, 2016.

1125

