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Abstract: Cohen, Goldwasser, and Vaikuntanathan (TCC’15) introduced the concept of aggregate
pseudo-random functions (PRFs), which allow efficiently computing the aggregate of PRF values over
exponential-sized sets. In this paper, we explore the aggregation augmentation on verifiable random
function (VRFs), introduced by Micali, Rabin and Vadhan (FOCS’99), as well as its application to
e-lottery schemes. We introduce the notion of static aggregate verifiable random functions (Agg-VRFs),
which perform aggregation for VRFs in a static setting. Our contributions can be summarized as
follows: (1) we define static aggregate VRFs, which allow the efficient aggregation of VRF values
and the corresponding proofs over super-polynomially large sets; (2) we present a static Agg-VRF
construction over bit-fixing sets with respect to product aggregation based on the q-decisional
Diffie–Hellman exponent assumption; (3) we test the performance of our static Agg-VRFs instantiation
in comparison to a standard (non-aggregate) VRF in terms of costing time for the aggregation and
verification processes, which shows that Agg-VRFs lower considerably the timing of verification of
big sets; and (4) by employing Agg-VRFs, we propose an improved e-lottery scheme based on the
framework of Chow et al.’s VRF-based e-lottery proposal (ICCSA’05). We evaluate the performance
of Chow et al.’s e-lottery scheme and our improved scheme, and the latter shows a significant
improvement in the efficiency of generating the winning number and the player verification.

Keywords: pseudorandom functions; verifiable random functions; aggregate pseudorandom
functions; aggregate verifiable random functions

1. Introduction

Verifiable random functions (VRFs), initially introduced by Micali, Rabin, and Vadhan [1], can be
seen as the public key equivalent of pseudorandom functions (PRFs) that, besides the pseudorandomness
property (i.e., the function looks random at any input x), also provide the property of verifiability.
More precisely, VRFs are defined by a pair of public and secret keys (pk, sk) in such a way that they
provide not only the efficient computation of the pseudorandom function fsk(x) = y for any input x
but also a non-interactive publicly verifiable proof πsk(x) that, given access to pk, allows the efficient
verification of the statement fsk(x) = y for all inputs x. VRFs have been shown to be very useful in
multiple application scenarios including key distribution centres [2], non-interactive lottery systems
used in micropayments [3], domain name security extensions (DNSSEC) [4–6], e-lottery schemes [7],
and proof-of-stake blockchain protocols such as Ouroboros Praos [8,9].

Cohen, Goldwasser, and Vaikuntanathan [10] were the first to investigate how to answer aggregate
queries for PRFs over exponential-sized sets and introduced a type of augmented PRFs, called aggregate
pseudo-random functions, which significantly enriched the existing family of (augmented) PRFs
including constrained PRFs [11], key-homomorphic PRFs [12], and distributed PRFs [2]. Inspired by
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the idea of aggregated PRFs [10], in this paper, we explore the aggregation of VRFs and introduce a
new cryptographic primitive, static aggregate verifiable random functions (static Agg-VRFs), which allow
not only the efficient aggregation operation both on function values and proofs but also the verification
on the correctness of the aggregated results.

Aggregate VRFs allow the efficient aggregation of a large number of function values, as well
as the efficient verification of the correctness of the aggregated function result by employing the
corresponding aggregated proof. Let us give an example to illustrate this property. Consider a
cloud-assisted computing setting where a VRF can be employed in the client–server model, i.e., Alice is
given access to a random function where the function description (or the secret key) is stored by a server
(seen as the random value provider). Whenever Alice requests an arbitrary bit-string x, the server
simply computes the function value y = f (x) together with the corresponding proof π and returns the
tuple (x, y, π) to Alice. Alice may also request the aggregation (such as the product) of the function
values over a large number of points (e.g., x1, x2, . . . , xn, which may match some pattern, such as having
same bits on some bit locations). In this case, aggregate VRFs allow the server to compute the product
of f (x1), . . . , f (xn) efficiently, instead of firstly evaluating f (x1), . . . , f (xn) and then calculating their
product. On receiving either the function value y of an individual input or the aggregated function
value yagg over multiple inputs, Alice needs to verify the correctness of the returned value. VRFs allow
the verification of the correctness of y using π, while, to verify the correctness of yagg, there is a trivial
way, namely firstly verifying (xi, yi, πi) for i = 1, . . . , n using the verification algorithm of VRFs and
then checking if yagg = Πn

i=1yi, but the running time of which depends on the number n. Via aggregate
VRFs, the verification of yagg can be achieved much more efficiently by using the aggregated proof
πagg that is generated by the server and returned to Alice along with yagg.

A representative application of aggregate VRFs is in e-lottery schemes. More precisely, aggregate
VRFs can be employed in VRF-based e-lottery schemes [7], where a random number generation
mechanism is required to determine not only a winning number but also the public verifiability of
the winning result, which guarantees that the dealer cannot cheat in the random number generation
process. In this paper, we provide an e-lottery scheme, which has significant gain in the efficiency of
generating the winning numbers and verifying the winning results. In a nutshell, VRF-based e-lottery
schemes [7] proceed as follows: Initially, the dealer generates a secret/public key pair (sk, pk) of VRFs
and publishes the public key pk, together with a parameter T associated with the time (this is the
input parameter controlling the time complexity of the delaying function D(·)) during which the
dealer must release the winning ticket value. To purchase the ticket, a player chooses his bet number
s and obtains a ticket ticketi (please refer to Section 4.2 for the generation of ticket ticketi on a bet
number x in detail) from the dealer. The dealer links the ticket to a blockchain, which could be created
as chain1 := H(ticket1), chaini := H(chaini−1||ticketi) for i > 1, and publishes chainj where j is the
number of tickets sold so far. To generate the random winning number, the dealer first computes a VRF
as (w0, π0) = ( fsk(d), πsk(d)) on d = D(h), where h is the final value of the blockchain (i.e., suppose
there are n tickets sold, then h := H(chainn)). Assume that the numbers used in the lottery game
are {1, 2, . . . , Nmax}. If w0 > Nmax, then the dealer iteratively applies the VRF on wi−1‖d to obtain
(wi, πi) = ( fsk(wi−1‖d), πsk(wi−1‖d)). Suppose that, within T units of time after the closing of the
lottery session, until applying the VRF for t times, the dealer obtains (wt, πt) such that wt ≤ Nmax.
Afterwards, the dealer publishes (wt, πt) as the winning number and the corresponding proof as well
as all the intermediate tuples (w0, π0), . . . , (wt−1, πt−1). If s = wt, a player wins. To verify the validity
of a winning number wt, each player verifies the validity of (wi, πi) for i = 0, . . . , t.

Chow et al.’s e-lottery scheme [7] seems to be very promising when considering an ideal case that
after a small number t of times that the VRF is applied, a function value wt such that wt ≤ Nmax can
be obtained successfully. Otherwise, it means that the dealer needs to calculate the VRF more times,
while the player needs to verify the correctness of more tuples in order to verify the winning result;
the latter leads to large computational overhead and requires storage of all intermediate tuples of VRF
function values and corresponding proofs, both from the dealer and the player.
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Observe that both the evaluation and verification of multiple pairs of VRF function value/proof
are time consuming. By using our aggregate VRF instantiation, we improve the e-lottery by devising
the dealer to evaluate aggregate VRF twice at most so as to obtain a random winning number together
with corresponding proof, thus rendering the verification for only such a single pair. This reduces the
amount of data written to the dealer’s storage space and also decreases the computational cost for the
verification process of each player.

Our Contribution. We introduce the notion of static aggregate verifiable random functions
(static Agg-VRFs). Briefly, a static Agg-VRF is a family of keyed functions each associated with
a pair of keys, such that, given the secret key, one can compute the aggregation function for both the
function values and the proofs of the VRFs over super-polynomially large sets in polynomial time,
while, given the public key, the correctness of the aggregate function values could be checked by the
corresponding aggregated proof. It is very important that the sizes of the aggregated function values
and proofs should be independent of the size of the set over which the aggregation is performed.
The security requirement of a static Agg-VRF states that access to an aggregate oracle provides no
advantage to the ability of a polynomial time adversary to distinguish the function value from a
random value, even when the adversary could query an aggregation of the function values over a
specific set (of possibly super-polynomial size) of his choice.

In this paper, the aggregate operation we consider is the product of all the VRF values and proofs
over inputs belonging to a super-polynomially large set. We show how to compute the product
aggregation over a super-polynomial size set in polynomial time, since it is impossible to directly
compute the product on a super-polynomial number of values. More specifically, we show how
to achieve a static Agg-VRF under the Hohenberger and Waters’ VRF scheme [13] for the product
aggregation with respect to a bit-fixing set. We stress that after revisiting the JN-VRF scheme [14]
proposed by Jager and Niehuesbased (currently the most efficient VRFs with full adaptive security in
the standard model), we find that, even though JN-VRF almost enjoys the same framework of HW-VRF
(since an admissible hash function HAHF is applied on inputs x before evaluating the function value
and the corresponding proof, which impacts negatively the nice pattern of all inputs in a bit-fixing
set), it is impossible to perform productive aggregation of a super-polynomial number of values
fsk(HAHF(x)) efficiently over bit-fixing sets.

We implemented and evaluated the performance of our proposed static aggregate VRF in
comparison to a standard (non-aggregate) VRF for inputs with different lengths i.e., 56, 128, 256, 512,
and 1024 bits, in terms of the costing time for aggregating the function values, aggregating the proofs as
well as the cost of verification for the aggregation. In all cases, our aggregate VRFs present significant
computational advantage and are more efficient than standard VRFs. Furthermore, by employing
aggregate VRFs for bit-fixing sets, we propose an improved e-lottery scheme based on the framework of
Chow et al.’s VRF-based e-lottery proposal [7], by mainly modifying the winning result generation
phase and the player verification phase. We implemented and tested the performance of both
Chow et al.’s and our improved e-lottery schemes. Our improved scheme shows a significant
improvement in efficiency in comparison to Chow et al.’s scheme.

Core Technique. We present a construction of static aggregate VRFs, which performs the product
aggregation over a bit-fixing set, following Hohenberger and Waters’ [13] VRF scheme. A bit-fixing
set consists of bit-strings which match a particular bit pattern. It can be defined by a pattern string
v ∈ {0, 1,⊥}poly(λ) as Sv = {x ∈ {0, 1}poly(λ) : ∀i, xi = viorvi = ⊥}. The evaluation of the VRF on

input x = x1‖x2‖ . . . ‖x` is defined as y = e(g, h)u0Π`
i=1u

xi
i , where g, h, U0 = gu0 , . . . , U` = gu` are public

keys and u0, . . . , u` are kept secret. The corresponding proofs of the VRF are given using a step ladder

approach, namely, for j = 1 to `, πj = gΠj
i=1u

xi
i and π`+1 = gu0Π`

i=1u
xi
i .
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Let Fixed(v) = {i ∈ [`] : vi ∈ {0, 1}} and |Fixed(v)| = τ. To aggregate the VRF, let πagg
0 = g2`−τ

,
for i = 1, . . . , `; we compute

πagg
i =

{
(πagg

i−1)
u

vi
i if i ∈ Fixed(v)

(πagg
i−1)

(ui+1)/2 if i /∈ Fixed(v)
(1)

and πagg
`+1 = (πagg

` )u0 . The aggregated function value is computed as

yagg = e(g, h)u0 ∏i∈Fixed(v) u
vi
i ∏i∈[`]\Fixed(v)(ui+1). (2)

The aggregation verification algorithm checks the following equations: for i = 1, . . . , `

e(g, πagg
i ) =


e(πagg

i−1 , g) if i ∈ Fixed(v)andvi = 0

e(πagg
i−1 , Ui) if i ∈ Fixed(v)andvi = 1

e(πagg
i−1 , g ·Ui)

1/2 if i /∈ Fixed(v)

(3)

and e(πagg
`+1, g) = e(πagg

` , U0) and e(πagg
`+1, h) = yagg.

Improved Efficiency. We provide some highlights on the achieved efficiency.
Efficiency of Aggregate VRF. The construction of our static aggregate VRF for a bit-fixing (BF)

set achieves high performance in the verification process, since it takes only O(`) bilinear pairing
operations, even when verifying an exponentially large set of function values, where ` denotes the input
length. The experimental results show that, even for 1024 bits of inputs, the aggregation of 21004 pairs
of function values/proofs can be computed very efficiently in 6881 ms. Moreover, the time required
to verify their aggregated function values/proofs of 21004 pairs only increases 50%, comparing with
the verification time for each single function value/proof pair of standard VRF. Sections 3.2 and 3.3
present a detailed efficiency discussion and our experimental tests and comparisons.

Efficiency of Improved E-Lottery Scheme. We test the performance of Chow et al.’s e-lottery
scheme [7] and our improved (aggregate VRF based) counterpart and make a comparison. In our
improved e-lottery scheme, the computation of the aggregate function value/proof pair and the
verification are performed via a single step of Aggregation and AggVerify algorithms, respectively,
while Chow et al.’s e-lottery scheme is processed by t steps. We perform some experiments on
Chow et al.’s scheme to see how big/small the t is so as to reach the point where the dealer obtains
(wt, πt) such that wt ≤ Nmax, thus figuring out the computation-time for the corresponding multiple
function evaluation and verification. In the experiments, we ran 10 times Chow et al.’s scheme and we
obtained the median of all the runs. We reached t ≈ 2 and it took ≈100 s for each run of the winner
generation and ≈5 s for player verification. In our improved version, the generation of the winner
ticket costs less than 90 s, and the time for verification decreases to ≈2.5 s, which shows a significant
improvement in efficiency.

Related work. We summarize relevant current state-of-the-art.
Verifiable Random Functions. Hohenberger and Waters’ VRF scheme [13] is the first that shows all

the desired properties for a VRF (we say that a VRF scheme has all the desired properties if it allows
an exponential-sized input space, achieves full adaptive security, and is based on a non-interactive
assumption). Formerly, there have been several VRF proposals [15–17], all of which have some
limitations: they only allow a polynomial-sized input space, they do not achieve fully adaptive
security, or they are based on an interactive assumption. Thus far, there are also many constructions of
VRFs with all the desired properties based on the decisional Diffie–Hellman assumption (DDH) or the
decision linear assumption (DLIN) presenting different security losses [18–22]. Kohl [22] provided
a detailed summary and comparison of all existing efficient constructions of VRFs in terms of the
underlying assumption, sizes of verification key and the corresponding proof, and the associated
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security loss. Recently, Jager and Niehues [14] provided the most efficient VRF scheme with adaptive
security in the standard model, relying on the computational admissible hash functions.

Aggregate Pseudorandom Functions. Cohen et al. [10] introduced the notion of aggregate PRFs,
which is a family of functions indexed by a secret key with the functionality that, given the secret
key, anyone is able to aggregate the values of the function over super-polynomially many PRF values
with only a polynomial-time computation. They also proposed constructions of aggregate PRFs under
various cryptographic hardness assumptions (one-way functions and sub-exponential hardness of the
Decisional Diffie–Hellman assumption) for different types of aggregation operators such as sums and
products and for several set systems including intervals, bit-fixing sets, and sets that can be recognized
by polynomial-size decision trees and read-once Boolean formulas. In this paper, we explore how to
aggregate VRFs, which involves efficient aggregations both on the function evaluations and on the
corresponding proofs, while providing verifiability for the correctness of aggregated function value
via corresponding proof.

E-lottery Schemes/Protocols. In 2005, Chow et al. [7] proposed an e-lottery scheme using a verifiable
random function (VRF) and a delay function. To reduce the complexity in the (purchaser) verification
phase, Liu et al. [23] improved Chow et al.’s scheme by proposing a multi-level hash chain to replace
the original linear hash chain, as well as a hash-function-based delay function, which is more suitable
for e-lottery networks with mobile portable terminals. Based on the secure one-way hash function
and the factorization problem in RSA, Lee and Chang [24] presented an electronic t-out-of-n lottery
on the Internet, which allows lottery players to simultaneously select t out of n numbers in a ticket
without iterative selection. Given that the previous schemes [7,23,24] offer single participant lottery
purchases on the Internet, Chen et al. [25] proposed an e-lottery purchase protocol that supports the
joint purchase from multi-participants that enables them to safely and fairly participate in a mobile
environment. Aiming to provide an online lottery protocol that does not rely on a trusted third party,
Grumbach and Riemann [26] proposed a novel distributed e-lottery protocol based on the centralized
e-lottery of Chow et al. [7] and incorporated the aforementioned multi-level hash chain verification
phase of Liu et al. [23]. Considering that the existing works on e-lottery focus either on providing new
functionalities (such as decentralization or threshold) or improving the hash chain or delay function,
the building block of VRFs has received little attention. In this paper, we explore how to improve the
efficiency of Chow et al.’s [7] e-lottery scheme by using aggregate VRFs.

2. Preliminaries

2.1. Verifiable Random Functions

Let F : K × X → Y × P be an efficient function, where the key space K, domain X , range Y ,
and proof space P are dependent on the security parameter λ. Consider (Setup,Eval,Verify) as the
following algorithms:

• Setup(1λ)→ (sk, pk) takes as input a security parameter λ and outputs a key pair (pk, sk). We say
that sk is the secret key and pk is the verification key.

• Eval(sk, x) → (y, π) takes as input the secret key sk and x ∈ X and outputs a function value
y ∈ Y and a proof π ∈ P . We write Funsk(x) to denote the function value y and Provesk(x) to
denote the proof of correctness computed by Eval on input (sk, x).

• Verify(pk, x, y, π) → {0, 1} takes as input the verification key pk, x ∈ X , y ∈ Y , and the proof
π ∈ P and outputs a bit.

Definition 1. We say that (Setup,Eval,Verify) is a verifiable random function (VRF) if all the following
properties hold.

1. Provability: For all (pk, sk) ← Setup(1λ) and inputs x ∈ X it holds: if (y, π) ← Eval(sk, x),
then Verify(pk, x, y, π) = 1.
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2. Uniqueness: For all pk (not necessarily generated by Setup) and inputs x ∈ X , there does not exist a
tuple (y0, y1, π0, π1) such that: (1)y0 6= y1, (2)Verify(pk, x, y0, π0) = Verify(pk, x, y1, π1) = 1.

3. Pseudorandomness: For all p.p.t. attackers D = (D1, D2), there exists a negligible function µ(λ)

such that:

Pr[(pk, sk)← Setup(1λ); (x∗, st)← DEval(sk,·)
1 (pk); y0 = Funsk(x∗); y1 ← Y ;

b← {0, 1}; b′ ← DEval(sk,·)
2 (yb, st) : b′ = b ∧ x∗ /∈ LEval] ≤ 1

2
+ µ(λ),

where LEval denotes the set of all inputs that D queries to its oracle Eval.

Here, we note that Eval and Fun denote two different functions. The former denotes the function
that outputs both function value y and proof π, while the latter denotes the function that only outputs
function value y.

2.2. Bilinear Maps and the HW-VRF Scheme

Bilinear Groups. Let G and GT be algebraic groups. A bilinear map is an efficient mapping e : G×
G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate)
if g generates G, then e(g, g) 6= 1.

Assumption 1 (q-Decisional Diffie–Hellman Exponent (q-DDHE)). Let G,GT be groups of prime order
p ∈ Θ(2λ). For all p.p.t. adversaries A, there exists a negligible function µ such that:

Pr[g, h← G; a← Zp; y0 = e(g, h)aq
; y1 ← GT ; b← {0, 1};

b′ ← A(g, h, ga, . . . , gaq−1
, gaq+1

, . . . , ga2q
, yb) : b = b′] ≤ 1

2
+ µ(λ).

HW-VRF Scheme Here, we describe one of the elegant constructions of VRFs proposed by
Hohenberger and Waters [13] (that is abbreviated as HW-VRF scheme). The latter is employed as a
basis for our aggregate VRF scheme. HW-VRF is the first fully-secure VRF from the Naor-Reingold
PRF [27] with exponential-size input space whose security is based on the so-called q-type complexity
assumption, namely q-DDHE assumption, and is built as follows.

• Setup(1λ, 1`): The setup algorithm takes as input the security parameter λ as well as the input
length `. It firstly runs G(1λ) to obtain the description of the groups G, GT and of a bilinear map
e : G×G→ GT . The description of G contains the generators g, h ∈ G. Let {0, 1}` be the input
space. It next selects random values u0, u1, . . . , u` ∈ Zp and sets U0 = gu0 , U1 = gu1 , . . . , U` = gu` .
It then sets the keys as: pk = (g, h, U0, U1, . . . , U`), sk = (u0, u1, . . . , u`).

• Fun(sk, x): For x ∈ {0, 1}`, the function Funsk evaluates x = x1‖x2‖ . . . ‖x` as:

y = Funsk(x) = e(g, h)u0Π`
i=1u

xi
i .

• Prove(sk, x). This algorithm outputs a proof π, which is comprised as follows. Let π`+1 =

gu0Π`
i=1u

xi
i , for j = 1 to ` it computes: πj = gΠj

i=1u
xi
i . Set π = (π1, . . . , π`, π`+1).

• Verify(pk, x, y, π). Let π = (π1, . . . , π`, π`+1). To verify that y was computed correctly, proceed
in a step-by-step manner by checking that

e(π1, g) =

{
e(g, g), if x1 = 0;

e(U1, g), otherwise.
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then for i = 2, . . . , ` it checks, if the following equations are satisfied:

e(πi, g) =

{
e(πi−1, g), if xi = 0;

e(πi−1, Ui), otherwise.

Finally, it checks that e(π`+1, g) = e(π`, U0) and e(π`+1, h) = y. It outputs 1, if and only if all
checks verify. Otherwise, it outputs 0.

3. Static Aggregate VRFs

In a (static) aggregate PRF [10] (here, we call the aggregate PRF proposed by Cohen, Goldwasser,
and Vaikuntanathan [10] as a static aggregate PRF since their aggregation algorithm needs the secret
key of the PRF to be taken as input), there is an additional aggregation algorithm which given the
secret key can (efficiently) compute the aggregated result of all the function values over a set of
all the inputs in polynomial time, even if the input set is of super-polynomial size. Note that in
an aggregate VRF, similarly to an aggregate PRF, an additional aggregation algorithm is brought
into the ordinary VRF [1]. Thus, aggregate VRFs can be regarded as an extension of ordinary VRFs.
The static aggregate VRF differs from a static aggregate PRF [10] in that given the secret key the
aggregation operation is performed not only on the function values but also on the corresponding
proofs. Moreover, the resulted aggregate function value can be publicly verified by using aggregate
proof (together with the public key and the input subset), which proves that the aggregate function
value is a correct result on the aggregation of all function values over the input subset.

Cohen, Goldwasser, and Vaikuntanathan [10] were the first to consider the notion of aggregate
PRFs over the super-polynomial large but efficiently recognizable set classes. In their model, they treat
the efficiently recognizable set ensemble as a family of predicates, i.e., for any set S there exists a
polynomial-size boolean circuit C : {0, 1}∗ → {0, 1} such that x ∈ S if and only if C(x) = 1. Boneh and
Waters [11] also employed such a predicate to define the concept of constrained PRFs with respect to a
constrained set. In this paper, we employ the concept and formalization of the efficiently recognizable
set in the definition of static aggregate VRFs.

Recall that a verifiable random function (VRF) [1] is a function F : K × X → Y × P defined
over a secret key space K, a domain X , a range Y , and a proof space P (and these sets may be
parameterized by the security parameter λ). Let Fun : K ×X → Y denote the mapping of random
function evaluations on arbitrary inputs and Prove : K × X → P denote the mapping of proof
evaluations on inputs, each of which can be computed by a deterministic polynomial time algorithm.

Let Ψλ : (Yλ,Pλ)
∗ → (Yλ,Pλ) be the aggregation function that takes as inputs multiple pairs of

values from the range Yλ and the proof space Pλ of the function family, and aggregates them to output
an aggregated function value in the range Yλ and the corresponding aggregated proof in the proof
space Pλ.

Definition 2 (Static Aggregate VRF). Let F = {Fλ}λ∈N be a VRF function family where each function
F ∈ Fλ : K×X → Y ×P computable in polynomial time is defined over a key space K, a domain X , a range
Y and a proof space P . Let S be an efficiently recognizable ensemble of sets {Sλ}λ where for any S ∈ S , S ⊂ X ,
and Ψλ : (Yλ,Pλ)

∗ → (Yλ,Pλ) be an aggregation function. We say that F is an (S , Ψ)-static aggregate
verifiable random function family (abbreviated (S , Ψ)-sAgg-VRFs) if it satisfies:

• Efficient aggregation: There exists an efficient (computable in polynomial time) algorithm
AggregateF,S ,Ψ(sk, S) → (yagg, πagg) which on input the secret key sk of a VRF and a set S ∈ S ,
outputs aggregated results (yagg, πagg) ∈ Y × P such that for any S ∈ S , AggregateFsk ,S ,Ψ(sk, S) =
Ψ(Fsk(x1), . . . , Fsk(x|S|)) where Fsk(xi) = (yi = Funsk(xi), πi = Provesk(xi)) for i = 1, . . . , |S|;

• Verification for aggregation: There exists an efficient (computable in polynomial time) algorithm
AggVerify(pk, S, yagg, πagg)→ {0, 1} which on input the aggregated function value yagg and the proof
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πagg for an ensemble S ∈ S of the domain, verifies if it holds that yagg = Ψ(Funsk(x1), . . . ,Funsk(x|S|))
using the aggregated proof πagg.

• Correctness of aggregated values: For all (pk, sk) ← Setup(1λ), set S ∈ S and the
aggregate function Ψ ∈ Ψλ, let (y, π) ← Eval(sk, x) and (yagg, πagg) ← AggregateF,S ,Ψ(sk, S),
then AggVerify(pk, S, yagg, πagg) = 1.

• Pseudorandomness: For all p.p.t. attackers D = (D1, D2), there exists a negligible function µ(λ) s.t.:

Pr[(pk, sk)← Setup(1λ); (x∗, st)← DEval(sk,·),AggregateF,S ,Ψ(sk,·)
1 (pk); b← {0, 1};

y0 = Funsk(x∗); y1 ← Y ; b′ ← DEval(sk,·),AggregateF,S ,Ψ(sk,·)
2 (yb, st) :

b′ = b ∧ CSi (x∗) = 0for allSi ∈ LAgg ∧ x∗ /∈ LEval] ≤ 1
2
+ µ(λ),

where LEval is the set of all inputs that D queries to its oracle Eval, LAgg consists of all the sets Si that D
queries to its oracle Aggregate, and CSi is the polynomial-size boolean circuit that is able to recognize the
ensemble Si.

• Compactness: There exists a polynomial poly(·) such that for every λ ∈ N, x ∈ X , set S ∈ S and
the aggregate function Ψ ∈ Ψλ, it holds with overwhelming probability over (pk, sk) ← Setup(1λ),
(y, π) ← Eval(sk, x) and AggregateF,S ,Ψ(sk, S) → (yagg, πagg) that the resulting aggregated value
yagg and aggregated proof πagg has size |yagg|, |πagg| ≤ poly(λ, |x|). In particular, the size of yagg and
πagg are independent of the size of the set S.

We stress that the set S over which the aggregation is performed can be super-polynomially large.
Clearly, given exponential numbers of values Fsk(·), it is impossible to perform aggregation on them
but yet, we show how to efficiently compute the aggregation function on an exponentially large set
with respect to a concrete VRF given the secret key.

Some explanations on the notion of static aggregate VRFs. Firstly, the algorithm AggregateF,S ,Ψ achieves
an efficient aggregation on function values/proofs over super-polynomially large sets S in polynomial
time. We stress that our aim is to work on super-polynomially large sets, since, for any constant size of
sets, the (productive) aggregation can be computed trivially, given the function value/proof pairs on
all inputs in such a set. Secondly, the verification algorithm AggVerify is employed to efficiently verify
the correctness of the aggregated function values yagg. Given {(xi, yi, πi)}|S|i=1 and the aggregated
function value yagg, there is a trivial way to verify the correctness of yagg, by verifying the correctness

of each tuple (xi, yi, πi) for i = 1, . . . , | S | and then checking if yagg = Π|S|i=1yi, which is not computable
in polynomial time if S is a super-polynomially large set. Therefore, our main concern is to achieve
efficient verification on yagg via the corresponding proof πagg, the size of which is independent
of the size of S. Thirdly, the condition AggVerify(pk, S, yagg, πagg) = 1 is interpreted as that value

yagg is a correct result on the aggregation of {Funsk(xi)}|S|i=1, i.e., yagg = Ψ(Funsk(x1), . . . ,Funsk(x|S|)),
by using the corresponding proof πagg. We note that the verification for the aggregation does not
violate the uniqueness of the underlying basic VRF. Indeed, there probably exist different sets S1

and S2 that result in a same yagg, but the uniqueness for any input point x ∈ S1 (x ∈ S2) always
holds. Looking ahead, in our instantiation of aggregate VRFs, to find two sets S1 6= S2 such
that ∏xi∈S1

Funsk(xi) = ∏xi∈S2
Funsk(xi) is computationally hard, without knowledge of sk. Lastly,

the condition AggVerify(pk, S, yagg, πagg) = 1 does not imply Verify(pk, xi, yi, πi) = 1 for all i = 1, . . . , |
S |, since by maintaining a correct pair (yagg, πagg), we always can alter any two tuples as (xi, yi · r, πi)

and (xj, yj · r−1, πj) for any random r ∈ G, which means Verify(xi, yi · r, πi) = Verify(xj, yj · r−1, πj) = 0.

3.1. A Static Aggregate VRF for Bit-Fixing Sets

We now propose a static aggregate VRF, whose aggregation function is to compute products over
bit-fixing sets. In a nutshell, a bit-fixing set consists of bit-strings, which match a particular bit pattern.
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We naturally represent such sets by a string in {0, 1,⊥}poly(λ) with 0 and 1 indicating a fixed bit location
and ⊥ indicating a free bit location. To do so, we define for a pattern string v ∈ {0, 1,⊥}poly(λ) the
bit-fixing set as Sv = {x ∈ {0, 1}poly(λ) : ∀i, xi = viorvi = ⊥}.

We show based on an elegant construction of VRFs proposed by Hohenberger and Waters [13]
(abbreviated as HW-VRF scheme) how to compute the productive aggregation function over a bit-fixing
set in polynomial time; thus, yielding a static aggregate VRF. Please refer to Section 2.2 for detailed
description of HW-VRF scheme. The aggregation algorithm for bit-fixing sets takes as input the VRF
secret key sk and a string v ∈ {0, 1,⊥}`. Let Fixed(v) = {i ∈ [`] : vi ∈ {0, 1}} and |Fixed(v)| = τ.
The aggregation algorithm and the verification algorithm for an aggregated function value and the
corresponding proof works as follows:

• Aggregate(sk, v):

Let πagg
0 := g2`−τ

. We define the aggregated proof as πagg = (πagg
1 , . . . , πagg

` , πagg
`+1), where for

i = 1, . . . , `,

πagg
i =

{
(πagg

i−1)
u

vi
i ifi ∈ Fixed(v)

(πagg
i−1)

(ui+1)/2 ifi /∈ Fixed(v).

and πagg
`+1 = (πagg

` )u0 . The aggregated function value is defined as:

yagg = e(g, h)u0·(∏i∈Fixed(v) u
vi
i )·(∏i∈[`]\Fixed(v)(ui+1)).

• AggVerify(pk, v, yagg, πagg):

Parse πagg = (πagg
1 , . . . , πagg

` , πagg
`+1). Let πagg

0 = g2`−τ
. The aggregation verification algorithm

checks if the following equations are satisfied: for i = 1, . . . , `

e(g, πagg
i ) =


e(πagg

i−1 , g) if i ∈ Fixed(v)andvi = 0

e(πagg
i−1 , Ui) if i ∈ Fixed(v)andvi = 1

e(πagg
i−1 , g ·Ui)

1/2 if i /∈ Fixed(v).

and e(πagg
`+1, g) = e(πagg

` , U0) and e(πagg
`+1, h) = yagg. Output 1 if and only if all checks verify.

Otherwise, output 0.

Letting SBF = {SBF
`(λ)}λ∈N where SBF

`(λ) = {0, 1,⊥}` is the bit-fixing sets on {0, 1}`, we now prove
the following theorem:

Theorem 1. Let ε > 0 be a constant. Choose the security parameter λ = Ω(`1/ε), and assume the
(2λε

, 2−λε
)-hardness of q-DDHE over the group G and GT . Then, the collection of verifiable random functions

F defined above is a secure aggregate VRF with respect to the subsets SBF and the product aggregation function
over G and GT .

The compactness follows straightforward, since the aggregated function value yagg ∈ GT and the
aggregated proof πagg = (πagg

1 , . . . , πagg
`+1) ∈ G`+1, the sizes of which are independent of the size of

the bit-fixing set Sv, i.e., 2`−τ .
The proof for pseudorandomness is similar to that of HW-VRF scheme in [13] since our static

aggregate VRF is built on the ground of HW-VRF and the only phase we need to deal with in the proof
is to simulate the responses of the aggregation queries. Here, we provide the simulation routine that
the q-DDHE solver executes to act as a challenger in the pseudorandomness game of the aggregated
VRFs. The detailed analysis of the game sequence is similar to the related descriptions in [13].

Proof of Theorem 1. Let Q(λ) be a polynomial upper bound on the number of queries made by a
p.p.t. distinguisher D to the oracles Eval and Aggregate. We use D to create an adversary B such that,
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if D wins in the pseudorandomness game for aggregate VRFs with probability 1
2 + 3ε

64Q(`+1) , then B
breaks the q-DDHE assumption with probability 1

2 + 3ε
64Q(`+1) , where q = 4Q(`+ 1), and ` is the input

length of the static Agg-VRFs.
Given (G, p, g, h, ga, . . . , gaq−1

, gaq+1
, . . . , ga2q

, y) , to distinguish y = e(g, h)aq
from y ← GT , B,

proceed as follows:

Setup. Set m = 4Q and choose an integer k $← [0, `]. It then picks random integers r1, . . . , r`, r′

from the interval [0, m− 1] and random elements s1 . . . , s`, s′ ∈ Zp, which are all kept internal by B.
For x ∈ {0, 1}`, let xi denote the ith bit of x. Define the following functions:

C(x) = m(1 + k) + r′ +
`

∑
i=1

xiri, Ĉ(x, i) =
i

∑
j=1

xjrj, J(x) = s′
`

∏
i=1

sxi
i , Ĵ(x, i) =

i

∏
j=1

s
xj
j

B sets U0 = (gam(1+k)+r′
)s′ and Ui = (gari )si for i = 1, . . . , `. It sets the public key as

(G, p, g, h, U0, . . . , U`), and the secret key implicitly includes the values u0 = am(1+k)+r′ s′ and
{ui = ari si}i∈[1,`].

Oracle Queries to Eval(sk, ·). The distinguisher D will make queries of VRF evaluations and
proofs. On receiving an input x, B first checks if C(x) = q and aborts if this is true. Otherwise, it defines
the function value as F(x) = e((gaC(x)

)J(x), h), and the corresponding proof as π = (π0, π1, . . . , π`)

where π0 = (gaC(x)
)J(x), πi = (gaĈ(x,i)

) Ĵ(x,i) for i = 1, . . . , `. Note that for any x ∈ {0, 1}` it holds:

1. The maximum value of C(x) is m(1 + `) + (1 + `)(m− 1) = (2m− 1)(1 + `) < 2m(1 + `) = 2q.
2. The maximum value of Ĉ(x, i) is `(m− 1) < m(1 + `) = q for i ∈ [`].

As a result, if C(x) 6= q, B could answer all the Eval queries.
Oracle Queries to AggregateFsk ,S ,Ψ(·). The distinguisher D will also make queries for aggregate

values. On receiving a pattern string v ∈ {0, 1,⊥}`, B uses the above secret key to compute
the aggregated proof and the aggregate function value. More precisely, B answers the query
AggregateFsk ,S ,Ψ(Sv) as follows: Let πagg

0 := g2`−τ
. Since the aggregated proof is defined as

πagg = (πagg
1 , . . . , πagg

` , πagg
`+1), where, for i = 1, . . . , `,

πagg
i =

{
(πagg

i−1)
u

vi
i if i ∈ Fixed(v)

(πagg
i−1)

(ui+1)/2 if i /∈ Fixed(v).

and πagg
`+1 = (πagg

` )u0 , B will compute concretely:

πagg
1 =

{
(gav1r1 s

v1
1 )2`−τ

if 1 ∈ Fixed(v)

g2`−τ−1(1+ar1 s1) if 1 /∈ Fixed(v)

and, for j = 2, . . . , `, πagg
j = g

2
`−τ−τ̄j

(
Πi∈[j]∩Fixed(v)(ari si)

vi
)(

Πi∈Flex(vj)
(1+ari si)

)
where Flex(vj) := {i ∈ [`] :

i ≤ j ∧ vi = ⊥} and τ̄j := |Flex(vj)|. The above value could be computed by B through its knowledge
of ri, si. The value of

πagg
`+1 = g

(
Π

i∈[`]∩Fixed(v)
(ari si)

vi
)
·
(

Π
i∈[`]\Fixed(v)

(1+ari si)
)
·am(1+k)+r′ ·s′

can be handled similarly using m, k, r′, s′. While the aggregated function value is defined as yagg =

e(πagg
`+1, h).

Challenge. D will send a challenge input x∗ with the condition that x∗ is never queried to its
Eval oracle. If C(x∗) = q, B returns the value y. When D responds with a bit b′, B outputs b′ as its
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guess to its own q-DDHE challenger. If C(x∗) 6= q, B outputs a random bit as its guess. This ends our
description of q-DDHE adversary B.

Remark 1. Discussion on the impossibility of productive aggregation on JN-VRF for bit-fixing sets.
Recently, based on q-DDH-assumption, Jager and Niehues [14] proposed the currently most efficient VRFs
(that is abbreviated as JN-VRF scheme) with full adaptive security in the standard model. JN-VRF almost enjoys
the same framework of HW-VRF, and the only difference is that in the former an admissible hash function HAHF is
applied on inputs x before evaluating the function value and corresponding proof, while the latter is not. We stress
that hash function HAHF : {0, 1}` → {0, 1}n on inputs x destroys the nice pattern of all inputs in a bit-fixing
set, which implies that, for any x ∈ Sv, i.e., for all i ∈ [`], xi = vi ∨ vi = ⊥, there does not exist a bit-string
v′{0, 1,⊥}n such that HAHF(x) = h1‖ . . . ‖hn /∈ Sv′ , where Sv′ = {hj ∈ {0, 1}n : ∀j, hj = v′jorv′j = ⊥}.
Otherwise, it is possible to find the collisions of HAHF. Therefore, given exponential numbers of values
Fsk(HAHF(x)), it is impossible to perform productive aggregation over them efficiently by using the same
technique as in the last subsection.

3.2. Efficiency Analysis

Analysis of Costs. The instantiation in Section 3.1 is very compact since the aggregated function
value consists of a single element in GT , while the aggregated proof is composed of `+ 1 elements
in G, which are independent of the size of a set S. The Aggregate algorithm simply requires at most
` multiplications plus one exponentiation to compute yagg and ` + 2 exponentiations to evaluate
πagg, which needs much less computation compared to computing 2`−τ multiplications to obtain yagg

and 2`−τ · (`+ 1) multiplications to obtain πagg on all 2`−τ number of inputs in S. The AggVerify
algorithm simply requires at most (2`+ 3) pairing operations, while 2`−τ · (2`+ 3) pairings are needed
for verifying 2`−τ number of function values/proofs on all inputs in S.

We summarize the cost for the Aggregate and AggVerify algorithms in Table 1, where MUL is
the shortened form of the multiplication operation, EXP is the abbreviation for the exponentiation
operation, and ADD denotes the addition operation.

Table 1. The computation operations for the static aggregate VRF scheme with respect to bit-fixing sets.

Scheme Assump. Input
Length

Cost for
Aggregating

Function Value

Cost for
Aggregating Proof

Cost on Verification
for Aggregation

HW-VRF [13] q-DDHE ` 2`−τ MUL on GT
2`−τ · (`+ 1) MUL

on G
2`−τ · (`+ 1) bilinear

pairings

Our static Agg-VRFs
for bit-fixing sets q-DDHE `

` MUL on Zp & one
EXP (2`+ 3) EXP (2`+ 3) bilinear

pairings

3.3. Implementation and Experimental Results

Choice of elliptic curves and pairings. In our implementation, we use Type A curves as described
in [28], which can be defined as follows. Let q be a prime satisfying q = 3 mod 4 and let p be some
odd dividing q + 1. Let E be the elliptic curve defined by the equation y2 = x3 + x over Fq; then,
E(Fq) is supersingular, #E(Fq) = q + 1, #E(Fq2) = (q + 1)2, and G = E(Fq)[p] is a cyclic group of
order p with embedding degree k = 2. Given map Ψ(x, y) = (−x, iy), where i is the square root of
−1, Ψ maps points of E(Fq) to points of E(Fq2)\E(Fq), and if f denotes the Tate pairing on the curve
E(Fq2), then defining e : G×G→ Fq2 by e(P, Q) = f (P, Ψ(Q)) gives a bilinear nondegenerate map.
For more details about the choice of parameters, please refer to [28]. In our case, we use the standard
parameters proposed by Lynn [28] (https://crypto.stanford.edu/pbc/), where q has 126 bits and p = 7
30750818665451621361119245571504901405976559617. To generate random elements, we use libsodium
(https://libsodium.gitbook.io/). Our implementation uses the programming language “C” and the
GNU Multiple Precision Arithmetic for arithmetic with big numbers. We use the GCC version 10.0.1
with the following compilation flags: “-O3 -m64 -fPIC -pthread -MMD -MP -MF”.

https://crypto.stanford.edu/pbc/
https://libsodium.gitbook.io/
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Implementing HW-VRF. In our implementation, we use the bilinear map as pairing implemented
by Lynn [28] for the BLS signature scheme. We notice that, when computing the function value

Funsk(x) = e(g, h)u0Π`
i=1u

xi
i , we usually compute first the bilinear e(g, h), and then do the exponentiation.

However, it is expensive to do the exponentiation of an element in GT . To improve the efficiency of
computing Funsk(x), we use the following mathematical trick: e(g, h)ab = e(ga, hb), which implies that

we calculate Funsk(x) as e(gu0 , hΠ`
i=1u

xi
i ). Since the computation of ga (or hb) corresponds to the scalar

multiplication of a point P (or Q) by a scalar a (or b), using this trick, we avoid the exponentiation on
an element in GT by requiring cost of two scalar multiplications of a point of the curve.

Implementing our static Agg-VRFs. Since p is fixed, when calculating the aggregated proof
as πagg

i := (πagg
i−1)

(ui+1)/2, we can precompute the inversion of 2 and thus only need to compute
(πagg

i−1)
(ui+1)inv(2) by the scalar multiplication of a point on curve with scalar (ui + 1) ? inv(2).

We use a similar approach when computing e(πagg
i−1 , g · Ui)

1/2; in this case, we always perform
e((πagg

i−1)
inv(2), g · Ui). Again, (πagg

i−1)
inv(2) corresponds to the scalar multiplication of a point with

scalar inv(2), while g ·Ui corresponds to the additive operation on two points on the elliptic curve.
Comparison. We tested the performance of our static Agg-VRFs in comparison to a standard

(non-aggregate) VRF, for five different input lengths, i.e., 56, 128, 256, 512, and 1024 bits. In all cases,
we set the size of the fixed-bit equal to 20. Thus, naturally, we wanted to compare the efficiency of our
aggregated VRF versus the evaluation and corresponding verification of 236, 2108, 2236, 2492, and 21004

VRF values. To perform our comparisons, we recorded the verification time for 100 pairs of function
values and their corresponding proofs, if the verification is performed one-by-one (i.e., without using
the aggregation) versus the corresponding performance of employing our proposed static aggregate
VRF. Obviously, it holds 100� 236, 100� 2108, 100� 2236, 100� 2492, and 100� 21004. In fact, it is
fine to choose any number that is smaller than 236. We choose 100 to have sensible running time for the
performance of the standard (non-aggregate) VRF. By taking the 56 bits input length with 20 fixed bits
as an example, the bit-fixing set should contain 236 elements; then, we should consider the verification
time for 236 pairs of function values-proofs, which is drastically larger than the running time when
we evaluate the verification for only 100 pairs. Thus, showing that our aggregate VRF is much more
efficient than the evaluation and corresponding verification of 100 VRF values obviously implies that
it is more efficient than the evaluation and corresponding verification of 236, 2108, 2236, 2492, and 21004

VRF values, correspondingly.
Table 2 shows the result of our experiments. The column “Verify” corresponds to the required time

for verifying a single pair of function value/proof. We tested how much time it costs to aggregate all the
function values and their proofs for inputs belonging to the bit-fixing set. Furthermore, we evaluated
the verification time to check the aggregated function value/proof. The column “Total Verification”
corresponds to the total required time for verifying 100 pairs of function values/proofs via the standard
VRFs (i.e., verification one-by-one), while the column “AggVerify” represents the costing time for
verifying the aggregated value/proof via aggregate VRF (i.e., aggregated verification algorithm).
The experimental results show that, even for 1024 bits of inputs, the aggregation of 21004 pairs of
function values/proofs can be computed very efficiently in 6881 ms. Moreover, the time required
to verify their aggregated function values/proofs of 21004 pairs only increases 50% compared to the
verification time for each single function value/proof pair of HW-VRFs.

Table 2. Running time (milliseconds) of the aggregate VRFs and standard (non-aggregate) VRF.

HW-VRFs [13] Aggregate VRFs

Input Length (bits) Verify (ms) Blocks Num. Total Verification (ms) Fixed-Bit Size Aggregate (ms) Our AggVerify (ms)

56 89 100 949 20 41 122
128 197 100 22371 20 196 298
256 472 100 52199 20 602 579
512 842 100 95233 20 1924 1212

1024 1556 100 164129 20 6881 2459
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We stress that our implementation is hardware independent. The only requirement is to have
a compiler that is able to translate C code to the specific architecture. To give an estimation of what
would happen if a different frequency in a computer architecture is used to run our code for HW-VRFs
as well as our aggregate VRFs, we considered the original run using 56, 128, 256, 512, and 1024 bits,
respectively. Then, we computed the difference between the frequencies and multiply for this result,
as shown in Table 3. For different frequencies (GHz), the verification time for the aggregated function
values/proofs increases 30–50%, compared to that for each single function value/proof pair of the
HW-VRFs, as shown in Table 3.

Table 3. Table of estimation of time for different frequencies.

Size Frequency (GHz) Time (ms) for AggVerify Time (ms) for Verify of HW-VRFs [13]

56

1.6 122 89
2.1 85 62
3.0 70 51

128

1.6 298 197
2.1 208 138
3.0 172 114

256

1.6 579 472
2.1 405 330
3.0 335 274

512

1.6 1212 842
2.1 848 589
3.0 702 488

1024

1.6 2459 1556
2.1 1696 1089
3.0 1426 902

Moreover, we performed experiments for the cases where the input lengths ` are equal to 256
(depicted in Figure 1b) and 1024 (in Figure 1a), respectively, by choosing different numbers τ of
the fixed bits to see the variation of the costing time on the aggregation and verification processes.
When `= 256, we ran experiments for three cases, i.e., worst-case where all τ fixed bits are 1, best-case
where all τ fixed bits are 0, and average-case where τ fixed bits are chosen at random from {0, 1}. In the
worst-case, the Aggregate algorithm requires 256 multiplications plus 1 exponentiation to compute
yagg and 258 exponentiation to evaluate πagg, while the AggVerify algorithm requires 515 pairing
operations, as shown in Figure 1b with square dot dashed line, which cost almost the same amount of
time with different τ. In the best-case, the Aggregate algorithm requires (256− τ) multiplications plus
1 exponentiation to compute yagg and (258− τ) exponentiation to evaluate πagg, while the AggVerify
algorithm requires (516− τ) pairing operations, as shown in Figure 1b with round dot dashed line,
where the running time decreases with the increase of τ. The average-case, as shown with solid lines
in Figure 1b, lies between the range of the best-case and the worst-case. When `= 1024, we show the
time cost on the aggregation and verification algorithms in average-case, i.e., for randomly chosen τ

fixed bits.
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(a) The case of ` = 1024
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(b) The case of ` = 256.
Figure 1. Time in ms w.r.t. different numbers of fixed bits τ in the aggregate VRFs considering the
cases of ` = 256 and ` = 1024.

4. Application to the e-Lottery Scheme461

4.1. Discussion on the Practical Instantiation of Chow et al.’s e-Lottery [7]462

Chow et al. [7] proposed an e-lottery scheme based on VRFs, where not only a random number463

generation mechanism is required to determine a winning number (chosen from a predefined464

domain), but also the public verifiability of the winning result, which guarantees that the dealer465

cannot cheat in the random number generation process. Let the numbers used in the lottery466

game be {1, 2, . . . , Nmax}. In order to generate the winning number, Chow et al. [7] employed467

a VRF that maps a bit-string of k length into a bit-string of l length. More precisely, the468

dealer firstly computes (w0, π0) := (VRF.Fun(skVRF, d),VRF.Prove(skVRF, d)), where d is the ‘hash469

value’ of all tickets sold so far. If w0 > Nmax, then the dealer iteratively calculates (wi, πi) :=470

(VRF.Fun(skVRF, wi−1‖d),VRF.Prove(skVRF, wi−1‖d)) for i = 1, 2, . . ., until obtaining (wt, πt) such that471

wt ≤ Nmax. Afterwards, the dealer publishes the final (wt, πt) and the intermediate tuples (wi, πi) for472

i = 0, 1, . . . , t− 1 of VRF function values and their corresponding proofs.473

To instantiate such an e-lottery scheme, a practical and concrete VRF scheme is needed. To the474

best of our knowledge, so far, most of the efficient instantiations of VRFs are based on bilinear maps,475

e.g., [13,14,18,19,22], where the input spaces of VRFs are defined over binary strings and the function476

values on inputs are elements in a group GT , i.e., wi ∈ GT , while the verification needs to compute477

some pairings.478

Chow et al.’s construction [7] seems to be very promising when considering an ideal case that479

after a small number t of times that the VRF is applied, a function value wt such that wt ≤ Nmax can be480

obtained successfully. Nevertheless, what if t is a large number. Then, it implies that the dealer needs481

to calculate the VRF more times, meanwhile the player needs to verify the correctness of more tuples482

in order to verify the winning result, which also requires more consumption on pairing-computations483

from both the dealer and the player.484
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Figure 1. Time in milliseconds with respect to different numbers of fixed bits τ in the aggregate VRFs
considering the cases of ` = 256 and ` = 1024.

4. Application to the E-Lottery Scheme

4.1. Discussion on the Practical Instantiation of Chow et al.’s E-Lottery

Chow et al. [7] proposed an e-lottery scheme based on VRFs, where a random number
generation mechanism is required to determine not only a winning number (chosen from a
predefined domain) but also the public verifiability of the winning result, which guarantees that
the dealer cannot cheat in the random number generation process. Let the numbers used in the
lottery game be {1, 2, . . . , Nmax}. To generate the winning number, Chow et al. [7] employed
a VRF that maps a bit-string of k length into a bit-string of l length. More precisely, the dealer
firstly computes (w0, π0) := (VRF.Fun(skVRF, d),VRF.Prove(skVRF, d)), where d is the ‘hash value’
of all tickets sold so far. If w0 > Nmax, then the dealer iteratively calculates (wi, πi) :=
(VRF.Fun(skVRF, wi−1‖d),VRF.Prove(skVRF, wi−1‖d)) for i = 1, 2, . . ., until obtaining (wt, πt) such
that wt ≤ Nmax. Afterwards, the dealer publishes the final (wt, πt) and the intermediate tuples (wi, πi)

for i = 0, 1, . . . , t− 1 of VRF function values and their corresponding proofs.
To instantiate such an e-lottery scheme, a practical and concrete VRF scheme is needed. To the

best of our knowledge, so far, most of the efficient instantiations of VRFs are based on bilinear maps
(e.g., [13,14,18,19,22]), where the input spaces of VRFs are defined over binary strings and the function
values on inputs are elements in a group GT , i.e., wi ∈ GT , while the verification needs to compute
some pairings.

Chow et al.’s construction [7] seems to be very promising when considering an ideal case that
after a small number t of times that the VRF is applied, a function value wt such that wt ≤ Nmax can
be obtained successfully. Nevertheless, what if t is a large number? Then, it implies that the dealer
needs to calculate the VRF more times, while the player needs to verify the correctness of more tuples
in order to verify the winning result, which also requires more consumption on pairing-computations
from both the dealer and the player.

In the following section, we show how we modify Chow et al.’s e-lottery scheme [7] by employing
our aggregate VRF, in order to reduce the computational overhead for the verification process of
each player.

4.2. An E-Lottery Scheme Based on Aggregate VRFs

Observing that the intermediate tuple (wi, πi) is a VRF function value/proof on an input wi−1‖d,
which has the same last | d | bits and consists of a bit-fixing set. Thus, we compress all the intermediate

tuples into a single function value wagg = e(g, h)u0·(∏`
i=`−|d|+1 u

di
i )·(∏`−|d|

i=1 (ui+1)) and corresponding proof
πagg. If the exponent of wagg is less than Nmax, wagg can be set as the winning number. Otherwise,

the dealer can output a value w′agg = e(g, h)
u0·(∏`

i=`−|d|+1 u
di
i )·(∏`−|d|

i=1,i/∈{j1,...,jk}
(ui+1))

for indices j1, . . . , jk ∈
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[1, `− |d|] as a winning number whose exponent is less than Nmax. Thus, the player only needs to verify
the correctness of a single aggregated function value/proof via the efficient aggregation verification
algorithm. This approach reduces not only the amount of data written to the dealer’s storage space but
also the computational cost for the verification process of each player. Our improved e-lottery scheme
shares the same framework as Chow et al.’s scheme [7], with some modifications in the winning result
generation phase and the player verification phase. The concrete description of our improved e-lottery
scheme is as follows.

Let H : {0, 1}∗ → {0, 1}`H be a collision-resistant hash function and D : {0, 1}`H → {0, 1}`D a
verifiable delay function (VDF). Please refer to Appendix A for a detailed description of the VDF that
we use. Let VRF be a function with input space {0, 1}`, where ` > `D, the function value space GT and
the proof space G`+1. Suppose any element in group GT is represented as a bit-string with length `bt.

Setup:
Dealer side:

1. Generate a public/secret key pair of VRF as (pkVRF, skVRF)← VRF.Setup(1λ) and key pair of a
signature scheme as (pkSIG, skSIG)← SIG.Setup(1λ).

2. Choose an arbitrary integer Nmax ∈ Z∗p. The numbers used in the lottery game are {1, 2, . . . , Nmax}.
3. Publish a collision-resistant hash function, public key of VRF pkVRF, public key of signature

scheme pkSIG, the delaying function D(·), and the amount of time T in which the dealer must
release the generated winning ticket value.

Ticket Purchase:
Player side:

1. The player chooses x ∈ Z∗p as bet number and randomly samples r ← Z∗p. r is kept secret.
2. The player obtains a sequence number s of the ticket from the dealer.
3. Compute H(x‖s‖r), and send ticketi = s‖(x⊕ r)‖H(x‖s‖r) to the dealer.

Dealer side:

1. The dealer generates a signature for ticket ticketi as σi ← SIG.Sign(skSIG, ticketi) and returns σi to
the player to acknowledge the recipient of player’s purchase request.

2. The dealer creates the state of ticket1 as st1 := H(ticket1), and sti := H(sti−1‖ticketi) for i =

2, 3, . . ..
3. The dealer generates blocks which contain: (1) the current state sti ∈ {0, 1}`H ; (2) ticket ticketi;

and (3) signature σi for ticket ticketi under skSIG, e.g., with the following block structure:

Bi = (sti, ticketi, σi) := (sti := H(sti−1‖ticketi), ticketi, σi).

4. The dealer links all blocks to a blockchain, which is a sequence of blocks B1, B2, . . ..
5. The dealer publishes a blockchain C = B1, B2, . . . , Bn where n is the number of tickets sold so

far. The length of a chain len(C) = n is its number of blocks. The structure of a blockchain C is
depicted in Figure 2:

st1, ticket1, σ1

st1 := H(ticket1)
σ1 :=

SIG.Sign(skSIG, ticket1)

block B1

st2, ticket2, σ2

st2 := H(st1‖ticket2)
σ2 :=

SIG.Sign(skSIG, ticket2)

block B2

· · ·

stn, ticketn, σn
stn :=

H(stn−1‖ticketn)
σn :=

SIG.Sign(skSIG, ticketn)

Bn

Figure 2. A blockchain C with n tickets sold so far.

Winning Result Generation:
Dealer side:
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1. Let the final state of the blockchain C be stn; the dealer computes d := D(stn) by the delaying
function and publishes d.

2. Pad d ∈ {0, 1}`D with ⊥ as d̃ := ⊥`−`D‖d. Let d̃ = ⊥`−`D‖d1‖ · · · ‖d`D . Define a set Sd̃ := {ξ ∈
{0, 1}` : ∀i ∈ [`], ξi = d̃iord̃i = ⊥}.

3. The dealer calculates the productive aggregation of all |Sd̃| = 2`−`D numbers of function values
and their corresponding proofs by using the efficient aggregation algorithm as (yagg, πagg) :=
Aggregate(skVRF, d̃). More precisely, since skVRF = (u0, u1, . . . , u`), which is defined by HW-VRFs

scheme in Section 2.2, we have yagg = e(g, h)u0·(∏`
i=`−`D+1 u

di
i )·(∏`−`D

i=1 (ui+1)).
4. Let EXP(yagg) := u0 · (∏`

i=`−`D+1 udi
i ) · (∏

`−`D
i=1 (ui + 1)). The dealer checks if EXP(yagg)(modp−

1) ≤ Nmax. If it is true, then set ywin := yagg as the winning result.
5. Otherwise, the dealer chooses a random index ζ ∈ [1, `−`D] and then uses ζ to define a

new wildcard d̃′ ← ⊥ζ−1‖0‖⊥`−`D−ζ‖d1‖ · · · ‖d`D . The dealer computes EXP(d̃′) := u0 ·
(∏`

i=`−`D+1 udi
i ) · (∏

`−`D
i=1,i 6=ζ(ui + 1)), and checks if EXP(d̃′)(modp − 1) ≤ Nmax. Once finding

a ζ ∈ [1, ` − `D] s.t. EXP(d̃′)(modp − 1) ≤ Nmax, the dealer sets ywin := e(g, h)EXP(d̃
′) as the

winning result and computes the corresponding proof by using the efficient aggregation algorithm
Aggregate(skVRF, d̃′).

6. The dealer publishes the winning result and its proof (ywin, πwin) together with corresponding d̃′

within ∆ units of time after the closing of the lottery session.

Prize Claiming:

1. The player checks if e(g, h)x = ywin. If it is true, the player wins.
2. The player submits (s, r) to the dealer.
3. The dealer checks whether there exists a ticket ticketi in the blockchain C such that ticketi =

s‖(x⊕ r)‖H(x‖s‖r).
4. If it is true, the dealer checks whether the tuple (s, r) has already been published (i.e., the prize

has been claimed by someone already).
5. If the prize is not yet claimed, the dealer pays the player and publishes (s, r).

Player Verification:
Player side:

1. The player checks whether his/her ticket(s) is/are included in the blockchain C and checks
whether the final state stn of the blockchain C is correct.

2. The player verifies the correctness of d by using the verification algorithm of VDF.
3. The player parses d̃′ = ⊥ζ−1‖0‖⊥`−`D−ζ‖d1‖ · · · ‖d`D and checks if d = d1‖ · · · ‖d`D .
4. The player verifies the correctness of ywin by using the verification algorithm b ←

AggVerify(pkVRF, d̃′, ywin, πwin).
5. For each winning ticket published, the players verify the validity of s‖(x⊕ r)‖H(x‖s‖r).

4.3. Implementation and Comparison on Chow et al.’s/Improved E-Lottery

To implement Chow et al.’s e-lottery scheme, we use the instantiation of HW-VRF presented
in Section 2.2, while using our aggregate VRF scheme in Section 3.1 to implement the improved
counterpart. When implementing the winning result generation phase and the player verification
phase, we reuse part of the code for our implementation in Section 3.3. For the required delay functions,
we use an instantiation of VDFs proposed by Pietrzak [29] (see Appendix A for details), which is
defined as D(x) := x2T (modN), where N = p1q1 is a product of two large, distinct primes p1 and
q1, x is a random element in Z∗N , and T is the timing parameter. For the signature scheme, we used
EdDSA [30] provided in the libsodium (https://libsodium.gitbook.io/doc/) library.

Parameters. In our concept implementation, we consider Pietrzak’s VDF scheme [29] with the
following parameters, where the statistical soundness security parameter of a proof is λSound = 100,

https://libsodium.gitbook.io/doc/
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the time parameter is T = 240, the bit-lengths of two safe primes p1 and q1 are λQR/2 = 256 bit
safe primes p1, q1, and the bit-length of an RSA modulus N = p1q1 is λRSA = 512. (Here, we set
λRSA = 512 as a toy example of implementation, which can be easily scaled to 1024 or 2048, if we
adjust the corresponding parameters of the hash function as well as the inputs/outputs spaces of
the VRFs.) Then, the VDF defines a function D : {0, 1}256 → {0, 1}512. We use SHA-256 as a hash
function H : {0, 1}∗ → {0, 1}256. The inputs/outputs of the VRFs are set equal to 1024 binary strings.
We randomly choose an integer Nmax ∈ Zp s.t. 1≤Nmax<p− 1, and the numbers used in the lottery
game are {1, 2, . . . , Nmax}. For every outcome w ∈ GT of VRFs evaluation, to check if w can be set as a
winning number, the dealer actually checks if the discrete log of w under the base generator e(g, h) lies
in the set {1, 2, . . . , Nmax}. In fact, as explained in the implementation of HW-VRF and the aggregate

VRF in Section 3.3, to obtain the function value Funsk(x) = e(g, h)u0Π`
i=1u

xi
i , the exponent u0Π`

i=1uxi
i is

computed beforehand, which makes it handy to decide if w can be set as a winning number or not.
Results. Table 4 shows the implementation results for both Chow et al.’s and our improved

e-lottery schemes, particularly regarding the costing time for the winning number generation and
the player verification. We employ a small blockchain scenario, where we have 1000 blocks, that is,
there are 1000 random tickets in the system. The running time in Table 4 is for the experimental
scenario that in Chow et al.’s e-lottery scheme the VRF is applied only twice and a function value is
obtained, whose exponent EXP(w1)(modp− 1) ≤ Nmax, while in our scheme the exponent of yagg is
beyond Nmax, i.e., EXP(yagg)(modp− 1) > Nmax, so that extra time is taken to search for another y′agg

whose exponent is below Nmax. We consider such a case, because it optimally shows the efficiency
gain of our e-lottery scheme over Chow et al.’s, since in this case the fewest iterative applications of
VRFs are involved in Chow et al.’s scheme, while the extra step of recomputing y′agg occurs in ours.
The experimental results show that our scheme takes less time to generate the winning ticket than
Chow et al.’s, and the player verification phase takes almost half less time as that of Chow et al.’s.

Table 4. Running time (seconds) of the e-lottery schemes.

Lottery Scheme Winning Number Generation Player Verification

Scheme in [7] 96.12992 s 4.384418 s
Our Scheme 90.13322 s 2.782610 s

5. Conclusions

Inspired by the idea of aggregated PRFs [10], in this paper, we investigate how we may efficiently
aggregate VRF values and their corresponding proofs. We introduce the notion of static aggregate VRFs.
We show how to achieve static aggregate VRFs under the Hohenberger and Waters’ VRF scheme [13]
for the product aggregation with respect to a bit-fixing set, based on the q-decisional Diffie–Hellman
exponent assumption. Furthermore, we apply our aggregate VRFs to improve the prior VRF-based
e-lottery scheme in the efficiency of generating the winner number and player verification phases.
We test the performances of our static aggregate VRFs and improved e-lottery scheme, which show
significant computation advantage and efficiency gains compared to the original counterparts.

As future work, it would be interesting to explore if it is possible to realize static aggregate VRFs
for much more expressive sets, such as sets that can be recognized by polynomial-size decision trees,
read-once Boolean formulas, or polynomial-size boolean circuits. Furthermore, it would be interesting
to consider a public dynamic aggregate VRF, which allows taking any two fresh (aggregate) function
values and proofs and combine them into a new aggregate function value and proof, without requiring
the exponential number of inputs (from an exponentially large set) to be known in advance, as required
in static aggregation.
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PRFs Pseudorandom functions
VRFs Verifiable random functions
Agg-VRFs Aggregate verifiable random functions
DDHE Decisional Diffie–Hellman Exponent

Appendix A. Verifiable Delay Functions (VDFs)

Here, we give an instantiation of VDFs proposed by Pietrzak [29], which is used in our improved
e-lottery scheme.

Given as input an RSA group Z∗N , where N = pq is a product of two large, distinct primes p
and q, a random element x ∈ Z∗N , and a timing parameter T, compute D(x) = x2T

(modN). As we
know, anyone with the knowledge of φ(N) = (p− 1)(q− 1) can efficiently compute D(x) with two
exponentiations, by first computing e = 2T(modφ(N)), followed by xe. Anyone who does not know
φ(N) (or, equivalently, the factorization of N), in order to compute D(x), is required to perform
T sequential squarings in the group Z∗N even on a parallel computer with polynomial numbers of
processors. Without the group order of Z∗N (or, equivalently, the factorization of N), the computation
of D(x) requires T sequential squarings in the group.

To convince any verifier that the published value y is correct, namely that y = x2T
(modN),

Pietrzak [29] provided a succinct public-coin interactive argument for the language

L := {(Z∗N , x, y, T) : y = x2T ∈ Z∗N}. (A1)

The verifier and prover do so as follows.

1. V sends to P a random r in Z2λ .
2. Both P and V compute x1 ← xr · µ and y1 ← µr · y.
3. P and V recursively engage in an interactive proof for statement (Z∗N , x1, y1, T/2) ∈ L, namely

that y1 = x2
T
2

1 ∈ Z∗N .

This subprotocol is repeated log2 T times, each time halving the time parameter T until T = 1,
at which point V can efficiently verify correctness of the claim itself.
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