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Abstract: In this study, a large eddy simulation (LES) for fully-developed turbulent flows through a duct of regular-polygon 
cross-section using the immersed boundary (IB) method is performed. In case of the turbulent flow through the square duct, though 
there are some disagreements of the mean quantities related with the streamwise velocity among the present LES, the previous direct 
numerical simulation (DNS) and the LES without the IB method, and the present LES can reproduce the secondary flow of the DNS 
and LES. The LES result for ten types of regular-polygon duct shows that the secondary-flow speed decreases as the number of sides of 
the regular polygon n increases and that the secondary flow in case of the regular icosagon duct disappears like the turbulent pipe flow. 
In case of low n, the behavior of the turbulent structures near the side center is different from that near the vertex. 
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1. Introduction 

The flow through the ducts is very important in the 

engineering and the ducts are roughly classified into 

the circular pipe and the rectangle duct according to 

geometry. In the laminar flow, there is no large 

difference of the profile of the streamwise velocity 

between the geometric shapes of the duct 

cross-sections and no flow perpendicular to the 

streamwise flow occurs. On the other hand, in the 

turbulent flow through the square duct, the mean 

velocity in the cross section occurs due to the 

streamwise driving force as well as the streamwise 

mean velocity unlike the turbulent pipe flow. This 

cross-section flow is called Prandtl’s secondary flow of 

the second kind and is caused by the anisotropy of the 

Reynolds stress [1, 2]. The secondary flows have been 

studied to research the effect on river bottoms and 

channels in the civil engineering. We have also 

performed the direct numerical simulation (DNS) for 

the turbulent flow in square ducts adding system 

rotation and compressibility effects [3-5]. However, 
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the flows through the ducts with the cross section 

except the quadrangle have been little studied. 

Thus, in this study, for the purpose of examining 

how the secondary flow changes with geometric shapes 

of the cross section other than squares, we perform 

numerical simulations for the turbulent flows through 

the ducts with nine types of regular-polygonal 

cross-section and pipe. The cross-section shapes 

adopted in this calculation are regular triangle, square, 

pentagon, hexagon, heptagon, octagon, decagon, 

dodecagon, icosagon. However, in these flow-fields, it 

is not possible to construct a grid system whose lines 

are orthogonal except for regular square and circular 

cross-sections, and it is difficult to perform an exact 

simulation like DNS that needs the high accuracy 

scheme. Therefore, we perform the large eddy 

simulation (LES) combined with the immersed 

boundary (IB) method proposed by Goldstein et al. [6] 

for the fully-developed turbulent flow through the 

regular-polygon ducts. In this LES, the cross section of 

the regular polygonal duct is reproduced by the IB 

method with the uniform orthogonal grid-system. In 

this paper, after testing the prediction ability of this 

LES-IB code in comparison with the DNS and the LES 

without the IB method, we will examine the 
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dependency of the secondary flow on the number of 

sides of the regular polygon by the present LES results. 

2. Analytical Equation 

The analytical equations in the eddy-viscosity-type 

LES and the IB method are written by 
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Here, u
i  is the grid-scale (GS) velocity,  p  is the GS 

pressure divided by the constant density, ν is the 

molecular viscosity, and νSGS is the subgrid-scale (SGS) 

eddy viscosity. In this study we adopt the 

coherent-structure Smagorinsky model proposed by 

Kobayashi [7] as the SGS model. This model has a 

great merit that we can carry out the LES without 

wall-damping function and tuning the model constant, 

and the SGS eddy-viscosity is modeled by 
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Here, Δ is the subgrid characteristic length scale, Q2 is 

the second invariance of the GS velocity gradient, E is 

the magnitude of the GS velocity gradient tensor, s  is 

the magnitude of the GS strain tensor 
s

ij . The 

definitional identities of these quantities are expressed 

by 
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C is the fixed model constant, 0.05. fi is a constant 

driving force in the streamwise direction and its 

magnitude fn is dependent on the number of sides of 

regular polygon, n. Thus, using n, we express the 

driving force by fi = fnδi1. The last term gi in Eq. (1) is 

the restoring force for the solid body in the fluid 

according to the IB method proposed by Goldstein et al. 

[6] and is given by 
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where α and β are positive free-parameters, 200 and 5, 

respectively. The function γ means the ratio of the  

solid volume to the lattice one defined at x and 0 ≤ γ  

≤ 1. 

3. Flow Field and Numerical Scheme 

In this section, we explain the mathematical property 

of the regular polygonal with n sides. In its 
circumscribed circle, the central angle for a side, n , is 

2π/n. Using the cross-section area Sn, the radius of the 

circumscribed circle, rn, is expressed by 

r
n


2S
n

n sin
n

              (6)
 

As an example, Fig. 1 shows the calculation domain 

and the regular-pentagon duct. A top point is placed on 

the positive y axis and the coordinates of all vertices are 

written by 

P
k
 r

n
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n
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n
cos k

n          (7) 

with k = 0, 1, ···, n-1. The length of the side ln is 

l
n
 2

S
n

n
tan


n

2
             (8)

 

The limit of rn as n approaches infinity is
 

/r S  
 

and the regular polygonal corresponds to a circle. 

In this study, the Reynolds number defined by the 

global friction velocity u  
x  as a characteristic 

velocity and the square of the cross-section area Sn as a 

characteristic length is fixed as 400. The bulk-level 

balance equation of force is 

0  nl
n


x
 S

n
f

n              (9) 

The driving force is dependent on n as follows 
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Fig. 1  Flow configuration and coordinate system. 
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On the condition that Sn = 4 and 
x
 1 , the 

maximum value of the force is f
3
 33/4  2.28  at n = 3 

and as n increases the force is monotonously weakened 

into the circular value f  
1/2 1.77 . The difference 

between the driving forces of a circle duct and a 

dodecagon duct is 1.28% and the force of an icosagon 

one is very close to that of a circle one. 

In this LES, we use the numerical scheme with the 

conservative second-order central difference as the 

spatial discretization, the second-order 

Adams-Bashforth method as the time integration 

method and the direct method combined with the 

fast-Fourier transformation analysis in x and z 

directions and the tridiagonal matrix one in y direction 

as the pressure solver. The calculation domain is 10 × 

3.6 × 3.6, which can include all regular polygonal, and 

a center of balance is matched with the origin of the 

coordinate. Thus, a considerable number of grid points 

located away from the center of balance are in the 

solid-wall region and the virtual force acts there in the 

IB method. It is necessary to set up fine-resolution 

grids near the wall in LES and the cross section of the 

regular polygonal duct is resolved using a great 

number of uniform grids. We perform the present LES 

with 64 × 512 × 512 and the grid resolution for the 

cross section is about 1.4. In order to check the grid 

dependency, we also simulate the LES with the IB 

method by coarse grid system, 64 × 256 × 256, and it 

is confirmed that the difference between both results is 

small. 

The mean quantities are estimated by taking the 

spatial average in the homogeneous x direction and the 

time average, and moreover those values are calculated 

according to the symmetry of regular polygons. In this 

symmetry analysis we utilize the coordinate 

transformation from Cartesian coordinate system and 

cylindrical one. 

4. Verification of the Present LES-IB Code 

Before examining the present result of the 

regular-polygonal duct case, in order to check the 

present LES code, we compare the result in a turbulent 

flow through a square duct at Re = 400 with those of 

the previous DNS [8] and the LES without the IB 

method. The LES is performed with the nonuniform 

grid system 643 and the same SGS model [7]. Fig. 2 

shows the streamwise mean velocity U and the 

streamlines of the secondary flow. In this figure, we 

rotate the results of the DNS and LES without the IB 

method by π/4. There are good agreements of the 

distribution pattern among those results, but the 

streamwise mean velocity of the present LES is 

underpredicted in comparison with the DNS and LES. 

On the other hand, the maximum values of the 

secondary flow are 0.309 in DNS, 0.321 in LES and 

0.346 in LES with the IB method and the present LES 

can reproduce the secondary flow of DNS. 

Next, let us compare the distribution of the Reynolds 

stresses. The coordinate system used by the DNS and 

LES without the IB method is rotated by π/4 with 

respect to that of the present LES. Therefore, we 

transform the Reynolds stresses ui u j

O
 of the DNS 

and LES to those ui u j

N

 in the present coordinate 

system as follows. 
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Fig. 2  Contour of the mean streamwise velocity and streamlines of the secondary flow. 
 

u u
N  u u

O
            (11) 

v v
N 

1

2
v v

O  2 v w
O  w w

O   (12) 

w w
N 

1

2
v v

O  2 v w
O  w w

O   (13) 

u v
N 

2

2
u v

O  w u
O        (14) 

v w
N 

1

2
 v v

O  w w
O        (15) 

w u
N 

2

2
 u v

O  w u
O       (16)

 
Taking into account the π/2 rotational symmetry, the 

four elements of the Reynolds stresses are shown in Fig. 

3. Although there is good agreement of the distribution  

 
Fig. 3  Distributions of the Reynolds stresses. 
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shape of u u  among all three simulation-results, the 

present LES has a maximum value of about 6, which is 

smaller than about 8 of the maximum one in DNS and 

LES without the IB method. The present LES with the 

IB method underpredicts u u  like the streamwise 

mean velocity. On the other hand, the present LES can 

properly reproduce v v  and u v  of DNS and 

LES. However, explaining in detail, the positions of the 

v v  maximum value are slightly shifted near the top 

and bottom vertices and those of u v  are displaced 

to the left and right ones. The distribution of v w  in 

the present LES is not similar to those in DNS and LES. 

The present LES is able to reproduce plus or minus 

sign in each quadrant, but has a large value away from 

the wall. 

The above results indicate that the present LES with 

the IB method does not have sufficient prediction 

ability to evaluate rigorous physical phenomena, 

however, the qualitative investigation focusing on the 

behavior of the secondary flows in the 

regular-polygonal ducts is allowed. In addition, this 

inadequate prediction ability seems to be due to the IB 

method rather than the SGS model. 

5. Numerical Result 

First, the dependency of the number of sides n 

between the bulk velocity UB and the maximum 

secondary velocity Vmax is shown in Fig. 4. As already 

mentioned in previous section, UB in the present LES is 

about 12.5 and small. As n increases, UB slightly 

increases by about 1.6%. On the other hand, it can be 

confirmed that Vmax monotonously decreases to zero in 

the turbulent pipe flow as n increases. In comparison 

with Vmax of the equilateral-triangle duct, Vmax of the 

regular-decagon duct is about half, and Vmax of the 

regular-icosagon duct is reduced to about 10%. The n 

dependence can be decomposed into two parts at n = 8. 

In the region of small n, Vmax gently decreases by n-0.337 

and in the large region, rapidly decreases by n-2.47. 

The results of the streamwise mean velocity U and 

secondary flow are shown in Fig. 5. The colored  

 
Fig. 4  Bulk velocity UB and maximum velocity of the 
secondary flow Vmax. 
 

contour chart indicates the distribution of the streamwise 

mean velocity and the uncolored one represents the 

streamlines of the secondary flow. The contour interval 

between the contour lines is equal in all cases. In the 

cases of the regular-triangle and square ducts, the 

cross-sectional shape has a great influence on the 

high-speed contour lines of U in the duct center. 

However, as n increases, more and more contour lines 

become circular. In particular, the distribution of a 

regular dodecagonal duct is very close to that of a 

circular pipe. Next, focusing on the secondary flows, 

2n circulating flows appear in the cross section up to n 

= 12 and the secondary flow is not generated in the 

regular-decagonal and circular ducts. Assuming the 

symmetry on the mean quantities, there is a pair of 

cyclonic and anticyclonic circulating flows in a triangle 

consisting of any one side and two segments connecting 

its edge-points with a median point. The secondary 

flow in the equilateral triangle and regular square is 

very strong and its circulating flows extends to the 

center of the duct. As n increases, the area reached by 

the contour lines of the circulating flow becomes 

smaller near the vicinity of the wall, and the magnitude 

of the secondary flow decreases. Since the convection 

effect of the secondary flow weakens in the large n case, 

the overhang of the distribution in the streamwise mean 

velocity to vertices disappears. As a result of this LES, 

the turbulent flow through the regular-polygonal ducts 

with n ≥ 20 is very close to that in the pipe. 
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Fig. 5  Streamwise mean velocity U and secondary flow. 
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Fig. 6  Reynolds normal stress u u . 
 

Fig. 6 is the distributions of Reynolds normal stress 

u u  and the high values are found at positions near 

the middle of each side. The influence of the 

cross-section shape is more apparent in u u  than in 

the streamwise mean velocity. In Fig. 7, the vertical 

component v v  becomes high near the parallel or 

gentle slope sides to the horizon and small near the 

vertices. In the circular-pipe case, this quantity has a 

vertical symmetry and is large near the top and bottom. 

The distribution in the regular-decagon duct is very 

similar to that in the circle duct. When n is a multiple of 

4, the distribution of v v  matches that with w w  

rotated by π/2 from the symmetry of the regular 

polygon. In Fig. 8, we compares the vertical and 

horizontal stress components v v  and w w  for 

the case with odd n for which this symmetry is broken. 

The distribution of v v  is very close to that of 

w w  near the lower slope-wall in the 

regular-heptagon duct. This cause is that the angle 

between the lower side and horizon is close to π/4 and 

that the length of the side of the regular-heptagon duct 

is shorter than that of the square duct in which the 

distribution is asymmetric with respect to the midpoint 

of the side. 

Next, we put a focus on the Reynolds shear stresses. 

u v  and w u  are related to the streamwise mean 

velocity and v w  has an influence on the secondary 

flow. The results of the primary shear stress u v  are 

given in Fig. 9. u v  tends to be very large near the 

side wall with z = 0. In particular, the result of the  
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Fig. 7  Reynolds normal stress v v . 
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Fig. 8  Reynolds shear stresses v v  and w w  with odd n. 
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Fig. 9  Reynolds shear stress u v . 
 

regular hexagon duct shows the positive and negative 

large peaks near the side wall parallel to the z axis, but 

as n increases the regions including these peaks 

connect to the same-sign regions near the neighbor 

sides. The distribution of the regular icosagon duct is 

similar to that of the circular duct by eliminating the 

effect of each side. The relation between u v  and 

w u
 
is antisymmetric with π/2 rotation when n is a 

multiple of 4. Thus, the results of w u  in the regular 

polygonal ducts with odd n are shown in Fig. 10 in 

comparison with u v . w u  tends to be positive 

at the upper region and negative at the bottom one. As n 

increases, the distribution of w u
 
changes to be 

symmetric up and down. As can be seen in Fig. 11, in 

the case of all n, v w  is positive in the first and third 

quadrants and negative in the other quadrants like a 

four-leaf clover. The small regions with its reverse sign 

appear around the clover-type distribution in the case 

of the equilateral triangle and regular square ducts. The 

small region reduces at n = 6 and 10 and the only 

distribution of the clover type is found in the regular 

icosagon and circular ducts. 
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Fig. 10  Reynolds shear stresses u v  and 

 
w u  with odd n. 
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Fig. 11  Reynolds normal stress v w . 
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Fig. 12  Visualization of the streamwise low-speed streaks (blue region) and vortex structures (yellow one). 
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Fig. 13  Occurrence rate of the low-speed streaks. 
 

Finally, the results of the visualization for the 

instantaneous field are given in Fig. 12. The low-speed 

streak and vortex structures are visualized by u' = -3.5 

and Q2 = 0.025 which is a second invariance of the 

fluctuating-velocity gradient suggested by Hunt et al. 

[9]. In the result of regular-pentagon and hexagon 

ducts the low-speed streaks tend to appear near the 

center region of the sides. However, the result of the 

regular-decagon case does not have this tendency and 

is similar to that of the circular case. In previous LES 

study [10] on the compressible channel turbulent flow, 

few vortex structures were detected, but a large number 

of vortex structures are detected in the present LES 

because the present resolution in the duct cross-section 

is very fine and about 1.4 per unit of wall coordinate. In 

order to estimate the low-speed streaks quantitatively, 

its occurrence rate is shown in Fig. 13. Few low-speed 

streaks occur near the vertices in the case of the 

regular-polygon duct with small n. As n increases, this 

non-occurrence region in the vicinity of vertex 

becomes narrow. These tendencies are also observed in 

the case of the vortex structures. 
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6. Conclusion 

In this study, the numerical simulations were 

performed by combining the IB method with LES for 

fully-developed turbulent flows through 10 types of 

regular-polygonal ducts. In comparison of the result of 

the present LES with those of the DNS and the LES 

without the IB method with respect to the turbulent 

flow through the square duct, these were shortcomings 

in predicting the quantities related only to the 

streamwise mean velocity, but the present LES could 

reproduce the secondary flow and its related Reynolds 

stresses of the DNS accurately. Therefore, putting 

emphasis on the secondary flow in the turbulent flows 

through the regular-polygonal ducts, the following 

findings were obtained from these results. As the 

number of sides of the regular polygonal increases, the 

maximum value of the secondary flow decreases 

monotonously, the region of the secondary flow 

becomes small and appears only near the wall. In the 

regular-icosagon case, the secondary flow almost 

disappeared, and the distributions of the mean 

velocities and Reynolds stresses were almost the same 

as those in the circular pipe. There is a difference of the 

appearance of the turbulent coherent structures 

between near the vertices and the middle points of each 

side in the case of the regular-polygonal duct with the 

small number of sides, while in the case of the 

regular-polygonal duct with the large number of sides 

these behaviors almost disappeared. 

In future, we will look for the cause of the 

underprediction of the streamwise mean velocity and 

try to improve the simulation code. In addition, we will 

investigate the effect of the Reynolds number on the 

relationship between the magnitude of the secondary 

flow and the side number of the regular-polygonal 

duct. 
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