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* :. -9<".PREFACE

The theory and applications of Kalman filtering have now been under development for over , .

--ton years. Thin geeural area -has aohieved a lovel of mnturzity and inportaiuoo to easily
justify a thorough treatment of the subject. Io view of Lhe particular inportance of Kalman-
filtering teohniquics to the field of guidance and contrul the Guidance and Conitrol Panel of

NATO-AGARD recuoimended that such u text be developeld under the auspicee of NATO-AOARD." "-...

This textbook in the result of that recommendation. The text Is organized into three ....t,_

principal parts. The first part examinen the theory of Kalman filtering in depth. A umber

of significant ,ew results of fundamental importance are included here. For instance, such-- . ,.' ,
questions as existence of Kalman filters under very general conditions, Kalman filtering for .,

Gauss-Markov processes, nuboptimal Kalman filtering techniques, and other areas are treated '.• -,
here.

The second part of the text deals with the general ares of related topics. Qiestions of ". %
the comparison of Kalman filtering witd other approaches such as Bayesian andi maximumn" ..

likelihood estimation, nonlinear filtering, linear and nonlinear smoothing (post-flight data
analysis), .nd other topics are reviewed in deph i. this part,

The third part is a very comprehensive review of many of the Important applications of
Kalman filtering. Although many very specific areas of application are treated in this part,

.many -general .principle$ and .beohni-quos rfr ,a very-broad ruse -of 4wppllstions of .Kalman
filtering will be found here. As a result, the reader should also find this part quite
valuable no matter what particular application he might have in mind. '.

It is a great pleuure to acknowledge the contributions of many individuals who made thia s" '.

text possible. First of all, Professor W.Wriley' a contributions as the first Panel Chairman

pf the Guidance and Control Panel cannot be praised too highly. His outstanding efforts in • ".. ' •
ggidin• this Panel during its formative states cannot be praised enough. This book is one - I -s. i
of the fruits of his efforts. All the members of the ouidance and Control Panel were solicited
for their advice and suggestions, and their help is also greatly appreciated. Colonel
L.Busarean and hir.Frank Sullivan provided much Important support. Air 0.H1. Rohuok made woany
important suggestions, Colonel W. Studabaker and Major C. Mount provided invaluable stance" -"

In their roles as Guidance and Control Panel Executive Officers, Mrs oladys Flynn provided .

may Invaluable services. ,

Cornelius T. Leondes

ili .. ,ft." .f,

-f. f f tI

,Wi '-ft ftftf

- ff&N.fft,
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NOTATION '

t the independent variable, unuaily referred toj as time

to ~Initial im

LM ~ t the residual or innovations procena and defined to be r(t/r) 4 (t) - tH(t)jPt/r-)

!(t) addit lve white-nolum prncene In the measurement data with mean zero and covariance matrix

R(t),( - T)I 1(t) additive white- toise process in the plant with meanh zero andl covariaiiee matrix Q(t)b(t -r)

1(t) ~tho n-dimensional state vector described by a linear differential equation j-r(t)l+ ' '~ -

i(tl/T) est imate of the state l(t) given the meamurement data Z(7-)

jam'r error iii tho estimate. XWt/) 4 X(t) -i(t/'t) a'

1(t) the noioe-free measurement data, 1(t) 0 11(twxot
1Mt the measurement data, 1(t) H(t)&+z %* *

1(r) the measuremsent data, Z('r) for all t0 4 r <t

C(t) croess -orrelat ion matrix for plant and measauremsent noise, El!(0T)!'r)] C(t)S(t -,r) A______

~ ~ )Plant matrix, jT tj+w
R*9, k

H(t) observation matrix, ji' (t) + v

X(t) optimal gain matrix for unbased minimum variance filter %

M0t.'1 observability miatrix. M(t,lr) Cldo

P~~t/r) covariance of the error in the estimate, P(t/r) EZt/)t/rJ*a. ..

QMt covariance matrix for the plant noise !(t) b'Ia/h *a,

1(t) acovariance matrix for the measurement noise ~t

f(t,.r) transition matrix sassociated with the plant equation, 4(t momF~)~-r) , *tr,.r)

T(t.'r) transition mtiasoaedwith the fitrdnmo, .r I~)-K(t)H(t)Pl'(t,'T)-M*'. -

I Idetitymatrx ofappropriate dimension

U) the quantity ()in a vector (or column matrix) ~

)T the matrix trinspoae of(

the matrix Inverse pf

)-Tthe matrix inverse of

IMa expected value of the random variable a . **,..-

1(') ~the Dirac delta function ---

* C) C I the quantity ()is defined to be equivalent to



1. TH IER SIAIO RBE

1.. 1 ordcint h ierEtmto rbe

A lag*cIat f@tlutin-iolm ncocrr ihfIdIfra itIm a ni f1 ueqinIYOnulnw

1.f ntriseuation tso weightinga fustiaion whrcblenm ovle ihtecrutdlna esrmn.Douo e

paramoeter aMrnimom Yar1&ble, orM a f r t hei random) signal Sincar futh ioneof hif equaltion canorr ntly benov ddi %o

expailably fo fori generil atngteestiae of the geeafrbetirst aorkhas onl thismltedo problemsl ws porforatid o
Myawus geeainathe n, ealo1f 5. this work heep esentued int e t94016unrd e00stimatnoes of thesew iparovedtse practical

In the 1earls the' Widaogener' atnd olenogorov3 attacked athe as fcurobvlemwis dingrdcd iT hi esima retio of ranois.

stimulated by the increased usage of digital computers. These estimates are generated dynamically and the data
processing algorithm Is either at differential or a difference equation. Carlton' asserts that the first work on
this subject wasn done by lollin' about 1055. In 1988 Swerling published a Rand Corporation report (which received .'~ 2 \i
wider distribution in 1959 in the Journal of the Astronautical Sciences'0 ) that Presented a recuraive filtering .

procedure similar to that described shortly thereafter by Kalman"., The latter work Is generally considered to"
hbave sparked the widespread intoanat in th6s ubj~ect -and subsequent references to "Kalman filtering".

%The paper by Nalman11l in 1900 introduced at different approach to the problem of Wiener and Kclmcgorov for
random sequences. In 1901, Kaiman and Buty'5 generalized the results to random processes. Basically, this
approach circumvents the problem of solving the Wiener-flopf integral equation, By recognizinv that digital . .*a.,.

computers are such more effective ait solving differential equations than integral equations, Kalman and Buoy. V '

transformed the integral equation into an equivalent differential equation. Then, father than demand an analyti- .,.
cal solution for this equation, they recognized that, from a practical standpoint, it is better to put the com-.
putational burden on the computer. These results are closely related to those obtained f or sequontial least-squsxea.
estimation. The practicality of the Kalman approach to the estimation problem has made it immensely Popular In ,. '..*.

P''0Aerospace Applications, such go in navigation And guidance.

It Is the Intent in this chapter to discuss the fundamental aspecot of the unbiar-ed, minimum variance, line ar
esiainproblem. The treatment of the problem as presented here has identifiab~u roots In the paper by Kalnan

and U~y1 Howverthe

cnltothe theoretical structure. It may be an overastatment to suggest that there are as many derivationsD5

teeaemnaprahstth Probl~m and each has its vociferous supporters. It is not practical, nor is it -*1

deialt tep ostsyall tastes.- The developmient here is designed to appeal to intuition and to '. *.*

provide insight that explains those asiepeatt shich may not be obvious, In taking this approach, mathematical
rigor Is sacrificed or details are omitted when it appears that greater clarity can be Achieved by ignoring what ,.* a~

amounts to be a technical detail, that does not affect the finiml results. A

The basic mathematical model and a more precise definition of the linear estimation problem are given in '
5ection 1.2. lose variations and generalizations of this model and problem are consiodered in Sections 2 and 3.
A detailed summary of the moeimportant results of Sections 2 and 3 is given In Section 4. It Is suggested

* that this section be read after completing section 1.2 and before going to the datailed discussions of Sections
2 Lad 3. In this way this summeary can be used as a guide through the seeming morass of Kalman-Buoy filter theory. ~

~~A41.3 The Mathematical model and Problem Statement

Consider a dynamical system whose state evolution Is described by a linear, stochastic, vector differential
equation.

4K'.

y *a ~ a'~ * v 5 -. :a~ K-.:. ~ :~a.;.A: *'..~:-Ž 57A -- ~~KK '. ~ 5 '%



where .
i s sic n-diaalrieioral state vector

F(t) Is sit fix n i atrix whose ~iienieritm are conltillitoul functiuris (if tile indeperxIidnt variable t

! is anl i-dimeninalaai gauscatia white-noise process with tile followink statintics

al-t) 0 far all t

where Q(t) it, an nl n symnmtric, nolt-noCative-r!efitiite matr'ix and 8 (t -,r) in tho Djirac delta function.

% so Thin initial state A(to) Is a ruticiot variable with known statimat r.

E{(~t) -!o ~( _I -a T) M,

Also, 1(t') is independent of w(t) that i3,

V~ 
.

The solution of Equation (1Ii) is given by" t~ oral

1()--0t~'la)+ t (,or dr

where it(t, 1) in the transition matrix and in the solution of thq miatrix differential equation

dmo'( Or.) I for all r, .

The transition matrix baa the property that -

0(tktj)~tj'I) ý(tkti) for all tkltJt it

This implies that

so that 4 Is nonsingular for altet~jITeslto n t rpriswl eue ntesaqdn
discussion. 1

Th nyifrainavailable about the state are m feasurements 1(t) that are rolate't to 1 (t) accord. .

iii; to 
1

The plaint noise r(t) and the measuremient noise 1(t) are assumwed to be independent for most of the dim-
ousion athogh hegeneralization to correlated proceasse is disoussed in Section 2.1.3. The symmetric ma X nY" urixR~t mus beassmedto be positive-definite for the straightforward developmsent of the Kalman filter
ovtos Wa ~) sntposit ive-definite, it is necessary to introduce the special considerat ians relating . '4,

toteolrdniopro'llem dicse nScin22 lo yacorruption of telnugthe matrices Qt~o\ 5t'a



fIti~osd, itinh'mlkm Vorluore, L~inear Est "imt ion Prublemi

alven thn linvar syntem demcribed by Equat ions (1. 1) and (1. 2). dotrii'ulil ail estimntv Rt ii) of the state '

X(t) that Init ii eIU r func'tion of ell nvusurviment dulta* zi1.) t 0  <. T ! and salt lisfW til foillowinlg
conditions:

(1) J2tJ1) In unbiased no thalt. ' *

I ~ ~(it) 1(tIT) in "bent" in the aelise thait the expectedi value of the square of the errc.r mlagnitude 15 mininlizo.d. *!~
4Thus. the estimate J(t 1-t) is chosen no that

E(f1(t) _ g(tir)JT [gji) j _tI)J } millirlmut

The estimate thrit In obtained deponrlm upon Cile amount of data that hi avail able (lo.- es dnfined by r) Anl can
'o delictibnd Ini termm of three m,,i'c iii problems.

Prediet ion! supjione tliat tbie tititt litt P time t in to bn enst imated from datil Z(I') whfirp < t .Thus.
the state 1(t) in to be predicted from data obtained lit times prior to the tinei t . This sablli be referred
to her. an the prediction problem.

Filtering. Consider the problem at estimating tho &(t) from data Z(t (I.e. T 0 t). This shall be r
referred to an the filtering problem. .' * *

&o~tlling! Suppose that the stati' ,t~t is to be estimated from data Z(-r) where T > t ,In this case
-~~ 1(t) Ini estimated from data obtained at times prior to, coincident with, and subsequent to, the tilme of

interesa, t ,Thin shall be referred to ats thre smoothing problem.

'S l.~~ r,%'iSpThose three special ciases of the estimation problem aire also referred to is the extrapolittioli,,smootiNg and
interpolat ion proilleirs (see. for example, Refereiroes 2 and 15). The problens havo boon stated in thie ardor orf ~ .~%'~.k
increasing complexity of solut ion. The emphasis here is upon the prediction and filtering problems. although ~*

S ~~~the smoothing problem is discussed briefly in Sect inn 2.3. The so-called Kalman-Buoy filter is involved'with .- * s
the first two camoe. '*:

1. -SOLUMTON 'U THE LINEAR' N9tMATXON PROBLEM10

A deivaionof he alma-Ruy euatonsis pesetedIn hissection that aplsprimarily toInutv

reasoning rather than mathematical rg.Thsapocintaken Initially to poieinsight intoth arcr

ofthe solution which is shown more rigorously in the following section to vprovtIe the unbiased, minimum varianc a*
estimate of the store 1(t) bosed on the measurement data g(t)

Spoethat an estiimate of the state X(tn) Is available at some time to that is based upon measurement I
daa&t).Let thoestimate be denoted as R(tnito) . In Equation (1.1), it is seen that the str.6 changes

In accordance with a linear differential equation with a white-noise forcing function, The process ,)(t) has
zero mean and the value at different times Is uncorrelated, regardless of thý magnitude of the time difference. ~*
Thus, it is reasonable to expect, in the absence of Additional data, that the behavior of the estiniate would be tp described by

where 1(toIt) is known. But when measurement data area available for time subsequent to to one can consider .Q '
the residuanl (i.e. the difference between the measuremvent data K(t) arid that predicted by the estimate ..

Bect ion 2. 1. 2. ~.' .

4 The residual can be considered to provide an indication of the error in the estimate Lit it) . Let usu assume
t hat this error will be used to modify the estimate proviled by Lquation (2.1I) by introducing an uniknowni weighting K ..
or gain matrix K(t) - Using this weighting viatrix. assume that the eatimate. including all new measnrement data, . _

isto have the form

C~escefeeth) t= ealleulon t , , K(t~l[,(t)- H(t)j(t~t)J for t> to - (2.3) ,

.144 4%



where Ito) ia knownt. To .4izpl ify nnt.t ion, tho-argum hits of thn entimate will bie suapjrvm~od, s~n LtI~itti~ ~
will be iiynioiyinous with 1£tit

Using the form assuned tin Phuaition (2. 3). thne mntrix K(t) will be chusen so' thait the' vnrinnet, of Ithr' rrror
in minimized -is required inn the %tatement. of thc filto~ring probIrni lit Sectioin 2. L. Notme also thitt thp smout ton ~ ~~
o f Ecanut inn (2. 1) yields the sol tt lo.i uf thn' predint ion Inr.hleni for t ;1to

First note that the c,.tirnte provided by quat noni 2. 3) Inuis m nlrmed It the initial conditionts art, nolictod
in ann apniropriato mnuner.

Equat ion (2.3) is 'vn unobinned est imator if thr. initial co~ndition J(t0 1 to) sattifiesr th! co'nstruimng th~ii

E t 1 o) Ek(.to)] (2.4) S9 ¶

- ~To 14orify this, nlut@ from Equiat ion (1.1) that

k~nd from E~quatiton (2.3) that

Buat from Equation (1.2) oneo seen thaet

fs loo ththat(]:t....q o..

Etj] T(t)IE(g1 4. K(tHtht){E(j] -E(&1)4'.~..~..

* hum, It flosta

- IC - I(t) - K(t)ti(t)}E~z -j V 4''*
dt - *,c4 '

*This is a hoviogenraous, linear differential equation in the variable S(a-2 so Its solution has the general
444 ~form

S[ 0 LL~t) 0 -( 0 t) 1t, t4 4]

The matrix V~ Is the transition matrix associated with the filter dynamios and is the solution of the matrix
differential equation

T (t~t0  [rE(t) -Kt)Ht)t]Y(t.t 0 .) Vt 0 ,tc) I

'.1 Thus, If c(a(y0 ] 0E[ZVt 0Iyl)

it follows that 111(t)] S11(tit)) '.

so that the estimate is unbieaud.

Using the form for the estivate assumed in Equation (2.3), consider the reformulated filtering problem. Doter
* ~~mine the timve-wanying matrix K(t) so that E(ij T aI) is minimized.

so~ that (I)t& )l E ]
Straoe 2[flc]

* ~Define p(tlt) K 1I(tlt)IT(tlt)) 26

Th.It is desired that thit, #ain matrix K(t) he chosen to minimize the trace of the error CovarianCe matrix s

The rate, of chance of the error in the estimate is obtained by using Equations (1.1), (1.2). and (2.3). *

%



d d d,'N -dt dta- fit:.

Z [F(t)a -K Pl(t))j - K(t)X [+-a(2.7)

The roet. of change of the errojr c'oveirienr' matrix Is giveni by

dt
-(P) E(RJT] + Ei (2.8)

dt* A

where .. .v
F~~~~~ft~~ ~ TKE F()K~~jtji (t)ygT 4 WR} .

Put it follows from the xanunpriono about thu noise proocesnes that.

and EwtItt) {Q(t) %

iFor example, consider the first of theme two relations. The solution of Equation (2.7) has the forat %

I~tl) '(t~0)[t~i 0) .JtI~(~r~(1)(r)dr + J '(t.'r)y1(-) dr

Using this, one mees that

to to

and C1X(t)1?('r)) =0

from the basic assumptions, ao that ,'

E[Z~)KT~itt It SJRr (t 7 K~(7I TT(t,,) dr

-+Kt(t)KT(t)

As a result, the error covariance matrix is found to satisfy the differential equation.

P F()-K( t F( t H()T+K( tK t ' 29

dt

* ~~~~~It is Important to realize that Equation (2.9) describes the behavior of the error coveriance matrix for any .w 4 ,\'i..
gain matrix K(t) . This relation is next used to derive the K(t) that yields the minimum error variance. 1%J.
Also, note from the definition that P(tlt) in symmotrio.

Combine all terms that contain the unknown gain matrix K(t) . Then

I'F(t)P + pjpr(t) + Q(t) + {K(tiR(t)k
T(t)-.K(t)H(t)P-P11'(t)KC

T(t)}

The terms outside the brackets cannot be affected directly by the choice of the gain matrix K(t) ,so they will
be ignored for the moment. The Matrix R(t) has been aestsued to be symmetric and posit Ive-definite so it can
be factored into the product of a nonsingrular matrix S(t) and its transpose 8T(t) h. '

Assumee the existence of a motrix Aft) such that

X RKT -KHP - PHTKI KS - A] [K8- A]T AAT.



For this to be valid, choose

where~( denotes the inverse of )T] With this choice for A the difforen i aI ecquation foi- P becomes a'.,. • %'

Thsthe gain matrix enter: t26 qu:draticterm; lne o a prosc~.:H ribed i.ni:tia auePt adT.-nt

It ollws hat(tra~e P') is minimizoid at vach time by choosing Kit) so that f'in as smaill as ponsihlo. This

Is onop~hdb hoosing K so that the quadratir terin in Eauntion (2. 10) im silmiontted. Thum, tti' opt imal %~

gain is '.

and the error covariance m.trix for the optimal gain is described by %

=p(t)p + POT (t) - PH T(tr'm(tulpt + Q(t) .(2.12)

with prescribed initial condition P(t0 ) . The arguments lending to Equations (2.11) and (2.12) can be made

more preciise by using variational arguments, as discussed by Athens". The error covariance matrix Pitit) is
determined by solving Equation (2,12). This equation is a matrix Hicatti equation" and Is disoussed in more . 4

detail In Section 3.2. I..

This completes the heuristic derivation of the equations of the Kalmar'-Buoy filter. ., *~~

1%'

Slusmary of Principal Results siae(.)i

Th unisd iiu ainc siaeo h ier ytmdsrbdb qutos(.1 1 )i given

where j(t0 It5) lis selected an that '

The optimal gotin matrix is gifem by ~4
K(t) aP(tlt)k

T (t)RV'(t) (.1

~ and the error covariance is obtained as the solution of the satrix Ricatti equation

dt (.2

2.1. 2 7The Innovat ions Approach %~
Amore rigorous derivation ofthe solution cof the linear, unbiased. mianimut variance filtering problem isn

j4 presented In this station. The approach follows that of Kailath" and has a strong similarity to the derivation ~ '

prsne yKalman and Buoy in their original paper 1r. 4

STo begin,. the prnparties of ti1e residual t(t'. defined in Equation (2.2) will be examined In sore detail. z 'O-,t
Xlahrefers to this procesai as the innovations process because the residual contains in essence the "now" 4

Information contained in the measurement data A(t).

pherocess N %~.-.,

is a mbiie-notire process with the same statistics as the measurement not*# process X~t) whien 1(tlt) is the___
miimsum variance estimate of &(t) using Z(M~ , j

44-0 ,C %'4
4 ~~4



The plausibility of this statement can bo seen by direct calculation. First, verify that X(t) is a white- a .

noise process.

la ~) H(t)1(t t +!t) (2.13C)

andtt~~() +tt H(~t)XTts)]

Coneunl Ea)at.-1tt

Supos t >, sn Euto (2.10)7)r

E Er uatio n Q(2.17)I si that(f(sis Ej i)Tm)

thate y (t) is a white-noise process,

But i(tt is well fnond tas the error InO th mnmm aine estimate ofs bet fortheodatnals to <t an !the iesure-

sad IE I(t) T~t) R(lt)3 ( t-t) 0 < EC~ ttt) (217

ITthes propariaty 1(lt!( is finite so itton21. n is es ntilyte ligiberb ompfqarison.wt ~)(-) ado

% ressuidu tal r(tt) rersetslthea dffernctio betheeth ne measurement daa ( t) andt the piiumvre iactio base o .

mall, eItflows fata 'tqut) . hu (2.1 ) contan thnomto en otiue yte *t o rt n

CErocess) mm ast formt<s 7

so i ony rmain toconide t a It n ncesary o dmontrae tht Er.( toInfiitein rde

to coclud tha r~t in a*hit-noie prcess
X[L~~~~~~t~~~rT~~~~~t)]a~~ zz EXt.') EZttl(l) +Syt-(~~ +EjttX~)

%* t. **

gut *~~) i eie steerri h esimt of y.q... . fo th data !(I to . a <t a d 1i(t):.is
**~,~ %* . 'a -

w. ite a a -, s



1(tlt) jI(t.s)L s) da 218

where W(t,s) iti to be chosen to that Equatiton (2. 11) is satisfied. Form

Using the orthogon~ality of the error in the estimate and the measurement data, one obtains

From the white-notso vpro~orty of K(s) ,it follows that

m~ e ]=wat.aoit(a) to 4 a t (2.19)

Since P.() is positive-definite, the weighting matrix can be determined and the estimate is given by.

.~I AAR.

Th KlanBcyfltreqatos rsetd nthe prodeding section are obtained from Equation (2.20) by difforen- .

tiating with respect to t and by using Equation (1. 1).

Differentiate i~quation (2.20) to obtain

7 Iwo.t t (1(t)tT(t))R-1(t)r(t) + f E(t)
t a1'(Cs)do

dt 1. dt

% 4,11(t) jCjtt(~R1sr o+ d

3uttbw eonttrllsq~ to 114t,44tlt.) vAn -the Plant moth. and residual are Independent. so this reduce$ to

Letting K~t) 0 2Ejz(t)r7(t)j1r'(t) (2.21)Z

tbe differential equation asumied in Section 2. 1. 1 in obtained:,,'.,

Consider N(B(t)tT(t)] and observe that

3tlict)EI(t)] Efj(t) (H(t)[(tlt) +X~)T

P~i*~)(2.22)7
sinc th esimae ad erorare orthogonal and P(tlt) 0- Ztl(tlt)1T(tlt)1

ThsI o mperaioshaed syimflaretaigP )an using the gain esalse byRutos(.2)ad(.2
Theet oeraionsaresimlarto the discussion of section 2.1.1 and, as expected, tield the result obtained

thr.More specifically, P~tit) is the solution of the matrix Ricatti equation

p(t)p + peT(t) _ H~)t-()~~ + q(t) (2.12) '

where it has been shown. usinc Equations (2.21) and (2.22), that ~

This completes the derivation of the IKaimn-bucy filter by the innovations oppro~ah..

AR %

of*



2. 1.3 Other ConsidtFro ions

IN There are many other aspects that could he cunsidereil ini cuiIjufctioh with the problem discussed In the pre- .

coding sections. Sonme of these will be treated in this section. In' Section 2. 1.2 the orthomonality of the
o~ptimal linear estimate and the assoriated error was tised without proof and this will now be supplied. Alsto,

tegencraliimntion to the ease in whitch the plant and ninacurgmunt noise processas are correlated is di~cuased.
as in the effect of R deterministir forcing function' in the plant model (e.g., &rising from control system .,

4.. ~~considerations). ~-%

2. 1.3. 1 Orthogonail projectiomns and the Wienen--ileo! rquaton

The orthogonality condition (Eqn (2. 17) ) used in Beat ion' 2.1. 2 Is at apouilal caneo of the geometric property ~
of orthogonal projection. Since the estimate is at linear function of the measurentint data, it is contained in 11A 9 _-:ý ".:
the linear subspace spiantied by those data. If the state vector is not contained in this subepance, it is clear
that the error in the estimacte will not vanish. In fact, the error will have Its sanulest magnitude when the

This idea will be made more precise below and then applied to derive thn well-known Wlenor-Hopf eqiuation and-
the orthogonality conuditions used in the preceding secition.

Conide alinarspace X such that an inner product (A1 is definod for any two elements a.zin X

Hali A.I

Eat M be a suhampace of X and consider the problem of finding a vector~ in M which minimizes

wihrespect to Any It M . The solution' of this problem, If it xits, Isgiven by the following reault. N1

OrthogonaL Projection L~emma: I~-~Iis a minimum for all1 t gM

;9I 131 for all it M ,*

if sand only if (A-J) is orthogonal to all ZeN. M"

o for all lem . (2.23)

Thus, the I eM can be regarded as the linear combination of the elements spanning M (e.g. the measurement -
data). This estim~ate yieldss'n error that is. orthogonal to -all elements I ir A

The proof of this result is straightforward. Assumet that Equiation (2,2.)) Is valid. Then, for* any y cN

Nut ( -Z)c CM so. by Equation (2.23), the middle term vanishes and

with equality if and only if ~a___

W 1 4M such that

Then I~-- 3 I'-24B+ 'I6 ~

But, by appropriate choicet of ,it is possibile to make the last two terms negative, thereby contradicting N
the minimality of

The otooaprjcinlemma can be used to derive, the Wiener-iiupf equation and associated orthogonality

conitins ortheestmatonproblem described in Section 1.2. Let X be the n-dimensionml state space end

Forconenince itwil beassumed that the variables all have zero man. The norm of IeX) ieIlINA



True the orthogonal plioJect ion lemma, the trane of the error covarlance miatrix Is mainimizeid if ' *

(AMt-1(tlt), AN~s) , E(iT(t~t)1(N)] 0 for to 4 a < t . (2.24)

Similarly, this lemma In used to establIh Xquation (2.17?) and the other ort~hooonalitY conditions used In .

Section 2.1.2.

N41To derive the Wiencr-Hopf equation for the nunntationary linear system of this presentation, suppose that an f

estimate of the state 1(t) is to be a linesar function of the measurement data Z(t) having the form -.-I It)
- W(t5#)I(a) da (.5

Ito 
f..

Since the coepotiente4 of S(tlt) can be chosen independently of each other, It suffices to chose 2(tjt) so % f

U r,{Fz(t) -galtt)];,.T (Hs 0 , to a < t_________

Using Equation (2.28). on@ obtainie ihs Wienier-Hopt equation W

1f&ct)a
7 (s)) J W(t,c')Etg(o)e T (s)j do, for to ( <t . (2. 26) N'

2.1.3,2 Correiar (on, between plane and meosurument noise proceuses
It ban been assumed heretofore that

C ~(t)j2( 0 for all t a %

In this section, consider the more general case in which ftt

A jtj1*3=C(t)S~t-s) for all t a (2.27?) '~ '2 'Li

Kslative to the development df Uedtion 2. 1. 1. note that the effect of the correlation appears 'firdt In the ftft t 't

ft.,, derivation of Eiquation (2.9). One sees, in this case, that

11[1t~ltlt z . R(t)1(T(t) + JCI(t)

and C(j(t)I'(t It)] . Q(t) - fC(t)KT(t)

Conoquenly.Equation (2.9) Is found to he modified and the differential equation describing the error covari-

l p (t p+ pr(t) + P~t
+(K(t) It (Pt) T(t) -CK(t(~iCt (t) P+ C t N (t)P + C (t)K. t (92.3) %''

The saum result is obtained using the innovations approach where Equation (9.22) is modified to account f or tfttffffft

"ftthe corrolat ibn. -7 ~'T f

* 2.1.3.3 Duterministic plant forcing function

5uppouis that the plant model iv alten&ý to

= FMt) + 11(t) + I.(.1

where I is a known function. The o~nly eodificatione required to the filter equations in this case In to note "

that the predict ion aust account for J(t) .Thus, the estimate is given by4'

4~% ft% .



rm d~) (t) +. K(t) [;(t) -H(t)&J (3.32)

where Kit) and P(tlIt) are unohanged from IEquat ions (2. 11) and (2.12).

2.J.3. 4 Conditional mean and anminia varia~nce estimates

The minimum variance estimate has an interesting interpretation In termm of the conditional density of the
state &(t) gv nn t li meassrenent data 7(r Thi& relstion lb described in the following lermrn,.

Lemma! flupposs that it random variable I Is to be est imated from measurement data I and supoose that I and OI 9
Z have the joint probability density function p(j,Z) .An estimate in to be determilned from the datta

minimsnw

Then, the minimum vmrianno estimiate is

so~~~23 Equtio (23) sprvn

PronWrithe lierise E ns 11 tem (1f) sae cntIiona dau nsityha,tr ofin the idntitiaytt n h os

Bdequaitions (2.3) (2q1uandit (2.2) p Thueso. the minimizRcyetiae descrT.1Aibste behavfiiort tofh mean end

EamnEc quation s (2rovdenl the fi est t ivlestiae evnd whein noniuadrai esotihator tre small-sitrled. ta r abissume \%

2.s 4eo The7imeDsobtain whobes

Nthe tiso-dhatrete lineaditrional mand preditisn problaemd istima uedfrthtae of Iohsfl owsmaslytynecogsndzn

A~o th anue lnargumsent (that ar .ver simil2)arnt those used in tha retoterof theIntialns at and the reu n ontaiew
surprises. ith forincspat difeecersie in theanfo fant that th . eaFurterit cnoise showainc mhatri thoditonas nNt

r bavenst tof bhe ostaei t)ve- .tgit en athough ta reltedI mtix must haveithi prmertn vaou attoo~emp wesllibemde heey
toqtratin the tie-icrt prole exad(21)haustiveKlymanBoat resulmts foriestebhairo thetm-oinoscecabe modifend
woaithout doffiutye codtionaply tonsthi problemn. A euto hsfc n ha"poebvtelna

Con-sideruatisyste whosie state isa desribaed bye a he ine iar dfeec estuatiorsatcnieednrbblsi

Thein tom-dsbee lwain elat idlotern n rdcinpolm sIcue o he ask 2,cmpe~os

4 ~ ~ ~ n ! resul is obeserved wthrougt proo.uremt datail ca bfobtaned at discreteist ants2 of timper of these dataoar

One cnoise segumenes thae assuedvr iia to beos usesia ind uthe breteensading scionstandthe (ie.ot white-noisew
squeprces) wThe perncieals difoverenc esidsI: h atta h esrmfi os oainemrxde o
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14 v

The nn ae cuodtobeE(Yk~j]j a kk

wThe% n ar suotob unoorrelatrd with the Init ial state So which 1P a gauwelon random varia~ble %. ,

'' 9A

For this system one Oat, prove that the unhinsedi mi~n, varilance estimate of Ak give~n the dnta Z.(k) in ~
descrihed by the following system. The .Hmtimnite of the state ki

before the masuurement XkIs processed. The estimate when 1. i included is obtained by modifying the pro-
%dioted O-Altmate 14 according to :;~

Ik - k Kk [Zk- Hk~ (2.38) ~.

V The optimal gains Ak,1 and Kkare given by ~

* Ak. 1 SO-i C"s-t'~-k~- + It]-11 (2. 39s)

K kAkkX +Rl (2.30~b) ~J%

where the predicted error oovariance matrix Is describ~d by

Pk 0ak-1ki rh k-i +AM Qk-i M ~k.Ik

O-X ~, -t Ak-1 (H~~ k-L N-ITk- + Rk.,J"'q.L (2.40) % *

and the current error coverisnce matrix in

When the plant and measurement nolks are uorogdthe matrix C5 vanishes and causes Ak to vatiisi
and the covarianooc matricese reduoe to

k' Ok- LIAt+ Qk1(2.42)

and Pk P'- kkk (2.43)

Not@ that the gain matrix requires the inversion of (iCPH k k. 1  instead of the measurement covariance matrix -- ~
*k as occors in the time-continuous caue. However, one can derive a form for K., that is more similar to

Section 2.1..1 whfn Pk1 and Rkare positive-definite by making use of the following leamma.

Aletris INoraion. Lonna! Suppose the na arx Badte mw mti Care positive-definite and let
H be an arbitrary ma n matrix. It A is given by

A.A a a BHTtHBH T + I]'HE (2.44)-

then the Inverse of A Is L Jfl " ar

"I" B" + HTRIH (2.45)

The proof follows by multiplication of A and A-'1 . *

Itse error cocarianos matrix can be rewritten, by substituting Equation (2.42) into Eqjuation (2.43),

pk -k PHT(Hipt k PH _+kJ'Hkp,P . (2.46)k kI
4A. * *

00A '1.~
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Vain thelamis, oe obair

Thsging th matri oane oalso beodiied

Kk (PkN')1HtqRV(1 (k~k'H' + 11-1'

but, fruom Equation (2.431), L i 4
PP1I + llR

1ITPNI

k4 k k t[ 4lriI fP1HNl( .' ;

Equations (2.47) and (2.48) provide an alt~ernaiitve form when P'I and Rare positive-dnfinite. Eqcuat ion (2.47) ".

has the disadvmntnae that an ii x n mutrix must bo itiverted, iather than the mi x m matrix that mtvnt bu invsi-tud
In Equation (2.42) (usually., m< 0).

2.3 the Colored-Noims Problem

2.2.1 (bIurled-Noite, Shaping Filters, and State Vector Augmentation.

It has been assumed that the plant and muisureuiint noise processes are gaussian and white. This assumpt ion
io not alway satisfied in practice, so It is desirable to consider linear systems in which the noise exhihits
correlation between different instants of time (i~e. the noise is "colored"). This problem is successfully * ~
approached when tho noiso can be describod by a shaping filterti. .% %

Definition: Consider a saussian random process Bit) that ham zero mean and shoses second-order correlations
* ~~are given by ~,

s*o I*ft)(r)J -- 1)(t ,r) ,(2.49) '*%~*"~ -

A linear dynamical system driven by a gaussian *hite-noine process whose output has the same statistics] charmc- .. *., h.

toristics as fl(t) Is called a shaping filter, %..~, **

Thus, by introducing a shaping filter, many random processeel fit) can be described by ,

A m + I n+, (2.50)

where A(t) and the statistics of the white-noise wct) are chosen so that lit) has the prescribed sat istics. .
The problem of determining shrilni filters for random processes will not be treated here, but the filter develop- ~ .' ! w
sent fur those processes describable by Equation (2.50) will be given below. i. **

Consider the following linear nystemn (analogous to Equations (1. 1) and (1. 2)), in which colored noise exi 'ts
in the plant and measurement systems. To distinguish between white and colored-noise comiponents, consider the r~ ~ 4,
following partitioned system. ./d 5  

"

it *55t r~-

is acolred-ois F:; = :;~2 :~: 2] F; (2.5)A

where w is a white-noise process] [
where A(t)fl 1  11 (2.52)......................

And is is a white-rnoise process. * '4;

The measurement data are described by .%

.4 .. 2

%5 -- ,-

e. i.



andt o it hit-noac ro.s
Th pobe i es cie by Eht quoa tioons (151 (25)cntmrfruae ysat etragetto ooti

whysere in whc toloe-ostae varoabess ý n ,aecmie ihth ooe-os aibe

toherie a- syte In (w.ic) only .,t-ntm ap xlcty hssse i

I'i F2(t) r.(t) 1 0 1
'4with measurement data 2

143(t) H,(t) 0 J It 1

t.r, sore succinctly, %I~ rm *t)+ I (2.55b)

where 4
t ~. '

~I1,with similar defnt otions for P~t) *1(t), I anSd y Thus, it appear* that the problem has beeni reformu- "'.*.
lated to the model given initially by Equations (1. 1) and (1. 2), so that the solutions already obtained can be
applied. Unfortunotely, this is not true because the zero components 4ppuaring in the measurement noise veutor
Sprevent the covariance matrix R(t) ftoum being positive-definite. This property is required in order to J i

-I form the oPtimal gain matrix KMt , since R'(t) In required. Thus, shaping filfl~rs and state vector aug-
4 .., antation permit the plant equationi to be rewritten In a manner that is compatible with our previous results

*(i.e. the Plant oovakriaroe matrix Q dose not have to be inverted) but additional consideration munt, be given
to colored measurement noise.

2. 2. 2 SoW o or Cc ored Neoaurement N s1*0

The coloonents of the measurement vector which contain only colored-noise provide the source of i he difficulty
in applying the filter equations developed earlier. This problem was first discusseod by Coxt t and Bryson and*osasil n a oercnl encniee ySc",SeradsubrdadSrtbk.T eeo
a solution for this case. assume that the model has the form

+ 1E~tz+ (2.57)

"N'

wher is an p-+)dimensional no se-rematue mn vector .

t toav the fomgiven ther. i w hite-noisevectorcoassumedg todhave awhoitve-no fisie cvrs

This model is motivated by Equation. (2.55) and (2.CO). although P(t), H, Wt , and 110 t) will not he required.

and the H and H, are assumed to hava maXiMal rank.

%'*

* *..** ''4..2.



*There are several aspects of this problem that require mention. Fit-t obnervo that one might solve the
problem formally by differuntiating the moasureinont data

44

if HQI (i.ea. the oovariatnre matrix of the noise vootor H,)!) in iuomitive-diiie thLit:e ratdwIIas the inalluremient data in place of Z2since they are equivalent if the initial ronulitions on are selected
appropriately. Now the KlnImne-hucy results can be applied using the mesasuremnslt dtin rt, ard If 11v QH'
has rank r < p ,then cone can transform the ý, into A vector that in separated int~o components either with ~ 9 2~

or without white-noise. The noise-free componviinte can be d ifferentiated again in anl att'nplt to introuviue white
noise. The procedure of separation and differantiatinn can ho repeated until a net of p mounsuremnats conatin- 1
log white-noise are generated to replnce P., . If it proves to bo lvu,)onIosii to ilitroduce white-noiwe Into every -:..
component, 'bhll thoseo "perfect" meamuremnentm can b,1 dealt with am described by llryi,-an anid Johonanol?

Note, however, that the nuiowe-free meeuruALM.11111Lut ill Equationl (2. DR) provide perfe'-t knowledge of p varilatles *4* *,
so that one would expect that. the fllvnr equittionis would only inuvolve na variables instoudl of the (n + V) nippo .-

Furthermore, it Io undesirable in practice to differentiate data, Po these two disadvantages motivate olie to
develop other nmanst for dealing with colored measlurement nodes.

Using the defi~it ion of C, ad the assumption that H, has maximal rank, it is possible to define an .
(n -p) ai matrix It3 such that a noneingular matrix Tit) ,with t > to can be formed. H ~

T 1t0(2.60

The H0 must be selected so that

HHT,1 = 0 **~., 4

and HKA - I.VT -

The task of choosing H3 Is not as ddffioult as it may at first appear; at least it is trivially accomplished4'
for an important olass of systems that are discussed later in this section. dij.4~ .*

Let the inverse of T' be defined aso.~,

T-l~t) i'mI'i
where it can easily be shown that

when the constraints on H, are Invoked. 4

Define now state variables with sulovoctors *ýand such that Z:

a TI.(2.02)

Mine T has an inverse, theA ca ercvred,

of~~~ ,siai, AJorsut ci = :r-u~~sxetd ru (2,03)

But 1, is known measuremnslt data, so the problem of obtaining the minimum variance estimate of I reduces to%



% Connider the probein of estinmating the vectur' •. I'rom Equatioon (2.61). it iN Cotlr that

so a differential equation doscribing t i Ia obtained by different ttting and sub tituti ng Iqnnntion (2. 67.!

z ,, -

,• o•. = ~(113 +I"I:F),N + IH ". . %

(fl, 4 H•F')J,1. + (Ai, + 111P)JZ' " 'iW, (2. 65)

.0 The term (, + HP')JI&. in a known forcing function so it can bu treated in the fashion doesribed in Section *'-'

% ~2. 1 3.3.

The masuremnent data j7 rI n also be expienmed iin terms of : ..

Fl 1 -- ll ',i•' + llJ)-+ v" ""

iAt - 2661

l so H I j + (2.07) , , .

;quations (2,5(), C2.66). and (2. 67)form a system to whioh the previously derived filter equations can be , .'•

"applied, mince Y is assumed to have a positive-definite oovarianne matrix. One point remains to be defined. '

ordinarily, etatistio are preacri•ed for c(to) , but in this application it is necessary to apecify statistics
for (t,) , To acoomplish this, e that the giea-uremnt 1 (t,) is known; so it can be used to estimaite

j(to) and, through Equation (2.6. to obtain initial conditions for f:(t,) . Using the renults for timn- .*

discrete filtering presented in SCc Lon 2. 1.4, one sees that the statiatio ,of (t,) , based on the a priori ,, .

.,.,timtlos fur 1(t 0) and the toise-free measurement data %,(to),. are

' H'(ty)P(to){(t0 ) [H,(tO)P(to)HT(to)V1d,(to) , (2,88) .

with error coverianoe matrix l.*I., "",.

where the gain matrix is given by •

K(t30 P(to)HV(t,)H,(t 0 )P(t,)|l(to)]"', (2.70)

Naturally, it is necessary to usume that the inverse of iI,(t,) P(to)HT(t 0 ) exists for these relations to be .

valid. Since H1 hes already been usumed to have maximal rank, it is sufficient to require that P(t 0 ) be -

positive-definite, althu~gh this is not a neoessary condition. - " -

Usi.n the initial conditione (tqns (2.68) and (2.89)), the minimum variance estimate of fit) based on the

data (s, -HtJjh) is obtained by applying Equations (2. 32), (2. t) and (2.12) (or Equations (2.32). (2. 29) and - - .

(2,30) if the plant and measurement noises are dorrelated). There are no difforentiations of mea"urement data

required in. this approach and the order of the filter has been reduced from (n+ p) to n . Of course, this
solution requires that there exist some mmeaurements containing white-noise. iftrhe vector j, in rquimtion (2.513) •• ;... .
does not exist, additional manipulations must be introduced, as now disoussed. "

Suppose that the plant is deecrihed by Equation (2.57) but that the uesuremente are entirely noise-tree
(Lie. there is no white-noise in the data) and desoribed by

At U .(2.71)

where the subscript a ham been retained to be consistent with Equation 12.58). To obtain a form that can be . .

i treated by the above procedure, differentiate j, to obtain

( (IFP+ +,)i z X! , (2,72)

To simplify the disousion, it shall be assumed that the covLriance H QH? of the noise H'! is positive-

definite. The differentiated data j can now be treated as additional meaurenent data, so that the complete -. %. - 0.... -

system has the fore I % 4

%71"%: .. • . •''.'',-• ".'%'','',.',.'.,',~~~..........-............... ".... .'.',.............,. ... ...... " '".' '.'""."'

- -....- .-. ,- .. , . ,.,



j I(t) +~ it

*i ~ (H,(t)r(t) +H()&+ H,(t)! ,

and now thu preceding rtesults can be applied without additional modification.

Prom Equation (2.86), the mieasurement data used in the filter will bo

where J2  in defined in Equation (2.61). BY E~lUation (2.67), the 4 is represented In terms of Ali, .

[1'F+ 2 + 112! (2.74)

The filter state in still doecribed by Equution (2.E65). The plant and measurement noiBSo are cotrrolted

with o quiatinc (m 3),tatriitxo s ienb

The: Iniialecndiin ttlecie by Equations (2.68) anpar to09 indnat thEaqifeutationstirqurdi ord32r to20 obain (2-30
aus he usaed fof th ThisorequirNoemes ht hlnt aane i.umetd ooevutatonall byis rovsrti~n ote followingyso artiie,

R'q, anfl*W.rspc ie

singo Equation (2.73), this reducmaes tof s b

ahd dogie.nt ryEquir h ltetation of2dataappeagsinomatricaKesuettbe differentiati srqiedi horever to. obtai

anhedstusiman of Tholoredqeauirement nocean the following the notaftionay wiy besorhangtohed fclowint artifthat

K (t)j, 2.6

1 l J31f+~ (280 Wi,.1Kq...)Ko 9J

usn *.ktio (21) ti.edcst

1 J31 YJ ['ill + + (0.(2.7.

%~~I 4~4

and oomnotreqirethediffreniaton f dtsThe ainmatix mut b diferetiaedhowver

Theei a speia cae , tha In sufcinl im potn tha it wil be cosdrdhonadwllcmlt
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:nd with initial covariance E(n(t 0)pT(tQ)l N whokre I haa ak positive-dofinita covarienco matrix. Assumeo,

13 .3c that v and w arm uncorroluted. This in essentially the problem considered immodiately abov", except

that a in ;ri n-Cimenaiorisl state unauir.qnted by uiesnurenwnt noise variables. To p~ut thims ystem in ak form
ccmvatiblg with Equa~tions (2.37) and (2.71), rewrit.e E~ustions (2.78) -(2.80) as

* ~~0 A(t)]v 2.1

where E{ ] [!TVT] [ C

and 8 l~ ][1 (2.82)

For this problem the defipnition of tha matrix H required In the transformation T of Equation (2.60) can * ~
.4be defined explicitly as

so that transformeation T in

T Ht (2.83) i

and ~~T1(t) 0J, J

With this transformat ion, the filtering state 4~is

so that I is to be estimated directly. Obviously ia deacribed by Equation (2.'78), although it can be
verified that Equation (2. 65) reduces to this equation by aubstituting appropriately. The measurement qiven by
Equation (2.66) is seen to be \'*~

j-A(t)j (HP - AliA + Kw_ + . (2.86)*~-

The estimate for can tbe written *xplicitly in the following menner. N

P. .~P(t)i + K(t) [i -A(t)7, -J(t)&] (2. 86) .

where J -0 HF -AH + .

The initial condition for J(t0) is obtained from Equation (2.8Be) and is found to be

1t)= I(t*)H7(t,) (H(t0)M(t0)lff Ct0) +N(tc)]-
1
K(t0) (2.87) ~ '

* where U(t,) is the covariance of the initial state x(t 0 )..

The gain mastrix KM toi given by '

and tne error covariance matrix is %

r(t)P + r T (t)P + Qit) - Kit) [Hit)Qt)HT(t)+Rt(t)JKT(t) .(2.89)#*o

The i ~ial conditions are determined from Equation (2.69) to be

Py =M(t0) - M(t 0)H
T (t0) CH~t)( t~H~ 4'N(t 0 )J "H~t 0)M(t0) .(2.90)

These results reduce to those publ ished by Bucy3  and by Stear and Stubberud
2' after minor changes in the modelI

&Mnotation are :ntroduced.
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3.3 Linear 8moothind

In this section the problem of finding the linear, unbiased, minimum variance estimate of 1(t) given the
data g(r) ,r T t ,Is considered. The system definod by Equations (1.1) - (1.2) is treated and the innova-
tions approach of Section 2.1. 2 is used to derive the soluition. T~e development follows Kailath27 .

Based on the results of o.ction 2.1.2. suppose that the smoothed estimate in given by t\' s

where We is chosen so that the error in the estimate is orthogonal to the Innovations process P(s)

Ef(;(t) _ 1(tIjr))Tr (a))} 0 t 0  < r

Prom the orthogonality property, onem obtaiijo the condition that

tot

% (t a) (a)(2.92)

out this implien that

(t 1), X I a fE~x(t)ET(M))J-I(s)E(s) do

= It ds + fxEtjrT~sT]RjL]etr1s) de ) de 2.3

The first term can be recognized as the fil.tered estimate; so Equation (2.93) reduces to

!(tI'F) M 1(t~t) + i 3TE3(tr T ws)1R'(B)I(s) da .(2.94) .. u.

Now conidet E~h(t)Zv(s)] F rom Equation (2. 92). and assuming that a'> It

ato)(7 E(j(t>I.T(a'Io)K] o zt~?0

.5 K i{[fitgt +(tlt0)]T(a) +ior)}
T(0')1

=P(to,o)HT(0-) CT > t, 5

where .P(t'oa ((~~f(~o) (2.95)

Using this definition, the smoothed estimate becomes.

15~t7 (tlt) + it P(t,s)H ()R (e a~) da (2.96)

This shoes that 2(t I'?) ta the linea ~bination of the filtered estimate 1(t It) and a correction term that
contains the data not Included in la.t1).

The ersior covariance matrix P(tir) E(J(t1-r)I7 (tIT)) can be defined in termss of the filtering error covari-
ano* matrix P(tCt) . Observe that the error In the smoothed estimate is J

since 1(tITr)j orthogonal to the res'itual r(s) ,It is clear that

.. P(tl7*) aP(tlt) P f (t. s) HT (a) R'(s) H~s) P(e.t) ds (2.971)

it*

~' '-% V S ¾ ' ~S ~.' *-.*



TeIntegrand is non-negative-definiLe, so the effect oi' the additional data in the smoothed matimate in to-
retduce the error in the filtered satia~te.

The correlation matrix P(t,s) in easily determined. As defined, It in known that

PI' ote EIj(tIt)IT(s~s)] a > t
~:%

but 1(tit) in the solution of

so 4

whero 'I(s,t) 1', the fundarvental solution obtained from thn matrix diff-Wrentitl equation

do

Using this solution, one obtains

The smoothed estima~teeoe

% %

The matrix M,(t,7-) is similar to the observability matrix introduced in section 3.1. Equations (2.98) and

(2.099) are tegnrlsmoothing eutos Theclssofsmoothing Problems have been dsusdi h

literature':**4* -

M ixe-ntra Stmoothinglo: Teitalim to mdhefinal time -r refied
(ii) Fixed-point smoothing10: esiaetxfxd

amount of data ihiiroeasel (i.e. 'r Increases).
(III) Fieod-lag smoothings: 'The' time for which a smoothed estintate is determined is a fixed amount A hehind

the most recent data occurring at time r, )

These resultd can be derived" from the general results and will not be discussed here. ~
S. OBSERVABILITY AND THE BEHAVIOR OP THE ERROR COVARIANCE MATRIX

in 'this section, two Important concepts related to the linear estimation problem are discussed. The first of
these in ubaervability13 31 , that ir, the property of a sys~tem which permits estimation of its state. The second v"
nonce~t is the stability of tile esttepte am defined by the behavior of the error oovariance 1 '"
3.1i Ob~servability of Deterministic Systems.

Consider a system described by Equations (1.1) and (1.2). In contrast to Section 2, it is assumed at this
point that w(t) is a deterministic signal and that !(t) is identically zero. A mInts 1(t) of the resultant
deterministic system is called observable if from the input !(T) ,to 4 r 4. t ,and the output Z(t) 1 (t)
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can be completely determined. if all states &(t) corresponding to all admissible ;(t.) rito observable, thu
system is called complettly observable.

The solution oft Equat ion (1.1) in given by

where $(t,'r) is the transition matrix for Eqjuation (1.i).

dt (t)f(t'r) 0(7-, T) 1 (3-2)%

The w(r) ,to < -r t .and 0'(t.r) completely define the second term splea~ririg in E~quation M3. 0. Appanrently

9If 1(t,) can be comipletely deiterijinod from knowledge of Z(t) . then M() can be completely determined, thitt
Is, the state x(t) will be observable. If this is true for &Ln arbitrary state, then tho system in nomipletely
observable.

3MA. Obeorvabulity Criterion

Combining Equation (3. 1) and Equation (1. 2) oit~h Y(t set to zero, the observation vector l(t) in givon
by

*(t)~~ ~~ W ~~~) JNt)ý(tr)I(,r) d-r -f H(t)0(t,to)j(t5 ) .(l

Knowledge of &(t) and g(,r) ,to 4 r < t completely doetrminem

t

.Thus it is sufficient to deal with Aiitr) ,tu <,, < t ,alone iand seek to determine under what conditions -

13t0) ams be completely determined from A g fr) , to 4 -r t .These conditions aire then conditions for the 1 : -
oLservability of the state lift) . If these conditions do not depend on 1(t,) or on 6&5(r) to < -r < t *.

they are also conditions for complete obseryability of the system, -2

Now consider a linear function of the form *-..%.

Itd-(2.5) 011.

where s(r) Is a matrix of piecewise continuous functions. The system in completely observable if, for some
t> to an s(,r) exists such that this function equals x(t.) for arbitrary 1(t,) .since AZ (r) is.

linear to &(to) ,only linear functions need be considered. U...

A necessary end sufficient condition that a System defined by Equations (1. 1) and (1. 2), with !(t) a deter-

be positive-definite for some, t > to J~(rt)?.)H.)~1t)d

Proof of .Sfficitncy,

Asuethat M(tot is posit ive-definite and thus has an inveree. In Equation (3.5) let

theneTWr)A 1  r) dr = (to. d-r

= Ml(t0,t) ptT.r,yoHTH-r)H(~(r,to)dr ~,

= &(0  r1(t) (2.11)

Vlince the condition In Independent of l(te) ,the Pystem is completely observable.



24

Prooif of Ntceuaity (by Contradicti(on)

Ouppose the system is completely observable, but that M(to.t) is singular andl hence not positivo-definita. * .,- *,

This Implies that a non-zero constant victor exists such that

to%

inos Hm(T)r,Yp) Is a continuous function for to 4 r - t it must bo Identically zero in nrder that Equa-
tion (3.9) be satinfled,

Now, if the system, is completely observable, then for 1(t.) 2 there exists an a*(TI , t0 < 7- t Much ,

that

It It' 0

However, since I(7r)$('r,t0)k 0 to < t the last equality cannot hold and the syitom is not completely
observable.

When HMt and FMt are constant mastrices, the complete observability criterion can be reduoed to an
algebraic criterion. -

A necessary and sufficient condition that a system defined by Equations (1.1) and (1.2). with w(t) a deter. ~
ministio function. v(t) identically zero, and H1(t) and F(t) constant matrices, bn completely observable
is that the matrix (dlimension anxmon)

U z CV tiP ýP'iI . (e~n- I HT] (t11

*have rank n (the dimension of the state Lt).4

Proof of &ffictency (by Gbnercddction)
Since the system is time-invariant, to may he set equal to zere without loss of generality. Also d

Lo ib eteclmso T.Assume that U has rank n but that the system Is not coms- ,,... ' *

pletely observable, that is, M(0,t) is singular. If M(0,t) In singular then a non-zero 2 exists such that '

'9~~~~ 0 0 sic U is t csat In a=race 1zero. a .

Nwdiffetentiate ao the a hqain 3 3 imeJ- 0~, z (1,1 2.',-j ths gnertin

2!F)s~h -0 1 ,_,a adJ 0,1,..., n-l (3.14) >'

Itthe rank of U is an then *0 ,which contradicts the assumption that g 0

Proof of Necessity ,

Assume the system is completely obiervable but that the rank of U Is lotss than n .There then exists a , L
no 2er which sat isfies Squat ion (J. 15), Now form % .-

440

NN

"%£ 'k
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where the last equality follows from the Caylay-Hmmilton theorem. It follows from '(quation (3 10) Vint * ,,

* 2TIM(0,) of (3. 17) ..

for some p %0 thus contradioting the assumption thet tho system is completely observable.% t

Consider sgain a system described by E~quations (1.1) and (0.2). In this case It Is avsumed that 1(t) is .
Identically zero and X(t) is a vector whIte-noises with cavariance matrix R(t)8(t -T) ,where R~t) is positive-

*definite, Now tho observation vector can be written In the form A

Amt Z: H(t)tf(t~to)~to) + X(t) (.8

* This systemi is cal led completely observable it. for every to and every A~t.) there exists at t > 0 much
that an unbiased estimate !(to which is a linear funation of Z(t) can be constructed. The general q
criterion for complete observability is given In the following theorem.

7Theoree 3. 3

A necessary and sufficient condition that a system defined by Equations (1. 1) and (1.2). with !(t) identically
zero aiud 1(t) a white-noise with autocorrelation matrix R(t)6(t-r) , R(t) positive-definite. bit cornplately hl~S>~,h .

observable Is that the matrix

be positive-definite for some t > t,. %;..

The proof of this theorem parallel& that of Theorem 3.1.

If the systam is tine-invariant, that is. 11(t) and F(t) are constant. than the complete observability
criterion of Theorem 3.3 can be simplified to the algebruic criterion of the following theorem.

Asarore 3.4

A necessary and sufficient condition that the system defined Iun Theorem 3. 3 be completely observablo Is that "A %
the matrix%

U * HI tiPTN4T,, (IT) 1 
T (3.90)

have rank In (the dimension of the state &(t)). 'S

The proof of this theorem pirallels that of Theorem 3.2 anid is net given,

3.2 The Matrix-Plcattl Equation ,. -

3.2.1 General Soljution N.i %

In Section 2 It was shown that a matrix differential equation of the Ricatti type In of central importance
in the linear estimation problem. In this section the analytic solution of this type of equation is dibcussedte *

Consider the general matrix-RI6atti equation of the fore

*(t) W(t)AI(t) +'A(t)W(t) + W(t) B(t) W(t) +. CMt (3.21)

with the Initial condition ,.*.

where W, Is a non-negative-dsfinite matrix.

The instricen AMt, BMt , and CMt are non matrices of continuous functions. Purther, H(t) and
C(t) aeassumed to Isnon-negative-definite for all t ) to. Now consider the pair of linear matrix differ- - *~,-. .

en1tial equations

t(t) A(t) Yit) + C(t)Z(t) ; Y(ta) We

2(t) -B(t)Y(t) -A
T(t)Z(t) 71771. 3.2

2.o * 3.22)
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* It can be shown by direct substitution that I.

Y(t) W (323t) (3,23)

Dliferentiatlng thii; form WtZt

t(t) *(t)Z(t) + W(tO(t) (3.24)

Using Equation (3.22), this becomes

A(t)Y(t) + C(t)Z(t) *(t)Z(t) - f(t)B(t)Y(t) -W(t)A7(t)Z(t) .(3.25) 4

Oubstituting YMt W(t)Z(t) and collecting terums produces the equation I

Note A(t-Al)Wt)-ttatt ~t -Ctandt (3.26) ________

(3.27)

Sice~(0) I he Zt) isa rastio n matrix(o and henc (3,28)lar

Ithu s th e n in~i Scdtion 2s tals sthe fie d.etofs fteerrCvraneeutn. Te rtftui

~(t~) P~~t)?'(t~Ki(t)t) (P(t)-g(t)A7t) Z(tt) +KtRtK~)+9() (.0

IV

sin)c n now be wrtten u~)i rniinmtixadhm iniglr

Itwsseni $ainoa2llyter ar wofr ofY(Z::P th ei~tTK r~R roKr c+Qarl e-eutio. ?e frs- fths#i

.I .I .
P1l)P<)XtHt] pt_~j~)]~ j)+Xtl~)lt ~) (.0
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The si'cond form of the error oovarlonne equation is obtained from Equa~tion 0.3.0) by letting

K(t) -P(tltmITwtr'(t) .(3.30)

The resulting equation to

The set of equivalent linoar equatioans Is

t(t) =F(t)y(t) + q~t)z(t); Y(to) PO

*(t) N?(t)R-1(t)ljjt)y(t) -pT(t)Z(t) Z(to)

be the transition matrix corresponding to the ma~trix ~ (tt0

FM QT(t))
HT (t -I() 1() -. ~)(.0

Therefore

X(t) 011(t-to)PO + 011(t,t0 ) (3.41) '.\A ." .

Z(t) 0 e(tot0 p8 + 021 (t,0  (34y

.se1 LIrAW.

P(tlt) uY(t)Z*'(t)

M e (Otot0)P0 + O,,(t~t)Jy 1 , (t,t0 P- + 9,1(tt,t)V' . (3.43) 4 ' ,.1 *

We now consider two special fiamos.,~ ~. ,i'~ *

M'Wt
t + FMtP + Q(t) .(3.44)

in this cast thes Ricatti Equationt (3.37) reduces to a linear matrix equation whose solution can be obtained
using the general formalism. Irra Squat Lon (3. 38).

But this equation in the adjoint of P(). Zt .

so

VO) 015(t,t0)zto) = 
1 t*).(3.45)

This Implies that..

02(,03 0) 0

Using Equation (3.45), one hus

t r(ty + qit)$Tat,t),.

%' .
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go it follows that

Y (t) "- (t 't to) o) ÷ (t to)i . -, ft" " " " " • .o•t,);(- •t 1d'r (3.46)

which implies that '%.N -

e l(t,to) 1(t. {tt) (t,)q(.r) (t0 .,) dr
to

lSubetituting theme into Equation (3.43). the solution or the linear matrix differential equation in found to be.

P(tlit) - 'D(t,t,)P(t 0,) tto) + (t. to) I t oq(,,)(t . (3.47)

Cast 2: Let Qa 0 ,o tUst

, = : W T(t ) .+ P (t)M P - PH T (t ,)R ' (t ) H (t )P (3 .4 8 ) ',

In this case the variance equation has no forcing term and uoe can co.iLder .

. , ..-

STThis baa the solution

Y(t) O 4(tt()P(t.) (2.49)

and implies that .

91 1(t~t5 ) Ca~

A *~~d 0.

Using Equation (3,49), the equation for t becomes

P-,(t,)Z + H'(t) -•(t)H(t),(t,t 0,)P0

This ha. the solution " ,- .. *. .

2(t) §°(t 0 ,t) + *v(tomt)I ? (.to)HT (r)II(.)4(.,t) dr' P (3.50),
kt*

so that .,

to

-@, (tt a) O 4 (t 0,t)

The solution of Equation (3,48). ing Equations (3.49) snd (3.50) in Equation (3.43), is seen to b,

.%-Pato z fmy NA) (TH-)$rt PlT~

m f(t. to)P, 1 + I (Y,t.)H (7)R-' (r)H-) (-',to) d-r P0 tt) . (3.81)

But obeer•e that the integral term Is identically equal to the observability matrix M(tomt) defined in Equation ,. •.
(3, 19), This suggests the important role played by observability ocnsiderations in establishing the bhavi or of , .

the error of the minimum variance estimator .".

S, ,•3. 2 .2 ,o l ot io n f o r th e S , € t i/ o n r y C a s t %

Suppose in Equation (3.37) that the cooffinaient matrices P , H , H R and Q are constant.. In this case, ""

one can obtain more innight into the character of the general solution and can define the steady-state solution.

. •N 0 1V 11) ', ',P. 2. ( 3 .5. ,

......-.-. . ....... :: -".." V".::'p "'' "".'" "• '""." ''''''.. ''"".,. ''



20

where N represents the matrix of corifficlentH imiplied In the system (3.38). It has beenl shown" that the
sigenvalues of N are roul and that they are symmetrici relative to the origin. For thin dimcussion auilpose
that. the eisenvaluoe are dikitinct and lot A be tho n xn 'diagona) matrix containing the elgenvatluum tint are
positivo. Theni, there existst a transformation T %uoh that .N

S ~0

t T'NT, (3-53)

where

It oan he mhown that ~~iu

Define matrices il and F such that

[Y [T: T: 1 (3.55)

rlT Ti

From Cquation (3.53), it follows that

[~1 (3.56)
0,

Sines this is a linear, constant coefficient system, the solution of Cguation (3.10) Is

Att ] [

fJ0
so that Z and Y are

e~t ) -A *At

Sutrastittion mfI4atrixf 0(t ) inor th uais systeml~h~~lti~ ilsr:a

a( 5At:T ATIG1 tT -T, T

0T&I t - ies Tt I



1.Consider the steady-state value of Pa to t co :~The torml Involvings *"At, will V,,a1nis o4'.4*4;

[-1I6- T + ATP1-,et1 TIAT ' 6k 4

Iii t( p 12 0 12 to..10 it 0. 4

bound It Indfiutt aii cunya eoe ag e~pso h rnic f @t i oh Yt

.4Y t

It has been shown that A- M
Y~t) P~ti)Z4*

and Y(O) a P(O)Z(O).

Using Equation (3255), it cszn be seven that

Y(O) * P(O) [TsOlO) + T,(~

Theme. relations Imply that ~:[~ 1 f()'( 1 -() 1 i()

0 Tt-P(O)T,1 nflC) +* IT, PO!411o

Using this, fl(t) and 1(t) can be related by

(t 2() SAt~na 0 eAtRegtf(t) (.2

Thus, one finds that ~.*.p\%..
u~t T..0(t) + TIF(t) [Tit +T.tU.4 MeAt] n t

follows Immediately. Thus Equation (3. 63) appears to have computational advantages. ......

th bhaio o teesimte -Sic te ~tt)dosno dped jpnmeasurement data, It can be examined to 4* 4

deemn h hoeia fetvns o tiatolrmaueetpoesfor a given dynamical system. in4 .

ths acio upe ndloerbond orth er, coaiaasmari aederived'
0
1" that pnint out the Intrin- ~t....L

sial ifrn ae lyd ytepataI usueet os rcse. Tebud Idct h motneM .

oftedtriitcasraiiycn drtoso tain3 t r eie sn a ftepoete

of th ari-iatieutinsluindicse i etin32

3.3.1 ome GrwralBound

Consder he yste deinedby quatons I..) an (12). hissystm ca bereinerpetedan he sm o

two imper sstes, wichallos te OfO~t of he easuemet an plnt poceses o b exaine sepratly

and herey obain nsiht ito teir nflunce

9w 4 ~ %

*1 4~~~ . 4.44~4

~' 4 4 4 4 4444 ~4 '4

4 4 I.~ 4 ..- ~ , 4 4~'. ,~4 4.~ 4.'~* 
4

. .444 4 ~4,4~I'
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4oDefine System P its a cystem with plant noise but tno moitsutsemet noise, .

r~qP~t5 + X 19(y0  0 (3.04)U gP H~t , (3. 00) . 491,

and duf ine System M to have measurement. noise but no plant noise

(3.66)

e' 11(t)~ go (3 .. 07)

Note that d)

'Sand that 1P + Is - lp+e

Also, itfollows that %t S*
so~~s tha e 't 5() 1t (3.09)

Theminmumyarane etimte f (t) ,given Z(tO . has beon shown to be

9,9}i a P~~Pal + xmtll-Hmt)J (3.70) ..
wher th optmalgainK~t indefined by ilquationh (2.11) and (2-12). Considering systems P And M, define

linear estImatesaof IP ade using the optimal gain K(t) of Equation (3-70). as

rai 4.tl + (t).w -H(torJ (3.71)

.JA P(t)eM + K(t) (go -H(t)1M .(3 1)

Note that r" and JA' are Aiot the minimum variance estimators for IP and H iowever, it follows without '
* difficulty that the minimum variance estimate of I Is given by

i r + r (3.73) 9

Write the error in the estimate as

e (1+ e) -(r4 ) +'~*:*%.*~' r,

Veima Equation (3.74), the error oovarianots matrix' P(tlt) can be expressed as

mfop~-T)(r-I') + E L(O-r)(F-A)J % 9

since IP(tq) m 0 and g(t) and X(t) are unoorrelated white-noise prouesses; so

It is possible to state general hounds for P(tlt) . Suppose that P'(tlt) and PP(t~t) represent the 4.

minimue variance error oovitritnoo matricos for symitems M and P, rospectively. Titan, since I"and r" are
mato the minimum variance estimates for these systems, It must certainly follow from RqUation (3.,71) that,



where the matrix notation A 9 BImplies that the cuutrix A-B Is non~- negtive- definite.

On the other hand, suppose that norm gain other then K(t) Is used to obtain estimates of both IPit) and ,.

().That is, a suboptimal gain 'I~t) is used in both subsystems., Thqon, from the definition of Kit) it
aust be true thitt.-

where POO and POO represent the error covariance matrices~ associated with the suboptimftl gain KI((t) .0 e
3. 3. 2 Unforced Dynamical Plant with Noisy Measurement Data

Cone idipr the system described by

(3.78 A.0) g

I H(t)j 1 (3.79)

*This system Is identioal with System M but the supersor ipts have been eliminated to simplify the notation. The
minimum variance estimate of Ait) given Z(t) ,has been'shown to be liven by A b

- no +~ *)t):-H,*l

where K(t) - P(tjt)HT(t)R 1'(t) (3.81) _v

and 1' pit)p 4ppT(t) - N(t)R'I(t)H(t)P (3.02) ~.

* But in Section 3.2, It was shown (i.e. Equatiorn (3.51)) that the ablution of the matrix-Ricatti equation in -

this case is v*
P(tlt) - 0(t~t0)P-1 4M(tomltW'Ir

T
yt,t (3.893)

(3.19) is dr b (3,84)

and (t~t) isthe transition mateix associated with the dynonimal syste. (Eqnk (3.78)).

behavior of Pit It) . one can show under appropritte condit ions that MitoL is utriotly increasing with t
Mie. MitQ te)-M(to,tL) Is posit ive-def inite for some t1 > Y..

"s t Is clear from the definition that 4 K . '

8Mit1.t 1  M iti.t.) - Uto,t1) a C(.(Tt)Hi)R-i1CrH(t)0(-rt.t) dr____

'To consider the asymptotic behavior of Mit0,t) aiou therefore P(tlt) it In convenient to introduce the

Definition. A system is said to be q-observabl't for q > 0 on sn interval it0 t,), where t may be infinite, ,

Ifand only it am(tjltk) is posit ive-def inite for every tj , t, such that ij ) tk > ti t0  andL

q-obeervability is a slight generalization of comiplete observability and is introduced to insure that the N.
observability matrix M(tot is ctrictly increasing over intervals of duration q . For stationary systems ~
there Is no difference, so that this concept is uxeful only for time-varying systems. In this ease, ca-oheervak-

bility insures that the system is completely observahle for every interval of duration q.

If a system is q-chservable, then

M~tal) > tolt-) t Q t

'Il
Lo 

~ ~~~~...........
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Lo h io-le at)aditit-)b k, t X)ad(ý' tQ;0.. X-) epciey

1Ttheuisn, lo M(t 0, n tritl andrunn Min0 the) sesh atalsgtvtoueesrcl inrnn us t -octiol

although some may remain constanft ror intervals of length lones thun q - .~ ,

writr a symmetric matrix, the Isrgoat elgenvalut norves an a mfttriN norm (i.e. the sprectral norm), so one cian il

so thtt ono wees that

lrn IIM(t0.t)lI O(.)

an i l"t'l i- 0 .(3.80)

Note that NrI(t 2.t exists if the system is domplately obmerva'ul for t B iut Equation (2.00) implies % 4

tha Ar(tot) converges to the zero matrix, mines its norm vaninhew.

Assuming 4-cboervability, one msqs from Equation (3. 63) that the error covarianoe matrix P(t It) is givenN

fl * approxnastely by

Pitit) 2t0tt)-(o~~'~'' In%

for t sufficiently large. Since P-1  is pomitivo-definite. it follows that % %k'44

As a result of 11auation (3.87), ons concludes the following! '

7he error covariance matrix PCI) for the ql-objervable system (Eqns (3. 78) -(3.79)) v~anishes a# t cc if k
IIrmy(lt)I converges to zero f4aster than 110(to 0 Ill increases. If the Plant Ciqn (3.18)) in stable, then

This conclusion indicates, for a large alass of systems, that the effect of measurement noise is eliminatedr
by filtering over a sufficiently large period of time. Reference to Eqiuation (3.81) also indicates that the

gain osatrii Kit) vanishes as the error novarisince matrix tends to zero. Assa result, the estimate I tends '4"

to be characterized by a homogeneous, linear differential equation identical to the plant equation (tqi (3.78))..
This shows that the most recent measurement data hiave a decreasing Influence on the estimate. While this behavior
in understandable from an entirely theoretical viewpoint It should be observed that, unless Equations (3.78) and tAŽ

(3.79) aqtually constitute an exact model of the system, the convergence of the P1(tt) can lead to unduly
optimistic measures of the error in the estimate and can ultimately lead to filt-er "divergence"' and nonsensical ,

results 21.7.

3.3.3 Noisy rDynuaiscal Plant and Noiso-Free Measurement Data -. ' .

Consider a system containing no meassurement noises .%~.

ii (t)l + it 1(to) e0(.8) I,

j H(t)j (3.80) '\% '

It should first be noted that Equations (3.88) and (3.89) are essentially identical with the system (Equations 16 ,

(2.40) and (2.53)) treated in Sention 2.2 2. This caseo was discussed there, since the Kalman-Rucy squat ions ~. *
can not be applied directly to this system. Instead, the filter is reduoed to dimension (n - m) and is based on
the system described by Equations (2.55~). (2.50). and (2.88). Certainly, it is still possible to discuss the
error covariance mtrtz P(tCt) asoociated with the error In the estimate of 1(t) but, as a consequence of *b!D4IW@i

the considerations oif Section 2.2.2, the P(tlt) can have, at most, r~ank n -sa .%/.*.....

The n xn error covariana a matrix P(t I t) csn never van ish ident ica Ily as long as t hen 1)lant covarilance ..

matrix Q(t) .to non-zero. This is an inwidiato consequence of the discussion in Sect ion 3. 2. 1 relating to ,.,,4
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EquationI (3.30). in IQuratioh (3.30rn the miatrill K(t) in arbitrary and the asmociated solution is4 Rivall by___________

Equation (3.33). The n'iauoirerrent nnifmt, covuriainco matrix Rit) call bp set eqtual to zera (i.e. no moitourenuorit

noise) in themes equations. It is obvious that the to'rm

C~t 7

is nuni-negative dein ite and ruevr vanishne. The '4'(t.t0L iii a transition mixtrix, so It is alwuxya nnmsingular.

Therefore Lhe watrix )P(t It) described by Equation (3. 33) with Rit) Put eqjual to zecro never vanishes for

noo-zero Q(t) .ibuis, in contrast with the di.FcuSeirn of thet precedinz section, the error covariance matrix

P(tit) .116aaa-imted With EQUxt icilo (0. 88) and (:3.99) vanimqies only undler very special conlditions., and is nevor ~
poditive-dt'fit~itoe. Also It becorat. apparent that the plant nnisa conolrianee nuntrix can serve to prevent thle

*error covariance matrix traon beorming too snall In any principatl direciticuu.%.

3.3.4 E~rror Boundt

* It was demonstrated in Suction 3.3. 1 that the error cevariance matrix call he hounded by

PP(tjt) + P11(tlt) ( P(trt) < PPO(tit) + Pm"'(tIt) .(3.00)

But in Section 3.3.1 the PQ(tlt) was expresised more precinsly by Eqtiakion ý3.83). If the gain 0(t) defined

* by Rquations (M.81) and (3.82) were used in both tho h! and P systems, thzn Equation (3.83) can be also used
in the upper bound and Equation (1.00) becomes

)(P~ýM~tt)].P~tt )+ PP(t~t) < P0 5(tlt) I- 4'Dt't0)[plP Mtt)-Tt' (.1

- The lower bound can be relaxed by eliminating PP(t It) so that

It Is shown in Chapter A that this bound is essentially the Cramer-Rao inequality.

Consider the error that one has if there were no filtering for system P .Then

Assuming that w baas Zei o mean, and sassuming that no measurements are processed, the beat esttimate in

Then, it follows that

a (t-)Qr)Tt~)dr. (3. 93)

But the matrix integral loas been referred to as a stochastic controllability matrix by Kal~man"
3. et

W(tot) 0 (t,-r)Q(-r),;T(t,T) dr (3. 1#4)
* to

Note that Mquation (3.93) is identical with Equation (3.47) of Sexction 3.2.1. Using Equation. (3.93). the upper

bound becomes ...

r*..',,4 0(',,t5 J Or+e~tx0 .x)]inVit.xl + W(t 01 ). 395

Equations (3.92) and (3.95) provide more specific upper and lover bounds for the minimum variance error ~
covariance matrix. From the discussion cif Section 3. 3. 2. it can be seen that the upper and lower bounds arm

defined by W3t 5 ,t and PP(t~t) as t Increases, since the Pmitit) tends to vanish for q-ohaervahle systems.

* Ralsm has derived bounds f or the error covariance matrix which bear some resemblance to those presented Poo
above13. It was shown that

P~lt $tr*r(~*,)V~,r + W(1r*t) .(3.96)

where 1* defines the time at which the system is coppletely observable and completely controllable (i.e.

M!7<¶t) and UI(r*,t) are posit ive-definite). Equation 13.96) is very similar to Equation (3.93). Kalmansm

loear bound is

AL
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W(-rl(*,t) + ¢ý (,tt)M(t(,3t.)(r*,t)]'i <P(tlt) &T' I sk.,# .a4

This matrix will vanish for a q-obmervable and q-oontrollable system and so dues not appoar to contain as'much . . '

information am Equation (3.92). -.

A linear dynamical system with transition matrix '(tt 0) Is said to he uniformly anymptotically stablo If

II''(tto)I € ae"O'(t t 0 ) for all t ) to ,.-

where c, 0 . It is possible to prove that, if the system (Equations (1.1) and (1.2)) is completely con-
trollable nnd c(..Jpletaly observable, thei. the filter is uniformly asynmptotio'lly 4table. That ic. the norm of
the transition matrix obtained as the solution of the matrix differential dqluation

y(t t0 -- [ (t)-K (t 11l(t) t(t, t ) . (to,to) I
tt -. 1.. .

satisfies the Inequality stated above. Th. proof of this result Is omitted and the reader is 0iracted to

3.4 Behavior of Error Covariance for Statiohary Systems

To obtain more Insight into the behavior of the error covariance mstrix, it is informative to consider , , ,
stationary systems, In this case, the asymptotic behavior of the error covariance can be established more Z '" '°.
specifically and the upper bound nan be investigated more thoroughly. '

Consider the stationary linear system

I 'I,(308 -• .t..* .'..'. ,

I'. , • : H & + X .. ),

where F and H are constant matricss, Assume also that the plant and measurement noise covariance matrices
Q and R are constant.

As hba been shown above, the minimum variance error oovarlanee matrix '"

P P+ PFT OP -'RiHP + Q P(to) Pa (3.100) " r , '

Let Pa be the steady-state value of Equation (3,100), as discudsed in Section 3.2.2. This matrix .'n be
determined from Equation (3.01) and is the solution of the algebraic equation

o , ... 7,+"Pr- ?p4 HP+•q, (3.101)

Use P. to form a suboptimal gain for filter Application

K, = P T ,I -. (3.102),.,
, .i , , S . .. * . , ., .

This gain can be shown to be the gain obtained for the "classical" Wiener filter. The error covarianoe matrix

for this suboptimal gain is obtained, using Equation (2.9) or Equation (3.30),

, P5  F(- KH)P, + Ps(F-KH + (K<4•R +) , Pe(to) -P(t) . (3.103).y . ,e,.,

This is a linear matrix equation of the form treated in Section 3'.2.1 with the steady-state value P. The " - .

fact that P5 (co) : P. will be confirmed b1el. ',. ..

Let BP(tat) 0 P(tit) - P. (3.104)

where P(tit) is the minimum variance error covarlance utrix. Also, define -. '

3P,(tlt) 4 P,(tlt) - P6. .15

and let SP and SP, be assigned the initial conditionsbA.

SKYt = SP,3t0) e - P. 5 6A

Since the system is stationary, the initial time to can be assumed to be zero without loss of generality.

Further, -amuse that A'. -.

This Is a natural assumption and states that the ilaitial uncertainty is greater than the steady-state error. .*" ," . . . -F "'"'1
ll ,\ ,• •. , .. . .. ., .. ,,.,. ..... S - ' .. . . '.. '. . ....



It fol lows from@ ~Ions (M 104). (4.1 01), and (3 100) that.

Bu tisisa(P- K'Il)8P + 8P(P-K5H) - POtT 1111P(317

But his s amatrlx-Ricatti equation with no forcing te-rm. Thin was shown in Section 3.2.1 to have thA molution

whore T1 is the transition matrix sssocfbtod with the linear system with ooefficient matrix ('-. K5H). But

SP(tit) vanishes n.ý t tends to infinity if the system is completely obnervablie, thereby confirming that P. -\*'
is~~~~~ ~ ~ ~ ~ thi stay-tt souino qain(.0)

One can also obtain, from Equat ions (3. 105). (3. 101), find (3. 103),

(F~wH)~w 4 P,(II KWH)T(31)

This is a homogeneous linear matrix equation and, from Equation (3-41), it follows that 3P, tendsn to vanish
jIf P'-K,I4) represenits a stable systom. Thin is indeed the case for an obsurvable and controllatble system, so

that the steady-state value of P5  Lis eatkhlished to be P., . Thus, the twymptotic behavior for the suboptimal i
gain K. must be very similar to that for the minimum varianoo gain.

Let A F - K5VH

It is trite, from llquntion (3.47?), that.1

8* ~P(t It) s At8o AVt 3.1) ~ *~~

since the transition matrix Y(t,C) associated with

* Ft,O) A'p(t,0)%

.Qie~aao ind, .us~f~qL~to~(3.51). that '

The difference between P,(tlt) and P(tlt) can beestabished usingEA uton 3.10 and (3. 111). (ir1t1)
note that 4

4 ~= eAt (I+SUM(O~t,)le"At6p'(tIt) ,(3.112) .-. 5.

Rearranging terms, one hais ,

Equating Equations (3.l111) end (3. 113), it follows that

¶P(tt - P(tlt) M sAt6,M(O't)(&;l +Mco"t)j.1@ATt(.1)

A Equation (3.114) provides a relation for the difference between the error covariance of the suboptimal filter
and the minimum variante filter. An inequality is easily derivedi from Equation (3. 114) that can be used to
desoribe the behavior of the error oovarian.me. Let k. and X, denote the largest. and smallest sigenvalues

ofA No.tht said Xm are negative since A represents a stable system.) Then the spectral norm
of the transition matrix is

IIAI . exit

JIG-At.4" = -.n

and..¶
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The maximum is easily found to be t, o that the maximum difference is * * *'

5. e

The difference between the suboptimal and optimal error covarianoes Lis seen to depend upon the initial
uncertainty 5 the signal-to-noise ratio as described by IIH'W'IHII and the smallest time-consta~nt 1h 1 6

Zf the filte r Aynamics. As one should expect. the larger the initial uncertainty or the better the signal-to-.., -

noise ratio, the greater the error introduced by the suboptimal gain. On the other hand, If the filter system ~ ~
has a large time constant, the suboptimal gain does not necessarily cause a significant deterioration of filte

- performance.

To swnaurss-m, the determination of the 'stmady-atate value of the optimal filter permit. the definition of a

suboptimal gaiin (i.e. the gain of the Wiener filter) which in many ocses may provide satisfactory filter per- *

formance. A bound on the norm of the difference between the. optimal and suboptimal error covarianoe matrices
Is determined which involves the intuitively obvious elements of the system which determine filter performance N1.
More extensive discussion 01' this special problem is provided by Singer 3 l,

4. COMCLUSION

1,; 4m onncluding section the intent is to state the principal results and the highlights of BEctione 2
V 3in w.rdar to A~llow the casual reader to sidestep the moress of details found there and to provide a support .

!,)r moi~re interested reader with which he way anchor himself as he slide@ into morass. ~-.-'S.
'-.o,1. 2 provides a statement of the mathematical model in terms of Equaticns (1. 1) and (1.2) and then

*.. the Unbiased Minimum Viuriance, Linear Estimation Problem. These aspects shall not he repeated here..

.5 - 5= .

*1 %.5
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Srin2.1; Linear Prediction iuid Filtering

Section 2.1 contnina thu solution of tho problem stated In SectiLon 1. 2 In teorn of the KalmAn-Ilnoy filter
squat I onx. ThIsa is firmt; accomnplished in Section 2.1, using arguments which, hopefully, appeal to intuition
and provide some understandling of the basic character of the solution. This development is put on a more 4
r igorous boasis ina Sent ion 2.ý1. 2, where in tho proportioas of the mieasurement reeliduatl process

are exameined and then used to derive the filter equations. Thus, in the first twu prarnraphn, It Is shown in
two wsa'a that the solution of the linear filtering and rediction problem stated in Section 1L2 is providled by
the system

k(t~t Pitli~tit) -fK(t)r(t) (4.2)~

whers i(t 0 t0 ) E14)

Thu optimfal gain 11(L) P, given by

where the error covariance matrix % .

is described by the matrix-Ricatti equation + F(,-PIt)rtHtP+Qt ,.4. *

where P(t01t 0) M t.l

Some additional aspects of the filtering problem are considered in Section 2. 1.3. First, the concept of .* . .*

orthogonal projections is introduced and it is proven that the entt lest that in formed as a linear function of .

data minimizes the mean-square error if, and only if, the error in the estimate is orthugonal to the data. This4
result Is used to derive the Wiener.IHopf eauation for the system (E1quations (1.1) and (1.2)).

2 Next, the original problem is generalized to allow oross-correlation C(t) between the plant and measurement
winoise processes to be non-zero. it is shown that the correlation causes the gain matrix K1(t) to beonme *¶

X~t) Cp~ lt)J~t)+ C~)] R (t)(410

and the error covariance matrix is modified to becose

r (t)P _ prT(t) - I(t)(CT(t) +H(t)PI + Q(t) (4.7)

The effect of a detorministio forcing function 4(t) in the plant is considered and it is shown that this
* ,term requires a trivial change to tho estimate. Rquat ion (4.2) in modified to -*.

.~t) + (t) + K(tqz(t) .(4.8)

Final ly Sect ion 2. 1. 3 is concluded by proving that the cond it ional mean 9 (1 (t )Ile) provides the unbiased,
minimum varience estimate- for a random variable Xit) . This result is useful in giving a probabilistic Inter. -' V "-
pretation of minimum variance outioattes. For the linear problem described in Section 1.2, it follows from this
property that the unbiased minimum variance estimate of L(t) for the systew (Equations (1.1,1 and (1.2)) is
actually a linear estimate, thereby confirming that the linear Kalaan-Rucy filter provides optimal estimate ' ~ .
even when nonlinear estimates are considered,

The t ime-disorote system equivalent to the continuous-tism modal desoribmed by Elquation# (1. 1) and (1. 2) is
J Introduced in Section 2.1.4 aod the filter equations for thle syotem are stated without proof.

Section 2.2: The rolored-Noise Prob lea .

* In Section 2.2. the white-noise afsumptions of Section 1.2 are relaxed to allow the plant and measurement
N inoise processes to exhibit corellation between different times (i.e. the processes are colored). The restric-
Atioa that the process, say 11(t) .can be described by a linear shaping filter

4j A(t)nl + y(t) (4.9) IP1* fts4i% 0

.4' %.4%

. . -~ ...l



in Introduced, however. The X(t) appearing in Equation (4.9) is a white-noise process, The class of piroblems
*with colorod-noise a described by a mhaoins filtar (Ftin (4. 9)) is treated by augmfinting the noiwe var inblt'w

to the state. It in soon that this approach is eatisfactory for colorad plant noise but in Inadequate when
therw are meannuraemnt data which do not contain white-noise.

%In Sootion 2.2.2 the solution for the colorud monsurement noise problem is detorminod by notice that the %* .'
treatment of data without white-naise is accomplished considering a transformantion of the state that allows the
dimension of the filter equations to be reduced. Several speooal casses are treated that have appeared in the ..

literal urb.

.Section 2.3:Lijnear of using th

%I innovations (or residual) process L(t) introduced In Section 2.1.2. It in shown that the #at imat. of &(t)
given the date Z('r) , r > t .has the general form

with associated error covarfiance mittrix described by j

where

Lt.(tMr) V e~)T e)ksI)iIst da % ~ '

Equations (4.10) and (4.11) represent the general bolution of the smoothing probleeI Three cleasss of smooth- .'k

Ing problems, oharaoterized by the time t at wiNich the estimute is to be determined end the interval 'r tor*
which data exists, are stated and the solution for each is given.

% Section 3A.1, Observability of Deterministic Syttem

The concept of obseryability Is introduced in terms of a deterministic linear system obtained from Equations
(1.1) and (1.2) by considering the plant notoe 1(t) as known and the measurement noise 1(t). to be Identically
zero. If all states 1(t) of the 'deterministic system can be determined from knowledge of the input 1(7*).

to 4 r and the output Z(t) then the system in completely observable. It Is shown that the system is i'..'I

completely observable If, and only If, the observability matrix

M t0 t) Itt T(7,t,)H?(r)RtL(-r)H(7*),(7r,te) dr (4.12) 6

is poaitive-definite for some t > t0  -. ~ ~ s

ofen the linear system is stationary It is shown that the obsmrvability criterion can be expremred in terms

U = (H" PT10. .. . (p5T .010 (4.13) : :
The system is completely observable if this matrix has rank n

In Section 3.2 it is shown that the leant-squares estimate of an arbitrary Initial state exists if the system ...
is completely observable. That-is, a least-squares estimator exists if, and only if, the obaervabtlity matrix .
is positive-definite.

The error covarianoo matrix was founmd in Section 2 to be described by a matrix-Ricatti equation. This non-'"i~
linear matrix differential equation is investigated in this section and it is shown that It can be rewritten by
a system of linear matrix differential equations, Thus, the matrix-Ricatti equation

P p(t)p + pI
T
(t) -pHT (t)R-1(t)H(t)P + Q(t) P~o Pa (4.14) .

can be written as

a (t)Y + Q(t)z Y(ta) P0  4.5

Z HT (t) R-1(t) H(t)Y y pTt) ZMt0 MY (461

4.

%~.K S%,
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4 ~~The solutioKi of Equation (4. 14) Is obtained from the solutions of EQcUatiOns (4.15) end (4.10I) Doe %

More explicit solutionn can he obtairod when either H1(t) or Q(t) vanish. These solutions arc derived.

Also, additional insights are r.*mmibld into the character of Equotinn (4.14) when the system is statioonary.
A i'j .

This special came Is discussed in somie detaiil,. :
Section& 3.3: Bounds for the Error reeariijn.e Mahtrix . .

Tite error oovarianos matrix provides the primtnry statistical muasere of the pnrfurnitince of the estimator. -- ~
Thi statistic iw actually independent of the meansurement data so it onn be inveatiganeoi before the Kn~n1mitinficy

filter equations are used to procons diata for a given syntem. Upper and lower hounds for thim mantrix are entnh-

lishoci In this system in wech a maimer that the fundumantally diffprent rules of the plantt noise sinl the mocoure-

sent noise processeMg are clearly displayed. It in shown that P(t It) its bounded bpl,3w by

where PP(tlt) is a non-negativs-definite (never posiltive-definite) matrix and the firat term vanisheei as t

beconme large for q-observable systems. (This terme is def ined in Sect Lou 3. 3. ) The upper bound is given by

P(t It) < O(tjt0  (p; 4. 11(t '.t) 1"0T(tjto) 4 W(tot)(41)

where the stochastic contruliahility matrix W(t0 ,t) is defined to be

d4%Io A. t tt) OV t5t)r

Section 3,4i Behavior of the Error Covoriwice for Stationary Systiems

lae error covarlance matrix for stationary msyaene can be studied in more detail using the steady-value

lie P(tlt) r P0  A suboptimal gain K,~ equivalent to the Vlster filter gain can be defined that Is useful in * *~

examining the influences that affect the telative performatnce of the optimal and Wiener filters. Letting P,(t It) -

denote the error covariance matrix of a filtrr using the constant Wiener gain, it is shown that the difference %

is bounded by

wher 3, t 0t)-F n hr hiH'"'HiI ereet the signatl-to-noise ratio of the measurement system and (. )

a1  s h smallest time constant of the filter dynamics. * ~ ~ "

This conclude@ it summary of the presentation found in'Sections 2 and 3. Many topics have been omitted from .w '

this discussion and other topics have been dealt with somewhat superficially. Many of these omissions and ~ ~ i

superficialities are given their deserved airing in subsequent chapters and their variety and number provide %

am Indication of the breadth, depth, and importance of unbiasod, minimum variance linear estimationi theory in .! ~4
engineoering theory and application.

C:.a-

14'-5.
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1,~C INTRDUCTON

In~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ le tha a deaeKla itru a eoea salse tcn'owti h eore fteArhic

OM j .*

j.i% 
"I.

systeme desImnor, Unfortunately the fact thatitI navnestttclcoepmnydsrbdbyah-

all$ nngthO ASSUM~tiot that tht readnroi familiar wihavne ttsia hoy and toeofentrymmln

unuollyl fora theh statistical methods

applcatin ofthgpracicalmult-diut-sonalflltr, he teoryis irm vuloped for a simple singlen-dimension

The Kalman filtering process consists of combining two independent estimates of a variable to form a weighted)
Voaw. lbso 'woishting -factor is4 chosen -to yie~ll a mean with minimum versnco. and listine maximum piobability. One
of the estimate* is derived by updating a provioun beat estimate in anoordance with the known equations of motion *\,. "> ,

and the other estimate is obtained from a measurement. The form of the required weighting factor is derived bolow,% %
frtfor a sing te-dimens ion came and secJondly for tho general multi-dimonaional form rsqgired far thw Kalmanfitr %

Lta, and xj, bij two independent estimates of a Quantity Xi with variances or, and ro rLpootively.
It Is required to combine these estimates to form a weighted mean corresponding to the overall boot estimate (3) .

alier 'best estimate" mensan. tbei minimum variance estimate. 4*'

Now the general form of the weighted mean of xand x, io

4 :(I-w)al + ma3. (2.1)

Thum the expeoted or mean value of I [written 1(1)] in given by

By definition the variance of a quantity s is(2)

Honae the variance (0,) ol f Ini given by ~~;...

or 0-8 a (1-W)or + w
1
al

1  (2.4) ~ " ~ *

since *(z-a)(,Ix)) u0,C

as it and it are independent estimates so that (z, -E(x1)} and (x '-Zs ) are unoorrelated. To determine the '-0

value of v for which a"l is minimum, Equation (2.'4) may be partially Jifleraitiated with respect to w. Thun

-e + 2- 0 PRECEDING PAGE BLANK '

%"
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* giving the optimum value ofa weighting factor as*i I 2.),' i'f* .. *' K

T+7-, •;•49- Ilk, I.

ubstitutionl In Equation (2. 1) gives .. . .

S+ a .'. - .

and in Zquation (2,4) gives the variance of 2 as

S~~~~(2.7) : . .,

If a, is noe'.dorid to be a measurement used to Improve an updated esiitate x1 , Equations (2. A) and (2.7) can - ''
be put into the more oonvouient forms .

an(
1  (2.0)

which more *ost ly show how the estimate and its variance are "improved" by the measurement in readinesm for further .' .'.:.¾, .,

updating, Equation (2. 8) also shows the close analogy to negative feedback, . ,." .

3.4 The Multi.Olweaeiowiti Come .

Let X And X be two nul matrices representing two indepandent estimates (i,#. with uneorrelated errors)of an a_-d ILonstonal vector quantity X .Pi and P, nrv two axn matrices representing the variances of X• ,•

and X, respectively.

In general the weighted zoom of X, and X, is given by

(Ir, +4X

or
I4"X , - W(XI- 1 4) ..(2,.10).._.. .....

wt Mo[ W is an arbitrary a x n weighting matrix and I . is the unit matrix. The best estimate of X (denated . .', ,'.-.. .. ,

by X) will be given by (M. 10) whoe W in ohosen in that the variance of I in a minimum in the sauce considered .* , ".'","" ` '.
below. .~

In mau practical cases, howevsr, the two estimates are not of equal dimensions, one of them being some functior,
(M, say) of the individual elements of X (for examole, a measurement relating to lose only of the elements
of X). In general m y be mau a an reotangular matrix operating on X to give an m-diaeneional estim•ts Y

The aeneral problem thosreloie is that of forming an optimu estimate (•) of X from one estimate (X1 with *., -
varianet P') of X and an estimate (Y2 with vari•nce V) of Y(N M), If we lot the weighting matrix in (2.10)
be W , where K Is another arbitrary weighting matrix, then *.* ., "*

r-,- . .(X.•-XV) % %;.- ,-
X,- K(NX1-.Y) '", -. -. ' l.a. .%.&

-(I • . .)X- +KY,(.

My definition the variuoe s of In given by . ,

and similar expressions my be written for' P1 And V the variances of ,1 and Y, respectively, where, as
In 0tctiou 2.i, I denotes the expected or man value. luhatituting for from Equation (2. 11) we have

E( (I -UX Vw L +KY - (I -Kii)T)(X) - KC(Y,] [((I -IM, +4 KY, - (I - M0)(X1) - K~,P
•(I-D)E{[X•-I(XJ]) X,-L'(x 1)]1 ) (z-*x()r + 11([¥t-:(x,)1 [Y,'Et- ,)]Y}K?,,:' ."•',..%

since X1  anm , are unoorrelated. Thus .*..... "%

P ( (I-KM)P'(I- -K)t + KVK • (2.12) .< ,.'..d , '.•..~.-•'.,'..•
It is now required to find the value of K w4ioh minimices P in the sense that each diagonal element of P % •. -
shall be a minimum variane. Expanding Equation (1. 12) gives '" ' I ' .

(I• ( - • M), P-' (I - •,P KN+ +

=P, + (KU)PI(m•)" - (I•I)P, _ p,(KM)1' + K'VXT,...', 1••.',"

P ' + K(MP'N'i + V)K? - (MP') (W (')TK? .•-.'-..L.""'

%,'

' ' .- .
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Since (AOET BTAT  and P1 is a symnmetrical matrix so that p'T  p, Now conw6ider

(KS.- A) (KB- A) T  K(8)~ IMAT? ASTET + A. T

4) (OST)KT - KCSAT) - (SA'?) TKT 
.+

K (MP'MT+ V) KT - K (MP'1) -(WP) 
T
V + AAT .

and aAT MP',

whence P ' + (KS -A) (KS - AjT  '

SP' + CKS -A)(KCS -A) T  p P'MT (Mp MT + V -Mp . (2.13)

The only term in this expremsion for Pwhich is dependent on K is (KS -WA KS - A)?. An this is of the form
~~BB ,B the diagonal elements consist, of the Bums of squaru* of tho individual elements of (K- A). end, Resmuch,

cannot have negative vitlues. 'Thus sach dinoUhal elemen0t Of P shall be a niitilniiw variance if K tmkoew the value
which makus (KS-A) = 0 that is. if

K =P~mTLmPIMT+VPI (2,14)

substituting In SquatIon (2, 13) with (M -A) 0 gives

Pm P, U'IP, (2,15) ~'~w'
4as the variance for the bmil; estimate of X which, from Lquration (2, 11), becomes *' ,., , .

X X -(MX,-Y 3 )

where K takes the value given in Squation (2,14).

3. WSRI AINOF PHYSI1CAL PROCEUSSES.

OlPAmacal physics tel''t us that, in the absence of external disi~urbince, the future behaviour of a system May ,.

be derived from Its present state by application of this knv'wn equations of motion, It Is now reailiced that, due ' '

to the Quantum utturs of fundamental physical processes, this is only effectively true in the marco case when the ~ "L.
Rueanotum moist oann We Jsnartd. and only the ststiwt~iaal %wamnezied -be considered. 41hhrs this is not the name the*

* ~~~~expected or moan etate of thes systemi niay be Predicted by the equations of motion, but imposed upon thin will be 2''"..'
a random contribution due to quantum evonta, whose probability distribution only will be known. ' X "\ '

11im.lar cons Worst lotip np.1y to any external disturbance. Somce of these aerm predictable and ovn, if desired,
be Irtcluded as parenetere within our chosen system; this will also apply to any hiss wbich may be present in
otherwise unpredictable disturbances. It is thus aeon that the behaviour of amy Physical system may be conridered 1
to consist of one part which is precisely Predictable from the known equations of motion and a secondh part which is 'C '"* '''C

random about zero scan, but whose probability distribution may be determined, Fuch a roesiwhhte
statistics of the future behaviour of a system are purely a flinction of tts state itt a particular time and the
atstatimtlc. structure of the perturbing process, is termed a Markov Process. It is clear that, by a suitable chotce
of the variables included, any physical Process can be represented in this way.-

Assuming a Markov process of this kind, Its true state Xk n't times tk4 1 say be represented as

ncsayto defics the state ft ytm(emd 'ei*vco)

O isan n xn matrix representing the known d~ynamics or equations of motion of the uystem (termed the tranal.

P4,.1tionmatrix).

U ersnsthe random inputs (with zero means) to the system. In gerseral, if there are L sources of ranidom

Inpu, U wil bean I x I uatrli and is known a" plant noise.

The choice of elements to Include to the state vector is, in practice, eomewhat arbitrary, Although theoretically%
X4roldicud l tesstmtcelements and Ukall the random element& fetnsheG~v.ti itself 4

inetupon the state of the art. Moiny effecte which eere eansldaseed rno rupeitbea** '''

century sago wf*'ow woil undherstood processes, Chn the other hncosInfluences, although fully understood and % 4
Predictable. may fie so remote from the system under consideration that their effects may conveniently he included LI ILI,'C
as part of the random Input.

The representation of a Markov process by Equation (3. 1) does not necessitateo a stationary random process, Th3*'
form of 0,and Ok and the statistioal structure of U4 (I.eo. Its varlancti Qk may Va" froa etop to step. '

Inded he eqiroentimnotso uc tht teyshould beconstant even within eleigl* step. provided ta h

~('C*I" J.' 'C~C ' ~ ~ 'C*'., C.,.~C.'CC C'C. CC.. C Ineedtherequremnt s nt mch hat hey be tht te C. %
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integrated off,,t %hall be ktooji for each individual stepi. In moat cases, of courso, tho step nize will be
chosen to ensure that the trannition matrix, the variajiro of the Inlait noihe and it.4 effect on tile sytitem way all
be conaidered coustunt, Fneally in ehould ho tioted that, tin the atoll s1i.e approaches thle zero limit, Erauntion (3. 1) '---'-~-'

collapses to thle mure fomiLliar differolitinl form.I (9

4. DERIUVATION OF THE~ KALMIAN FILTERi.4

It in neucessary to ounnider three quite distinot noet of liquLtices in orider to doviso the Kslmiui filter, F~irst
wft must represent the true state of the system in order to he able to utudy its statistical structure. Secondly,
we must consider how we ma~y foreoast the rtato of the symitem from K previous best eat lente and what variance this
forecast will have. rinadly we must deteimine a best omtlimate of the updated otate. together with Ito variannoe,
by suitably combining Its forocatit value with a cieasuromont,

In this and subsequont sect ions true values will be repreisented by non-aticented characters such as Xka foro-
cast vealue which has not beeni suldortutd to at cninurenent will be repre~ontod by a prime (e.g. X'1, ,I) cod a beet
estlimate by a halt (P.C. % 1 bers a mnsaureetont in Available this last will he obtuined by combinitne the
forecast with tile nieseurelrivt, in thle absence of a tnuseurement the forcatint value will lie the best eatfinatil. ~

14Ti'lie TIrue State UquatieesI.

We have already shownt in Section .9 that the true stats X44 at time tk- is derived from Its state Xk at '41
tims tk by the equation

Xkt Ik~k + 011k (1 , '

k Ir the transition matrix, iskoi, si k representitng the effect of a nolse iniputo h lmns4 .
of the stats vector, We know that statistically Uk has a zoro mean and variance Q, , hut we have noe knowledge .'. 4:,
of the actual noise contribution Ukto this particular s .tep, k o

Similarly, whenk wo make a mesurenent, the quantity measured will be some function Mk,, of the individual
elements of the state vector, but the actual reading will also have, a noise contribution Nk- - Thug tile actual .

quantity determined by the meatturemouit will be In the Core m

Mk Iý lk iXký + Nk. I. e.~,.

Mi, is, incogneral, Lan m X matrix which operates on the n elements of Xk. I to give the m xl matrix
representing the is elements of the measurement Yr, In most nalsew Mk41 will be a simple row Matrix yislding
a single parameter fur measurement and frequently anitielemento of the row except one will be zeros, so thlat the
effect of Mk., will. bie to isolate a single element of Xk. . Nk,1 is the "measurement noise" and bhas zero
mean with variance R~ -but the acitual contribution to a particular measurement is untknown.

We are then able to describe the true behaviour of the system by Equation (4, 1) anid of the mesasrement prucesti
by M 2),

4. 2 Tite lorteastilng Process .

If the error in X (the best eatimate of the true state Vt in dk then

Xk Xk + dk

Since the Plant noise Uk has zero mean, it is easily seen that the best forecast in simply

k + lkgi ki~'v)94

Xk.i - Okuk + Ok~k -443

Now Ck the error of Rk ,Will have the same variance as Xý Itself (i"e. Pit) slid hence the variance of*'
is Smilaly te vaianc of is O0~U a hr is the variance of U Thus, since ,.**~*

Xk1is atrue value, the error of X11is represented by the last two termst of Equation (4,3). Milanci these
twe error terms (original error arid error incremetnt) are independent. the variance of La+,i given by

=ki 111? k k it k (4.4)

4. 3 fhe Measurement Process

Thes meamurement pructisw consists of a determinat~ion of Yl which is defined in Equation (4.2), end comeparing
this with at foreciast (X,',,) in order to obtain a best estimate (Xk+i). . Now using Equations (2. 14). (2. 15) and (I. In) -

the boet esitimate of XkI will be

S m. ,

Rk~~~~~~~t ~ ~ Xk i "t-I(M-L':I l- )(45

%. . .
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K#,1  I K k+'' (4.7) (46)

and R, is the variane fctor ,a. te t...

aTh e v ri s ec , o f X u f c os g iv en by o. ,t h, ....i.,e.-r, .,
p k÷k -- -i Kk÷i t pi . s.-: v,' .. 4.?%. . -.

5 . C O N C L ,U SS1O N " -

where~ •k+ is th quntt .. as" '

If the true state of a Mackay process and a measurement are defined b y the equations r •1 . :

14.Pk* + 4 : •k4 k + Ok' k( ' (5.4l) - % .' , . • . • .

*w h e r e X k i s t h e s t a t e v e c t o r a t t i m e • t k , ' o " . % * • ' . • .' .

• • is a traneition satrix t,!.reient~ing the oquatlon of motion . 4.... , 1,

ak represents th~e offset of the noise input on the stati vector and -

-+ "k.I"k I r ~+44k+I A .t+ k+1 (5.5)

w h e r e Y k t i a t h e q u a n t i t y m e a s u r ed '• ,,, '" . ' _' a . % ' - -

\• l, representa its relat~ionship with Xk+1  ,' -.. ,\4 4 -, ' , ."• "% .e

i1 the measurement noise with ar iance (5k.6

thean the beet wetimate of r the debt tem an its.varianceo Mathemupdast by the e Atio nsaX ' = • k~k(5 ,3 ) ¾ ..' . ' . " - ', . . ,

fori bi 4.*4fu 4444iL f I ok

Pt : k k l + Okt kt (5,4) '. ". .' .; . . -.

Kk.L = Pk l~~ - k~9*1H9 +Pk,1  l "•(5,5) •_ .. ;...s.Ls'. -.
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generalized noise vector random variable corrupting the generalized M~amuremuot zi of the state x

al generalized noise vector randomi variable corrupting the generalized melaairnment 2 of the state x

ft deterministic vector forcing function in discrete, linear dynamical system at t

ej igenvactor corroa~onding to sigenvatlue ).j of matrix M ', \ .

tt sampling time

v random noise vector variable corrupting the measurement z of the constant state x

vlath random vector variable formed by partioning Y in aubveotora

v1  white noise sequence niorruptins meenaaiiomat ZI t a'.'

'i generalized random vector variable formed by grouping the vi for I running from 1 up to i in

W1. white nnise seqqence affecting discrete, linear dynamical system at t-

Wgeneralized random vfictor variable formed by grouping the nvi., for i running from 1 up to J it in11

cosa stats vector ,,v %%

tt estimate ti xbae upon the k first mesnutrement subveo ators 21 %i

Xi state of discrete, linear dynamical system at t

xi generalized state veowur formed by grouping the xfor ± running frorm I up to i lit one vector % *

Iestimate of %I based upon e

;, estimate of ii based upon z1"l (extrapolattion of i)

Yi auxiliary vector defined by 1 = V'iyi

Yextrapolation of ij-, from ti., to t

m easurement vector of the state A

sit .aer sen ubvector formed by part.itionir.g z in subvectora

1 mneasuremient vector tif the state iat time ti

II jndalze eaurmet eco frredbygruin te i or irunning from 1 up to ± in one-
Vector kV

C, coaiac matri of -j Hivip .e bi.M

S4a.

U non-negative definite matrix

P eovariance matrix of thw error 6 X)

. 44. .



covariance matrix of tit@ error (Rk - x)

P1  covariano. miatrix of the error (1- xi)

Covarianoe matrix of the error XI %~

oovarianoc matrix of wi.

c overianoe matrix of w I

R ovariuneo matrix ofv

RI covariance matrJx or vio

RI covarlanco matrix of vt

V positive definite weighting matrix

Pth eigenvalue of M \

%.4 4 ..s tate transition matrix from ti-.1  to ti

4 generalized state trannitirn matrix

Iidentity matrix

ozero vector ,'¶

0 zero matrix

ol transpose of 0

o, inverse of 0)

.20 Iten iziut of0

sk roneoker delta

arnesation symbn1 for jrunning from 1 up to n ~'
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CHAPTER 3 - FURTIIIHEI COMMENTS ON 1IlE DERIVATION OF KALMAN FILTERS '.' .

SECTION II -G AUISIAN ESTIMATES AND KALMAN FILTERING 
T

t_

1. INTRODUCTION * t ~ ' '

The aim of this contribution is twofold. First, it will give the teader, who in familiar with mean squares
techniques, sufficient background to Rain easy mccess to Kalman filter theory. To this end, the Intimate •. a'.f.. . *

connection betwoen the Kalman and the Gaussisa estimation theory will be pointed out: more precisely, it will b,

shown that the application of reosults obtained by Onuss, at least in essonce, to discrete stochastic linear
processes leads to the Kalman filter. k

The first part recalls the main points of the Gauss theoryd, as slightly eitended by Plookett'
0 , The core of A ...- "..

this stction is a restatement of two classical theorems, which are of primary importance In modern linear filtering W .'

tcohniqlimP: the first constitutes the cornerstone of recursive filtering, while the second offers its dual form, _ .._
Li. accumulative filtering,

The second part is devoted to the application of those theorems to discrete stochastic processes and shows
how the Kalman filter and its dual form fit naturally in the framework provided by Gauss,

A. THE ;4!JUSSIAN LEAST SiQUARES THEORY

2. 1 Statement of the Probl me W

,Xonsidwr .the. -JrAUo•I•,g.aQuation .of mmuregglits: '. .

a z Hx + v

where a is a N-dimensional vector of measurementm, x a n-dimensional constant state vector to be determined
N., H a ,. xa matrix of m.aiual rank and v a N-dimensional vector of errors with zero mean and '. ':,. .,:

positive definite covarianos matrix Rl

The problem is to find an tatimato s of the unknown state x me a linear combination of the measurements a , ]

a: As (2)

so that the estimate .be unhseed and hae the smallest varianow for each of its elements.

3.2 A Deterministic Problem

Lot us consider a particular problem, in which Equation (1) holds', The a vector is known and is assumed to
take the value I . Lot us temporarily disregard probabilistic and statistical considerations and seek a "good"
approximation I of the State x , in the form of a linear ombination of the known measurements I ,. If we '
arbitrarily decide to measure the quality of the approximation by adopting the usual mean squares criterion

(I - HI)T3(g _ HN) aminimum ,(3) "M M

~~, A :i::;

with I a positive definite weighting matrix, the beat approximation is readily found to be .:,.,
j (j.-•T• H.-IH.. (4)

wbich uolves this simple deterministic problem. "'%, .

2.3 Theorm I- -- %*-t.,'4' -

Coming back to our min problem (Section 2.1), we ohall now prove the following fundamental theorem. The
unbiaved estimiate whih is a liidear combination of the meoaurements z and has the sa least variance for*
each of its components, 's given by.

j• R.,,)".HTR,,z

""PRC"I 'PAG ." "."a.
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• ,....

It he# the same form as Equation (4), the solutio. of the determiritetio problem in which the wei.hting mrztrix . . •
to set equal to R.I,

The estimate iii readily Proved to be unbiased, for its mean value

may be written in view of Equation (1), ' . * ' 'X

IC CI(') *'TR IIjjTR-,[Hx + lp.eV)]

dX M

.;The covartnoce matrix P of the estimate 2 is defined by
P E[(•-i)(f-x)

T)/'''-..',

which, in this case, haa the form

It (Olt" IN)--IR (,) .. ,.. I.

Before proving that each diagonal element 0•f the P matrix Is minimized by Equation (5), let us first establish '

the following important lemma. Lemma. Let M be any n x n non-negotive definite matri. Then the unbiased , ,'% •
estimate , which is a linear combination of IM measurements a and minimitea the quadratic form

s[ (! - )TM(j _ n)] ( ),

is again giuen by Equation (5), 4."4'°.

Suppose this proposition were false and lit -a , the solution with a matrix B different from
(NT R"'H)I tH?-'I , Without restriction, M may he assumed to be symmetric, for (8) is a hcmogeneous quadratic
-torm. If it hen mitiple eigenvalues, it may be submitted to the Oauss-dahmidt orthogonaliIaticn procedure •o
that, in any oage, (8) may be written

~ Xjcj~t(2-,x,,-.)1ba. , ,A

with qj the sigenvector corremponsinS to the sigenvalue X of the matrix M , Note that the eiswnvaluee %J *-ý-. - *

are all real and non-negative, for M is a non-negatlve definite real symmatric matrix. On the other band, ..., . . ....
since the estimate i is unbiased, we have

with I the identity matrix. The quadratic form" (0) is therefore equivalent to :" "fŽ•>•"

which may be transformed Into - 41

•JqI"'• " ('TWIH"I'qj + %jej[B-(" "" ")"H""" ]R[B-(Ht-H" "" "" "''Tq• ' 2 :! :

•=-~ ~ ~ ~~t viewt of Equation (10) and the, identity :.?...:.: .:-'-

incst the summation (11) each term is nan-negative, we are left with *

which proves the lemma.

A direct consequence ot the lemra Is that the estimate Equation (5) has the smallest variance for each of its
elements, ao can be seen b1 choosing all elements of M equal to zero, except for a unit element anywhere on theSdiagona., A % "%.2''• •

i% . %444: 4
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V ~~3.4 T1heoro.t 3 (Recursive tatimaticil)4.

Suppose now a partition of the measurements vector a In two suhvoctors sk. I Yk Partitionjing v and Hi I~? M'

accordinsl', Squation (1) say be written ,.

and we tftsume the set Vk-i to be unoorrelated with the not Vk an that R has the form ,

Lo theP h t niu variance;24 uni~dstmt n t soitd oainsmtidfndo

(I' -k- '- k

bwe Vre ani y beobt aiedwthuerprcssn th-L - u e +- Rn] is given by

lk( l- 1 Khh)k~s -(20)

On wthes ote haind mtix deinew bfyuto 5,tenw siae heefr

To ombntonstaof teq aoeueations , (2not21 @ied that rnve w fEuto ulth nerocvr~osmti o4

'Pi a Hk' R-tHkIkIk1 *~k

4 ~ ' .. ....L

N!,I~Ek~.~ + NRi1 '. **I*k'*

Ibish expressio the s aro clfstheatheoremi arxagba nw eteFo nu om ota h nes a

obeeailys obaied

pk~~~" \._I_'k
LHT[Hkpk*~ _,.'+P.



RA53. Theorem 3 (AccUmulative Esmtimationr)

With the some definition, an above for le. .1 , k 1k.,~ arid Pk., let us now denote by
the minimum variance unbiased estimate defined on the muhqotz only, arid lot Pkbe the corrasponding t,~ ~
covarianoe matrix; then, the mininum variancwe umbrca.Rd *stinatir R d4rfinoid an the two subsets [r-k1,N is) .'o-
directly obtained by 4

with a covarianenomaItrix P computed from the roim';ion

~ ~ p~1  (24) 9
c~~~w1 ~The proof of this theorem is a direct consequence of Euunt Lori (B) and (7); in fact, we have *.s

and L.*' *'~

%* +

'The genestlication to en arbitrary number of subsets of measurements ubcorrelated with each other is slain
%..obvious.

1.6 Obsorvabililty

Pros Equation (7) the existence condition tor a minimum variance unbiased estimate is readily deduced: theV

.unknown atete vector Its observable if, and only if, the matrix H ham Imailmal rank,

Theorem 2 and its dual form (Theorem 3) have received numerous applications in the field of satellite orbit
determination, especially Reference 4; the filtering procedures of Swerling"1 , Olaum5a ud Battiril, I are direct
consequences of them, Theorem 2 is of primary importance In modern filtering theory, far it constitutes the .c '

cornerstone of the Kalman recursive filter.. I,*4-.: '

It can be proved1 1 that, for normal procesocs. linear least squares ostjoalion yields the same solution amVýTL
non-linear least squares estimation. Moreover, in that came, the lesat squares estimate turps out to be 1,. :4 1..

measuring s , assuming a .

Teminimum vaineubae siaei fe aldGusa siae akvestimato, for btu
roace v ies of Theorem 2 or weigbteo least squares estimate. underlining the occurrenco of thre covarianco ' .C

j atrix Riin the quadratic toral (0).

Let us finally emphasize that the minimum Yariance unbiased estimate requires ng ar priori information
concerning the error distribution function,.~.A %

S. T119 KALNAN-SUCY FIL'I~LRNa THIOAV

I. The Wooda Secursive Filter

it will be ihown in this section tbat the Kalman filter, almoet simultanieously derived by Kalman and Buoys, ,

Sattim' and Swerling 1 ' is a direct consequence of Theorem 1 and 2, when applied to first-order discrete linear ,

system. * -~*- ~

Consider uai -dilmansional nan-constant state vector, taking the value alat time tj MAn obeying the *.:
following first-order discrete linear equation (i = 1. .. N): -,-*.*-

Z U +'~-~- ~ ik,(7

%WJ. ~

% .% V %



U-thr w 'k Is1 a white Wome random vector sequenci with zero mean and positive definite covarisno. mantrix Q1

while 01 im the system state transition matrix from time tj.j to time t1  At each time ti the state .5

"vmotor x, Is observed through the measurement equation
at=Hi:1 + vi (28) 5'W

with the smitre definitions for at Hi and vi as in 'Theorem 2. It In further assumed that the two white notse*' "*"5

random mequences vi andj wl., are uncorrelated. ".5

Then, the problem may he formulated an follows. Find frou the SieaInuremnts (Vjx. z)the minimumn

varianoia unbiased estimate it (covarionor matrix P1) of the ntate xi, depending linearly on the measuremento,A
assuming tne minimumu variance unbiased estvimate 21-1 coavariance matrix P,.,i) to be known from the
measurements (jj j~ ..z:..

in order to apply the theorems of the gLrecowding sections to the problem at hand, lot us Introduce the
vectors ita s , wi'I V1 defined by the followind recurrence relations: ".:'..X V.

wiSIR

If to similarly* defirie the matrices Q1
"
t  3 , R Hi , i

Ni.

31 : P *[v)v)],j.v s

*the whole 4et of EquationA (2'?) and (28) for I running from I up to ± m ay then he globally written

* gO u it'Y':1 - ivi'w1  + v, (20) '''5 *

or equivalently

a, "o H i + ae . (30)

with vi the random vootor variable

with saro man and .uoytriauce matrix aCi"..

C, a ,ipIQiuI(HiFi)l 4~ ' (32) 4

UmTh matrix I, 1. 1Is "eMod to have en inversee0..

21?



so

ýbtv that Equation (30) has the form of Equation (1) on that. by Theorem 1, the estimate niL may be written

N %*

in view of 9quatiobr (5) andj (7).

Blefore calculati1ng let us first oompute the winimnw variance unbiasod estlimate Lj(covariance matrix
PI) of the state %I based upon the measurements (t 1 1 ,i j 1,.. zj) only._________

Introduoing (27) In the general ized measuremernt equation 7

i-1iI(O,) .
+., e,*d.,S

one obtain.se

whore of is a new random vector variable:

with zero mean and covariance matrix0j%

An a Probortue form to recognized in the above equation, (01) is known, ic.e

4o that the covarianee matrix P1 , which may be written, in view of Theorem 1, l5

reduces to L..~

se can be easily verified, Using E9QUAtions (34) and (38), Thus', Pf is equal to

A similar manipulation of if which by Theorem I i. defined to he

leads via ftiLatiohm (33), (34), (38) and (41) to the result (3

We are now in purition to simply derive the Kalman filter equations. for all the conditions are satisfied to

apply Theorem 2 with

'k- I

2
k-1 %

MM..

k~ P

Le

%~t' '

%a

2..~.. %



,'1"*. . •

s o that the estimate L Is immediately given by EQuatitns (16), (17) and (10): , . :-°.'.' "

it i + K1(Ii - Hill~) (44) ~ p~ 4
K1  PlIHi(H±P; II + R1)' (45)

Equations (41). (43). (44). (45) and (40) constitute the WmK11 filter. The physicl meaning of these ,*
equations to evident: EqulitiorA (41) and (43) extrapolate thie atnimate I from time it. to tie t1 through

the state transition equation (27) while t.quationm (44), (45) and (46) up~ita this extrapo ated estimate on
acoount of the new anmilable mreasuremente 1  I"

The dynamloal syntem model (2'1) may be readily extended to Include deterministic forng term fl-'

11 =os 1I. 50 III. .I I +____1_4____1_(4_)

This Pleerly affents the extrapolated estimate il only ann ErQuation (43) must be replaced by

S'•] = 4'lL.•AJ.-, + fi-• 4 ): , ,,•• ,., ,,

fthe other fltering equattons remaining unchanged,

The Kalman filter is capable of other important extensions: although out of the scope of the present con-
tribution let us quote the simultaneous estimation of impreoisely known parmeters, untering the dynalminoal sytem m y "c.•o
linneirlys, the replaoement of white noise sequences for w vi by wide-sense Markov sequences" or by .
.equences correlated with respect to each otheri°.. atoohhast optimization, and so on ...

3.2 The Acuaulative F'ilter 
P %....X *' ,

It has been shown in the preceding sootion, that the Kalran filter in a direct application of Theorem 2 to first-
order discrete linear systs; It is therefore natural to ask whether Theorem 3 may be applied to the same
problm'O,

0onsider Equations (27) and (28) of Section 3.1 with the same definitions and assumptions and lot us introduce
.a atimenin�n4vector y1 Such -that ,41 MW tim 't1  tne -following relation holds -

2L Piy,, (49) . ..

it is easily verified from Theoremm I and 2 that such a vector may always be defined, rurthermore, strippse that , -. .;
the vector yit- and the inverse oovariance matrix Il-! are available at tiuls ti., • nd lot 1I bo a matrix
defined by

Si ("O , -t1  i')
1P ,1 - ' ( 80)

Equations (40) and (41) may then be written %

(P)1  D• + (52)

with D, a matrix given by the relation j

DI SA -nie + Q!!) (58)%

Similarly, the extrapolated y,., vector, i.4, c an be written %

, z .m4.Ij_,)-,,•1 (54)

in view of Eqution (43),

Us# of Theorem 3 yields the new veotor yj at time t,

y, S j + f.H 'nr• (55) .. .....

and the inverse eatimate covariance matrix *..'.:-, r

"1101-4 .- WO

. . . :. ,* I... 4 ,- .*.*.*':

,,l (P )* '+- Hj,•,•,5



The estimate is then av ia Jle vi

Atustions (50), (52), (53), (54), (65) anid (56) constitute the ACCUMUlative filter aciUationn for the prblem .' *

at hand. It In imiportant, to note that the caxlculation of the entininte it is miade irrdeirnderttly of the
accumulative filter: it meanse that any error in the invorsion of Pi1  dues not affect the succeeding~ entimnutep. ,4 "

Por the ventral case, however, the accumulative filter In not a prractical tool to soalve the problem, in view of *..

the n x n matrix inversion required in Equat ion (53). The situation in completely different in thn nbsnnoe of
plaint Polae3: in such eoften (wi. 0 for any I). the Mi matrix reduces to the idontity matrix ao that the
,%ccuhIulstivu filter equations sinmply become

rnrt52) 6opcl, o

tinewy ofmrial meatrixent bmo No th p obl mplAeatesl t, thamued ian fither shm.whch: sotth case in th Kalmn2 t

3aia4 estimationit Codiio % oer.eat,\&..

In iewofTheremI nd uaton(29. a oserabii coditonis atsildy Obt hatied lihe r xy:ee in

4, , - SNIO

simpl algbra.% manpulations

L~,~4
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CHAPTER 3 .. COMPUTATIONAL. TFC1IWI1qIFS IN KALMAN FILTERING -. .

Stasley F,8ohmidt "",

1. INTRODUCTION

In the application of Kalman filtering theory, the Lathematical formulation of the problem and computational

teIhniques utilized may depend hlonily oi, the comp.'Latiotul capabilities available, This Interface is part.ulnrly
strung in rnat tim,. acroupace applications %herein cosiidorntionA of %night, puwer, and reliability gunoriully
require the Btf.1uion oZ techniques which minimize onboard computational requirements.

The disoussion of thia chapter will emphavize computing techniques for Kalman filtering in these onboard type
problems. The techniques are applicable but not necessarily essential when large general purpose computing
facilities are available.

A note in p osing is that t0n Kalrun filter is a spocial data processing technique. It was originally

.i' Introduced 1, for the onboard application because of its reduction in computational requirements over other methods
"available at the time. , .---

uNwisrous investigators3' have reported various problems with and "fixes" for Kalman filters. The problems in
general fall Into the following oategories: . .

"" (a) Loss of positive definiteies. in the covarlance matrix resulting from nume:ical errors. A ' I'

(b) improper mathematloal ,odel, leading to a divergence of the estimpý,s from lLaBeurements. .

(o) Nonlinear phenomena generally aggravated by a poor selbction of the starting estimate. A

Of the"s problema, (a) bea probably been experienmed to some degree by almost everyone working in t•e fiold.
Reasonabli efficient (from computational considerations) solutions foe this problem based on square root algorithms '.
will be giveu in this chapter. -

For Item (bN, techniquesexist for compensatina for errors in the mathematical m.,Al. The tmchniques, although -,%"-' "

uaeful. still leave a good deal of "cut and try" in finding suitable solutioub. Some relevsnt material on this..
subject will be covered in th!, chapter. -- -

Item (o) will not be covered hire.. 'ilbs mechanization equations described use linearization about the current
test estisate of state. Tbhiv 1attor and the occasional requirement of specially designed starting calculations - *.

(hued on the raw data) heve removed nonlinear problems in the practical applications with which the Luthor is

2. MATHEMATICAL FfRtULATION AND DEFINITIONS

One of the first probleos which must be addressed in applyinr Kalman filtering theory is the mathematical

formulation. of the problem. This section will define the overall filtering problem from a practical viewpoint. -. --.

I.. Problem Statement and Discussion

(I) A true set of dynamical equatioins describing the dynamic behavior of the system Is believed to be re-
preseoted by a set of vectur differential equations

(xCu,t) . ( .. ........2.1) ..

One therefore develops a set of equations for the system of the form

rm r C,U,, t) " "2"2)

where ~
X 2 L vector describing the fundamental state variables* % .

C a a voctcr describing constants used in the system equations -. " *..

PRECEDING PAGE BLANK
"fundantal state variables" In used for those time-varying qu•atities whose initial conditions must be specified .. ,

in solviug (2. 2) (e.g., the ,ositlon and velocity vootors of en orbiting spucecraft), -

:, *d *



*U = a vector of foroing functions acting on the dynamic system

t =the indopendiint variablu, time.
-~(ii) Avector. Y of mesnurements is available whIch ii. believed related to the fundamental state varlablos

in the form

A model of these measuremrents in therefore developed of the formc

Y VOC(X,V,t) + q(t) (2.4) _ _

whore9
V=a vector describing assunied constants Mnd/cr tirue-varying states in tiie nesaurement. model
= the assumed random error in the woasurenient.

Before proceeding furtheor in the dofinitions somt. discussion of the notation arid in-ining of tho plirasew "believed N20
to tic" mndi "assumed to be" in in order.

"Assumed to be" in usedi in the context of ktnown approximation, such as truncations of infinite series representa-,

-tiuns, sand so on.

(III) An initial estimate of the state vector at a time te mayi be given, or in assumed, as 4

MYt0  = X0) "4

(iv) Other initial conditions and tim~e-varying forcing functions which are anasuwed are, 6, ~ **

0(t0 ) Ce0 26)K

U0(t) = U6. (2.8) A' ~ '

.(y) The .srrors in the, proviouaiiy-defiaed Qusantities are defined by

E(u E) (Ia) =0 (2.9) 7 : ;

Ee!) covariance matrix P0  (2. 10) ','

19 q(t)J 0 (21)L

C(qqv) Q(t) (2,.12)

E (C - 6) MOO~) 0 (2.13)

SO T ,oe (2. 14)

* BU(t) - 00(t)) = 81(t)) =c (2. 15)

3100U)T pU it) 
(2.6

3( i (9) 0 72.17)
I've (2. 18)

N .\ "a" p,

'a' ~The use of the expected value operator E in Equations (2.9) to (2. 18) requires,~some discussion. Nominal a.
usage of the operator Implies an ensemble average. For example, If the errors in X are considered as injection

errors of a space vehicle, the ensemble represents an Infinite number of launch vahicles of the same type launched
from the &meo locatioar. If the basic causes of injection errors are random in this ensemble and it is meaningful
for the problem. theu (2.9) is a true statement.

In general one cannot define a meaningful ensemble for quantities such 4& errors in the estimate of the vectors
* like C sand V . Hence one really should consider the initial values an estimates %and the covariance matrix as

a cutifidence level. This Is, in fact-, how one uses the quantities and the problem of defining the ensemble in*,.';)".
avoided. Equations (2,.3), (2. 7) rind probably (2. 15) are not true statemaents in the strict statisticai sense.

As a result of limited knowledge and known approximatiob In computations, one sa" desire to consider a portion of Uft) to-
* ~be a random forcing function. This sill be disoussed later in this chnptor as a poisible means of dynamic model compensation.*4

%. %



I.. Problem Objectives

The objective of filterig (or dntb processing) considered herein Is to find: ." .

Algorithms for use in a given couiputer which Process the mnoasurvenot data. and provide an estimate of ' '.,

the sarte variables wit-hch is sufficienr~ly accurate for rral tima conunanad and control purposeir.

"* Additional factors which muat |e considered Ii thim problem include:

(a) Computer speed.

(b) Couaputer meoolry availability.
(o) Computational errors.

(dM Neasuremant data availability.

(el Developwent time opbedulo. "..

This problem statement, contains name of the prucLtioi conaldoretions which arise in most applications of
Kalman filtering. Theory Iaused to provide appruuoeah for finding a practical solution, By no means will this -
solution bo optimal in the theoretical sense. This In because exact mathomatioe.1 modols of all quantities, a58" '
well as practical perforuiance inidicee which coonider all the faotora, carnot be dofinc.i N,

Subsequent discussion will assume that proliei.•ry considerations of computer speed and memory hsve led to the
reQuirevent of data processing algorithms of a "one pass' nature. That is, on.c meoesuremonts at any time point %
have been processed they must be discarded. This asaumption is made to restrict the scope of subsequent diacussion
to modified fores of the Kalman filter, v J' \

A practical solution of the filtering problem In any specific example is found by the use of existing theory
and practical experience to define starting algorithms. Simulation in then used for further validation and/or . * y
modificatious, Final validation and/or modifications then takei place in tests of the real system.

Before introducing the basic algorithms, some additional definitions are required, If the gradient of (2,2) ;.;:

is taken with respeat to X , a n sd U , a set of time-varying linear differential equations ti obtained': . '

& P-t)x(t) + H(t)o -. D(t) u(t) , (2.19) ,

*bere

BMt 6((CU~~x t) :

D~t) Vc'(X1C'.U~t)Io(tl ~)

since (2, 19) is linear, the general solution way be written in the form

M(t) (t;to)x(t ) + ' 0 (t;t10 ) + J *(t;T)D(r)u(-r) d" . (2.20) , _ '..

The transition matrix ltft;t 0 ) and the sensitivity to constant forces or control con be found by solving .".. "" +" lS+ : P~~t>+ , +~(to~t,) -- (2 ,21) .- • ."".-

"* 'ko : P(t)Io. + B(t)(I) , * 0 (t0 ;t 0 ) a 0 , (2. 22)

The Integral term of (2.20) may be solved by approximating u(t) as a constant for small time increents, : A:

u rwo)4 + flMIl 00,ct +a&; to +VA) = 0. (2. 23)

It Is usually convenient to consider an augmeotedl state vector of the form .

- fundamental state variables

z = C - costoat terms In equations of mctioa . si

("\O/- oonstant forces. -

In this Instance the augmented state deviation obeys %

,(t) - *,(t;tO)a(to) + 1 *t:t1r)Der)UQ('r) dr (2,,2.

if linear assumption are valid. - "

*I..... . . .it%.•'..............

Weo•uterd caqoletr sr use to deot sml .ol n fro th corepndn uo eas vaue Thtin vcor2t

a " •dr~ as 2' " a P

'• .... . . -. _ . . .,.,.-, . . .,,-..' .'.. ,.%
l •'' ,•'•'•,'''/'" '"'" " " ""
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The gradient. of thu measurement equationi (22. 4), is tlukIn with respect to X andt V to find 1Lnuor equations -

for th 1 th meas remen

YjC hi +1~ lly + Q1  (2.25) '

where h x(.~iIc 1~~

Ono may desire to relate the vector of measeurements to the vector,* z0, ,aafieepcThis may be dons by

y Hz, 4. Ov + q (2.28)

itIn (2,28) the vector y may consist of measuremonta at different timu points, The vector z, can be at a
fixed epoch. This fact can be used to Obtain an algorithm for processing emall batches of data or for a simplified % -

form of data compreewion 'o. it In generally desirable to ccuieider a further augmentation of the state to Include
the measurement parameters, V .Then (2. 28) would be written in the equivalent form N

Ithcaewhere it In meaningful or neessary, one many write the equation for updating the covariance matrix

(230 (t')ivest )+ 2.0

A oiidfr fteKalman flefonolnasytmisgvnhrfrpocsngthe measurements in a
sequntia caner.Those algorithms Are readily derivable from Kalman'sa original equations for the discrete

filtro. hL lgorithmu is conveniently stated in two parts:

(I thtee the nolna the tim +c Ii measurement times, \ *. -

Z(ti1 l) r S t(r) dr(2.31)

(ii) At measurement times. t1i +..
4 X .

a - b + K(Y - ) (2.30)__

Pa Pb Kb (2,35) Z

K =Pb"t(HIW H' + )(.6

0(i,V~t,+,) =computed aeasurement.

Equation. (2. 31) is acimple etatument of Intogratim&L .he sytmdynamic equations (2. 2). The Z noainI
used to imply a time update of all those components of the state which are assumed. non. constant, The transition
satrix can be calculated by Integrating the variational equations implied in (2.32) with the apt ropriate initial ....

ediin.At the measurement time t the covariance matrix P, ) is calculated by '23).qain

S~~ ~ ~o the4.(2 5,An 2 6 are then usecit~o calculuothe now estimateA u state,2, and the ne1w -oarac matrixL

'S P. These now values result from Including the measurements Y at time t i+ in both the sit' .4 and the

Note that If the influence of rsndom forcing functions Is approximated by the use of (2. 23), then (2. 33) should
be updated at A~ time intervals between the measurements.

The random error in measurwemet is assumed to be smal aod therefore considered to give a small iandoe deviation from a S*S 5

*The effects othradmvraino t)reasmdngiilInwtngthis empressiop. Otherwise, tiecrlad
error mast be added to equation (2.28).

T,.. \
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.1. SPtARIE ROOT FORMUIILATIONS .

A3 already mentioned, numerical errors frequently cause a problem when the euvarianon matrix equlatilan (2. 33)
and (2. 35) are used. The usual symptona. of the problem are negative diagonal terms coccuring in the covariance ..

matrix after pfoce~sing date. The prohlem can occur after the first measurement in some Instances 10. It in more -

of a "nuisance" thsii of a serious type, ms one usually can find a remedy by addiing or Increasing Rt of (2. 33).
'aThis Is one ofthe techniques discuseed inSection 4for model error componsiation. The other toohnique given i. .'

Siection 4 also can be used as a remedy for this numerical problem. b~>

This numerical difficulty can also be removed by squateru mtos The square root methods, also provide a
significant improvement in numerical accuracy of the covariance matrix, Since the covarlsisoc matrix is the It'9
weighting factor containing the effects of all past measurements, Improving the accuracy of this matrix can be .,.

important in some problems.

The square root of P Is defined an W and satisfies the relationship

WWT P w 1 M ) %Y

where
wt ith column vector of the matrix I

n the number of coluons of W which will be defined as the dimension of P. *'\,. .

With this definition, if P is positive definite, the colm aret linearly Independent. It is
~~d i ge~nerally desir able to force the column vectors of W to hlielyispmnt. Then when P is positive \

Isei-definite come column vector or vectors will be null. The rank of P is equal to the number of rjon-msro
column vecto~a& of W in this formulation,

In the case of the square root matrix one needs computation algorithms for

'.,(a) starting the problem (e.g., given P 0  find WC),

(b) propagating W in time (square root of (2.33)),

(o) modifying W for including measurements (square root of (2.35)).,~

Subsequent material will summarixe algorithms for these purposes.

3.1 initialization of the Square Poot MAltrim

One obvious way of specifying the initial square root matrix me0 in to define the column vcosof WD One .4 ~
should onota hnthe columns of W armdelinearly ineedn,*ehclm pecif ies ininendt
error source. All error sources lie in different directions in the state sases.

An alternate prob-lem is'that P 0  Is given and a suitable square root matrix We Is to be defined. For this a

usage, and from the preceding discussion It is seen that the desired algorithm sill construct a set of column '-..*,
vectors of the matrix Wu which are linearly Independent. Consider the application of the following equation '

'a. ~for 51mP0 ..

B2 v ?

In (3.2) Yk is an arbitrary (non-zero) column vector. Note the~. the quantity vk~v is zeo.'note

words, (3.2) removes all errors of P 0  in the direction of the vector .k If vk is chosen such that ito Oth
element is unity and the remaining -elements are zero, the kth row and column from -Sk ar4 removed. By letting
k X .n then 8. 0 . The quantity n is the dimension of P0  (the number of state variables).

Therefore, by defining the column vectors of We by

toif V T kvk A a4.TBJ
the ~ ~ E reutn 0 mti wl eo oe ranua om rmfitrn osdrton n av h

aloitmaste qivlnto mkngopefctosevti fof th stt(eto3hc.rdc3he)rrinal'

a if aIDV
. 1.

the~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ reulin Wemti ilbeo oe ranua om ro itrn oniirtoson a.ve h

Lo.tb as, th eqialn of main a pefc obevain oftesaevco hc eueteerri l



The algorithm provides a means of calculating a lower triangular matrix T such that
T

TBT :3 a diagonal matg ix, (3.4)

shero,~ =n ~ a positive semi-djufinite matrix,

Another use of the algorithm In in finding a seQusnos of obs~ervations whose randow errors aria uncorrolated from %"
asequence whose errors are correlated. ror example, If

and /e p 1 j '

W' 1) = (3.6)

then the observations giveni by a

(~s) Latv+rJL h, +. hj x ac + ,q+q

have wicorrelated random errors if

0*%

In this insasnce

$Ince 0 * ) (3. 10) ~'

the maesurement a,. to the same as Y, and its random error Is a, The measurement s, is a linear combinaf- .~"2' '

ties of y and y, so chosen that its random error is wicorralated with the random error of SL The variance
of the ralso error in z, approaches zero as the co~rrelation faotor p approsche' unty

3.3 Measu~resmet Wdate of the Square Rost Vitrix vt

4 ~~~For a sminle (scaler) measurement, (2. 35) may also be written in square root folrm as N..C. *'

We = I 1*3.11

where 1Wav P.l~

end a_ (HbTH + 0

multiple measurements (at a given time potizt) may be treated ue sequential scalar measurements if their random -

errors are uncoorrelated. The previous material illustrated how an uncorrelated sequence Ma always be defined;
hence the square root formulation of (3. 11) is goineral. Other formulations for multiple measurements are also*. 'ruU*M .

This algorithm is givem to Reference 12 end will be referred to us Potter, a method.N

Z".



2.2 Time updmte of the Mquarti Root Natrtx

Two methods Apr updating the square root matrix in time for random foroing funotitas are given. Doth assume
that the matrix A of jequation (2.,33) is available in factored form slich that

where
4,are linearly indepenident. vector.

jznumber of random forcing functions. .

2.3.1 He thod No. I

A square root maitrix time update algorithm can be developed by noting that do~

INAs aresult of the well-known matrix indontity 't0r

doadPotteir'. square root method for equations like the right-.hand side of (3. 14), ons method for obtaining the \
tieupdate of the square root matrix is readily developed. The stop& are as follows;

ol (Ii) Oprt C ieOntemti sn quto 3 1 ihH a n .S
Lot the result be

(III) Theou'.~ '

W(t) 0- 14..

~II The author is not aware of any extensive use rof this technique, am a result of.the obvious drawbaok of requiring

-two mortrix inv'vralons for @very times update, Pleferenoe 14 refers to this tachnique as Potter' a method. " '

3.3.2 Method Nol -2

An alternate technique which doss not require inversion can be developed In a relativoqly simple manner from ~ -. ,

the material presented thus far.

7I xamtnation of Cquation (3.2) illustrates that it may be factored as follows ~

A. A41 MkAkkM T sk, N.,, .

where *N

Hence. if the matrix A is reduced using

ma h arAof Equation (3.3) is stored, alwrtinurmtixin N sill result. Furthermo~re, this

It should therefore be obvious that, If
(3.o :01M19)

the resulting squaro root matrix W is the desired square root matrix which includes the effects of the random ' ~..
forcing functions. 'This method warn developed by-the aztthor 1 l but appeasr to be equivalent in practich to the .,

technique outlined in Referenoe 14.

The special choice of vectors (the kth element unity and all other elements zero makes the matrix Mk very
simple to calculate, Furthermore, In 0.7 each stop of the algorithm makes the ktl row of t he watrix Akti ~
mere. As a result the numboir of operstionti Is not as large at it may appear at first gletnos. .*.*. '.~

* ~, 4~4% * *' '%



7oa illustrate the simplicity of the s1icriths, a simple example will be carried through each step, Let

Then iT >®r.nd () 0

A, 1 0 :. -1/ 0 (,1II I 1 0 1 0

0

(DefifisnelU o Wt

(~~0 00biam

-210 2 -1/20

- [1 0 0 0
L1/2 1 0 -1/2

/2 12.512
a (21sV

w ~ :: 1/ is ou fWt



I20. -0.2. -0.6

W, * v'a12 )% second column of W(t)
./B' 2. nI

(2.6)

0

Th. fial mayr 1. w ¶01) third column of W(t).J I ~i

W(t) VA2 b'2. 5 0 J (3.22)
II/V 1.51V2.5 V2i./ d

As a check one may compute AA' from tawbtion (3. 21) and compare the result to V(t)WI(t) of EQuation (3.22).

0 4 10

A.

1/V2~t - I V2.5 0 v2. 5 1. 3/v'2. 5
Wý)?() L/Va if/v2 .5n: V v2.I 10 0 V2.6 A M

0 1 J whichoChecks.
2, 9'

As noted from the example, the following two facts about the method are significant!

(1) The dimension of Mi1 aad Ak reduces (effectively) by one at each step. I.

(1i) The final solution for W(t) is a lowler triangular matrix, that Is, the elements above the diagonal
of W(t) Lre zero. This fact can be used to reduce tho nuniber of calculations for the measurement update for thea
first measurement processed after the time update algorithm.

Bolth these facts result from the specific choice of the Yk vectors,

3.4 Recommended Algcrithes for Squasre Root Implementation&

Niew C4odatt Nquat ion. to a Mesaurement .'.

Let A, (OWF 5). (3. 23) -

rll *I-,,

% %4

OLsq



4..

Calculate tho column vectors of W't) in accordance with the n-scoii aicorit~hm k I. awhere V..(l) =0

6.?~~ ~ e ,nod vk(k) I .

Mk. 10 (3.25)

%Ak.1 MkAk (3. 20) 2

wk /WI~lkk)) akth Column of W(t) (3.27)N,# :I

Measurement Update (for a Single Mfettvrcment) .

Compute the vectors

u Wv (3.29)

a N (V3.2+)

ModifY W in accordance with

3,5 Comparative Computation Requairements

Although the proposed method should enhance the accuracy it may be costly in machine time, The proposed method
is compared here with the mare conlventional Method usnig the covarlaces mntrix (Equat Lons (2,.33), (2. 35) and (2. 30). % .

d' I

The comodrimon data given assume that none of the matrioes or vectors have zeros in prescribed locations, Also
P io assumed soan xa matrix and a an u x matrix.

-Number of Operations for a Time .4odoibt

(i) Gonvemtional Nethod't

tq~ustion_(2,33) 2 & 2___+_____+_

(ii) Square Root Method .~.

M&D A & 8 Square Root -

Equation (3.,23) n3 n1- ~

14ain(3.24) (n +M)in + I-i) (n +M)(n + I- i)

Equation (3. 25). (a - )4

Eqato (32) ( 4.4 '(~m a-)

Equation (3.27) (n -i) 00

N eesm utpiations (3.27) divi i)ons.

A a 4 seans additioas end/or subtract ions..

1h4
'I- ,(, I6t~" '*4 -6t4



An man ex~ample assume that n 10 anid a I i ha use of the tabulatod equations for number of operations-
gives the following:

Equivalmnt Af & D Ml D A & 8 Square Roots

Conventional Method 2550 2100 2200 4

8quare Root 5837 4520 4785 10

j ~The oolumn labeled "E~quivalent M A D"' assumes,

(ii) Additions take 1/b of the time of multiplicatioun.%

Por this examp~le, the square rout notliod taken tWcn &a much ousuluter time as the 0onvoritiongl method. If the ~
udvaiitago of symmietry of thes covarianem mattrix for tho con~ventional method was forced, theni it would be about 3 & .

times as fast so the modified square rout motbod.A

Nuebei" of Operations for as Mouuurenunt UIpdaet (Scular Observiation)

(1) Convesntoiona Method

Equaions (2.35) nuid (23) 3n +i a *2no +n4.+

(1i) Square Rloot Method %

____________ rf Triangular On Stert Not Triangular A.(

N & D A &5 M & D A &S

-9 + I.- -I a- I -I

squation (3. 30) j jn +l 2 n 12 a + a

Nquat Ion (3. 3 ) of~ '- +o -a AS t A A o

On quarrotireurdi qstion (3.30).n22 +

onee rouar root 322 30 1 %A'*~A .~.u..

he umbr 8o cprstroot (tianthe lar)ou 287ss i2d32t 2hehe 1rntSi raglratratm pae

hsquadrerotmeto has asligh beusdvatg for the first measurement processed at f Va i se toiant. ar However

dhsavatg I ota aorsubsequent mas10 and asinl. auseti rcse.~ ~~

~.aA.IA A aJ*

A ____________ Raiwa~ntAl 0 140 A 43 Squre ootV %

J ,..A..



(for example forming the vector g,111/11 pj1T 4Q) inuttiaIur of dividing r, times), then the cntwcentlotia Method will

beabout twice as fast for titsexsample cited.

.51 Influence of Coding Techntique.s "P .

Coding can significantly alter the previous compuitationatl time estimatis. ror examiple, If the square root ,~

method were coded an

and the conventional method to

whorer

K 1`1 l(It1IPHt + Q) I~*4~

thenu the comparison is as follows for a singlo weasureroont, Nu adviuitoge of W boing triangular in used,

At&DA &S8 Square Root ,

Conveotiwnne 2n + 3'+ 3n -0+2n- 2 0 :

(h 2 1) 2330 2221 0%

S quare root ns+ 2n' + a+ I n n o 41'2 + I I

(anzi0) 1211 1122 1

levoral conclusions are evident:

(1) One should not code the square root algorithm Using Equation (3.32) it speed of computations is of any vv
Imprortance. There aer no obvious advantages of (3.32) for accuracy either, so it is definitely not recommnended. ~
Tho-previouwly outliried.,prooodure, where no matrix multiplications are used, is decidedly superinrý

(ii) Equation (S.,33) is oxtresely poor from speed considerations for the oconventional method. It requires at *

least 10 timese ?As long as (2. 313) for the example of a x .10 . This speed difference will Bet even worse with
large values of a ,Equation (3. 33) has the advantage that the covarianos matrix P should renacin positive
definite, However, there are numerous other ways of doing this, so that the use of (3. 33) Is not renomnunnded.

(III) Proper coding for both techniques should always make the conventional method superior with respect to ~&
computation time. '

3A5 Formuatiston Using the Inforoetion Hatrix

Ons say readily obtain a set of filtering equations where the inverse of the onvartanoe matrix (the inf~rmat ion \e.

3.6.1 Ting Updatet. 6L

then p'(t u o (w+n 21 A~t) ,(3.35)

defining .bp~ m t, * A t- (3. 30) *'.,

and Bill2 (3.37?)

Then the )-stop equation, B Bk 5I - Bkoi(S 11koil, )" s~ ,1 k ~1, j (3.38)

.'yields the result that -1 Mt a 2 Bj+ 1  a A(t), (3.30)

Note that the adjoint. equations

A. may be used tn plane of the trunsitiun matrix equations (2. 32). This avoids imy requirement for watrin inversion.
It should therefore be obvious that, if the square root matrix C Is defined such that

cc? A, (3.41)

%1,



then the square root matrix 0 may' be updated in time using Potter'na fnotor~sation of (3.38). Thinl method was . • •.••-
gliven before as part of Method No. I for the. time updato of the sqiiar'o root of the covariance matrix. The quantity .,4.O4:.•il i - •
OW wan inverted before, usng. Potter' a algorithmn. Here, no tnvermions ar required. however. since the intformation ,.,,..,'..Z'''
matrix formulation is used.

3., AAaueetUdt

In this inpitkhoo the square root of an oqumtion of the form X'' ",",'',•"•'

An = + HTQ-111 (3.42) P ,e. ... , ,.4

is to be calculated. The measurements are deigned by• "' -'•-•

,'.'4'. • ,. .'.4-

S• •. ,,,* ,* -

to obvioruly this Ir the idfe tocad probler the time udt updaof of thsqua e t roo of the oovarrinc matrix. t ; hence, •. l' •" - --'..s ('

( ~~~~If onun Wines ; • '

and ues inertion. be to Mi 2t), . a o,,ri th er, no inver lgs rr, however, since t g the oi are g.ve ,b, thekOf

.•'.~~., " ' -,.4 ,, .,

3,6.3 State Che ,t M, neasuremen-s

It is wall tkno the the rain K of equatioh (3,) my lso be written in the form

Thu 0 obtained after inllouding measurements is such that • w:. .o ,.
W) -A 1 +(.45) .....

if C hu no b ur column vartors. The matrix o will be of full rank If the problem d initialized with a-

Qu eit e ovin ovth iosnte .met Tisal , hibe.tLattothet ir #not thcesuare in the inverse formulatton, to the tte,

K of Eqat ion (3,., 44 hould be written .on• .,
if a ocall HQf 1 (3,4) ' "

a t (3.46) the (.) tymbol read( the pcoudo-ifver, The fact that nn a priori in0 reation matrix Is not requi re

with ths woemulat k on tha be amn advantae An some probl( ms be written in thefore%

A it resuglt of tba .iarnalr of calculating O , the rack of the Information mamtrix isa vailaleb,: •~lWi.q~mi

rnk obai- nember of diional termsu of 0 which are tden(ioally ern.

Hince, ih K to alculated by o 40). t"e knowledt e of when the pof udo-lnverf it required Is available. w ao, -

since a in lower triangular, anversion of C directiy (when ot -in full rank) is r foom ltnded, ote recommended

owner of computton the taote chwten Isa

K (1" tT(D" 
1

TQ I((Y-.4) "

calculations are to be carried out in (3,.0) starting with innermost bracketed terms. In (3.47) " ... ,..-'i..

D-1 1 0"-1 if C is Invertible; ,","'••.6*."*

otherwis, (~ PP'o 3.48) "%• .'-•

The matrix IF in (3,48) in defined by shifting ell non-zero columns of C to the left to form a lower dimension "...'.% '"". '•
m (trix. In (3, 40) y" b il the square root of the resuwo-einverT e ac the infor mat matrixrix, i.,not.qeui,

The tnvera e formulation a iven here i anpproximtely the ame that of Reference 14, The method pIvrn uees

nunrtoal accuracy of the wma ihted leal t l quart type filter, In thin lftter inmtance the v tiated states are
henel K 1 oalctolatd by (a4) fidte utno led o whuen ttnteral a re proce uied in a "batch" ncheAo. That o, "
thsie is lo haneid only as a rierslt of all tde m tlauremenht in sfl rk batch, re o n ."mmended. ThW

Reference 14 conmtins t everal examples which Illustrate thb superior woerany of the square root formulton..

An ,.if is as invloti.l
3.64'-' u'i,'I. '".. ,' %

¶ The.'..'',.%'. . inverse.. fomlation given• here'W'••' is ¢/¢"% ap'ro-ina-ly'%'% the_'•_ sane.=•.•••''•'' as tha ofRfee" 14 Th meho given .. ... un.e ,,... " '' "" "



', (3... ,

+~

where~~~~~~•,~ ao Is some sml ubr tCC nfreteLot C -I . (3 ) +...,. 2 2 +r

Iia also formed. Comparing (3.60) and (3.51) shows that the only way of dinttniiulmhiing rallk (2•) in (MO5) is tile '.,•.. .% .; !

obviously when C In squmberd. (3. DO), rank Is for t thf es i smtlnr than about 4x 10'. If n is reduced to

lower triangular form, uslnB p~revious algortthing, the ,.... ... ,..u1

C, [ 12 2 -~e 0,2] ...

( + G)/V2 [OA 2

An examinition of the algorithm show. 0 ha t the relative biss of a to unity is important, rather thi n I Am

Numerical rank would not be lost here unless s in les than approximately Ii 1o'pu for n 8 decimal drj, L computer.
niother point of importa.c ( i. that, once i has full rank. it appear: imposuible to lose rank nuieroally by

lddtn g ery inulrate observtsion u. This in not trim of the iuformation matrix formulation.

4, IECIINIQUESl FOR COMPENNATION Or IMODELING O RROHNl•,".

The mnatimont of the problem of Section h wre made in a mannor to umphastie t , rathetfrc thanypes of matho-

mtiales moedling( errors oaii vexit. Am was mentioned in the real time onboard problem, one desires to minimize
umerptational raquirementso Hence, the modelesn problem ls further a ggravated by t1 e dor ire to keep oalculat ert, .

(n) •he number of state variables in mtnamn ed by omhttainu An mitky error sources to pou rnblek .

(b) Oloed form a pproximsations are used sn much as pofsihlo to minimiat computer spef d requirumlnts,

(a) The msnimun oord lenmth M be sought fo r reduaing computer coets, site, a cd wetiht, • n, y-es f.math- •. ,-•'

(d) Fixed ponlt arithmetic is dctrable from compdti r complexity f onsder rationed bythds i tokeep"alculatios

Th overall acouray'.ttai.abl, depends on •. ,:.2• •
(An The frdquency t nd accuracy of, rnd the su ate space 6pannsd by, the observations.
(a) The ancuacy of thatlevaiales used in fittindg the data. a' error.oures.posile
(0) The magnitude and spectrum of rsndomught i re uf•ctiong c otipu on the system, a.'wigt.. * \.. "

The interrelationships between computational requirement considerations and attainable accuracy are very omnplex ' *,4•";",4.

in practical problems.

In this section teohniquse for dynamio model compensation in Kalman filters are addressed, The techniques
presented will tend to "look' the ostimfate of the state to the most recent measurements and thus prevent a - 'C

divergence of the estimate from the measurements. This divergence occurs when one attempts to fit data, over
relatively long time arcs witt a poor dynamic model.

4,1 Orbit Determination Exsamplo

As an example of model error, an orbit dotermination problem where position and velocity of the spacecraft are
the only assumed state variabtles i considered If such a constraint is imposed on the number of state variables,
then it is euay to snow that model errors generally make it Impossible to find a solutton for the pueition and..--.,.\ ,

velocity which fits the actual data. , ,* '. .

In this instance - , " ,..

F r(X~t) (4.1) , ..

* - ~~(4.2) * 4'
S•o¢Xt) , .• ' "\''';

% ...
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The problem of finding t"e estimate Of the Initial state, X0  whtinh mil!'chiy.os tile loss function ______

i qaios4 1) mimnsesta constraint OnI the timo himtury of the solution fur i if oi o gLOI. v ~ rto (421 .

gives the functioa reainhpfrcmuigt.olirainfu h siaeo

The real moaleurements uoioy real ity rather than (4. 1) and (4i. 2). Hence, If one uses Equationn (4. 1) and (4.2),____
it value of iofor which tho residuals Y - 1are small iuid randlom about zero mean. over all time, implies -

there are ito errors in the matluemutical models.*

* ~Since IL weighted least adoures fit Is used in this example, one can hypothenizo thle typical residiual behavior - .

oftesoluio ,furerrors In (4 1)1d(14.2). A pletorlil repre::ntatiuii is 61townin u 'igur: 1. Thetur: "short

arc"* .505:1. for exroole. the dittu during a single vaus of a ground station for a low altitude satellite.

ANsonInFgn 1 o, sotac dyinciic oo ros(rrsIEqain4.M wlntpevta

wale olution of (.) Let il represent the three position comiloneitm ttebeinn of a daaarc. Te

is sall, dl t-to) ie io(t to) '21o ~ ,,

In the eqain vand toare free to be estimated. and a nearly perfect fit can be assured as long as (t -t)

is "ll, ogad~ta ofthe constraining effect of the dynamio. model.

~ The underlineJ terma, of the infinite series (Equption (4.4)) are dependent on the dynamic nodel; hence, errors
* In the dynamic m~odal sill become effective over long time ares. One therefore will not be able to find A Value '..*

of jo and A' which produces small residual errors, for example, over a multiple pass. Dynamic nodal errors .'

for data uver long time area should causme ffects of the type shown in Figure 1(b).

Measurement errors such as hiass*& will also bave only a small effect, for short time arcs, as shown in
Figure l(c). The error in the estimate of state sill include the hias caused by the measurement model error In

this instance. only when measurements of many diffcrent types are processed sholld biased offset residuals occur
.for short data ares. This lat~ter results from the Iiaot that no oingle .vwlues of *jo end can be selected
which fit multiple measurements (sore than 6) in the presence of biases or other measurement model erroes. A %1~
measurement model error, however. ib, in general, bounded. Hence, if a long data arc over many stations is
visualized. measurement model errors would be expected to cause residuals as shown in Figuro 1(d). Since the

%solution Is constrained to obey tW dynamic model. measurement model errors will have. loes tmud less affect on ,

(pot mistakes). Typical measurement model errors are station location errors, timing errors and biases, %.

The real problem, of oreirse. includes b-oth measurement and dynamic model errors. Dynamic errors may have both
perodi an seulu efect ontheresiduals Hence Figure I can only indicate t'ends to he expected. Also,
in te gnera siuaton, hatIs eant by sho,'t and multiple pass is not readily defined.

Fiue2dpcigeea rn,%o the effects of measurement anld dynamic model errors on stats est~imatintu.
accray so fgre dat p ints, nded a tlrg indicate that dynamic errors cause a ever-increasing state estimation error. ..

as oredat ponts avr alare tmearc, are included. Measurement errors have the opposite effect.

On~e desires to have a compensation technique wehich gives the beet balance between these two effects. This wil
be calle'd dyuamic model compensation and will he discussed In the next section. One should recognize, however.
that both measurement and dynamioc model errors exist and the resulting effect of the dynamic compensation can -N'C

cause the measurement arrors to be dosinant.

1ý ~4. 2 Dynamic Model Compensat ion

As indicated in the greviolis section, some, meams of yrewtnting the state estimation errors from growing .

indefiiitejy is necessary. It should be reasonably obvious that one say of preventing this growth is to gradually . , *,

reduce the influence of p-ist measurements in determining the estimate from current measurements. Assume that totally 4-~.
false memasurements (outliers) caused by malfuuctiens can be removed. The remainting measurements can then be ti.5tsd
to give the theoretical value ba~ec on the correct mod,; plus an error term. It is reasonably I tely that upper %

hounds ma be placed on the measurement error. That is. the error which Is caused, for example, by calibration,
*atmospheric effects, receiver noise. and so forth, cannot be larger than some specified number. If this is the

case, them the error In the computed measurement should be mu worse than this upper hound.

As an example. suppose the mevasuremeent is the propagation (!tiny of an r.f. signal between transmittal and
reception frum A sp..eeecraf C It is reasonable to aessme that the two-say range may be computed from this
measuremsnt and the upper bound on the error In this computed quantity pres,:ribcd. If the residual is greater
than this bound, one msut conclude that too muctl emphasis has be-, .ced on past data In establishing the Cueputed
o.,bit. Thle author doese not mean to Imply that such 'worst case" considerations are to be used. These remarks

V...
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are only made to give some reasons why a reasonable degree of trust in the basic measurements must be made to
develop a cecpensation schemeo.

Tao different approaches for weighting out the influence of past duta In the determination of the curront ' 'A
estimate are as, follows:

approach sre ats follows: Equations of motion which are invalid have been uowd to update the estimate of state. One ' ~* :
should therefo~re increase the a priori covoriatnce matrix in accordance with the errors involved in the time-%%
updatine of the estimate. The di fficoilties In uninjg thin approach lie in defining the real urrol sources. Their
forisu)ation can also become extremely complex. Heonce, for practical usages, it Is perhapsq better to Day that
pseudo-errors are introduced to cause an Inceasae in the a priori covarianco matrix. These pseudo-errors can he * *~
of two types:

(a) xendon forcing functions, '"%*

(b) errors attributed to Inaccuracies of cuiistan~ts in the equations of motion.

(ii) Overweight the most. recent data. In this upproc iti alno recognized that the a priori covariance
matrix may he overly optimistic. The ma~trix. however. is not modified on the basis of adding the effoctn produced
by pseudo-errors in the dynamic model. Instead, a non-optimal filter algorithm is adopted which attaches a greater , 4
significance to the recent observations than the optimal filter does, The a posteriori covariance matrix is *-

modified to conform with the non-optimal algorithm.

Either of those approaches has many variations to-suit any specific problem. Although the philosophy Is *
different, both provide a means of developing a, dynsamic model compensation technique. % ,~

4.2.1 Pseudo-handon Forcinig Function Approach

In the equation for time update of the covarianbe matrix, ý2. 33), the quantity it represents an added growth
In error caused by random forcing functions. Since dynamic model or computation errors would cause an additional '

error to exist, the natural ~ix Is to Increase Rt A% already mentioned, If '- \. . ~ \

(4.3

then the direction vectors si and the variances allae t be selected for compensation of the dynamic mo:del
errors.

In the real time cnboard problem it is likely that a far mere accurate model can be analytically defined than
Is possible to calculate. Ali approach for defining the errors is to use a general ourpose computer to calculate
the diffsurenice between the assumed "exact" solution and the approximate solution as computed by a simulated,
onboard computer. This difference (or error) data is calculated for a number of initial conditions and timek
durations. The quantities ai end a2 are then adjusted to give a reasonable Approximation of the error growth.

lucha sjultio islikly sset%1 in validating the approximations and onboard computational techniques. A
* a result this approach should not require a large additional effort. The alternate approach of defining s and '

o-1 (as sell &a J) by -out and try' experiments with the real System is definitely not recommended for complex
systems.

Model errors and computational errors generally cause bias type errors in the estimate. The error sources may '

be modeled and their effects included in the filter In a more direct manner. The theory for such a technique in '

given In Rteference 16. For measuresent type error reuroes this technique is reasonably efficient, For dynamic "'
errors, however, it requires extensive calculations and does not mecessarily give large reductions in state
estimation error over the pseudo-random approach3.

b 4.2.2 Direct Overweighting of Most Recent Dote

The pseudo-random forcing approach gives a higher weighting to the more recent measurements by causing an
additive covariance matrix growth between measurements. There is no reason why one should not consider modifica--
tions of the filter algorithm for achieving the overweighting in ak direct manner. %.

one such modification is shown to (4, 6). This modification is for sequential processing of the observations
- Coos at a time).

X, Xb#. (Pil' + TIQ/IHNT) (Y -Th/H~'+Q 46

Tie scalar 4! in Rquation, (4.6) is a control gain.

If linearity prevails, then Him io the computed measurement after the observation. Valtiplication of
(4.6) by H gives

H Ri+ Y-i)(4.'7) -. -*

.- P, At
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ys prp=toa to to o (4(4.8)

then usdringd ter ps fu(4.i1verseow to cluadditive esiatoe. otmlfleig)cue yli

Aseayweenotser n qations remains constan ft he obsnevaIon s ato proposecondl iteral Eq areionc The4.tmat).
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C I ~~~The over-all deynloPuent of "software" for real time onboard applications of Kalman filtering theory Is a vary . .,-

in theme type apiplications aswalaAplctosweelregnrlproecmursr viab .The
are, however, manyI othe prole areas whc utb drse n eovdItedvlpeto aporae

'~ software.

Oneof he os dificltsrole si hedfntion offt the: a yappropriate mnathiematical models. Theme models

formulations. Approaches which lead to these simplifications are however more of san "art" than a science.

AThe filter algorithms conaidered in this chapter were of the "diacrete" type. There are instancesn where '

continuous filter theory may lead to simpler formulations. rpatin tte oaacemti btwnobevtions a . *~

in problems where the transition matrix in not required is one poesibility''.

For high data rate problems the filter equations derived from either the discrete or continuous theory may be
too complex for the real time computer, Data averaging or data compression techniques appear to offer a good ,

comiwromise for haudling such problems"0 , In applying such techniques some information in lost. In addition,.,
* ~~~improper formulation or in~adequate validationi of approximations can lead to unwanted bias type errors in the ' ''

satimitell. The "software" designer should therefore exercise a good deal of caution in the application of such
techniques.

From the material presented it is obvious that many practical solutions of filtering problems exist. It in
also obvious that the theory available will not provide a uniquely optimal solution when all fatitors are considered.

S.4
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1. ITRODCTI. C4.

%4A n rcen oas th Kamanfilerl2 ha bon etonivey usd I suh iipliatins a te tackig o miails8N
or~~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ plne an the,*~, ori*.emntu o pccat.De ftepolm riigi hm pliain sta

very ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ofe a. prcs nwegeo h roi ttsiso niilcniinsado h osemdl(rn

4'la an obevto e) swl a hs fsse oesaetc vial.wil ti net o h

In rces nter the ionoshere reciter nohes, bend euntztinniv noised of tuhe apicuter. which toeher t coinstoftute lhe 6 , 0 -~'.

4-i.

Alotesaerf negeduring its long journey to the planet (a. g. , about 200 days for a typical Mors . .
misin) Yr~umunnon isuranesoriginating from solar pressure, impacts of meteorites, and fuel leakage
fro vavos Itisa rthe dificlttask to dtriehestatistics of any one of these noise Mouroe&, sesides L-

the uncertainty of the injection conditions of the apacecraft, the coordinates after the midoourse maneuver may
enter into the filter design end Influence the join of the filter strongly during the initial period of estimation. ' .

Errors irv inevitable in assigning a priori covariance matrices of large dimensions, beas f ako sfiin
experience or of Incapability of analysing complex correlations among pereneterm. beasoflcofufcin

Vkrthermore lack of precise knowledg, of system models in a problem which practicinga engineers frequently ~ j' .*.

encounter In designing filters. Thin matter is also closely related to the problem of identification, which is
another major topic In control theory end Ito spplications.

In this ohaptir attention is focused on the analysis of the effect of errors in these a priori statistica and i '

eyste. models an the performance of the resulting suboptimael filters, Both continuous systems and discrete systems
~ I are analysed and an effort is mads to find the upper and lower bound for the error covarimaces of thes* suboptimal

filters. "

Throughout this chapter It in assumed that the systems are linear and that the dtuchastic variables have
gasuuisn distributions.

3. ANALYSIS FOR CONTINUJOUS SY~gSTINGi

The basic process is descriiled b~ a first-order difforeatLil equation In 4.entox form,

dilt) \
'd F(t)x(t) + U(t)W(t) .()______

The observat~ion toI*'*

y(t) s1401~(t) +' Q~t) , (

*where i(t) is an ns vector of states, with

7() Is en n1 vector of ohm*-vatioa5.

W(t) is an as vactor of stochastic Inputs to the process with

2[(wt)J . 0a3

U~s~t~w'~iJ Q(t)6(t-r)

where S(t) is the birac delta function.

n(t) In an an vector of the observation noise with PRCDNIPR LN
PRCDN4PG LN



Eln(t)] 0()

P(t), 0(t), 11(t) are n, Xnor n, inw, n X inz matrices respectively,

E( I is an expriated value op.orator utn stochastic variables. it is also assumed that the process noise waend -

observation noise in have no correlation to each other,

Then the opitima). estimator x*(t) of a(t) which minimizes

having the obmnryatiazi y(t) fromt 0 the tcnrrie yth ifretia equatiohinits

whrespc tPtee;eittenal

(ii) ~ ~ ~ t th norec tt ate te (t) -(ooaric ofth9pocs

(Iti)ssme theanoret Kt(t) raosthver definite corret P.(t 0 ovrizc oftesraio os) *
7i)teicretp()rte hen the corriacectri P(t) isocs defined by

Cv)theincrret 0 (t) rahe te teoret) 0(t)) (ocietfin matri o(te1rce0)os)

(i) Ith Isotinoredct a 0 t soltio rthn ofmthex Rcorreti equti on srainmti) rsligmti sn

Ibis uhoptmal etiuao) idntdxt

Wt P0 (t)P0 (t) + (Wl - P~te e a (t)(t)Pe(t) + GQ t)Q~(t)GI(t) . ") 4.
P0 tVtt



The actual onvarlance Pa(t) in dofined as the error oovariance associated with the suboptimal estimator of . .

* l Equation (14).

Hence Pm(t) l ((x:(t) - x(t))(x*(t) - X(t))'1 , (,.-

This is the oovariance expected on the estimator when there ts insufficient information on the desi gn %.,.

parameters, It is the emai, objective of this section to derive equations doscribing this P(t) .M

For this purpose it is easier to derive a differontial equation for PaNtW

Thus differentiation of P (t) of E~quationi (i8), snd a change in the order of the differentiating operator and ,a,
the expected value operator, yield

,•"~ia =• t s f(!*(t) - i(t)) (%*(t) - X t)), + .t(x*(t) - (t)) (i*(t) - e t)) ,]11)'.: , .

".'" However, from IEquatione (1) and (14), . .

* . .'1_ _,__ _ _X•• :() *(t) -- (ro(t) -- KO(t)HO (t))(X*(t) - x(t)) + 6F'(t)x(t) - Ko(t)6Hft)x(t) + KO(t)n(t) -0(t)w(t) , (20) •- ' "'e.

where AM'(t) z P 0(t) - F(t) (21)
%

AXH) Heft) H(t). (22•) •''",....,.. ,

Also, x(t) is obtained from Equation (1) ae .

1(t) U 0) + t U(t.e)O(e)w(s) do, (22) 4

where tUt,a) Is defined by 0

•) z~t, : u(t,o)x~,

t P(t)U(t, a). (24)

with U(Ses) I ~ t a>, a2~ 0~.~

snd I is an identity matrix. . .

Purtheriore x*(t) Is derived froq Equation (14) ae %

*0 dl ~ t a

where V.(t, a) in defined by

(re(t) - K (t)H 0 (t))V,(t,s), t > >, , (2) ,

ofattir 2) n t

When i*(t) and x:(t) are substituted ito Equation (19), together with i(t) of Equation (20) and its
"solution x(t) in Equation (03), paying attention to the fact that w(t) a.d n(t) are uncorrelated white noises,

, the following three differential equations are derived':

J ~ jdP.() (Pet) - K,(t)HX(t))P5 Ct) - Pa(t)(P(t) -omv( t))) +'

4+ (br(t) -Ke(t)AH(t))A(t) + A'(tI(Aj(t) - Ko(t)AH(t))' + "

+ Ko(t)P(t)K,(t) + 0(t)Q(t)0'(t) (28) '.. . , ,

dt r(t)A(t) + A(t)(re(t) - K 0(t)He(t))' + et(t)(Ar(t) - K 0(t)6H(t))' - 0(t)Q(t)Q'(t) (29)

- * r-• " 4 :-4 ,

d! '* '., '.' : .. :,-
!ýdtO = P(t)P,,(t) + PalePr(t) + 0(t)Q(t)al(t) (30).m"" ' ."

.- ,..-,-.-.

',, . . . * ... "__

*. . . . . ... ,..!- -,.*' -'*

S . ..• . • .. , . .. .. % " - ".•",',"•'.•" .. ' ', -,,' . , , ., .. .,, , .. . , • .. .. '...- ,



where A~t) and P (t) are defined by

A(t) V i(Kct)(X5(t) - lt))J (3) '

P Ct) i EIX(t)X'(t)] (2

The Initial cunditioue for these differential equatlaifs are respectively given by

A(O) = -P(O) (34)

aucioncanbesimlifed ons Ida ra lly. In fact, only thu first differential equation needs to bo solved'.

betheen (t)e oiptd cove~tRiaceP(t) en(h cta3o7)se ~(),te

00()U PO~t) - Pfit) (39)

Aubstituting this into Equatitin (36) yields the following differential eQuatian of 006(t) ,with the Lid of

~~% %

10(t a Wbt)ve fr- KOthe Equatio 4), + (t) (rat a Kctim~) If rea +ymti..4c. Gm twht) f40a )~i~*

* hr Watd ond thie ) diruei the difolloence btheoemcn bhe dncoriedtnie'.rane n h o ro 1s 1i

Thnore I%

eSit)~0hnce Eqa 0o (3t) is a at litr ror ht ft 04W~ if te onitionayi C-I touca 1. datrafied

1a1,tri Pe(t - a O) i eI~oeit v efnie

4 A LA.
% %.

t. * *
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Terorfore, an upper bound for the variances of the suboptilmal estimator x*(t) can be set, and it is equal to
thi di agonal comironen ta o f tha calooi Rtari covariamice P, Mt whon the ounditio"n C-I Iai satisfied, The l owe r
bound of thowo variancrom In, of course, ronru. so lot P'11(t) and P~iiit) hu respective diagonal components
of Po(t) and Pz(t) ; then - ". - "

p,• poll(t) ? pi(t) ? o. (44) %
4'• t-• '

, ,ven though the designer does not know exactly the a priori stntiatios, he can expect that his subuptimlal
esimator will properly behave within the specified range pruvidicd the conservative condition C-I ia satisfied.

"Though it is of less practical importance, the following Corollary ia derived from Equation (43). ',

"Corollary I \ . ,.

I, i(t) < 0 hence P0 (t) < Pa(t) for t > 0 if the condition C-l1 is satisfied. . ,:

C:.1: C-: Ea(0O) 0 , 6Q(t) 0 ,and AR(t) 0 or, OqUIvwlently, P0(0) P(O) .. Qd(t) Q(t) end Rc(t) <R(t) ,.,"

,,. ~~~~~for t >I0. ..-.- :-.'

w urtilemore, difflrential equations ssooItod with the othar two error matrices, Eio (t) and 1(t) .which, ---are defined an•.%"' '"

First I.e(t) can be obtained as a differnoci between Pa(t) and i(t) given bEquations (38) ad (11),

8so(t) M(Ft) - Kt(t)H(t))W 0it) + S"o(t)(I(t) - Ke(t)H(t))' +

+ (K (t)i(t) - P(t)H'(t))R(t) '(Ko(t)R(t) - P(t)H'(t))' (47) .

When a aimiltr disousinon leading to Tteortni I is applied to Equation (37) it may be concluded that CaLO(t)
in always semi-pocisitive definite for a.ll t ?.D , bemsea I(t) in positive definite by assumption and Mo(0) .

is somi-positive definite, as deduced from the definition of P(O) Thsl is desvrirbd in uhs following theorm, '.,., . .

,*A The~ores 2" '-,, .,-,

'•. ':".,. |so1,(t) >, 0 ;hence P,(t) >, P(t) for t >•0, 0.....,,• .

t:or1 rsult can naturally be sexpsete because P(t) is the finimum v 0l.e by definition,o,.

of Equation (l7).

-a Mt) (P(t) -K(tUH(t))1oo(t) + Co0 (t) -Ko(t)H(t))I +

+ zeoo(t)H'(t)R;(t)Hit)Eo i(t) + U ~t)AQlt)U'(t) +

+ P(t) N I (t)(Rit)(Ait(t)) '11(t) + Rt)'fl(t)P(t) for AR > 0 (48)

Aslo,. it is clear from this equation that 9 o(t) is semi-positive definite if C-I Is satiafied. When
&J A 0 the some conclusion can be proved by tskTnS a limit 6A-' 0

'' 1Thus the following theorem is obtained. .' .- , ...-.-. ,

Maorta 3

'.AseA >I 0 hence Pe(t) • P(t) for t ) 0 , if C-I is satisfied. -

S. ANALYSIS FOR 0lURCiTE IYIT-MI *

in this section the same technique Is applied to discrete systems and similar results arm derived. Symbols

are defined in the sam. manner as In the continuous syst.ma, and similar assumptions rer made concerning modeling
errors and noise statistics.

., . . . " ,'O ,-,

* *

.5 , ... ..- i.°
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The process eqaution and obneevation euquations are realpeotively

x(k + 1) 4(k)x(k) + 0(k)w(k) (49))

y(k) lIMMx~) + n~k) (60) % <

Then the optimal estimate x*(k 1i) having th~ linformation Y~kl Ey(O), y(l),,.... y(k)l is given by' *:
n*(k 4- 1) = (k)x*(k) 4 K(k)(y(k) - I(k)yx*(k)) (51)

where K~kO = 'Ck)P(k)H'(k) (11(k)l'(k)1I'(k) -t R(kW ' (52) V 4
x (0) M0.

The covarienoe matrix P(k) In dufined by

P(k) 4 [(m(*k) - kXk))(X*(k) - x(k)~ 3(1

and It Is governed by the no,,I incar dlfferenc'u equation ~ .. &

P~k i) (~k) -K(k)tl(k))P(k)('R(k) - MAN)(I)' + KNk).(kKMk + 0(k)Q(k)G'(k) (5

with P(O) a z(Vx(0)x'0) v 5

When the incorrect models which are the counaterparts in discrete synteina of thoiwe deacri bed in (4) - (vi) are
used, the resulting suboptimal estimator x*(k) i outdby

xaf l 0.(k)x*(k) + KO(k)(Y(k) *..HO(k)x:,(k)) (57)

with K a M it MJ~kP (011,'Wk(H,(k)Pc(k)HI'(k) + R.(k)J (liE)

1*(O) % 0 (59)

The calculated covarliance P (k) in . .

Pd(k +I) a(V(k - K,(k)H,(k~))P'cfk) (t(k) - Kc(k)Hcfk)) ' + K0(k~)R0(k)K'(k~) + a,(k)Q,(k)0,'(k) .(60)

* The actual covariance jassociated with this suboptimal estimstor x*(k) in defined an

PSWk .6 N[(x(k) - x(k))(x,(k) - xlk))'] (1

The recurrence equatious describing this P (k) are derived In a uimilar manner to the continuous case to.

PO (+1) (0$11M - K,(k)Hc(k))P (k)(O,'k) - K (k)11 Cl))'

* 4~ (64(ck) - K (k)fl4 (k))A(k)($c(k) -K, 0(k)H.pk)) +

+ (4,0(k - K,(lOII0(k))AW(k) (60(k) -KO(k)A14(k)) '+-

+ (6t~4{) - K 0(k)6~H(k))P 1(k) ,.****'. 4 4 '4(k

+ K,(k)%ik)K4(k) + 0(k)Q(k)O'(k) (2

ANk + 1) OMkANk)( (tI() - (k)Hc(IV(' + $(k)P,(k) (A4'k) - KekAHM~)) - (k) Q(k)a'(k) (63)

P x(k+ 1) ft'()Pxdkl)'(kO + 0(k)Q(k)G'(k) (04)

where Adk) and P (k) are defined by V1 ,ý

AM ~(k) 0Ix (x(k) - ni))'1 (65)

"P() Cxk4'k](6

The initial conditions for thoae recurrence equations are respectively given by

P 0 =P(O) (67) e.ha

Am Plo) (65) 4

PalO) -P(O) No.c )
.4%
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6. ERROR POUNDS OP SUDOPTIMIAL F'ILT8I1 (tDINCREIlTE CASE)

%hom the process transition mnatrix 4,(k) wid the observation matrix 11(k) are purfontly known, only the fit t'fi

recurrence equaLion, Nquatioii (n), iaedn to be solved in order to find PS(k) Nanmly"""

r5 1k + 1) t(41(k) - K,1k)H(k))P,(k) (~k) -KWl(k)Ikl) + K01(k)R(k)K,(k) 4 G(k) Q(k)0'(k) (inl)

Then the difference nintrix i0a(k + 1) betueen P (k 1 1) anid PC(k + 1) of .quetIonn (01) eud (50) renpuctivwly .

becomes ei.

e,.k + 1) (6)(k) - K,(k)li(k))E, 1 (k)(0(k) K0 (k)(k))' + Kc(k)OM Wk)KA(k) + O(k)Q(k)l'(k) (-1) '

where %,,(k) = PO(k) - P,(k) (72)

Pollowini thi e lun disnueosonn used in the conitinuciiue came an well an the induction, thi following theorem rcan

be derived for dimorote syatoin.

7heorem 4

OAMk >, 0 ; hence PC(k) > Prak) for k • 0 ir the condition C-I11 is satisfied,

(0) , Qk) 0 > 0 and AR(k) ) 0 or equivalently Pc(O) ) rea) Qelk) > QMk) and 6

Re(k) R(k) for k >0 .

Also the counterpart of Corollnry I is derived, which yields the lower bound of P(k),

eas(k) ( 0 ; hence Pc(k) $ Pank) if the condition C.I1 is eatisfied. ,,

In the case of the other twu differennem ,

Seolk) Pe(k) -P~k) (4

results similar to the Continuous case coa be proved,�, '

rPinrt Equations (60) and ('10) are substituted into Equation (73) and after certain manipulation of matrices

the following matrix form ca be derived.,.

SAO(k +1) (O(k) - Ka(k)H(k))IEu(k)(4,(k) - Ke(k)H(k))' + (K (k) - K ~k))81k)(K0Ck) M KWk))' (1/) , ,

where 8(k) a H(k)P(k)H'(k) + M(k) ('10)

B1,k) Ho(k)POWk)HI(k) + R,(k) ('17)

In this Aerivatioll the following relation is uneful:

eK(k) - K(k) + (O(k) - K(k)H(k))RC0 (k)H'(k) ;1(Ik ) - K(k)A l,(k)S o(k) * (' ) " -- . " ;,

In view of Equation (73), the following theorem is derived

Theorem 5 %.'. . a

1, 0(k) >.0; hence PA(k) f P ok) for k • 0,

This is a natural conclueion because PWk) is the optimum nvearimace by definition, , . .,.

Per the third difference matrix Ecu(k) the following relation is obtained:

Saefk + 1) (z(k) - Ke(k)H(k)')Iu(k)(
4 (k) - Ko(k)H(k))'

+ (KO(k) k) - KOM)) K , K(k)AR(k)K,(k) + G(kAQ(k)Gl'(k) (70)

Then the follnwina theorem in derived. ,

Theorem 6 f.o

9,,(k) > 0 hence P,(k) IP(k) for k > 0 if C-1ll Is eatinfied.

.,

- a...~a* t. .. . a..,, , ,.a.... -.a•.' -. ",,,..-



7. EXAMPLE:S

Tiwo exaspe m demonstrate cho theoretical analysis of this chapter. Thu first exeatnile lit concerned with the
modeling errore ita the a priori statistics and the soconid euruipie with the system modeling error&,

* ~~A spacecraft is oruisinr with a constant aw~ed along a straight line and Information is supplied by the range .

data, which are Conteaminateod by white noise having thn spectral density 4'r and zero measi. -

Let x~ end xa be deviations of speed anc' position of the spacecraft fr'.r the staridiurd trajectory, ~.~ '

respectivoly. Then the process equation buconiu.

it) 0 (80)

The observation equation is m

YMt Y2 t) + t~t). (02)-..

Tharefore Y(t) r l(83)

*11(t) [o, 1) (84) L

Q(t) 0 (88) -

* ~~Thu a priori covarianace Is chosen as

*PO (87)) 0
0 P'2() 6J.(Y

Then the covariance P(t) of the optimal estimator iis derived from Equation (11). 1A

P1"(t)(l + Paa(G)t/o r) - pJ(O)t(l + V22(0)t/24' r) J(8
p11(t)( + p2V(O)t/20'r "0) + ( 0)t +

Z(t) I ()+pI (O)tl/3 +P,1(O)p,(0)t'/12$lt/1 (89)

Suppose that the inc'orrect model actually usead in the design of the suzboptimal estimator is given b3 . .

jPC11(0) 0

P0 (0)22(04

c La P~t(0)0)

0~ +() 0
-~~ ~~~ La'~O -e2(0)J

N
(91d Or ZO+A

Then the diagonal !moponents of 9 Ca(t) are computed by Equation (36), .
4%

6 * 1 (m + e 1()*(92)

-' ~where '4

4' 0'0"mt a [ 1~(0)(1 + Pona (O)t/tr,)2 + 2 (0p 1 Ot'feJ9),

z..-4 (t)

*4* )

VV
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4and .. I '..
7, Mt I + p 1 ()/3+ P,,iCO)V,,(0)t/12trc]t/t4c.(5

Al so e 5 2 t 2t)+ oft) ((

where

'M 10(0)( + P022(0)t/24F,)
2
t1 + e22(0)'i V j0t161.1

et)2 L 1 (c 7)

F%
4 2t) = A O2(t + l1C11(O)L

2
/2 + +' 02UDýMp +0)L

2/12'
1~~~ie c I- t 1-1 c 2 ~l il c1r 12

In F'igure I the optimal vrwc .depicted~? usii actual) vaiac a, ofaetr poesoitiotin of the Space~craft ar0 .
depitedusig p,(0 asa prameer.'Th copattio oftheoptimal variance p1 1 (t) is Measd on the true

model.

The suboptimal filter is designed in such a wa~y that
N N.

and using pe 11(O) as a parameter.%

wasempoye, 1 0.- p , (0)2 1p I .On teother hand, cuse (e) is w0en the a priori value taken was smaller.

obsrve, Tisis .casethe &Ain K (t) was ill-conditioned for both extreme cues,. In other words, sufficient
wegthdntbe ¶sge to the information during the Initial period so that the station did not track theP%

obere tht Inotia filter is thet aalculated vaice Variatio o ~ )used in this case are plotted for the same parameters.

VFgr stscase then the variance of initial position p0 (C0 Is changed ai a parameter. It can be A .. ..
obsevedtha thesubptial ilte innotso einstiv tothe lii~itlal unetit fposition astohaofsed

However, caae Md reveals a degraded performance of the filter when a smaller value in picked up for the positional . *. .,,w.
* *. uncertainty than the true value.

an Figure 4 the incorrect Information (rc fte oe spectral density of the observation noiese is empltoyed.
as a pareacter.

NThe suboptimal fitrbhvsvr oryfor ruwhich is either very large (case (a); O~re 10 Or) or very
small (case, (d); Or =~ i) compared to the true r

Figure 5 is one ozsmple of variances of speed of the spacecraft, corresponding to case (e) of Figure 3. k.,

An exponentially correlated si~nal ta processed by a sequential continuous detector which is contaminated by L~O.

additive white noiae. Let x be the signal. then 44

there w and n are uncorrelated white noise with zero mean, having power spectral density q and r
respectively. fsga u t iei o xcl

It is assumed that the variance axo inlIs known, btIscorrelation tier(= 1// in o xcl
known a priori. Hence an approximate value r,(= 1/0.) in is lydI dsgigth itr

%N.

% % % %



Alisu it lis assumed that a sufficient time is assigned fur teackiriu comnpared with the correlation time tit the
%inl ota nyseiyeaesltoso licmti equations which are the limiting values as t O r

iCYJIntigated.

The purpose of the subsequent analysis in to find the effect on the filter perfortnance of deviation of the
Assigned correlat,.rm time from its true valtie. The Ricouti equation of the optimnl varianco p(t) anmuoiated ______

with the estimator x*(t) becomes t.

pý) 2/3p(t) - - .q(102)

.. .At the steady state -0 hence the steady state solution pis computed ~..

pe Pr i (/3fr
2 

1rq) 1 2 1t

where q -2,SoV. (104)

On the other hand, the actual filter design lit based on Incorroct knowledge of the correlation time (or a1~)
- Thus the eteadiy-state value Va. of the Calculated variance is given by

PC, 6 /r + ON3r + rqA) i(105)

The actual variance p a(t) associated with the suhoptimaI estimator x*(t) which Is designed using this pelt)
Is determined from the following three differential equations:

pt) -2(I8, + p,(t)/rlo5,(t) - 2t/3k(t) + DI(t)/r iq(107)v

[,am ( + A, + p0 (t)/rJh~t) -40
3p,(t) - (108)

The steady-state molutions of these equations are computed and, after some manipulation, the steady state value *.. . *

i is fo-und as
0  'Tp 0 0 +(3 /1) 10

Th&is a beoea nit t (30anItiouatoteotmlvlep.Itinoiehwer

Aliso as th oeasige correaionm stim becnIte s lnerquaaint th aopromacalen os It is noiehwvr

Iht n bthe etreme oasesathen fiter isecomill-condtioed tha t tpraheestm io of1 thinli tpromda

all, Hence ano deviation of the assigned correlation time from its true value in either direction will resuilt in
o, n increase of the actual variance. In Figure 6, P ispatdaantA8, frui leo n

. respectively., ispotdaant41/ fountale frad ..

The ratio between the maximum deviation of p asoad the optimal value p, is computed ais

I l+ 
,1*+- 

k;;)

This a~ Provides the range of the probable deviations of the suboptimal filter Performance from that of the
A4 optimal one. 

.* .. *

%1¾

~ ~q -%
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S. CONCLUSION

Tile algorithms for evaluating the effect of er,.nrs due to moduling errors in the Kalman filter have besn
presented In this chapter for both continuous kan. diJr9e y1t4s9

%Alma., the error hound of the Kalman filIter h-Am boun studied when the incorrect a priori statistics tin Initial '

condiwtions and woe nell s i rola nuhi mdeA ear e einl d lar e c aorvarlan es of d ite u r iite ed niesig r t r n x r m e tiii thou v s I an '0
incureasieo thet toarhe of estimal iter and eeYntull ito sloain dwnithi hovperncifeageoe thes deerortimatheion period.

As.the firteamplen of Euthios chapt) w-l dem fronstiateos thtimm rande of rEfquahtin (02)m-iet4)forudies whnesi-
sytions arepl tohbe ncried otm infortather thor periods.e Antil iroti letn of ers ultheatvl fror ptaramtrice stuioas.r

* ~ ~ ~ Oc palu metrfic(0 ,~ enotiuind are thanry vmoraluts tfind esouttowaty d externu hocaune itiv prevents estimo r a r'-
havingc adno proper can) drng thdebcuelreovra sf initial peido sisii(ae co)ofrdigares n 1,l tof toiur

indcrase (d fFgr ) nthe oainefetm ther hand, ive tuhall bee sobsrved itscnveraeples thut anextessivralyn chservativet

Thie may-i eamlsbe harfulhi bchauter itl freountlyesultsie a largen offsret flih paubmetimvricancdes wren ethea

oatingal pones git ~ )drn the entalprnd ofth estimation pro (case (e) of F'igures 1, cas add 4).iur

The second exampln is intended to study the infl'usnee of correlation time on the suboptimal filter porformiancee,% -A''1

Thia is, again, an important problem in space elissions becausie it is often difficult to obtain the exact values
f crreltio tim of tooastic varia!'les such as fluctuations oft solar pressure or of low- thrust- engine power,

Therefore It is essential to carry out a sensitivity study of the filter as in this example.
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1. INTODUTIO

The appl1icatluii of Kalman filter theory& requirces the definition of a l inear mithenatical mnodel describiiag tlirV,
sysetem for which thiii aiplication in intended. In many cateoi a highly comple~lx model must bo used to accurately '

do~cribe the system. Usually in these cases only a few of tile istatn viertabbiewlire of prinmary imiterest, the rest .

mesrely enhunolill thp descript ion or thu sytili. Sinev thuo computationnl burdiin associated Aithi thin Ispleniuntatiol' %.
if a Kalmae filter Increases signti ioni.tly in ýh thin dinmenuion of the syetiim model. dewigners are mutivated to seek
simpiificatiotne to the required filluoring nqjun~onn whichl do nut remelt inl a large liarformajicu degradation in tile
estimation of state ven.ter comtpuonets of pin-cipil Interest. 71ie renulting filttors are called fmuhuptimill filtorn.

On. succeissful techniqu-) Investigated by Jwseph'i, Aloditch3 and Pentecost' fcr simplifying filter computations 'V
* ~involves partitioning the state veotor Into strongly coupled subsystems, eniploying Kalman' a optimal filtering

algorithm for the stat. vectors cri these Iowaer-divienimIonal systeauc and recconstructing an eastime~te of thle original ' ~
system Crom the lower-dimensional. estimates, Another approalih, introducrid by Anki' and Hluddle$ and related to
observer theory of Laaenberoer?, employs the concept ot linear aggregation of. states to achieve a concise repreennlias- ' a

loll of date, thereby reducing the dimension of thu estimator, Important work oil the effects on the Kalman filter
performance of err~or ill the knowledge of the covariance matrices describing the Initial conditions of the sysitem
state vector, aicd the white observation and disturbance noise vectors has teen contributed by Haffe&% and
Nishimura 1

Th tohiqe for seneratin6 suboptimal filters canl be roughly dividod into tee olasses. In the fivst, the
number of equations ilefining thle filter Lis the sae as anfor the optimal filitar, but the number of equations nucisuzlary
for cooaLcutlnW the filter gain in reduced by partitionaing ths system, In the second, the number of state variables

¶ defining the filter is reduoed by aegregation, This also reduces the dimensionality of the covariance matrix and
hence reduces the computation required to generate the filter gaun, Zlas...a ..asa.LŽ.

These two classes of suhoptimal techniques are discussed in the next two secotions.

S. DISCRETE TIME SUBOPTIMAL FI1LTERS EMPLOVING PEllUCED a'l
FILIEK GAIN COMPUTATION

Thai computatirnial burden associated with a minimum variance, unbiased linear filter is strongsly dependent on
the number of simultaneoius difference equations which define tho' filter and the filter gain, It the state of an
n-dimensional systems is being astlmr~ted, a total of it difference equations define the filter and a total of. .

a~a +1)/2 difference equations roust be solved to detereine the optimal filter rain. In this section a particular
class of suboptimal filters is discujssed, The property of these filters it, tixt the order of thle equations defining ~ *'A%,*.~

the filter to the saes as the order of ihe optimal filter but the number of eat,ationis used to .aslculkte tho filter W '

gain is loes than the number used in the optimal filter. c4opefully, the total number of equations ceo ho reduced %~a
couniderably without, the perfoemanci of the filter being significantly different from that of the optimal filter.

3.i Problsem formulaiohin . **

- ~ Consider a dynamic systen defined by the linear stochastic difference equat~ion

'k- 4' uhii + Us k 0, 1. 2...., (2. 1)

where 'kIs the n-disensional -tate vector a.,

uk is in n-dimennional zero mean white noise sequence with covariance matrixQs j

4% is the a so dimensional state transition matrix ,~~

XGthe tuittla condition, is a zero mean random variable, inderendeut of Uk with covarisnoe Matrix P5

4%
The system Is assumed to have the observable output

where y.is the m-dimensional observation vector
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Vk is an m-dimensional zero mnan white ,oise sequenee, iidopeideit uf both ek andr x 0 , with covariailc"
matrix Rk~j"

Mk i I m In x matrix defining, m linearly Indlepetndent obhorvahie combinotlotiol of tle stat.o variableo. . -

The problem I& to genrhrto a linear etitinator for tile stute xk whtich makes uue of the ubservutiuins yj j =*. 0
1....k , to genneate the estimate.

Consider the clams of linear unblased filters defined by the tooCisHtien ditferolice equation 4"

l -, 1k.l + K.,[•k. ,!(y5 .%k, , (2.3)

where 5 is defined by

k- h-1ý ki (2.4)

with initial conditioto = 0 . Hlre tk-l is an unbiased estimate of xki* and Kk.L in an arbitrary n in m" " .

gain matrix. The estimation error assouiated with thin estimator in defined as - . .,

ek - xk _ k (2.5) " ' ""

and the covarianc" matrix of thim error As defined bh

Pk:•[k]" (2.6) -' -j-"; •

•'hs matrix (specificaily the elprinltt on thle maiii diagolnal) Is ii aleasure of the elf|ectivencnn( of the filter and K," , •
it satisfies the matrix equations .kk•,"(.'. . '

PA NI-Kk.h]PhZ -KeMkI T + QkiXK , (2.8)

j *with the initial ecanditiOii F, a C where

PkrR X 0Cx )T E 18'Tk1  (2.9)

Note tbe,,., since is the best estimate of -k based on y, Y, Y:.- it Is generally a poorer estim'It'
then ?.k , which includes Yk also. Pk is thus the true measure of the filter performance and Pk is simply an " .
intermediate matrix which it is convenienit to uarry along. 9quat±iom (2.3) and (2.4) which define the class f .o,

unbiased linear filters are valid for any gain Kk.- and Equattons (2.7) and (1.8) define the variances of the

errors for any filter having this form. Thus the effectiveness of any suboptimal gain can be evaluated from these.
general variance equations.

A special member a this class Of filters results when the gain is chosen a , .

Kk..,= = Pkl1lM.jkj1~ +\ Rk+ (2.10)•k k

The filter In then a minimum variance unbiased filter, In this case Equation (2.8) reduces to 2.8a.. % I
Pk = (I-KkMk]Pk.' (2.8.a)

The computational burden of this optimal filter includes the solution of the a difference equations defined

b Eqnmtions (2.3) and (2.4) plus the solution of the a(n + 1)/2 difference equations defined by Cquatlons (2.1) " )". ,.-

sad (2.8) to calculate the optimal gain Kk , (Th symimetry of the n' differeace equations requires that only

a(n+l)/2 seed to be solved.) 4 ,. • - .

In the following sub-sections some methods for choosing suboptimal Saisn Kk*l are discussed.

j ~. 22 cesatat Gaisi

In terms of s reduc•ion in computation, an obvious choice for Kk isa oonstant; that It,-

Kk := for all k.

Probably, the most common chelae of a constant gain is the steady-stiats value. (if one exists) of tie optimal.
gain matrix. Consider the case of a time-invariant system, that is. the cue where -,... ,.,4

~k - 0, NX - M, Qk = q, ik = It for all k,.._. __ --

The steay-stat-i gaiL for this system (if it exists) is determined from Equations (2.7), (2 8), and (2.10) by
settingi '"' . ' '"'''''

Pk :P P : Kk K for III k '" ' ""'

The result in a set of alsebriac equations

P = + Q (2. 11)
( I -iw] p[I KU]JT + KflKT  (2. 12)

K a pMT[wTR " (2. 13) R1 I
'- A-.4

,, , C" ." . •' '" • ' .- ft .-W_ - =



The error-var lance equation for this cane becomon

Nt shudb ntd k. I i - dhiIJ/PkPT( - KhMU T [I KAI() Q)1 KM])T 4 K3KT (2. 14)

Itsol e oe htthe tilter generated tit tlili; way ie thei clummical Wienuiu ilr fur discre~te time systems, .. "Jqk' ý,
whicli is suboptimal until steady-sitate conditiO118 are reo.chod.

23ASuboptimal Tti inu ased, Oi Pritonn

In thin sectionl a method In domonstratod which is based on iimrtitioniniu~ ot thel Hyntem state vector into moviirml .
sub-state vectors. The states of the subsystemns thus generated -ieu entiniateil Individhually end the r'nuitilting
estimates arm combined linuarly to generate thu total estimate. Sminoi the number tit varianceg uat~qloiimu variesi
aproximnately an the square of the dlmoinslou or the system stati, the number of variance OQUirtiwnel usedI tu compuikte I''@~-

* the optimal gains is aignifhcantly reduced.

Consider a dynamic system def'ined by E~quationr (2. 1). Josepnh' dorscribed R gancral method for VartItioning the 'V
state vector of the system into; a set of t subsmystem stnte vectors. The i subsystem vitate vectors are deflinud .. '

by Ojnx 1. 2. I 1 2. 15)

where DIsi an nj -n matrix of rank ni
1  

Thu state vector Xk is recovered from th,, subsystem state vectorLs ~ @
by th e reiatilon 8i1nip

il 4A jD jxk (2 16) * .,~

where A~ is an a ni matrix.

Supponse the state vector ikhas been partitioned Into I sub-otate vectors .2

w ~ ith respective dimensions

a3L a i sndý suppose that innhividinal estimates .*

fn have been generated fromt the observations

IJ 0. ,1. k. A.

Then the estimate of the state vilnter is given by A -~

This estimate is then propagated by the state transition matrix, thes formingIi ,The propagated sub-state estwitate orf is then formed by

Cosie (2.19)toin fteosrato etrdfne nEuto (.2.Tevcor I attoe

Inot I observation vectors___

where 9 is san si sa matrix. The estimate of ej~ is mow updated by the equation

where

= cjyt+i -J

J Yk I M -lk~]
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The updated state estimate is t~hen given by

Pk 4 A~ i 1,

1.L+ A jK.ýE J(yk,-hi1%.lik+1J (2. 2ý)

Comparing Ec4uations (2.3) and (2.23). it Is apparent that the rspreseiits a member of the class of unbla'iod filters
defined by Equation (2.3). Hoer the gain Is

Kk. A Kj.E~ (2. 24)

mute that .i Ai ud l.j can all be made a function of Oie time Index k so that (2I2a

This generalisation allows the subsystems to be changeud If the system has several modes of operation which make ..

it mandatory, conuvenient, or corei effective to change the system partitions for the neveral riodes of operation.

Equation (2.23) indicates that the individual estimates of the subsystem states need not be generated. It is
"oen that, for gives Aj and Ej , only the KfLI need to be generated and then Xcan be gcoerated by
equation (2.24). This Kk+1 ciii be used directly in Equation (2.23) to ginerate the estimate f

The next stqip In this suboptimal method is the generation of the set of equations used to compute tho gains
*Piost, an error equation Is generated. Subtracting Equation (2.4) from Equation (2,1) gonerste.3 the error .

equation 'A - ';'

2k1 O k+ .k (2. 25)

It follows Immediately that ~±

DI D + DjU . (2.26)

NOW D~Z a (2.27)
* ~4'k
and therefore Rk D+ (2. 28)

'uberes aIs a vector in the mull space of Dend D is the pseudo-inverse of lOj

If D bas ax~imal rank. then 6 .'..

1)+ DT (D DT) (.0)%%

is a suitable pseudo-inverse. % .. ~2i No~Sbstituting Equatiom (2,28) Into Equation (2.26) yields . -.

ijt=~ Di + DJ(Ak+ DjUk '.

- ok. + D j~ 4Duik (2.30)

where lk thepj (2,31)

a 0 . In general this is not true and the resnilting gains are suboptimal. Under this assumption Equation (2. 30)

+ OJuk -(2.32)

A variance equatiom is now generated from Equation (2. 32) an

g~~1I41
1 ) ~+ vS[UkUT)DY (2.33) ~ eu e ,~



how define
(2. 34) .

and Equation (2.33) becomes (.5

Qj, (2.36)
where

DA~D? (2-37)

Now consider the error equationI.: ~~~~Substituting from Equation (2.21) (.8 ..".

I' i ~i k% jv+1It(2,39)

(2.40)

t101 U 4. I~ + I (2.41)

where a, in in the null space of ODj Again the coupling is1 kgnored by assuming z, 0 Equation (2.39)%
becomes

Ri.- 1 -I +1Ejyk. 1) 4+ - xK[1 Sjv4 , L - 2.42)

The correIspondinti variance equation is given by

K= (-.Ejmk+ Lio JF+ 1i - Kj.,EjMk 4 0J + KI+IEJR44IEJ(K.,I)T (2.43) -

with initia l condition PJ DJG- we IF0  c[CT The gain which minimizes is then given by

K j 1 &4 1+1LP+(b,) + 441J1  (,4

where -W-

A~ k+ -jh 1 (2.46)
The basic equations for generating KX. are Equations (2. 36). (2. 43) and (2. 41). Having onlouiated Ki, 1L

=1, 2,.. 1 , the total gain is c alculated from Equation (2. 24) and the estimate of zk is given by the -A

difference equation (2.23).

As a simple example which Uliatratss only the r-onputational advantages of this method, considor the case of -

a system stats with ni ne stati variables (n = 9) end suppobe it has been partitioned into three subsystems, each .- '

with threp state variables, The optinal filter requires the solution of a total of (9)(10)/2 =45 simultaneous ~ ~ p

variance equations. The suboptimal filter requires the solution of 31(3(34)/2] =IS simultaneous equations.%

MAObviously there is no unique choice for the partition of a specific *ystem. Pentecost' discusses it rationale%
for partitioning a system.

One general rule for partitioning a systemx is that each state variable ahoulci be asisignd, through a. choice
of the matricesD , to a nubsystem which assures it is strongly carrulated to en observation. Heuristically,
using a suboptimal filter is equivalent to making the system less observable. The correlation between a state .

and the observation& i3 a measure of the observability of the stats and should be kept as large as possible shen.
choosing a cartition. Several observations will generally be associated witb a single subayotem. *. *..- .

Asecond partitionina rule Is that strongly correlated states should be assigned to the saes subsystem since,.a

partition should be cbosen to minimize this loss of correlation. One measure of the correlations between state
varabls cn b obaind fom heerrr cvaranc Fkfortheoptulfilter, h correlation matrix C k with

4lemnts



okj r7 Uy (2.47)

where pij sa elent of Fk The ters , I A j ,' being a measure of state variable correlation. can be 6 ~.*I.
used to group state variables into the eaa se ubsystem. Noto that it is possible that one state variable wiil "4

belong to more than one su~bsystem. I . . ).

In order to properly design it suboptimal filter na described in this section, it In appropriate to perform a
full scalle simulation of the optimal filter covariance equations and vubuptimal filter covariance equAtions.
Iterating on the choice of subsystems should lead to a Suitable filter design. In moat aerospace applications

*extensive simulations are usually the rule: therefore this technique Is well suited to these applications.

3. SUBOPTIMAL rILTERS EMPLOYING STATE REDUCTION * -

An alternate approach to that oitrLI in Section 2 assumes that unavoidable errors will occur in the formulatio
of a mathematical model of the system. With thix3 proraise, a primary system model is formulated including only
those stats vector components of dominant special interest to the designer. The other components and their
Interactions are considered ats part of a secondary subsystem. %ben this is done, the state vector of interest ,'4 '

hsriduced dienin n allows areduction in the computational bude require for implementing a Kalman filterP

based on the primarY system model. In many practical probleelsell the structure of the plant Is such that the %I,
state vector components whieh are ignored by such a procedure are independent sources of correlated distutrbanced I *.*h

* ~~or additive observation noise. Thua, the secondary system may be considered to be a model of colored noise In %'. ~*
addition to the usual white noise sources assumed in the primary subsystem. This section considers the performance
degradation incurred by basing the filter dos~gn an the primary system only. The matrix differential equation ~ . * -*~

governing the error In the covariance matrix of the primary system is expressed explicitly in terms of the
neglected state components, i.e. the seonedary system. The expression for performance loss incurred with any .~,

proposed filter allows the designer t.0 determine directly the utility of simple models in filter synthesis. Crror
.models of tLis type have boon discussed extensively by Larsontil.

3.1 Problem Fermulatien LaV,%~

Consider a dynamic system which can be represented by two linear stochastic difference equ'.ticns of the form it ''

ak, ~46k' k ~~ + Uk (3.1) .......
X2.

where Ax 1  32
41 is an a -dimensioanl state vector composed of those components of a refined linear mathematical model

which are dominant or of avoisi interest (the state of the primary subsystem). *:: '

4k is an m,.dimensional vvctor composed of those system components which appear as tIme-correlated
disturbances or additive obsurvation noise in a refined model (the state of the secondary subayttem),

u, is an n1-ftmensional zero-mean white noise sequenoe with coevr iance matrix q3

uk is an n2-dimensional sero-metun white noise sequence with covariance matrix Q-ks.. -

Sis the state transition matrix for the primary subsystem, an III n1a dimension matrix

Ck is at matrix whaich couples the effsect of the secondary state vector Into the primary system, an n1an X n,.

dimensional matrix - .

-. ~ ~ & 'his the state transition matrix for the secondar subsystem, an a, x a, dimensional matrix. - 1,

The system is assumed to have the observable outputs *4*..-.-

where
yk Is an in-dimensional observation vector ".4I*

is an a-dimensional aero-mean white noise sequence which Is independent of ul end U2 n a '~* 5.
oovariance matrix Rksjk ~a ~'*

IIis mam z (n,~ +a,).-dimensional vector composed of xk' and .k C.v '.

Iý. I e~ . P %

MI [u MM~k J is~k an exit dimensional matrix defining a linearly 'Independent observable combinations ~ ~ . *., ~
of system state variables. Mtk is an menot dimensional matrix sand M~k is an sun, dimensional%
matrix.

To reduce computational requirements for implementing an estimate of the primmar subsystem state vector~ 4
the filter design Is based on the simplified model 4

lki A k+ Uk (3.4)

Y 4kk4 k(3.5) .'

= U~~ht~, .- . 4 V

% %.
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where
is an n1 -dimensional state vector ,.'; ".

Yk as an m.disensionai observation vector "

5k ian n n1-dinensional zero-mean white noise sequence with couvarianoe AkSj.

Vk Is an a-dimensional zero-mesan white noise sequence with covarianes matrix jk

It is now of interest to determine the error of the estimate of the state zx where the Kalman filtering algorithm 6

is applied to the simplified model defined by lquationn (3.4) and (3.5). . '

In order to calculate the performance loss from optimal incurred by this simplification, we could compute the
optimal estimate and compare it with the estimate based on the simplified model. Hiowever the optimal estimate " .• , . •
requires the solution of an n x n dimensional matrix Rilcatti equation which we wanted to avoid by using the ,,, , .. . ,
suboptimal approach. It In possible to determine a portion of the performance degradation with little additional ',
computation, This portion is the effect of the secondary state variables on the estimate when the suboptimal Kalman
gain Is used. Although thin is not the tots, performance loss due to the suboptimal estimation it does give an , ,

indication of this effect.

The linear filter for the entire system Is given by

1k*t ' Akik + Kk[yk~-ktk] (3.6) . , ,-."
, where ,.

Ak CS kWhel ' ." ,",.* V.. * ,,•

K ..k is aon axe arbitrary gain matrix, Kik

being aX* dimensional and Ktk....

being a5 em dimeesional.

.ft,$.ies•gmr.,asmes-the-aimplAtied -fta ofwtn e bpatasi.aeIs for synthesizing a filter for the state vector . !
emOvaneonts that are of primary interest, the gain matrix becomes %. V.,

Now defining the error of the satimate as

end 'km k tk
we can detertine the covariance matrix for the filter. However,sice the filter gain Is basd on the primary'v$k% '.

system Only, lI 0 and 11, xe . Thus, by appropriate subsitution into (3.7), re ge•

+ 4- + .- ,k,.,,, (3.8)

where V. II aD1'

The ov-ariance matrix for the overall system can now be written in terms of the subsystem elements. Defining -, .

* ~Pu~ 91(iktZ)(10JJ % A\ ~ ~
,where the dimensior.s of p,,., ip, , . s areepetively n ,. a, eI , Bo,, n. an and where p, = Cpb1)

1  
,.-.". ". V... .

Performing the iiuioated operations yields •-•--'Bkpk"+,,"'a ,,? a + B,•p+, + ekpý,a f + + K,,"• <'>'--.--.- K"-.v .
m ~ ik k + akiolklk 2. +k + k~RK 3)*

p '5  + mk.,A,, (3.•b) ""

Pke' 2 A,,oI, + Q: %••, :,'."V ... ,,.,.
ChiS .%,.. . %•**** •
whore %

I:k I ~k - K Os"kllk , ,. ' ,.- .

Note that the nature of the coupling betweenssr k .I n sod p ermits the explicit dsolution for each of
these matrices in a serial manner. N . . -

In order to evaluate the degradation in performinoe due to the sffect.nf the secondary subsystem, it is neeesa ry .
to determine the covariance matrix based on the siSplified model. This i.i uasily determined from p by setting :A"*•AA

oh to zero. Defining k,.... , *V•.

Pk 0103)

, ., - - ,;' -, ,' , . , , '.
.. . ., , - .. -" - ,- - ' ,- ". .-... " .. A. . - A
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*we obtain the recurrence relation for the simplified system as

Pk BSpeBk + k+ Kli k(3.10) ~
Now defining the error Introduced Into the primary subsystem by the secondary subsystem as

E k pk

yields a recurrence calculation for the error matrix; tamely ,,

* w h e r e B4 
5 k1 I 1 + D e k 4. ~ ~ L k + k k + A k + K it A ~ i K l ( 3 . 1 1 )

A1 ~k. nRk Kk
mnd where themtie and pl. are obtained recurnively as avjove. TiiO A~ and 6kmatrices represent
the error in mode jing the white noiso sequences for tho simplified system. Thus the error mutrix Rk can be
computed simultaneously with thin simplified filter equationi in order to Indicate the error incurred by omitting '.
the secondary subsystem. variables from the primary model. .

*The above analysis holds for sany arbitrary gain matrix i However If the optimal Kalman filter is employed, A Ni
the jain matrix is chosen as

Ki PtM'1k1M~kPM'kM~+Rk) . (3.12)A

2.3 Results for the Contilneos came

In the cuse where the system is described by linear differential equations instead of difference equations .\Y %5'5
*similar results are obtained. Thus if the system is siven as~

I.=A(t)xi + C(t)x5 +u

A~t~a, + u J (3.13) ~ ...

and y(t) a WOWm~) + Y~t)

where the vcosand matrices are defined to be analogous to the discrete cose and if the simelified system is
given by*

1(t) - M 1(t)!(t) +v , U'. h. ,~

the corresponding covsrianoe equations are

Al P1+ LI + P l+ pit'~~ 21a

h12  ~ a, pi 4ý + P~A(3,15b)

where H a Aimt - K1 (t)M1(t) (.k

iMilarly the covarisoce mnatrix for the simslified system is given by
SP + P5 + 5 I:

to I this case the differential eqluation describing the degradation In the system performance due to the existences6
of unmodeled state variables Is viven by

where.0
1(0) UP".(0) - P(O)

which equals zero if the Initial conditions for these covariance matrices coincide. In the continuous case the %
'1optimal estisate benid on the simplifiled modal is implemented when the gain matrix is chosen as

3.3 The Iteedy-Stats Case

/An analytic closed form expression for the steady-stats values of performance loss can be obtained directly 5'

from the above differential equations. Temporarily assuming that the design corresponding to the simiplified model % 5.

'5 5 . -



In stable, three matrix equationit are obtained by setting

Employing the well-known solution of theme equatl W101, the following amurnce of e'vrkseiona permits the detaranil '.

tion of the dtemdy-state performance loss R due to thc o~odeling error*. *

Pi 
,. r, **

3.4 The CasA of Random Seveling

4..04

becue ycmuainlallocation in the sytmcomputer, su 4

',t~ mafntos rwenmaueet r
"A proia l "2 'he "optimal" gain frthis type of fitrI eoecp tteupdate tiewhen it is

Ths snerl hesaeoptimal gain as the discrete time filter, except that in this case the covariance matrices
ar rpae ytefollowing differential equations obtained by setn ,0i 3 )(3. l5a) and (3. 17?) __________

for the cotnoses.Thum, between the random update times, we have

BE 3+ K~l+ap" . Ip.C,+ 6q (3.104) N *.'~

hi BPI, +6IA7 + C~?(3, 19b)

Ae Aoj +PtA7 + Q (3,1i0a)

At the time an update In the estimated state of the plant occurs, the old valua tj (a priori estimate) is replaced
hy a now value I* (a posteriori estimate). The a posteriori estimate Is obtained as

g -+1 1(1 Z1i +v+NI,-M,111 ,(3,20)

Blue*nom estimate of the state vector is is generated,

Defining the instantaenous estimation errors as

X*~~~ SA*,* + I+(.1

I~ I~ IC

Uigthes corresponiong wequatiobti xrsin for updating thee covarisnos satriceofctheesimplifiedosthtem irior

+ Er-IN -1 M2 p IKIM,] ? + [ K1RKlp a (3.24s)

All~~~~~ X It '0M]Pl *K ; (3 23b)

0 *, m~~0 \jq%4~R ~ .*****~*~****~. .***'~'~ ~ '*45~ 5~ I%



S". N~:
finally the equation for updat ing the performanco loss defined as

PS p1 -p

*is obtained from (3. 2.3a) and (3. 24) as t~A.I.~~
(I -K1 M,)r6(l -KM 1)?+Kt  RT + (KM,)P;j 1(-KM,]' + (1 -K1M1]pi,(K'M', T 

+ ( ,M];,(IcP&,[K . (3. 25) .%W*

4. CONCLUSIONS 6% ..

in this chapter the suboptimal filtering problem in discuejed, Roughly, the suboptimal filtering techniq~ues "'

can be broken into two general categories. The first category has the piroperty that the urder of the suboptimal .A z2.9
filter is the eause as that of the optimal filter, but the number of equations necessary to generate thie filter
gain is reuduced. One way of performing this reduction to by partitioning the system and ignoring LRy correlation
which exists between the various subayatems thus formed. cenerally In extensive simulation in nenessary, to minimize

% the de~radstion in filter porfarmeiune caused by the subc'ptimality. The savings in computation can, however. be
very substantial if the system can be finely Partitioned.,, *~ V,

state vector than the higher dirmansional model wehich defines the system state. As a result the number of oovariance

perfomance 6

VME

~6,7

% ~
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CHAPTER I - COMPARISON OP KALMAN, IAVESIAN AND MAXIMUM LIK[LIIIOOD . ,r, , f. ..

ESTIMATION TECIINIQURbS

II. .afcronson

1, PROBABILISTIC APPROACHES TO ESTIMATION THEORY

There are many different approaohes to the inferential problem of estimating parweoters or states from observed
data. Bove of these have been discussed In other chaptors (e,... Chapter J). In this ahapter the problem is '',. ,, , .,
approaohed by dealing with the probability density functions desoribing the state and measurement variables. - .
This general probabilistic formulation in referred to as the Duye.xc i upprouch'- 3 s•d it provides a framework
within which many other approaches Oln be aubviieed. Using the Br.yosian formulation, one arrives naturally at
the maximum a poeteriori and suimum likelihood estimation procedures*, It is also %een that detorminietic least.
squares can be reinterpreted as maximum a postariari estimation theory, In UhRpter I the Kalmman filter equations
have been derived $A tho solution of the unbiased, minimum variance estimation problem. It Is pointed out here %
that the minimam variance criterion is just one of many that could be chosen which all yield the same astimate
for linear, gmensian systems,

The estimation problem for ties-discrete, nonlinear, stochastic e stems is formulated in Section 1, 2. Within
the tayesirh framework, a general treatment of nonlinear systems nan be developed in i straightforward smanner.

* As indirated in leotione 2 and 3. it is necessary to ihtrodikoe additional restrictions in order to obtain practiesi
solutions, but it Is felt that the general formulation and subsequent simplifications provide desirable insights V
late the nonlinear estimation problem.

1. 1 eterlnistic Lout-squares Estimation

As a preliminary to the probabiliatic discussion of estleatinn theory that is found in S•otions 2 and 3, the
problem of setimating parameters or states from meamurement data is first treated using determi•,iatio least-
squares. ThiL formulation leads to a minimization problem whose solution in nontrivial, It in pointed out in
Goction 3 that the deterministic loasi-mauares approach is equivalent to the maximum 4 posteriori approach when .

she apropriate assumptlns are introduced.

To simplify the diecussion, first considur the problem of estimating en unknown parameter I from measurement ' . " ".
data gp(iea. 2,_, N) , where the collection of data will be denoted am , Suppose that the data Z, are e" ." " .... "

obtained at discrete instants of time ti( u 1,a,..,N) and that the 11 is an m-dimensional venter representing -
m independent uasurements, These data contain unknown errors It and are related to the paranmters according to

+~| a = •ix) +eL: i a 1, 3,..., N., (1,1) , " ''

where the bare known functicom of the n-dimensional vecter of parameter A ,

In the olaseical hece-.squares procedure, one treats (1, 1) in a deterainistic fashion and finds the value of,
g that sinimlases the sun of the squares of the error. PFr example, combine the N measursivent vectors into one
rX vector (or, suppose Me 1) and denote It as

" N • (g) +y . (1.2) ~ .' ' ',.

wishre and ! have obvious definitions. Then, choose the & so that

is minimized. Since there are no other oonetraints, a necessary condition for L to be minimlzed Lao

+ h 4) 0 (1.4)

PRECEBLANK[D.N.'. . -.,-.......0The foliowime anovntion Is osed. The partial derivative of a soalar function ht of an n-dlwnnsicesa vcator variable
is denoted by Val~ mend is a I xn matixs whose aelemnts Are ~h/all , h/311 B0.. . If an as'.J nleeionai vectort.',*;
function I is differentimLed, then Bn| is an see matrix with the liJth element equal to Zh1 .'Nj . Alec. the -

second derivative ofsacalar function b Is written as B/(h/ax)1 /lx , and is an nxn matrix shoese elomnt is"

A %
" "•,'.: ,,. ". ,..." ,' " ' ',, ' ,'. ",':. ,'.'" '•,' " ' ',,.'.'',',Y, ,'-,'. X -" -,7• ':" . " •'" '"' "" '." v .',,'- "". :. " .
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it is not generally poasible to solve (1.4) expulicitly for X However, 1f (1.2) In linear so that

where H in an WN xn matr Ix, then - Z~ 15

to be
that~~NT)- of (16 y3(1.t7)reginn~upan ha I? a n nesi

Observe i 1.7thtan v arxMust be Inverted and that al 11 of the mettaureonlit. data are prooelNod. The
Ponitie-ef nionelsof (117H) in eqjuivalent to the observabil ity of the system ( 1. B) an~ introduced in Chniter 1.

it is pombet eeaeleant-squares esiae eusvl snwdt r bandadtirb vl

repr'goessing old data'.%I,UpDoANe t 1k.1 steetmt Absd on thlaarjA-I Le kjdnt h et of4
all these data and suppose that new data are obtained, Let%

Note that (1.8) is identical with (1.3), except that the individual sarmples are written explicitly and the system
is assumed -to be described by a linear version of (1. 1).Z.

ak (11-HxZJ1TIS-RkAl +* El'aTJkHA

To determine the wstimatot hiht minimizes Lk form

Ak 0

or, letting

N..

thi coddbyteitition proo ovie yCatr1 e

Pt ~ ~ 11 + (NI .(1.101.

1110 '1TH r + H iltk . 'a-),l +~* IN 4*

4~~~~ .21 S-)H-I+!

Ir I(. hpk

Oulded by the inuto prvie by Chpe 1, lit%%



LV

123 '

A 415 nIt Pk" hacOn ei myrs.. obtains

(I. lit)

bu~t it &ollows, using the Matrix Inversion L. N.., (stoe Section 2.1,41 of Chaptor 1), that %~.*

SI Pk iAa 1 H

where K,, Pk- 111 (HkPk -1Hk1 + I 1,2

An shown in Chapter 1, it follows that

so (1.10) reduces to

kj 4There is a generalimation that is particularly' useful, Suppose that certain measurement errorb are to be
given more weight then othoors, Thon, the coat function can be written AS L weighted least-squares sum.

Lk [a, Hi3)hi~ltjHi~ll (1.14)

It follows. by forming Xký , that k.

Thus, then welilhting matrix Ril modifiles only the inetrioea Pk and Kj

w. (p j'1  (1, lob)

Clarydeerinstc oot-qure etiatd reclseyrelated to the Kalman filter ostisates. Howev r, . .4
no prbblsi Ineprttin hv oo:ttmte.Aswl be seen below, th problem can be couched In,
framework that provides a probabilistic interpretation of least-squares as the maximws a posteriori or nost
probable esiatsne.

Thus far, the parameters & have been treated as constants. Another way of considering these Parametdra is
to view them as state Variab Lee described by the plant equation*. 'flA

Bk 2 lk15,.

The extension to a wore general model for the plant Is not especially difficult. Suppose that the plant is K>'K
described by *+~, S~~ ,. 11)~;-.-:

sand the measurements involve only the current state

Ek a kkI, I 2,.,. 1.(tiS)

gquation (1. 17) represents a constraint on the system. The Wk- I represent uncertainties or errors in the model
that cannot otherwise be accounted for. lk~ will be considered as parameters that are chosen to minimize the ¶A

esatimation error.

Consider the problem of choosing the sequences Sk, and 4 1to minimize the moain-square error

Lk~ ~~~~ Ad A; 1 i

%4

't, , ,*It
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subject to tho constraint (1. 1'). The first term In (1. 19), is included tn account for some iiitial estimate of

"the state 10  Weightins matricus P , Rjl . Qjt are included for generality.

This disriussion has been included to act thn stage for later discumsion. An should bo sonticipated, the
solution of this general problem is difficult. lHowever, when (i. 17) and ii. 18) are linear, one obtains the

Kalman filter equations. This aipect in dealt with * ean in ection 3. 3.

.- 1.1 eneral Estimation Problem for Time-Iiscrete Stocihastic
Systems .

it is pobbible to approach the linear estimlation probloin In R varicty of ways, Too often, hohever, the •.@;:..,'@:.'•

treatment of the linear problem does not indicate the manner in which one cnn apply the technique to nonlinear O '-

problems, nor ore the difficulties preosnted by nonlinour systems mnde tapinrent. It is the intent In this
nh*ptei to doecribe a nonlinear estimlation problem and to discuss two of Lha methods used to attack this problem.

After the gonkaui character of the approached in defined, the digcouslon Is specialized to linear systOms to
obtsai the Kalman filter equntnions. Time-discrete symtomm are considered in order to simplify the mathematics

and thereby avoid thr difflcultiom that hove led to the development of the stochastic calculuses of Ito
4 Und of " .

stratonovich' Irr .imoe-continuous mytteos.

Consider a dynamical system dneorlbed by a nonlinear difference equation in which the state evolves aeccording -L,

to
S k ' f k.1-1k.1) (1.20) .,5 4A

-w, . , . ,.

The state hss an initial state 1,0 which is a random variable with a known probability density function', say :
(i Thn . k. T represents a sanpil of a random sequence with known probability density function. Throughout **. . ,.,

this dihounsion, it is assumed that the .w are independent between the sampling times and, thereby, constitute ,
4
'j j

a while-nois se uquence. Thus
""• P(W01t, . .. Ik) p(10P(Wt), ,p~yt) ,V .".... .,.... v ',

• "The state is observed through related measurement data Ak described by

A k• ,• .-, 4 4 k .1 2 .

The Ik represent a tiwVlw from a white-noise sequence for which the probability density function is known and,.5en gy
P(Y•'If-. 1k) P(i)P(Va),"P(lk)

The plant and maeursent noise sequences are assumed to be independent of each other and of the initial state, , -. ,-*

This assumption could be eliminated without significant conceptual difficulty but the notation become more -k ..% ,
coss'ipti etd, - .,. *, •'. •. -

The filtering probleot of estimating xk from measurement data Zk will be considered almost exclusively, , . ,

sThe olition of the prediction problem is a trivial result, As shown in Chapter 1, the solution of the snoothinua,._""• '. -'S

problem Is obtained from the filtering solution, so it is not discussed here. ,.,, ,.

The problem has been cast in a probabtlistio mold that reflects the uncertainty In the dynamic model and the .- .4.4 . ,
measurements that commonly exist in physical systems. Admittedly, this formulation might be considered tn be

4 4artificial, since one is unlikely to have a good knowledge of the density functions involved, so the unoertaintiee

appear to have been compounded by their introduction. Setting this objection aside, it will be seen that the .
-- 4u classical lenat-squares approach is imbedded in this formulation, so that one does not obscure the problem by 0 `4

these consids rations. In fact, one is led to the conclusion that the leut-squares philosophy is enriched and

deepened by recasting the problem in this manner and that now insights are obtained thereby.

The Deyosian approach provides the theor tical structure within which a variety of approaches can be considered,.

In Section 2 the general results of this method are presented and the Kalman filter equations are derived, The ... ' ,-.-.
. maximum likelihood and maximum a posterirri estimation procedures are discussed in Section 3. The Cramer-Rao

inequality is discussed and the Fisher information matrix in related to the error covariance matrix of the Kalman A.," --

filterr., ..

The eotation that is used follows Pel'dbaumt and has the diesadvatage that the argument of the funotion serves a dual M*

purpoe. It is used to name the fumntion, as here, and is also treated as a variable nmam (w.., it is treated as the
-% v a r i a b le o f i n fe s ta t it o o ) . T h e m e a n i n g s h o u l d b e m c l e a r -f r o m t h e o n te x t ." - , . . , " , - . - , '

h %
"The reader is directed to Chapter 1 for a definition of the terms relatins to the different aspeots of the estimastton%•' ~~~~~proble..'."..""..... "

*_• .'.". ".. n ,S,-. ". -,'. j .. %
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3, ik. THEBAY.IAN APIaOACII .'' " ,

In the "Boyoeian approach" to thw filtering problem 0o0 is concerned first of ull with the dotormiiiation of
the a posteriori density function p(Aklhk) - This d.nmity. function provides all the irurmaetlun requilrud for .,

the solution of this problem. Thils statement will bo discussed in more detail below. Thu following foue •spIcts
of conditional density functions will be used frequontly'.

(I) For random variables j and D with joint probability deonity function p(Ab) the conditional ,'.* .
Ie density of I , given i is defined as .,- " -.

-( I p(2.1 0 .'.. 1)

(Ii) For random variables g and g It follows from (2. 1) that '

p(a,•kI) p(hlop(tlb-C) . (2. 2)

This is known an the chain lti,.

(iiI) Further, it can be seei, from (2.2) and the properties of dannity functions that'

Sp(l,)= p(m',g)p(bjl;) db. (2.. .

This is &it integrsted form of the chain rule and is essentially the Chapman-Kolmogorov equation. %

(iv) Equation (2. 1) also implies that

_ P(MAlI) p(- ( (2.4)

This relation is known as Buls's rule and is the source tor the term used to describe the approach
in this section. V

3. 1 Performance Criteria Considerations .. . ,. .

Elquations (1.20) and (1.21) and the concomitant density functions provide the information required for the
Bayesian formulation of the problem, Before going to the development of the a postertort density relations,
first ndte that the solution of the unbiased, minimum variance estimation problem, an posed in Chapter 1, is
obtained if the a posteriori density of the state conditioned on all available measurement data is known. This ;
in demonstrated in the following sttesment. :..;".

Mhoren 2. 1 % .

Suppose that a random variable a is to be estimated from measuremont data & and suppose that A and

have the Joint probability density function p(qg) . The unbiased estimate of A based oit the data • that 6%* "

yields the minimum error variance

.,- •,-,,za, minimu ,. .',,,*. . ..

i s g i v e n b y E I (A._.A.T (A.--* 
,. 

i m

Proof: Pirst, write the error variance in terme of the conditional density, using the identity . ,

"E! (a -1) T(a -.RJl ] E {E[(x - ) T(a -)Z] .!• ,•' ~ ~,.~ •

Clearly, to minimize the error variance it is sufficient to minimize the conditional expectation. Thus, consider "\ * .*.','.',. -

Si' " .. , 93 ... . . .
5 E(I-s_) T(EA Iz. A -- - .:'*'. '

- (,t-E[Z•])' T(,S-,SS + ,,,.,, .+...+. :...-

+ E[fj~zI] - (E[Alz])TEI[lj] . (2•,)

Ool y the first term in (2.6) involves • , It in quadratiu, so that the smallest value it can assume is zero.

This obtain* when

""r 'ho given by (2.5) is unbis.,d, as is seen easily by ohberving that

Er] al(E[2:ID -- C[A] I

The single integral silo in (2.3) &W the differential db are used to indicate integrations involving ventor varlabl,,. , ... ,

hean more than new ventor Is involved, the differential will be written u d(E,bc ....

.6.
44• .' 

. ... ,. . . '• - ' .

4 '.. * .-.- -':. ..- .
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This completes the proof and demonstrates that the firsqt moment of pqiIz) provides the unbiased, minimum
variance estimate of

* ~The minimum error variance criterion is only one of many criteria that could be selected. It has been ,,
frequently stated that it is used because it is welre tractuble analytically and not always because It is the .,

* ~most mppropriate for the problem. Thin implies that tho-minimum varisnce autimntes represent a very specialized *.~

.4 ~~class. However, shermantm demonstrated that the re"Its obtained for this criterion actually apply to a broader ., .
* onlas of cost functions that Includes miany other mieaningful criteris.

Con..ider a general error criterion L(g) where 1 -. (1-2) and the L has the following characteristics: . ~ '

(1) L in symmetric so that

(ii) L, is ennvex so that

+[~ (1. k~)j, AX~ ) + l-X)L(j,) . X )0 .(2.8)

This class certainly Includes the minimum variance criterion

Lev

a nd the absolute error criterion

Labs.- % iAi

*Suppose that the I Is tQt be estimated from data .Then the following result is applicable.,

Theorem 2. 2:

If the conditional density p(jj;) is symmetric about Its mean value, then the estimate I that minimizes
iu ay cost functtion L In this class is identical wit~h the estimate Aobtained with the miniplum varilmce

4.4 criterion.

Proof; It is desiced that the estimate I. that minimizes the expected value of L(I) be determined. First, % h

note that .

wher. the symmetry of 1, has been used,. i "2..

A Let m v' "

Is' - 1V. .. 4 1

Then, observing that A

and using the definition of c . this becomes

But it has been assumed that p(jIl) is symmetric about the mean, so thiF implies that

Thus one obtains

'5e.

Usting these identities, It follows that ,

E4'Q'* ''4
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But L. is convex so ff~-~Z ((~~RAv) (~h1~1~ {()~
, * . '.,. -. . - ,

Fros the definition of t han be soon that equality occurs if 1.'4

Observe that, if 1. is required to be strictly conver., the I is un.qua and must equal v "

This rohult can be extended to non-convux cost fauctiona by considering the following statomonL. -m!

Mueares 2.3

Suppose that L in symmetric and uon-docreasing and that i(s]z) in symmetric about the mean. Suppose also "'e

that P(AZl) is unimodal %nd sati.fier, the conditions

lii L(&)p(xlz) =0 .

Then the • that minimizes a cost function L in this class is identical to the minimum variance estimate .

The proof in similar to that of Theorem 2.2 and In ouitted,

This theorem permits a variety of non-convex cost functions to be considered, Par example it is sometimes
more meaningful to weigh equally all errors larger then A certain magnitude, sizice aty error* larger than the '.

prescribed limit mey be undesirable. ThuF, one could consider a modified minimum varianco criterion in which ).V.'% .

Another example would be the uniform cost function in which errors within a certain manitude are accepted without

cost and all other errors are weighted equally. This is described by the following function ,** %' * 4.

k

This cost criterion is closely connected to the rmaximum a posteriori density. Consider the expected cnnt for, ..... ." •
this critarion, "(.(..,.IjD

b:~ ~ j d. p(jl)d~ ( d dJ. ,•"•,'b.-,•,'.,

C,• k/2 .'• .. T ' d'-N

where Just is the estimate asmoclated with this criterion. The cost is minimixed by maximizing the inner
integral. For small enough values of k , the best choice in essentially the nsximu value of the a posteriori
density. Estimates of this type ure discussed in Section 3. The theorem implieu that the maximum a posteriori. - .-

estisates are equivalent to the minimum variance estimates when the appropriate conditions are satisfied. . ,

3.2 The a posterio, i Density Function "*" "* '-:

The a posteriori density function can be seen from the preceding discussion to provide ill of the information
required to determine estimates for any cost functions. One of the principal advantages of the Kalman filter
equations is their recursive cheracter, which enables now measurements to be processed without reprocessing
older data, Thus, consider the problem of determining the filtering density in a recursive fashion. The following .-
theorem providma the desired relations.

1% Theworem 2.4-

For the system (1.20) - (1.21). the aposteriori density function P(tkIak) evolja according to ." .

P(IklZk) =, ______ k.___ (2.9) .

.,- .- '.,.- )

%...,. •,•.",".%" S ," ,. a
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where the normalizing constant 1Is~

P4E1191-1) JP(~kIZ'k-dp1(9k'1k) d~k .~A

* ~~tho prediotion density P(BkIZk.,) is denoribod by A..

P(ZkiZk.I) JP(AkIAk-l)P(Ak-1Ih-j) dlt-i (2. 10)

The initial condition p(a0
150 ) is given by

v~a 0 13) P(%

Proo/: Pirst. note that the initial condition follows immodiately from Bayes's; rule (2.4).

Cousider arbitrary k F rom the chain rule (2. 2). one socn that

P41,404I~-0 P(Xk~h)P(hk1Zk-,)

so that

=P(AklgkIZk.L)

IA P Ak*l4

The chain rule also enables one to write -

which cani be simplified to Ik 'ki PZI)'kIk)

since *k g iven lk is independent of E quating the two relations fu~r V(1one obtains 0 b

= 'k19k.I)P(ak1dk) % V

which proves (2.9).

The normalizing constant is determined immediately by using the condition that

JP(AkIlk) djk 1 %

V.e proof of (2. t0) follows from the irtegrated chain rule (2.3), Note that

which reduces to

thereby proving (2. 10) mnd caosilating the proof of tho lemma.

Several characteristics of (2.9) and (2. 10) require d~scussion. First, nocte that the density oc~kIl) in .

(2.9) is defined by the measurement nodal (1.21) and the prescribed d~nsity function for thd memsuroment noise.
Sisilarly, the density P(Aktak. -' appearing in (2. 10) is defined by the plant Equation (1.20) and the density ,,\ .**

function prescribed for the plant noise. Thus. theolietically, one knows these two functions, The initial*'X .

a posteriori density p1 a) is known froma u priori information so it is possible to diitermine the a posteriori ,
density p(Ak1;k) for any subsequent valise of k

In a practical sense several difficulties hinder greatly or Prevent P(k~)from being determined. .

(I.) jh. plant end Aiesaurement equations, Is and kk , msy inhibit the determination of the p(§klIk) and ''t

To avoid this difficulty, it is frequently sawni~ed that the plknt, and measurement noise
are ad tive. Then the plant and measurement equations take the form % -

A'

Al .

A~~~A *l-i + U-1'~ (2 11 %~A~A.- ~ ~ ~ *



it Is also common to assume thit theme noise sequences are gaussian, with densities.

PtSk) =" kw exp(- 11i lld•I (2.13) .: .- , 1•

Using (2. 1i) - (2. 14). It follows that a... '

plk 11 k, exp- I [k - -"11%) 1- ltk b I a ," ( 16 .1'

This shows that the difficulty In determining those oonditional densiti.s Is avoided by assuming
additive noise, ' .

(i0) The integration required in (2. 10) canit'o generally be kcconpllshed in a closed form. The principal * %, • °

exceptiou occurs when the plant and ntuasurement equations are linear and the initial state and the neiwe . , .

sequoelces are gausmian.

4,(ili) Equation (2.90) requires the multiplication of two fwticticns so, if they are known, the P(k I) id cans-% ."
*at least be determined to within a miultiplicative constant, It is Impossible in most instainces to

compute moments or expected values of particular quantities (e.g, cost functions) in a closed form, so .
N that the estimation problem can not actually be solved through knowledge of the v. posteriori density % ."•

funbtion. Again the major exception occurs when tha system is linear and gaussian. This case is treated ',,• . ". .
later in this section where it is seen that the Kalmrn filter equations describe the mean and covariance .' %.. "
of the gaussian a posteriori density function.

To circumvent the diffigulties described in items (ill and (ill), methode for a4proximsting the density function
have beqn proposed

3
, 10. Theme aspects are beyond the scope of this ohapter. ' a.

The recursive a posteriori density function relationo for time-discrete systems have their analog for time- ' 4' •,.
continuous systems. Sltratoncviohb

1 
first derived a partial differential equation to dcescribe the evolution of

p(j(t) I,(t)) . Subsequently, Kushoer. mad, then Buoy modified the.. results consistent with the Ito s,.ochstic
calculus. These equations fur the a posterlori density are very difficult to solve. Linear, gaussian systems . .,

are again the principal case for which solutions can be obtained. Fisher."' haa attempted to obtain approximate
,solutions, 4

3.3 Linear, Gaussian System a

P.0 ~i ''S ].

Nuppose that the plant and measurement data are described by lineaor equations so that the systei is

lk k-llk-I +l (.2. 17) ' -a

whreth niis sae sM k 2Hkzk+k .ý *. (2.18)

where the initial state in agaussian random variable with density function

P%) ko ezp(- -((t0-io -)i, (1n). (2.1g) i- , . ,

and the plant aid meuurement noise sequences are aussiiin wLhite-noiso with density functions defined by (M. 1) %.\a'. .
and (2.14). t ' " ' " '. , ,

Fur tfiis linear, amusmiao system the a poseIriori density function is characterized by the following result. . .

if., •. . . " ,477oresl 2.• !.. .. ,- 3.•.

The a pouteriori density V4090 for the system (2. 17), (2. 18) is gaussian

with man Yalue given by , -

'.2k S + K%(jjk-Hkj`) (2.21) .- . ,.

The Z• represents the men value of the a posteriori density P(XkINk.) and is

= killi, l - k,k-llk-l (2.22) . .

The matrix P is the Covariance of P(jjZki_) and I i .d¶ '..- ". .-

+ , (223 . . •'p • e -II PI•~~~~ ~~ -1 +[i'{€il)lk, =k- (2.23) .''"-•""'

. , o
• , . , .'o .

;:,I +" ." . '- '." .' ,
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ICX is a gain matrix defined by

110 oyrino notiaofKb PklH'IIUP'IIT +Rk)-' (2.24)

Teoaracmarxo p% 9 ivdefined Am Pk~ and to given by t5.447
4
C

Assuming the first measurement occulrs At to theo initial donmity ill Nall) so%
So= + Ko(z0- Has) (2.26)

where K0  M0HTO(H0MOHIO +R%

-n PO = e 0HMQ.(2)

Note: The equatiuun doscribing then onditioniol mann slid covarience are idejitical with the Knlmun filter equations .

This is riot unexpectedI. since it ham beiti shown that the conditional menui provides the minimum variance estimate.

Thus In the linear case the Bayesian a~p~roavh yields the ruoults promented in Chapter 1. It should also be noted

that the covarianoe of the conditional density is independent of the measurement data. As a result the conditional

covariance is identical with the covariance of the error In the estimate. Thai is, 0

Pk= 1((Ak-1k)(1k-1k~~ ;k C(k3)3-kT

Iti lot ~,rioting that the arf of thethorem is mowt easiy accomplse by resorting to the use of

characteristic functions. This approach is taken here. Certainly, direct evaluation of the general recursion

relations (2,.9) and (2. 10) will provide an equivalent result, but It is -interesting to nots that it is the result .... ..

stated in Section 2. 1.4 of Chapter I an an alternative form. This occurs because the density functions Involve

the inverse of the covariance matrix; mu one obtains Pi rather then ~kwhen proceeding directly from (2.9) %..

a nd (2. 10). On the other hand characteriatic functions require the covarlmos matricas and not their inverse&.

so this appear& to have several advantages, Kalman pointed out that it is more satisfying to deal with the

characteristic function formulation wince then M0  QkR need not be assumed to be positive-definite. *

Before proceeding with the proof some characteristic function relations shall be stated,..

* (I) The characteristic function '0 and the probsbility density funot-ion p associated with a random .-

variable a form a Mouvier transform pair

g (#zpliagj)l f exp(11 TI)p(3) d& (2. 28) i, \'-

PC)~ (2?v) .1 gzp(_isI)0l(s) d, (2.29)%

(ii) it is also useful to recognize that

(27?r)'J exp~iII) dA 6Qi) (2.30)

wher is. 1 the Dirme delta function.

(111) it can be proven that

for any complex q and positive-definito A . .% k

inwor.be definition@ it flosthat the characteristic function for So in .-

001) op fl-s5z- I AD .A (2.32)

For P(5t1lh) And P(-10 the charo~oteristic functions sre

'4 (2.32)

-1~~i~,,kzk-isQkld .(234ITo accomplish the proof, first obse'rve that the characteristic function of P(AkI3l) is

J(k 9zp(igIpslv(lkjI) d~b

(217

4 .... ** 4 .. .**~. -....- **5.. ~*.*.9*~\ ~ '5+0K :P:--A2-
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Note also that the oharaoteristic function of P(Aklgk- 1) 's

~~b'k~) xp[ijl/k.-kJ004I4k.) dAk O

X 0(0(ýAk-I~d~p. Ak #*Ifik 1)(2.30)

Wasin the above relations, the proof fullows in a straightforward manner., 99

"*oProof: The Initial conditions (2. 20) and (2. 27) will he established, Use (2.322) sand (2. 33) in (2. 35). Then ~

T Aon 4 i§Tt OT

Integrate with respect to e nd use (2,30). Thena one obtains ~I~. %

~~~~~~~V 8(~v~om a[i 0 + ij5-

0ý1 11 %1B~eause of the delta function Integration with respect to Lm is trivial, so thismreducaaa to

Using (2.31) sand evaluating p(an) it follow& that '

".' .4 ~But this in the characteristic function of a saussian variable with mesan and covarimnce described by (2. 26) 0-

To verify (2.22) and (2.23), sassume that the leoma in true for tk and form O(kk1 - using (2.30). ,.~
This follows in a straightforward manner as does the proof of (2. 21), (2. 24), and (2. 25), using (2. 35). The o
details are fAittsd, . \'

.A The use of characteristic functions has eliminated the requirement that the a priori distributions have

the densit reaton '4etyfo 2 )ad(.10.Tedrc plcto f hs qain ed o

equivlenot not hfereiq heosrations tbst the Reupin tnh atrll of muse be proinverted a the r hntes matrice are nonsigula
butF whic happsoearingrtint (224f.rences Th daenst Isnoficourtly smalle than ibe by (2 thi 0i and important'. *

valuetgivena consider)ation2.22 It e uncshanginSection2s o hatrIta the tworinc rees riedsby(tati. owevere rlthed.'' A ,%

thof g I taasheru e tof amtrie ibsersaion tha h mti kms b netd rte hnte kt, I." 4'.
"("j'p. pern n(,4. ic a esgiiatysale hna ti sa motn
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3. MAXUIMUM A .POSTEAZO~r &NO MAX1MOM LIKELIHOOD ~ ~
ESTIMATES ,

In the preceding section, recursive rniations for the ao posteriori density function were developiad which led o''W~'
In a natural wa~ to the recurnivr. Kalmiui filter equations when the system wai asaumnd tu hi, linear anid mauhisinr. %
In this section the density functionls will not be written in a recursive re.shion and the consiiderations willI load . .""

to the maximumt a poster-Lort estireetiun procedure. Whlene the system is apikumed tu be linear, the Kalman equaitiolis rain eas fteTerm2 dsuso a tl ecniee

are obtained aegain, as must be the came beas oftoTerm2.Ti icmlucn$ilb osdrdt
bo Boyesian since the results are obtained usitig Hayes'sa rulE. to describe the a posteriori doinnity, Again, the
density rltoswill be nun-recursive and this Rasiect countitutee the prinsary difference from the dia~unnion ur

3. 1 The Maximum ra posteriori Esatimation Problem

Consider the collection of all States Xk (i.e. 11 i - 1) and all measurement data ;k which Rre described
in general by (1.230) and (i. i1) and nuppooe that Ik and Zk have the joint dtensity P140k) ,Then, by Rdelig
rule (2.4), it follown thatt

PP(k4I ~lh1k (3. 2) - -' 1

* ~~But the measurement noise is indepinnient between samples, so that . .

and (3, 2) becowee*o

11(s) rp(liI3i) ,(

(3.4(%)

*)Also, the definition of the plant and plant noise allows one to write .'M

ILI

so that (3. 4) cam be rewritten as ''

A&pointed out in cotoc2 ted n ditiona densitie) ind a tractablae dform d bo circumvent thimesurmn .robl.s%

mos chrceitc and th equaion decibn thezi twod sytm.I(henies27)e ne onier

Itamb vr dficl t efnetes oniioa dn itiesi trcale for. T3o cicmettispolm
supoo ha henoe*etes dP tvey n)i 11(b)lm as describe by 1 (2.11) - 21) nEuto 2 5

ami quaion(2.Is)app an (a 0) an e wittn mre xplcity. I paticlar itis oontha

GXIl R

Cya(37
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Ae msai that x. is gaussi•n, (3.0) become &

- III + A ll (39 ,, +',

$ -(klk it Iy al[ Qi Ii A gI.4

where 0 In a normalizing constant. * ... !

The a posteriori density p(Sklk) contains the information required to obtain estimiates of Any or all of
the statu . AA discussed earlier, estimates fnr many criteria oManot actually be obtuined hogan of the :
cumplications introduced by the nonlinenritiets. Iwovor, a reasonable estimate to try to obtain Is thv maximum
o porterioir estimate described in Section 2. In thim onai one attempts to determine the mode (i.e. tho matximum) ". ' •..W.

I p(Skl~k) - ?Iim I, eQUIValent to Onnoini t "0 ont"mten of 3k ,A those values ohich minimize the no jivn ,
of the exponent of the a posteriori datisity, bEt.,. .,.•-,.

Ilk • OeC-l o P(Xklzk) O w l:. ,-;,,:,:.

The Lk is to be minimized throuwn the selection of the estimates. tquation (3, 10) can be put into a form ' , .
that In similar to that for optimal control problems so that the theory developed to solve those problems canbe Applied. "" "' !

As stated, the estimation problem has been reduced to a deterministic minimization problem, Define variables * *

11i. L o that the plant cnn be considered an

This equation in similir to (2. 11) but the ' . have hion introduced to sephosime that, unlike the lP... ,
they are not random variables. Now consider •h estimation problem as the followtig, %

Minoae the sequenocs Sk and Uk.1 so that the cOst function, .- ' -

L l 0 d Il. * h- i3Ii) II:.,, + I 11 (3. 12)

is minimized subject to the conutraint t

Ik " Wigs- + Ik- I k 1, Z*..., - , (3.13)*

One can atteaipt to solve this problem using the mathematical formalism of optimal control theory, It ins
not generally poadiblb for arhitriiry functions Ik and hk but can be achieved when the system in linear, The
general problem is beyond the scope of this chapter but the linear problem will be considered below.

It should be observed that the problem that han been posed is identical to the deterministic laast-equares ."
problem formulated in Section 1. This indicates that this deterministic problem has been imbedded in a prob- 4. •

abilistio framework in whioh the -rrors and unoertainties have boon assumed to bn asausmian random variables .
end white-noise sequences. Thus, the detentminlatie and probabilistic problems Are not fundamentally different
although the language and analyisl prooadlires are very dissimilar. This formulation has been suggested by Cox"
for tine-disoret, systems, Cox'" also considered time-continuous systems in which the summatiolns of (3. 12) are . _.L
replaced by integrations and the difference Equation (3.13) In replaced by a differential equation. Ditohmendy
and Arldhir'

7 
alse considered the nonlinear est.-,iation problem in this mauner and derived a system of equations " ` "

that are simiiar to those of Cox, More recently, Mortensene has considered the time-continuous problem and - 4' . ' i',

ours and Henriksaon
1  

have considered the geesrallned least-squares proeedure of chapter I and have obtaind AJnd %, I
extended the results of Detohmendy and $ridhnr. lid,".1- . 6 s.

3.8 Mlaximu Likelihood Fstiestion Theory ,-

The maximum likelihood procedure that hae been widely used is closely related to the maximum a posteriori .. '_1*

estimates of the proceditis section. Tb discusm the difference, consider Equation (3. 2). The denominator p(,k) . .* .
oi a normalizing constant and can bh iiored, In the maximum u ,posterlori procedure, the estimate is determined -'.. . .. ,

that uax gmnest ptakltk) - Suppose that the a priori information rel~ting to the Sk , as described by p(Ak) , -. .' ,.,.
doen not suggest that any state i more likely than sny other. Then, the p(Xk) will be a uniform density and *." . ". 4.

the mariemiton d f ptmaim k) will actually be detlermined by the maximization of P(lkli) . The values of X. ".-*: -
which are found to maximize p(gk[I'k) Are referred to am maoxi•m Ilkl-ihood esatimctes an p(ZkZk) is referred • '
to as the likelihood function.

Maximum likelihood estimates have several properties which are desirable and have therefore sen tldeopread
spplication. vor the discussion immediately below, some of these aspects are considered and will ue relaLet: to
som of the propertien nf the Kalman filter. Por a aire complete discussion the reador im referred to Cramer'1"

or van Trees. ,

* 4... . . . ,% " . '

. :. • _ --. -.-.-.-•-.:•,_ . ----", -- "" .- • •:- " "._ _ _ .- ,. . .----- ,•- '"•'"
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The covarlanap of thl error in iuy eistimate cani bio.bjuj~dd balne thtouuh a relatively atraightforWard appioca-

*.•.€•(' tion of the Schwarz inequality, This boutid is usually referrnd to an the Crmmor-knu ihequality. In tho following .'.... .. ,

the Cramer-Rao inequality Is proved for unbiamed (meo van TreesO for a treatment for blamed estimatos) estlmiutes

of at unknown vecto eer trntetr and thin for a random parameter. Suppooe that it im doulrud to estimate an Unknuw1 -L . -

parameter A from measurement data R • The parameter and.tho data are aseumed to be related Recordine to

where the noise Yk hri a known diatribution. As a result, the conditional density P(ZIa) can be determined. ' " 'v.* '.4. .T•...'. 4..'.

Theorem 3.1 (Cramer-leno In quuil ty) *.1 ,.-,

if I ii Kny unbiamed estimate of & bWaud on the moaaurentlit data , theni the conditlonai covarianco

of the error In the entimnate sivuln I in bounded below by the inverse, assumning it exists, of the fisher informs.
• "• ~ ~~tion matrix J " ' ""3"

..1 ,'where

•L2-3d ~logo 0411t :1~ P(-7it1.•1• ,'-- - 4-
4., r *. 1,"F•,1 'l

x M [ og, PGN•I, I (3.17)

-quality holda in (3. 15) if. and on|ly if,, .. '

loSe D(ZNIX) k(x)(a'i)• (S)

It is alo Lasumed that

-- L.d.. •-p..... '* 4.

S',•,,) •~I ,.,.,..'.•',.." 4 4 '

exist Red are absolutely IJntegrablae ,..... .. .

Proof: First, consider that % .

"4 u[(0 -1)la] J (Z-h)P(zIsl) dim 0
• • D•~~~.. .l.~•

since is unblued. Differentiate both sidas with respect to I to obtain

____' _ l.-x* • . " *- %"•

-4,...'.. But obeerve that '•"""-"""''"

%'%

.... .•.> •,, .... ,......- : o10, C(IZ1J + (ZuI) d" .
'2' ~ b . a

so on@ obtaini s, 
,

I U -A) ILI log, P(eillC) ZIX) d.N

Appluing the Schwarz inequality, it fol lowe that * "(.
51.%,(,

(H~ac1&T v~WdZ,) J
A P. pi* 4

7hbe mtrix Inequality A 6 means that (R-A) Vi non-nosative-defialte. 4-. .4* ..

L 
,V



*-*h , A 'Cao'o'
, ... ,

where 3 in defined by (3.10). If J"' exists, then (3. 15) in proven, It remains to demonstrate the sound

form for the Piaher informatiun matrix. Equality h hltl m In (3. 19) it an i only if .

SLs (Z~ ) - 108)• 3) ,, • " .• . -'. •
- . ••..

Ina P%11)r~ ,, ,,

By definition, it to true that ., ., •.,.,',

N J p(• v•) dI'ji--iig, .. *.,.,, .. *' ..• .

S]Niferttat tith tesee toit' Thn one obtainsi"'.

Sv(ZN1X) dZN lulls P)% 13 P(ZNIX)•Z d ,,?,N'''. ., . ._.

Differentiotin(1 a aeoond time with reasect to r . it Is found that ........ ' . .

102 1o (914I1 P(Z, ij) dZ'N = US lsP(ZN)I P(&Njj) dZM + 4-•l.r

+ lot, p((3I A0 :r PG ) d. ,

andassme hatthenoie I gasajn ad 'wl, ar inei~ndet,. "• %

0 1 log, p(ZH x Ps(I(. ) d21, ) log. P(Nii
,09 PGI 041)

Thuston (.t , ond)followa imedieity e ad the i ros f is omplete, Ne that the conditions on the parnall derivativesIa)
ere required so the the interchaes of differentiation and intnratiot aro valid.ta

This theorem and thFits •her information matrix rut be applied to the linear filteringl prnblem Ud momes-',%

Interesting relationsmhips are obtained, Consmider the following exaN~l-a, '¶

lxd• ie 1: Suppose that the measurement data are linearly related to the parameter A ' •''-

IIk * HkA + Xk % 33) •.

and assume that the noise is gausaeLn ad samples are independent, •

Pak)~~~• =L', It, ,,.i1..'l) 3-1

T h1u s .t h e co nd i t io n al d ean i t y r( I N1 1) i s •.

where k is the appropriate normalization constant. It follows that )" ," % ''% • "

loss P(ZNiE) 109, k ½ (j-HIj)' RI| (gi-HA);

log, 11 II] - t Ri 'H I

and the n otiat o .s oude

Using (3. 17. the risher information matrix is found to be

J HT~t(3.22)

and the cev ariano e of the error in a ny unbiased estimate of I is bou nded Iby.• . _•

if J- exists, .

(3.2) 4,?'., -

"..'."•'••r "'." ' • .,'A •."." '. .. .- ,.,?,. .•,, " '-.• '- .- .. ' .. .,. .... .. .
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EXsuie 2: 'As a minor variation on the preceding example, aupponn that the praramter I is timo-vnrylng hut ' *, .

satisfies the constraint that

24 tk~Ik-ilk k 1. 2... N (3.24)

The messuroments are dkbcribed by ' , ,, . ,

' |~~k lkl '(3.25) , - .' ' ' , '
4,, , C,.. ,,• %,°

iolving (3, 24) for the initial state o ,nn har , ,'...

where ik,0 kk-llk-i'- ' v1. *'- i

Assuming that is, nonsin.o lar for al k the measuremont equation beoo.ciei : : : .,

|k "Iktk. 09 + Yk (3. 21)

Equation (3.27) hai essentially been reduced to the namo furm as (3.20). so it follows that thu Visher information. . . '
matrix is

and the error covarianoo is bounded by

1[- )( ZTJ 0 +•01. [H11i H t~, (3.20). ..

Thin example is important because it shows that the Fisher inftrmation matrix is essentially identical with
the obtlervability uatrix that wan introduoe in Section 3, 1 of Chapter 1, Furth:rmore, the Crmaer-Rao inequality N
(3,29) provides a lower bound that In very similar to the bound preoxentd in Seotlin 3.3 of Chapter 1. .. : *

Any estimate for which equality holds in (3, l8) is said to be an efficient estimator, It hal been Neen that .
equality occurs It and only if .

It is easily shown that, if this condition cns be satisfied, it can be acoompliehed by a maximum likelihood
estimate. "•.. , ,

The eatimizatiom of p(ZmI;) nan be realaced by the maximization of log, D(HJN5 ) , Then a teceomary condition
that an estimate Jme maximise 1les p(ZN|i) is

Thus, for tbh last relation to equal zero, s4thnr

or k(Z10) 0. * .","

,i.. Condition (3.31) is selected since it provides an estimate that depends upon the data; so, if an effinient
estimate exists, it lIs maximum likelihood estimate. If an efficient Intimmte does not exist, then there is no

~ measure of the accuracy of the estimate. This constitutes a major drawback of this appropch or maximum a poateriori ".

estimates. Thus there my be unbiaed estimates which yield a "smaller" error covarianoe when there is no efficient k. '
estimate.,

In tatIneTheorem 3. 1, it vu assumed th-t an unknown parameter I was to be treated, If I in treated as•"
a random variable, a sisilar result can bu ived which yields insight into the existence of efficient estimators.

iThi development follows van Trees".

Supposeo an•d . have joint density p(a,1") and let g be any unbiued estimate of 1 based on the
measurement data Thtn, assuming L exists, the oovarisoos of the error in the IstimAte is bounded below .

_7 L,, (3.32)

, ' , . .. ,_ .. .. ., ,..:.. . ' , . .2 - .,.,..

- II II I l I I II i .. .: : - • ' : • " -: :" ' -; : " ' " " - "' ._-,• .. , _.: . ,""; 1..,W . %:, :

' " ' I I I I I I I I IN •[
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rr~~~ i~T F[ lug ,L.
where I, loge p(, & pINJ (los L. IN k .0.0_)

l ogl e p(X,& (3.34) %

Cquality holds If and only if

lo e p(1 IN) ka 1k- ) .( .3 ) .- .)

The first and second partial derivatives in,..'J..") .. "-.,.. •-,,• •
• .• • ( • .• ,~ ~~)p a n d x z ', . . . .

are oasumed to oexist and are absolutely intograblo with respocit to x auid • . Also, it it aiinumod that

()I'm ) 0 (.8

lis b(l)(a) W a 0 (3,37)

where b(a) [ J [- p(ZN1l1I dZ , (3.30) N

Proon/ The proof is similar to that of Theorem 3. 1, although ezpectations with respect to I must, be onidered..
also. Flirst form p(j)b(() and differentiate with reapect to L , Thin yields

d _

rotegrate with respect to A and invoke conditions (3.38) and (3.31) to obtain ' a

o z + lta -) ) lose P(A ie P((,14)d(XI 5N)

Appliuation of the Soiharz inequality yields . . ,

there L is given by (3.33) aId equality holds if and only if (3,35) Is satisfied. Note that the averaging %

with respect to both I aod IN Implies that, unlike the condition of Theorem 1, 1, k is a constant independentof both I and Z ,

The reminder of the proof Is id.ntioal with that of Theorem 3.2. 1.\.

Two results relating to the effect and consequence of treating A as a random parameter are worth noting.

First, the matrix L an liven by (3.34) can be rewritten as

1, 2 - lOj lI(X lg. (3.30)

where J1 ii defined in Theorem 3. 1. Thus, the probabilistio description of I enters indepei..lently of the noise -

,tatistioe. This will be disouseed further below.

Se, The condition (3. 35) for equality in (3. 32) involves the constant k, Note that the oonditi.)o can be written ... ,''. .J.i*l**•

• [~~jlos. P(I,] •k(Z-a)T ;L.)• • ••

AL Integrate with resgeot to a and take the antilog to obtain

Sm(kI Zo) = 3i p • I.. ,k j. .4.

But this implies that the a posteriori density P(aII 5) must be gaussian for an efficient estimate to exist.L
It follows easily that a maximum u poateriori estimate will be efficient if an efficient estimate exists.

However, since P(Q' Z) must be gaussian in this cose, the minimum vartanoe estimator yields the same result,

do It is ,.80 O'..•"el~

'V:



Consider these results through the following example. %C%

EzoWnle 3; Consider the stotmi desoribed in Examfple 2 with the additional requirement that 10 is & gausalan ,
rsndet' variable with density function d

M1.0) ý o oxv( - 1 ~ M;I(jA-I,)) (a3. 41) A

Then. the informatlin ,atriio L. as gi.ven by (3.38). is

JAF!M111

end the error cocariomom is bounded below by

Bu hsis bsetil y th on isusdi Section IIIAof chapter 1.The right-hanid side represents the
err covapietgie n th te dis lssi n fle o hspolmadpoie nte eiiainta h iiu

varanceestm o eolsatoisefcentfo thir Listemr Toysteims cs greet oe htteetiaeoh

bermnalstae tha is ghoivng thby une Nt iiiz h otfnto

IN .1~ H;: I~(.2

sujetfolw toat te o etrroaint ao solaidwth J s_

*~~~~~~sn thes reimastion. ioon* Obta sind h eultgiveln in thefoowgmnerCnsdrteotfnction afe thefChper1

firste measueet thepasent obaindedrmn qain r ier otattemxmmaotroietmto

probllm becseen, thisatv prchoblntem seoutnins S.ithi mitnamajor tihn cost fnthepobn sicQar.us

soAto LAteoband
11. l,.. .

Temcmstho satc~lse idcaivll inth Aolnewiessannry Condsufiienth condiuntion forthis probem % N

L 
0 (-)- H1R (-hj)114 (3.440)

solvetfor is to b obtained,+~;' 0 1 ;0  ~;,0 .(.6

uing thestixivriotei

0 M; RO (g -Haig

Sov o o banC
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*~ Usn A ll8b) (347 belomes1

II I, al ' 3.9o

wheretiae 1 0 thtws-u~vdaoewl b De (OMH difrn tan totandb)mnmzn (3. 5 0), Zins two

eahurte eantms ar inolvd.In fai'th estluate of , give tha ind ,i desrried by mnmzn (3 9. 1s iun ae sotrue,
sthisares withe thante fiteedetimate deigdi veoin by (34sinogbti the desiriedrecurs ion relat ionn. cosie I~.'.'.. ,.

whrL heoj and expes are relat ede by

lepsmd in Ta ylor series, which is given exactly by

0 0 0Ih14 o

+. ,,(0 1) (3.53 %

But L C"4

so =

so L, +II 1+*l! 0 -H.2 0 II'.0 +*Ia 01 I. ~ 4 '.

C4 + a .ill (3.54

where 0, Is Independent of 1o and therefore will not havo an influence on eubseauent discussion,

* ~~~The L, Is now given by~..'
L m ,+ A 0l- +1 , l.*, , + , j 11g 1(,5

To eliminate jo introduce the pleant constraint. Assumirig that the inverse of *i exists and in to., 04 ~ '

I + t ,a1 (+ -9) - 2 V .,'.11.

.1 M~~ow, ohoose the 3 to minimize L, 4s'

0.0. a 0Tp~ Co. ~(3, - ) I 1l + Q; 12 (3.50) ' -

solving for g0 ,ore obtains 4? ?0- ~ ,. ~ .

go [13-~ ~ ~(s ~o 1-~ ,~ (3, 57).

-1 .........................
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Pand note that ti 0PA.,ýPý'- I CieP~."

It follows from 03.57) and (3.58) that

.000

L, C + 9 (3.50) 4

Not@ that, In the absence of a now moasurement, the boat predicted estimate in ~'

which corrospoerts with the anticipated result.

It can be seen that (3.60) has essentially the samne form as the L~ described by (3.44), since C. doom not
depend upon A, . Thus minimization or L with respect to A, will yield the result that was obtained above, 41 ad FA* .
except for the.notation choange. In particular, it~follownsthat i- ......h b uin

whr X -N )CH0P ' R,) (3.66 .4..

Alo tbhe. Thusit fllows thatt the recrsien by am y

Lt Cii- + (3.64)4 ~

Where P, ( -. L P'HKi, H (368)

t,- D,?( P'H~R 
1

1 +R HV P'~

"Sk -n~t-ilk t-l + Kk ik-Q tk1k- 1 (3.67) a

'tHT- (~HkPk T (370 R*' .

4,IT +UUR OP kSLT

iOw te ageinter cearaciter of uathe n b havio fte beenderived. deitfnconorolnarste .Th

development baa been designed to provide an understanding of the difficulties arising in nonlinear filtering ,.~ . .

theory end provides a structure within which the nonlinear Problem can be attacked. Further, the Bayesian
approach leads naturally to the discussion of the maximum a posteriOri and maximum likelihood eattmation procedures. I . .2 .
The former procedure is shown to be identical with deterministic leamt-squares when tho plant arid measurement noisel

ffsequences are assumed to be additive and gaussian. The recursive Bayesian and maximum mt postdriari approaches * *.. ~ * - *

are setoyield the sae filtering equations asthe unbiased, ninumum vaviance estimates when the plant and0
OSeSurVAeflt Wastson are linear with gaussian noise.

The principal results of this presentation are stated in the following paragraphs. The general Problem is 4,' - 4"

stated in Section 1.2.

*4



Section 2.1: The conditional mean E~IAI) Is shuwii in Theorem 2. 1 to provide the unbiased. minimum vuriance
estimate of a random variable g from measurement data Z Thus, knowiedge of the a poster iori density Papc -U-w...

would enable thin estimate to be determined, as wtill as virtually any other type of estimate that might be des ired. .-" "OA .

the same estimate &H the minimum variance criterioh. This is Important because It indicates that the chnicie of
theminmumvaranc citeronbouause of its analytical tractability hmA broader application thaii might be

Secion2.2 Reursonrelaticon- which describe the MAnner in which the a poste~riori density function changes
unodaabcmavi abl mr proeented as Theorem 24 Soefthprniadficlesthat are onicuunterei
in aplyng teseresuts o onllilaa systems are liicussed.

Section 2.3; The general results of Section 2.3 are applied to linear sYetemsi with gaussian noise. Thoorcm 2.5
-' shows that this system hem a gauesstn a pouterror i doneity and that the Kalman filter equalýions des~cribe the
*conditional moan and covarimnce of .(kh -it is pointed out that it is more convenient, at least in this

ca t o work with the characteristic function rather than the density itself to dterive todmrdrals

Section 7.1: The maximum a posteriori estimation procedure is presented estiontially as a nonreoureive velraioun Of. 'IW'V''r
of the Bayesian approach described in Section 2. Thin formulation in seen to be identical with the daterministic **

le...t-squares problem discussed in Section 1. 1 when the plant and measurement noise sequences are assumed explici tly '~ r*
to ba additive slid gaussian.

W Se~~ctio 3.2: Som aspects of the weli-known maimum likelihood prcdure are discussed in this section. i sLa
that this approach differs from the maximum a posteriori through the neglect of the a pr ;ori distribution asnignud *~

to the parameters to be estimated. The two are identical if P(3k) is uniform. Then the maxitaum a posteriLori *-.*

procedure which calls for the determination of the Nk that maximizes P(Zkigk) is identical with the maximum
likelihood procedure in which p(kjk is maximized thrnugh the choice of Sk %. .'...,'% .V

Yi ~The Cramor.-ao Inequality is presented in Theorem 3.1, This Inequality provides a lower bound 'for the error ~ i
covarlsace matrix for sny unbiased estimate of an unknown parameter. Thils result is generalized in Theorem 3. 2 A ;'K- ~~to the case shere the parameter is at random variable with prescribed distribution, The lower bound in the Piwiher . % V
information m~trix. For a linear system with gousmian measurement noise and no plant noise, the Cramer-Rao

* ~inequality is shown to provide a lower bound that is identical with a bound derived in Section 3.3.3 of Chaptel. 1. ~.is
Also, the Fisher information matrix in shown to be Identical to the observability matrix, Introduced In Section 3.1i
of Chapter 1,

Sect inn 3,3: The determination of the states Ak that maximize P(XklZk) In shown to again yield the Ktalman .\
filter equations. The procedure that is used to accomplish the minimization takes use of the desire to obtatni

a rcriesolution and promises to provide straightforward application to nonlinear systems.

71i peceigdsus provides, a brief description of the contents of Sections 2 and 3. The reader is
directed to the references for more complete treatments of many apspects that have only been touched supericilly

?~ A -
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4 NOTATION

dexpectation operator

conditional expectatioio V -

backwrd dffusin oprato
foracward diffusion operator

Rn Euclidian N-space

equal by definition

approxinwittly equal

*transpose .%

derivative

DO probability density function ~~

POt i) conditional probability density function

partial differential operator

d differential operator

* j the element In the throw and jth column of the mstrix In brackets \'

sas everage

.~A4k

%4,
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Lawrnce ~hwaiz

i~~iN~hOOUCTION~ ofIslnarnniuu

Thetildofnoninarfiterngisqutoboa, nda anealdinuaio o te vriusafrrrcha s tt n .:':*. }K ~%

thwrso~ mini alwvrelnce filwatern.Tm ute ii h cptedrvto *

Thuriouly ofnough hewrk thlt lerin tos quthe broad, ~ ad i eeriat i~ounofnoninearh vartinous~tm mprinchal -risntanc :V.

motntrlsnrlzto hro:minimal-varianco filtering Tater furhe imitte cpeetusriai s f
li lte tcotheinformatioemnnalvrelate tte oiltering.siaeoftesaeofasseignrlfle

Cuiosl enough, the more thiatled tonbu the reossuldrvtio of a noanellinea coftnontm miia-vra

ooatsirul copare withh cotan taha filtevatAll of the nolinea iters aehnsdrdc o ntheKi~n u ¶s

filters whesno sthem frneoml teqpatipofter byse iKlAatenaIrnnsaelnaryrltdt heSae ~
ndthme mnimae-vroacesfestare Fibsathen, Ane o autl s fteses h derivesfomtra o ionl insa eveaniarl ts ao r se wheotg
fore that fallothingfdiscusion, Thelfiate steo the optialestimat of thy stateofal sistuaio Is cothied seifiain ofe
aondatheotntal prodeblit dsrbtheioin fhuld be ad te tarefly sivne the whoeasrmnalsis dehens.uo the mohaenraliteris c
tnoinotrwhof the modre ormnslvrinestwhich ine au therobablticf parallelo of tlineyo Inetig aniuaion, edn

totefilter w equatiosh e dyalol tad ofrtihularyse isimliebassuin thmatsthemrandot roess oeln aryrelahted noishes.ots
adthe foralimsplicity is gareras notined at the stes o e ptsi amonth ofeomrication ioesnta the ph sic t ithrpetto %
fof the fatllmwing resculsso, Th ia tpI h nlsso n hsalstaini h po oto fý"

of ve themoe.Frmnmlvracwihna probabilistic criterion and theimly whtenos massuuption, alaua ahata oe ~teading
stothasVticdifreta equations ar f cousedte p rbclrlsm lem byasueigthbesuc thatte ra tompohessis difre wisntiaes.to ,Pp*

Tne fonma themforcitg functione at tloba coxitinse mus berti amutisfid crompiaonn the stoch stic d ifrntial r t' *'4k

eutons for m themala rsylste ,n h esrmni spsil odrv tcatcprildf~eta qain~

ftorhathe cdifentioal denstqunction, Ofcorom, the stoleha sti partia htlheAo~kg differential equationinun tispsi~ '. ?,^ ,.* *

differential equations. The essen:tial lifferenee stems from the fact that for white-noise models there Is no

system: a finite set of such equatiotie form the vector equation for the filter.

The exact equation for the filter requires the instantaneous evaluation of the conditional expectation of ______

several functions of the atat. of the system. To simplify the problem, the original model can be replAced by an

seas reasonable to require that the approximate model equations Also satisfy existence and uniqueness conditions. .

Guaranteeing existence and uniqueness for the approximate system does not quite do the ease for the filter,%
but slightly stronger conditions on the equations suffice,. At this point, one stop remains in the validationi
that of relating the stochastic differential equation for the filter to an ordinary differential equation for the <

actual mechanization. it Is shown by Schwartz and aitearl that nonvalid filter equations similar to those '
previously derived by Schwarts and Bass' And by Fisherl for white-noise processes can be made computationally
Identical to valid filter equations,

2. MATH EVATICAL M0D 9L ia-

L. I uhte Noise

The usual mathematical formulation for a dynamical problem In~ a differential equation, nowadays most generally .

written In state-vector form:.
da

'L V

AgA



where and f are n-vectors, u is an n-Vector, anld t is a acalar, The meaning of (1) In well known for- ~~most input functioon ii , but the ensuing Analysis dealt with white-noise ii~p..t funotions, and (1) must be,~*,* *

reinterpreted. The present section explains the problems axonciatad with white-noina Inputs, and outlinou thle
developmient of the necessary calCUlUs of sktochastic processes. White noler. in often described as a random
procesis with a power spectral density which is a constant or, equivalently, an autocurrelation function which
io A Dirac B-function, It is further noted that Such a procsess has no physical moaning, since It would require
infinite signal power. The foregoing definition is valid for stationary white ooiso, though the autoccarrelation- .
function definition can be extended to the nonstationary case by allowing a tine-varying coefficient for the .*.5

b-fncton o fnctons

Th oraiiblt fwht-os rcse sn reason tndiscard them: they occupy a placewithnrespect

noise procehs cen he considured as the ltitit of a sequence of processes which tie step funotions. moreover,. - - *'*

both are useful only when their integrals are considered; indoud, both can bie made mathematically rigorous only .~
in taim of terintegrals, ob somewhat imrcie he6fucin u b osieeda hedriaie fP
unit step; with sifinlar ieprwcir ion white-roise is the derivative of Brownian wotion.

%pd ,

The pr'noctiol reason for being concerned with white-noise processes is that. when differential equations Are
forced by white-noise, the solutions Are Markov processes, i.e., the future in Independent of the pest, In other
words, the solutions to differential equations forced by whits-noise exhibit the stochastic analogue of the
property of solutions to differentialeuain forced by oruinary functionau: given the state of the solution at
same time and the forcing function f roe that time on, the subsequent evolution of the solution Is stochastically%
independent of the previoust history,. ~

The eathemticsl proijlto associated writh white-nuiso is somewhat similar to that associated with the 8-function:
fthe mseaing of the integral, The S-function is not really a function In the ordinary genie of the word, AM' no .- *

theory of integration can result in A value other than zero for

6(St) dt %.

if the B-function is assume~d to be an ordinary function of t However, by not ascribing values to S~t) and 4 .. W.O
considering only its integral, it is possible to construct a meaningful theory. Uimilarly, no ordinary theory of ,~-.~ .. ",C
integration can make sense of%

J (t) dt

where w is a white-noise process. Here again, if no instantaneous value is given to w(t) *A useful theory.
of stochastic Integration in possible, that theory io outlined in the following section, .* *

L, Istochastic Intespais

The exposition in this section is merely An outline of the mathemetical derivation of the stoohastic integral,
andit oesnotincudeany discussion of stochastic integrals of discontinucus random processes, A complete

wh~e-nissproesstothe derivative of a Brownian motion: the maor difficulty lies In the fact that a
Brownian sot ion fails to be differentiable somewhere in every interval of nonzero length, with probability one,.- . .- %.. e4

Thus, if b is A Brownian notion, db/dt has no meaning and

Is generally not defined, even for continuous functions s . But, If db is an increment of b ,it has a well- 4

defined stochastic description, and the Stielties integral

is apossblymeaningful alternate form. Hwvr sntAfnte fbuddvrainAdee h teto
whera sno eich d th e app o cimasting nerlA Lcis el meaningful aineralization of the Stielties

Intgrlinwhchth Aprxiatng umi rereuiedtocovet@inprobability to the itgaratherthno
covet in the ordinary sense,

8. tcatcDifferential Equations '-

The discussion contained In the sequel is limited to the following special case of Iquation M1:

di -

where A and f are n-vectors, t is a sA.~lar. u is an n-vector unit white-noise process with independent%

elements, *nd R is an n x s matrix, A vector white-noise procere has elements derived from Wiener processes,; ~
'S-v..

'V. ,;.'.A
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a W~sncr process is a unit Broanlin motion, I.e., Its Inuremnt&lit nve neru aivan anid variance equal to the Inturval . '-

of time over which the incremeont Is defined, while Equntion (2) in less general than E~quation (IIt in
sufficient for must practical applications, Let gi denote the it~h columnu of o p n w the 1h row of till
vector Wiener process fromi which u is derived. Then, by formal miultipilication of Euto 2 yd n
Integration of ties resulting suprenslon, E~quation: (2) can be rewritten as .;..-

1(t) 11%') 0 fý~~) d I+ f ~m~) dwt(s) . .

In Equation (3), the first integral Is an ordinary Integral. and tile remaining iei integrals are stochastic . .

integrals. For simplicity, If the stochastic integral equation In satisfied by it process x with probability ''

one, then Equation (3) In written in tho form

dx = f(t,x) dt +. site) dw(t) .. (4)

The aimplifled forin Equation (4) is reeferred to Re a etochillttio diffrruntial equation and is undrrstood to be
a shorthand notation for Posuition (3).

The following formula is necessary for the derivation of stochastic differential equations for functions of
solutions of othat. stochastic differential equationi, The saciler version of the formula is proved by skorckhod
In Ineference d (D.24ff); the v'ector version follows quite simply, Let I satisfy E~quation (< ort t J tIf

"4 If a Rcailar function .0(t,x) is defined with continuous second cross partial derivatives with respect to the 0 '~ .~
a, for to t < tf and for all a thien the Process Y =~t q(t~x(t)) satisfies the relation %(

dy + L- dt + zdw (5)
eK 2 /B

where O/xdenotes the gradient (row) vector, B'le/Oxi denotes the Hessian (matrix of cross partials), inind
the "star" denotes watvix transpose. %

3.4 Relation to the Physical Problem\ 3

There are two intelrtaces between the physical situationi and the mathematical model in the filtering problem: .,t
the reduction of the dynamics to a stoohistic differential equation end the Interpretation and mesohanization of
the stochastic differential eauation for the filter so a computational algorithm. The second interface is %4
considered first, The interpretation of the stochastic integral in the context of the actual estimation environ- ?
meet Is not at all a trivial matter, The filtering algorithm will be a finitedifforornce approximation to
Eq~uation (2). with u represented by a sam11pleld measureuemnt, not a white-noise. The problem of the interpretation
of Squat ion (2) and the approach to use for the integration In discussed at length by (Oraey and CaUghey?; they
specify two approaches and propose a list of four Pragmatic rules for choosing between the two approaches based
as the Interpretation of Equation (2). Another treatment of the. difference between the two approaches is given ' .4
by Wong and Weall.

The real difference bet%#,an the approaches is in the choice of whether to use the ordinary calculus or the a* 3

stochastic calculus. In the nomenclature of Orley, and Caueghey' the former choice is the physical approach and .i"'$:.:
the latter choice is the mathematical approach, in contrasting the two approaches, tha authors are quick to state 4. "
that neither approach is inherentlý correct; the choice should be made according to their pragmatic rules:~* 4 .".

(I) If g(t.x) is not actually a function of x , oth approaches provide identical results. * % .j

(11) If the problem is a strictly imathemotical one, the mathematical approach must be used.

(III) If Equation (8) is either an approxiiustion to or a limit of the discrete problem % ~p'

*(iv) If Equation (2) is either an approximation to a white-noise problem or the limit of a prublue with short
correlation time, then the physical approach must be used.' .

The computational effect of the difterence between the two approaches Is stated by Wong and Zakal' as follows: .

Let {ma) be a sequence of pieceawise linter approximations to the Wiener process In Equation (10) such that .. 4.

Is V then if {0 ) denotes the sequence of corresponding solutions. 10 a , wha s is i the solutioln to .

din1 - fi(t,2(t)) dti gk (t1M~t) 2-lJ (tac~t)) (itt + gijtm(t)) doj. 6

They state some resurvalliiii about 'he correctness of Equation (6) in the vector caese, but the same fern is implied ,' 4 -

4 . ~~by the results of O2riky a d L;,ughjy'.,, 4,4
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* , ~Tlero Is also a problem in relating the statisticn of the reel dats to the statistics of the whiLe..n.ns
used in the model; this problem exipts at bOthi interfaces and in really the only one at the first. For simplivity,
consider the following special clse: Let 1t.(t) denote R ieqiuane of pulses of width At and of raido height

Slgiven by a Gaussian distrihutlon of zero moan and variance crl , The mutocorrolation function for u Is a
triangular spike of width 2.;t ant height crl ; the area under the spike is thne ak. t . It then semse
reasonable that the equivalent white-noitic be epecifijail by on impuille of weight &at The general result it
as followas If an n.dimensional white-noise is given by a uievsriance of the form S(t)S(t-T) a in n-dimnnsionsl .. " '..
puls•e- uence approximcating the process should be chosun from a population given by a covarianee of 5(t)/At .
for t, < t < ti 4 At , The case of continuous u is not quite no direct, though an equivalent formuloteion can , . . . ,.
be obtained by utlng thq concept of a correlation time * , which is a time interval such that u(t) can be
considered unoorrelated with u(t +r),.

• 'l Binas the mathemiatical miodel in constructed tinder the assumption that the Wiener process has independent _' . -.
elenments, one final step Is required to mondel a noise with morr.lated eleuiniitm. Lot 6(t)8(t - r ) be the demired .'...'.','..'
covarianoe, which implies 8(t) in positive semi-defintte for all t 'then there exists a matrix (which may

*' be taken as symmetric) 611 such thnt ifi1(t)* . dv 4 8;I' dw the white-noise derived from v " .

"hea the proper oovariatioe, 'or notational simplicity it mny be assumed that 8 1121t) in incorporated into "." . ".'
g(t,x) . and the formaliew of Equations (2). (3), and (4) is mtill valid.

3. DIERIVATION OF APPROXIMATE FILTER EQUATIONS • - ;U,''
3. i Conditional Density Funetinn %

"4" Let the dynamic equation of the system be given by tquatitn (2), and let the measurement be given by

y(t) a h(tx(t)) + r(t) v(t) (')

whove h is an 1-vector, I < ( v is an I-dimensional unit wh~te-noise and r is a nonainoular oymmnet?,io
I x I matria relating the unit white-noise to the mpdeled white-noise (equivalent to the matrix 8i11 Just ,, \*,,..,.* ,,"
described), lines the mathematical mJodel cannot handle white-noise directly, it is assumed that the measurement '.' :'-.. ,
is derived fros a process z given by'

dZ L h(t,i(t)) dt 4 r(t) db(t) (8)

where b in an i-dimensional Wiener process, The nmthesattal model of the system consists of the two vector
equations (4) and (8), The problem is to find the einmval-variance estimate of 1et) , given the process a(s) .. ...

for to < a 4 t 1 that is, to find the estimate 1(t) such that the matrix given by " . .
C(X -1) (1 -)* •(- I (1 -1 ) * """(X•• •

is positive semi-definite, where r is any estimate of x , the processes are evaluated at t , sad the symbol ,,, . -.. ,
* denotes expectation,

It is a simple exercise to show that the mintmsl-varianoo estimate of a random variable, given a related L i9 z
quantity, is simply the conditional expectation, an that

,;i , •~~~~(t) = d(x(t)jXse), to €n t) 9.,'*•""" '

and the problem is to find an equation for the conditional expectation. ,% . .

The first step is to derive formally an expression for the stochastic differential of p(xl a), the conditional
probability density function of .(t) given Vs), to a C t , it can be shown that

"epi1) p (10) ..

"where peM) is the probability density function for x(t0 ) and
S~~t t;•:-- •'

1. 0 . bh*r'lb de + hVr" do . (11) L0 N.
Following Bucyo, lot pe4l2) Q/P Also, let 9 • ((I x) . Then Q is explicitly a function of 0 and
p(1), sand 0 is explicitly a funotion of a random process given by : r- ,, • .'

dO h*r'h dt + h*r" db
2

*4v

-'44 * -... ..- -.. -,,

4 ,--. , ' i'-

\.1 4 4 C,.,,', ' .. ,,'.*...
.. . . . . . .. . . .... ... 4 m m m I m .m m m ,
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In addition p(4(t)) It. a function of t , hille X(t) and s are asmumed fixed, Then, using Equationa (5)
and (12),

d A • Q 1- h*r -h dtt er d 4 _- - h*r' h dt (13)

'aQ W

B dQ - t 'a+ dt W-41

'JI. *.l .a I , ' '-, . 4. .,+-

where is the forward diffulion operator

Alan.

. Z" -I'"••. ' u4 , -,4"" '".- " ,"

.d ." *X.J..(15).

lubstitutins r4u~tions (14) and (16) into Equation (13) provides

dQ EQ dt 4 Q(h*reh dt + her" db)

a dt '+ Qh*r~' do (17) IT %-7. 7a

UWing Equations (IS) and (15), and the definition of Q/P .
dP d d. (dQ) dx %''"

n in

r ., -i d.-fq\ I i h ,1 } -* .*i
i di dt + d do' • .

If
P P* r" do : Pb*r'h dt + Per"' db %(I)

UsinglEquation (5), with % ;60P-' f Phkr -h, g p b*rL and v b

d(P"') P r..h(h-•) dt - •"• '* r" ., .

Finally, using Equation (11) with 1 4 (PLq)* * . f 0 (-'Pl hr'i(-f) - tq+ qihr"')* .
ga (-p-'h'*rt•h'Q h* r)* and Ww b

,d • h*,+'rb dt + b*r,,- db - e* r (h --it) dt - jai&

h"r b ̂  r-b() "-'""

-( dt + (h )*r ' h (d - dt)..... .1.. . ". .. ..

Let ' be any s•1tar ;unltion, twice continuously differentiable in x

.4d.

AW 0!ai4 )(WP1hI)) dA 2044,,. 4...

4.. . . , . o , . ,., ,
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IubstltutIhS Equstion (19) into (20) pr ,Ide.

d J u 4(x)(9p(Ixl) + (h-6)*r'rp(xlx)(dz-fi dt)) dx A 1

Lot • denote the formal adjoint .

Then Equation (21) becomes 'r

dt + 4;;"h -$ý)*r-(dz - dt) (23)

3. U Approximiate Filter tFquations ____4_____

The Use of Equation (23) as a differential equation of reniults In W w vtS/' ,, ',"'.•,V

A~ dt + ('aIh'-z~''d dt) (24)

whial, Is not very practical because iA ' and 'Xi'h + are neoded continuously. As the first step in the

approximation, lot f and h be approximated by a socond-degres expansion about X also, for notational
si~lioaity, suppres the .xplicit ap.. %ranee of t u M argument of f , , and h since their dependence on '---

ties l1 incidental to the following Y ,nipulation-1 Thw,, adopting the summation convention

'a Ifp~~~n fIli*ll~ ___
A similar expression holds for h ,Prom Equation (25).,

1i(Z f1 () 1+ Xila)z -xJ)x kb) (26)

where is the conditional eoverianoe of a and is denoted Ptj

si m ila rly aifj E1 ) .•ý +jj ,I k +•" ̂~ 'z ( 27 ), ,

Uing Equations (20) and (21% for f and h in Equation (24) prnvidex . . "

Ihiary ::~~ 1  d, f~~()Pk t + P lqJ)(f)rjj [dal - (b:1() + * ~ ()*)dt (28)

.. The next seistfndadifferentfial equation for P . In general. even with a esoond..degr~at expansion
for the nonlinearities, an infinite sequence of differential equations is required, beoause all the smeents are %.
needed to describe toe "ndditional density. However, by assuming an appropriate form for P(xI a) the sequence
Atopa at P , The first aesumption, used by Bucjy, is that third and fourth oortral conditional moments be • *

neglected, In chwarts and kser' It is shown that the assumption is reasonabl, for a distribution with most of . .. , '

the probability mus sufficiently close to the man. If it Is assumed that p(xl) it Gaumsian, the sequence m' • 4.

also stops at P , and there is no restriction on the size of the moments,

lne can be written (xiii - ii) d~i is derived in two parts.. Let &axjxj and we Equation (23) to
find kili . Blo n.

litzj fixj + *jX1 + 1kgjk.

it follows that
d (4IJ ,`xj dt + 'It dt + k dt + (,iij .k - slij S)rl.(dn 4- 91 dt...,.

!. ,'- ,J

P • S, , 45 -

•. •' I% . -, -r.I . -~. _
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Noxt, lot 46 S arnd use Xquationo (5) and (24) to) obtain %1

d^i dt + -kh _x~ jrj(dw, - dt)+ +

Sc-R 1 XOinýýx -kan c1 (30)

Combining Muat ionm (29) anti (30) provides

d oi -i + fij til + dt - ji )j(g-h t+~9

+ 'xh~ijh-jkItj + 2''~]rj!(dzm,- 6idt), (31) %I..I .

'hich in an ex~act equation. 'Me derivation of the app~roximlate form of 5quat~ion (31) is a Wddious aluebraic 2 :%..
.esroise, and is covered in Usem, Norum, and achwsrty10 . For completenessn, soevral intermediate results folIl;w:

Por either assumption about the cond~tonal density,

~~ ~~, ~Por tho iirst assumption.-i 5 as

~ p~J~)i) t + f~)~)~J dt- Pkh (i~r~h~Fnjdt

wu her oqther (ss4)tine (3h) rignd an sid oua ~tion (32)ue 3 ). sinj~dnte a/x

4.~44 %IILAI

For iqunmplicityonte form sohtic diffrenthssinl Equation whil e thenother did nt, Thn, difficties aere
sexcpatded in a onnectio de ith fproilateiono the foelwigequateions the actual naumtr nl et adcn

were enontrd + 4)IPk t-Pkh09r,.)jd

firs syte is t

4.8M.AIN

4. Description,.,

IU*~~~~~~~~ ~ ~ ~ ~ numerical ''4tgt a odctdfrngtdfeet prahst itrng o w eso .

dyais for two- sedrmn sch-e Sab Th tw sytm wee hse uc ha nestifedeis sad I
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dt dr, I + p2

(MI1) y tmn') x + ,I

(Ml2) Y + I

where v and w are white-noises. With either measurement schume, (Mil) or 0Il2), the overall myt,, t"

existence and unlqueno.e. The mscond 3yatrw, which dose not. i iv by given

d x + v , .- .

dt

(M21) Y X + X3 + W

The filtering schemes are outlined below, ror the outline, f and h are the systemn nonli"ll" 1  
il arn

Equations (2) end (7), The white-noise processee, 'v acd w , are assumed stationary with Cavna"l¢ N "v
rempectivelY su that I a end r = & , The subecript "n" denotes nominal, I is th, ,.'

1 
0, id I".

S ha p denotes differentiati ote that for linear mw'i ili| ,* *

p4 in the aprxmt covarianoe, ain a prime .... ifrutai ~ ta o
and (N22), certain term vanish and there are only three different filters.

1. Linear 777.7 .

The linear filtering algorlthm can be applied tu a set of equations linearized about an a pri"h' tulll"e ii,•tiI| *.' . "" v
The equations, derived by Kulman and BU9 y"a are ..•" """

dt ...).t,--

S. 2, Quasi-Momenut Minimai-Vuarianc
This is the filter derived by achwarts and Bass, are independently by Fisher',

di t(f) + ý "IO)p + p;'ph'(I)[y-h(•)-kvh"(2)]
dt

do , " .'39)
d = lpt' (i) - o'aplh' I(i) + o'vp'h" (i) [y - b(x) p-ih" (i)] + c7, . k,.,'..'.., "

0. TrUncated Minuimal -Variwces

This Is the filter derised by Mai, Norum, and ,chwarte•,

do (40)

dut pf_(1) - c;tpeh" (1) - v''w1Pth" R) r -h(x) -. pht (N 4 "... .

4. jModified Minimal-Variance th

This filter ims a compromise between Equnations (39) and (40) which is baled on differenoo in th" drtVlM term "
In the p eq,.•ion. BY dropping the driving term, the filter is simpler, yet the responee f$1111 "'" the ',Mr ".I. ...

responses for the two preceding filters, A. .

dl
7t ' fIil + V f(i)p + a;nph (i)fCy...hdf) ph" (i)J

" "e ~~~~~~~~~~~~~~. . '.'.';....e,.....e',. .'.'"." . .....-.. .... ._ -..... . . ...... * "• " "_",.

dI (41)
-u2pf' (1) -a;'P'h'(6) + (I,

dt%

V P5. .5.."PI
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a,. .......a % ....

5.'axAmzbuem-larinapls Least Squares '"''~

This filts. is derived by Iotchmondy and SridhArI| for minimizing an integral-square-antimation-error criterion.
using deterministic teohniqu,': by the use of Pontrinain'n muximum principle the minimization "reduced" to . li
two-point boundary-value problem which is solved by an invariant imbedding technique using an anlproximntion to" .'
one boundary condition, . . ,..

f(j) + o;'ph'(f)(y- (9)]
dt '

Actually, Equation (42) im a special case of the derivation in Uotclmsendy and Sridharil: they used arbitrary
weighting functions in thn oriterion integrand, while Equation (42) corresponds to the partiotilar sot of Wnightingt
functions that romult in thi Knlman filter for lin•ar dyamic,..r.'

0. Dynamic Programming Least Square#

This filter is derived by Coil' for a criterion which Is limilar to that used for the previous filter. The
huilmilsation in effeoted by dynamic programming using a quadratic approxilmltion to the cost function. W %

dih-- = f(;) +o•'phPh(;)r.y'h(i)] "a' ... * ...a

_ dp,* ,.,

-- d 2pf (1) "•- plht(•) h ' (43)

SA look at Iquation (43) shows• that this flter is essentially equivalent to using linear filtering about the com- . - -

%' puted maean, a technique that had been vned heouistictlly previoualy. . . aa

7,~~~~ DicesAetrmn Minimal-Variance Il

This fItler is derived by Jastwi.sky" for a minimal-vat'iican oriter~on tinder the assumption that the measure-
mnts arrive at isolated instMantl The form presented here is the limiting form for continuous measurements,

, ' A .

-- i (1) + f•'fi(i)p + t7;'Dh'(b (Y-h(il)J .... ' " , .dt *" s ., ,a ,'.j *J

d- • 2pf'(,) - o;'Psh"(I) - ia7h"(2)ly-h(1))] + o(4)

Since the evolution of the system itself is censidered continuous, the portion of the equations related to updating a ,
the estimate in the absence of measurements agrees with Equations (39), (40), and (41). The loss of the term in
I b"(I) is due to the difference between the physical and mathematical approamhes discussed in Section 2. In the

- derivation of Equation (44), Jazewinky uses the approximation to the conditional density that is used to derive " . . .

-- Equation (40).~

'a;! 6a. Modified Ds)orce.-Msesuresment.Aftinal-Var.ancs ,,

This filter is related to Equation (44) in the same way that Equation (39) i related to Equation (40), i.e. ,.
the conditional density is assumed to be OGamsi.n.

-d u f(s) + jf"(;)p + r'ph'(;)yh(;)] La..aala-a a,,• +'dia
•Idt f, ,j) + ,•..• It/, f.1i r.p'1 y (

* dp
-" " f'(1) "-;#'p'I"(i) + -;'p'h,"(i)[y-h(x)] + ',. (4u).aa .-. .- .- -. , :. - . . ,

The application of Equations (38)-(45) to Equations (36) and (37) is straightforward and is not carried out
here,

The computer program used for the simulation study includes a simple rsotangular-.rule Integration with constant
step-sins, The use of constant step-aize allows ewoh filter to be ctaparud on the balsis of the same pseudo-random , "
sequence, The random number generator is a combination of a ntandard uniform random sequence routine plum an' '

. o' .a . ,a .

1aa .:. .: , ,.. ,, . ' .. ,1, .1a1aa % % - . - ,a~ . a ~ '~ a. ,

. ,, •,. ,. . .- ... .....a, . , , .. . , .. a... ,. P.
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Rli aproxirmte transformuation to a Gauqsian randivi sequence. The program bas two modem of operution: in oftf mode,
only a single estiouation in made with a pro-apocified initial condition for the sitato: In tho other modo, movevril
runs nre made for random initial conditions, and the mtetistion of the estimation orrors are computed. The output ýIA!W 4
from the program is a computer-prepareui plot showing the timir-history of the Ziltor resp~onse or Ihe error stattis *

ties. The plots show every 20th point with linear interpolation between.

4.31 Result

As noted earlier, the simulation study wits not intended to be a complete investigation of the compiutational
characteristics of nonlinear filters. Two standard czasrs wore used, which were comp.utationally docilz) when used
with rthe step-size chosen. F'or both dynamical equations (01) of Equation (36) and (D3~) of Equation (37), the
standnrd r-in consists of 5000 points 0 001 socond apart for it totai prnbiem tine Lf five' seconds, with a j~ .y
and cr, 10 .Only the iniltial condition difforn. FIgures I and 2 show the estate x and the meamuronent y
for the two standard canes. The figures show the non i bear monmureowint, hut the noise Is so large that there in --

not too much apparent difference between the linear and nonlinear measurement-,

In tne response to the st~andnrdi inp~uts. there is a large difference between thn response of the linoar systemi.y'l
and the nonlinear systems, while the vatrioui nonlinear tymtenim mar rematrkably s imilar. Figures 3 ano 4 shtww the)J."
estimation irror for the two standard cases. An riAght be expected, linear measurements help the linear system, i,
What might net no expected is that the relative error pe.,formaeawe of the nonlinear fil.ters within the shaded
region is different for the two costs. To show thkc the results in Figure% I1 end 4 are nut peculiar to the par-
tioular Initisl condition and pseudo- random sequences. three representative filters we.e chosen for a set of ten KY
ruas. The mean and mrian-squar" errors are shown in Figures 51 and 8 for initial connlitiona with v-Arianoe one for '. .t*
the first case and varianose 1/4 for the cecoad cuse. It can be seen tkt the error statistios are still quite ..-.

close, practically indlstingmmishalale from a mean-square error point of view, Moreover, the relative error per-
forsancc of the chosen filters is quslitatlvelý unchangnd.

Tullie on the tol.ic of statistical runs, it is Interesting to note. the compaRrison between the output (if the p
a, *equation for an initial condition of one staadurd deviation aint the man-square error for ton runs for one case, % .j

6 as shown in Figure 7 for filter 2. dynamics Di, and measuremert M~l Moreover, it was found that the change in *

the aeaue-equare srror for a larger number of casses, up to 50. while noticeable, wan relatively small. 4*

Thei effects of changing the statistics of the random sequences are similar for all the filters, and are intui-,* -*.

tivoli oAionable. 'Changing a, ham little effent on the initial responre, though the higher a-, the worse the .'
ult'mate following. Contrariwise iacreltsing q,~ slows the response notioeably without affecting the ultimate - ---

tracking. The error responses for filter 2 with C! and 1111 sac shown in Figures 8 and 9.

The runs demonstrating the correctness of the noise model show the nffeats of improperly matching the filter '~-

parameters to the noise statistics. The effect of the mismatch oNx i-1 and p is shown in Figures 10 and 11. "N...
Par all the curves Aiown, the actial pseudo-random inputs were taken from identical populations: only the filter

aparamreters varied. Evidently a statistirial mismatch can seriously affect the periorrmxnce of the filter. It also
appears that the value of p generated by the Lilter is a good index of the performmnne, oven when the statistics 'a

are poorly matched.

The finol aspect studied ca thb computer was Lile effect of sampling the dat~a. Two~ approaches to samplingr were
considered: sample-and -hold and pulre sampling. For the sample-and-hold runs, the effective noiso variance was
obtained tising a ait equal to t~h. sampling period, rather than the computation interval. For the pulse-sampltng j -

runs, a;' was made zero for those intervals~ durinj wbich no measurements were made. Bo0th types of sampling wore 1

appl)ied to filter 2 with dynamics D1 and meastiremeats 141l. The responise plots nre shown in rligure 12. As auoulci
be expected, sampling is ostr~mental to the initaia response of the filter, though ultimately the estimate settles -*

In to the proper value. From the one case considered, sample-sad-hold appears somewhat be~ter than Impulse sam- Y.-

pltng, which may be due to the smoothing effect of the zero-order ho.Ld.

Thai d is one, problem in mechanizing the filters, which nas not yet been discus~sd, that requireh much more
invest 4gation: the effects of the filter parameters 'and the stop-31.e on computational stability. For some com-
biniations vf parameters a. and q., and initial oov.ariance p(t0 ) , thib itep-mize must be made small to 3tahilize
the computation during the initial portion of the run. The reason for the instrbility is the large value of the-
derivatives and the consequent large truncation errors Introduced in the integration. A partiouiarly insidious
form of computation-Ll instability arose in thl coirse of the sisnulatiotrstudy: it is pubsible to be in a condi-
tionally stable region ouch that one pseudo-random sequence with a given statistical descriptiton results in a *--*

stable response, while another sequence drawn from the saims population doem not.

Apparently, nonlinear filtering is superior to linear filtering, although no one nonlinear filter offers anyv~ ,

clear-cut advantage over any other from a performance point of vies for the probleri considered. It also appears
~~ *' that the filters derived from a continuous model aer quite amenable to esamplud-data use. --
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AIM 3rd Aerospace Sciences Meeting, Now York, NY, January 24-26, 1966t'

V-A

%~4 ~ . 4



IIS

6x.y 0 L 

h *~'

rig.iStnadrsoe for dya iumD with memrw

p if

023 45
TIME, SECONDSq.

vig.2 standard respoa.m foor dynanicrn U2 with uemaursvemnts li21

%4

al1%:A.0 A'

II.N



N~.

157

-LINEAR FILTER, NONLINEAR MEASUREMENT
LINEAR FI LTER, LINEAR MEASUREMENT .... *
ALL NONLINEAR FILTERS \...

4~ ~ A .'-

6'" .41

A ~- -. k

-0.2
0 2%' 3*4

'n rME, SECONDS ..%, 4

P4.3 Estimation arror for sanszdard came for dynamics Dl n I

LINEAR,FILTER, NONLINEAR MEASUREMENJT
SALL NONLINEAR FILTERS '~~

0.3 -. __ _ .-.....

*X- 0.1~

0r

-0.

* -0.21

0 2 4 5
TIME, SECONDS N

Pig.4 Estimat ion, 4rror for standard oanes for dynamics D2

NNI IN .

'p
1'



0.0 -. J.,.A

0'.

004(x .1.2 
-

3 1 24 3 4 5

TIME, SECOND

0.04 - 01

0 4

FITE 3

-0 0 .2 3 45
* ~TIME, SECONDS

¶ Plg.8 6 rror sattistics for ton runs of dynamics D2 and wasurnment W21

0%4



4 ~~~I - .2)'* 'L.V"'

02 2 -.- 4 5___

b i. A

IIrv

-%

.0 . I 2 TIME, SECONDS I
Fig.~~~~* a. efeto ayn r

~q~ %¶



1160

% 0A

0.8'

-4ui0

-."A %

*1 4

0 3 4.L~
TIME, SECONDS

Zfjog of satstcalo mwisacong esiato af

k70~ NAA-1 ** k



*"-ASSUMED ow2 ASSUMED a.2
1 10

I1010006
--- 1000 10,000 .4-.

ACTUALc a\2441 0-l 2-1

0 I2 3 4
TIME, SECONDS ~..

Vici 11 9feat of at-stisticel mismatch on computud covarianoe

-2.0 %
4

*.fl
4

f

4iN* 44.44 44

10 STEPS/SAMPLE WITH HOLD
100 STEPS/SAMPLE WITH HOLDl-.M

---- 10 STEPS/SAMAPLE WITHOUI" HOLD
---- 100 STEPS/SAMPLE WITHOUT HOLD% f%"'

:X- \'

X4,

0.4-.-
-0 I 2 3 4

*TIME, SECONDS 44'.

Fir 12 t~rror reepona. tor suipled input .4 4



•'* %* '

'I'M

CHAPTER 8- LINEAR SMOOTHING TICH- -s

(POST-rLICOHT DATA ANALYSIS)

Herbert -, R*u-h

Lockheed Missiles and Space Company .
Palo Alto, California, 11A % .

Ai " I'

'ZA

1.

PRECEDING PAGE BLANK

A'

IXATI 8- .Nl 8OTINTIXNU£ ,..
• 

* .* ." I W -

-(rO•l'-l~, ZOI? DA A AHA~ a*h I• A,•4_



'.4.

(POST-FLIOIIT DATA ANALYSIS)

Hlerbert XRavch

only formulated the esiainandi deviasedRt ooni fo sovngi e( quential algorithm called Gusa

deterministic and the errors oil the individual emeaurementsamre unoorrolated. When a system is dttvrminiat~.c, .'

its evolution con be completely specified from the initial conditions and the differential equations of the 4'

system. Celestial bodices obey Nlewton's laws of motion and disturbing forces due to other celestial bodies are ' ,,

known to a reasonable degree of socuracy, so for practical purposes their motion can be considered deterministic 4,,*,,..

bforehand although their statistical properties might be known, When a syntem is described by differential
equations subjec todsubne hc r ttito4ytm'ayktesstmcnb aldasohsi
process,.4

The pioneer work of Winr icse*n.sle h rbe flierI~t6U Setiainfrsohsi
processes However, hsrslswr anyfrsainrnt-ievritssss n hr a oedfi
culty tn obtaining numerical anowerm for large order systems, Many papers have appeared since then giving ¾'
different solutions to the problem under more general conditions, The moat widely used oplution for filtering
and prediction is thatofXom34adBc'4 ThprmradatgoftersltosI itteyplyo
time-varying systems and the equations which specify the optimum filter are in the form of reoursivv difference

problem of smoothing, Fleigalw nt siaepootvluso h aibe fitrm sn rsn

data, while smoothing allows one to estimate pest values. A number of papers have presented different derivations 10.) '
of recursive solutione for the smoothing solution from different points of view for both discrete and continuous~

systm, rysn ad Fazir? sve ne f te frstrecursive solutions for continuoue systems uming the cluu
Coil using Dynamic PrgamnRuh usadStriebelO using discrete time manipulations ot Bayes's rule and

the ethd ofMaxmumLikelihood, Lee1 0 using the calculus of iariations, and Miditchl using projection arguments,
Twomor reentresltswere by Praser'' who expressed the solution as the combination of two filtered vitimate
fro afowad ndbackward Kalman-Buoy filter, andi Kailath and Frost"'3-' who made use of en innovations approach k~v
tolna mohn.In their papers Kailath and Frost also give an interesting summary of work in filtering end '

sotigwtalitof over forty references, ,444

biulalthese solutions should ultimately give the same amigwer to the same problem, but the different ~ ¾ ,

deiain ieinsight into the reasons for different recursive forms of the smoothing solution, For deter- '

" "nsl ystoma it linc-tr equations, the solution simplifies considerably because the smoo'thed estimate of
patvit. is obtained directly from the filtered estimate of the latest value by integrating the differential

eqain fmotion backwards, Per linear smoothing of stochastic systems a similar procedure can be used in
wihdifferential equations are ,intsgrateod backwards, starting with the latest filtered estimate. However, /

teeaeadditional Inputs to the differential equations Involving earlier filtered estimates or measurements, 1
deedn nthe form of the solution. The purpomo of this presentation is to outline the procedures and solutions
whc a eusd in the lintear smoothing problem and to indicate how the results can be applied to a problem in %

poet-flight data analyses which involves tracking a satellite disturbed by stochastic drag forces".

7, 4 In general, loser oase letters, much as u , v , s . and a , will denote column vectors while upper caue letters,
suhasA,8 F. ad0. ildoinots matrices. The letter I represents the identity matrix. The super- '

script prime, as in At or u' , will denote the transpose of the matrix or the transpose of a column vector ~* ~'\S,
(which becomes a row vector)I. The product of a column vector and a row vector, such as xz' is a matrix. The .1V" ,.&V %% J %

script -1a nA'masteinverse of tematrix A . In all easses It sill be assumed that the inverse of %

the matrix waists, although quite often, the Inverse can be replace by a jetudo-inverse or generalized inverse
wihu hagn herals

PRECEDING I-10
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sk = kxk +vk fo k = , 2* N(.2

To he dictrscretresventsino the staner eofatoaprb the systemahchi to he estimated wietevctran bepdsrbedenbs the

fo aral esowitghse nof n aust riadifrnce. h vqarioable a ersnsrno hna nteaao (y~ i us )w ie"

the linarieabeuvrresents rbainedfomcagsi the mysemasremient bymothersemet of matri Teiuhations k rpreent

fo lltme hesstmissidt e aeriini. h mticst ftastinmtrx n It 1output (1.2)
Th etrarepresent s konqatties state of theg syrtm whic iesurmn tooeetma hl the venoexrte.ns h

knowt mesiasuremets. wihe vectorlve aind var equatiownseacl, but they arumdte merve setn oindearenduntirandos.
variables withnownbycovnarian abhe soarnoinable valreprsns frano hnsi the state an(dymaurmnsI aai noi) whatlte -1114 ).

equtions aluofthouguantites masueets th ltk lce iee times. h t awsrraat If the dyami ose the oisgidntallsyse difer-
forall eutimes thusstbem intesated to hebdterinistic, Thurddifrne mqatrion '(reitca atrin) tecande in state frmtr
rersnt kamaownt qatities which Conesela under f eromaone cormnditioni the nexit. n at"tetm ewe

measueet@ syo ostrtem d aoroallsysearilapochacniuu sstime qato
cah e obtmmetained by l e h linearisn aboutat soie n minilmvluzefo the mteand themasremerrts. Ctalcuatihg thatte

ethmae vriabl s noinhev menamnd coaianc mofauherandot m vasriablest ofIste).restbuit no higepresoents,
pyIfcall sytheradm aisgovene byv a setmof lineari(oryldisaribution di herentimeateions beather thondiffna erenc of
tequtation althoun the measurements, woeils tahe flace at discrete timles.Id hcs the orimm igeinald esysmtem diffuer A
intmaiizes tqutio stateina fromiiyitrbtin

Lo eoeteonetimt m undmtofter lit ie altemeatingn caspa the timebtew j* is.~

sh will bek thoier equltst tscle imaterwinghn mroiton. 'fisess theaeanqur error.C calcuai lted
esmothinate reuie optimug fithern solaniand iandried of Kallmhando vanbwriables, ofineresti bt n ihemari mgments an
thf allm thfainomlpoallttitebtrthsiae ilb hecniina eno

iTh ainiesthel cdtondtona forobabilteity dstriution, ar bae nth ror nomain heqattyS hc
coetainf the stanomtin stedifrnebtwee gvnnl the at~ measurements an tj isa estmat of the

m asue/kt Ti denote t ilpa motn atI the deetvaato of uhe sotigolto on .sw..I
greae tanborveqltok tisale filtering andprdition. Is reusv is lessens than th deirdtsimtet callua ed seuptal
froothreiougiats The optmoofiteing solution asn drvdb also, a be written, wher a isuv them aatri gin fatonr

Thfeeinitia rcorditve vesorso the filtering solution wire baed prnsethed here, Infotieony, thoe qouanit verswichs

sill give Identical results Lut, due to such things as comunter progrsmming or running time or the effect of * .*w,

rounofferros, nesay may be superior to another for a particular Problem.

The first version, called flixed point smoothing, is useful when It is nuuessary to calculate the smoothedWint atonlyoutpoint. ror Instance, tbe swaothed estimate of onl~y the Initial conditione of the state
m.y ight bdeie.T form of the solution for fixed potat smoothing Is similar to that for filtering as shown '*

gi.3is a general weighting coefficient;

Tescnvesin moothing using filtered estimates, has two vartis. First, the Kalman filtering solution * .,.- ,.Is sedto rocss he easremntssequentially, In the order in which they were reoeived, to obtain the filteredn
etmt(fradsweep), ood the esoootbing souioIs used to process the filtered estimato a second time,
Inreeseodefrmthe last to the first, to obtain the smoothed estimated (backward sweep), The initial ' .

cniinfrtebackwsrd sweep tothe filtered Ajotimate of the state at the final tile, which Is also the .'' /''

smothe saiat ofthe state at that time. The form of the solution for smoothing with filtering is shown
belwwhee homatrices A and B are general weighting coefficients!

1k/N - A~k.a/H -fal/

TeeIanalternative method in which the backward sesep involves mescurosents Instead of the filtered
esiae.Ti stethird version, which Is called smoothing using measurements, The recursive solution can .2%,,

bewitnschematically as shown below, where the vector wk is also calculated recursively:

oil.I-A _ _ _
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%-1 0 Cwk + D"mk-4i5 10) .. s,

The fourth version, called flixed Ing umnothins, can bo used when It is desirable to smooth for a fixed number
of molasuremeintm. The recursive solution Involves both filtered e~titmates and nmeasurements;

1.4 iOlttins of Work v *'

The remaindeor of this presentation exarvines the smoothing solution for the disorete system (Section 2) and tho
oontinuujus systnam (bootion 3), and applies it to a problem in satellite trackoing (Iuoction 4). It Is cuhown that
the optimum estimate for the discrete system must satisfy the sampled Wlennr-flopf equation slid an innovations

~, approaoco Is used to derive a solution, The innovatioucs opprosich presented here daea not have the generality and
the elemartt mathamittios of that of Knilath and Frost","', hut it uses movie of th',ji ideas, Four different
versions of the samuthing scoltion and tho as'outated covarinnose are presenitetd. ~,-..-

Thto relations Ibntwsuen the disornto i~yxtem and tho continuouns ystemi are examined and the cointintioun smoothing
aroutions are presented me the limiting cultse f the discrete ones, Finally, a orobioni is outlined Involving a OL4,,.

* a~~tochiastie model for satellite drag, andi the smoothing solution is applied to actual data,..

2. DICKVRU't TIME SMOOTHINO

3.1 'Statement of tile Problem

*The system to be estimated is described by a met of matrix difference equstions,

xk+I * 0 k+lik + Qjk for ki n 1. 2 , .,. 21

The mossurementR obtained from the system are defiheod by the equations

where Xk an 'lu I column vector of state variables a

U5  i an x I column veljtor of tie-tem (input) uncorrelated dynauic noise -.

Vk an r u I column vector of meassuremient (ovitput) uncorrelated notise -~*

rk an r xI -.olumn vector of known measurements

Ok a the n x n transition matrix with known coefficients

H4 an r x n matrix with known coofficicints '. a..' .

The dimeonsions of the mess~uresent zi can vary from point to point as long sa the dimensions of the associated
vectors and matrices all. vary acoordingly. The vectors uk and vm represent veotor-valued independenat random *N.~

,~~~ ~variables with morn mean and a known covarianoo. ~.,*¶

&(k j) = Q if k m J sod mere otherwise .
E(vkvj) mRk it k aJ and zero otherwise *,~,

In some treatments of this problem, it is assumed the vectors so ad vk art correlated if k n This ,

,~, ,~ slight modification will be discussed later, The matrices Q and Ri could be singular amid the implicationse of *~
u~ a. this are also diacussmed later, although for the time being It will be assumed both matrices are non-singular.

to Lay real uutimation problem there is an important distinction between it priori information and actual
muasureiments, However, in order to simplify the notation and subsequent explanations, it will be convenient to I
treat the a prinri Information formally as the initial measuremeint A, , as shown belcrs:

so M + v0  where so 2 CEz0

Thus, the a priori information about the initial value of the state x5  is that it is a random variable with %~ %*'.',

mean a. and oovarianoo e .,'\ -';

The st ate Xk is the quantity to be esatimated, The best estimate of the state ma I given the measuremenits
C a for j m 0, .1-A, Iis denoted by 24, , sad it is ta linear combination of the wier~urements with coeffi-

cients given by the no r weighting matirfix ,/
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1k/M to A/JSJ(2,B)

The estimation procedure IN called filtering it k equals N , prediction if ki in greater than N ,and smooth- *1L* A ''

ins If k to loes than N The error in the estimate, denoted Xk/M is the difference between the state and "

the best estimate of the state:

Ik/N 0 k - k/M -k Ak/ A z, (2.0) -

The partial derivative of the error with respect to the covffiolents Ak,,1  is equal to the measurement M

'61/IfaAwJ -N (2.'7)

The beat estimate of the state will be defined as the linear epitimste which minnimir.9e th,3 meant equara error, which
is the trace of the covariance of the errorP

PO/N "~k/OKk'/N) (2.8)

Since the lintear cooffinients AK are chosen to minimixe thu meant square error, the condition for this to
be a minimam in that the partial derivative with respect to the coefficienits is Zero,

bT(~/)Zkj20 for j a 0,1... 1 29

substituting the equation for the error Into the covakrianos gives an expression for the mean square error which We
io quadratic in the coefficients, Carrying cut the differentiation gives an expression which Is linear in the
coefficients - the sampled Wiener-1Hopt equation -which is sufficient to determine the coefficients, A M.

20K?/)3kJ= 0 2N(lk/NJt) for. 0 ,1, 1 . H 2,

This Intrension can be interpreted by saying the error In the beat estimate, Ik/N ,is unoorrolated with any of%
the measurements which Lade up that estimate. Since the best estimate is a linear combination of the meamurmments, I'l 4.
this means the error in the beet estimate is uncorrelated with thO estimate itself, 4

d\

"W"Sm) for j x0 . I ,.N

wh.1 Innvaeon fAnephperoach Teinoainsapocht ina

AThe inoa ionis thu aow Information wihcmsfo u esron.TeInvtosapoc olna
estimation Isbased on the assumption that the actual measurements and the innovation process (all the innovati on) ~ .

are equal in the sense that they contain the saw information as far am linear operations arm oonoerned. The new %.,
information Is the difference between the actual seasurement sk had the best estimate of the measurement, gtven . ,

all the previous measurements, The best estimate of the measurement is the output matrix Hu times the best ~ '~'~wal)i

estimate of the state Rk/k-i while the new information, denoted by 1N , is the error in this estimate, ~I

since Sk Hkzw +Yk. (2.12) A A% W(.

The best estimate of the seasurement has the same pioperties as the best estimate of the state discussed previously, *

while the new information has the same properties me the error, The new information of the kth measurement is N~*

uncorrslated with anx previous mossurtments and the new information t tisncorrelated with the estimate, Thoee
properties of the new Information can be used to derive % sequential estimation procledure,...........

Assume the current best estimate lk/N. can be calculated ao the sun of the previous best estimate akL and ,

a coefficient times the new information IN

A,.N 0 k/fl-L + k/MN (.

If the coefficient B/ can be chosen so the error ln the current best estimate is uncorrelated with any of the
ineeaureuiets, it will indeed be the best estimate because it satisfies the sampled Wisner-Nopf equation. The
error I.n the current best estimate is composed of two terms, the error in the previous best estimate, and the
arror In the now Information;

2k/ 0 m  ak/ 1 k/m-i - OkNk (2.14)

Because they are, errors Iin best estimates, these two terma are unoorrelated with the prevloun measurements,

As. 5U2qs) 0 for j1 0, 1, M.-1 215

% %
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For the current monhurement zH the condition that the error be uncorrolatod determines the oneffiolent ,.,

0 BkE(W',emh) z (2.10'

eatletieie Fquation (2.16). For practimol oomputation a more oonvenient form for the coefficient is obtainod by
usThin e the followin t relatitons: vr/u.ur i ( /.1 .) t beet ',iae..,, .. ,f ,ot,,,

A-, ,,,,- ,A- I S

N N

These relations allow the coefficient Dk/N to be written in the form

Ik/M -" N. k ,- +VMS ,. , ..

Bk/N S( i/N)

'The noise v in uncarrelaL~ed with tho error ia the best estimate so the covari~na of i the now informatioln Zk,

can be omlou'lated direutly using (2.12), ~v"$*th ,

+ I("O a " kPk/k-•hHk + Rh ' .i),

Multiplying the sequential error (2,14) by the state Xk gives a sequential procedure for culculating the covari- '' . .. (
"exoe of the error,

i; I - 5 /g UN3 1"Lj

Pk/N r Pk/n.I - B/VIN IO .

. ,k/N-1 - Bk/Nk(3IIN') *N

sinc t(Ik/Jxk) 0 Pk/J (2.20) , '.. ... ,'

To sumrine, the scquential form of the optimum estimate end the associated covariance equation are given by
(2.18) and (2.20). The form of the solution is quite general and date not depend on the eyatem equations. The . . :.

ihte poeint, of tk m

When N > the equations are for fixed point smoothing because they show the chais n the smoothed est.mtfaat Ithe •th -'.t ,•., . ". ". ...,,,•

3.3 Filtering and Fixed Point bomthing

Up to now it has not been necessary to examine in detail the system equations for the state or the measurement. • "
However, to calculate the coefficient B4/• for the sequential estimation procedure, it will be necessary to %
find a way of calculating the oorres-o•dig oovariances. Consider first .he aigl-etep estimation problem in ,.,
(2.18), where k is replaced by k + I end N is replaced by k . This is the femiliar Kalmen filter equation,
Where Brk, / is the gain matrix for the filter, %,'. .... ,.

Ik#Ilk " Ik+Ilk-I 4+ Bk;I/kIk n,,....'',,..-n %%-

OW/ " (h1~ 1 (2k+V 7 "A) (2.21)

Por one-*top estimation the unknown covariance and .the gain matrix ca be determined dtroctly.
,Vh.,11) 91(4bk+xk + uk)(Sl,/k., + ,k)' 1"].': '" :":.

it should b.epointed out here that, for the specialcane where the dynamic noie..,and the noiserement noie
ak are correlated, the unknown novariande has am additional term: . '-

tk-LFk/k-L', + I(uk',) .*" ,,, %'

To complete the solution to the one-step estimation problem. it is necessary to calculate a sequential relaton
for the covarianoc of the error Pk-t /k which is uked in the gain matrix. The best predictiot must be the holt _P'Smvi

%, estimate timee the tLansition matrix,

5k+&/k-I k.12 /k-I

S• .., . ,. . . , . . .•

_ _ V
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The error In the beat estimate is

1k1/k -k~

= ($k+lxk+ uk) - (k.Ixk/k-i + %hl1/k("k'k/k-l + vk)

whirs 'Pk+1 ýOk+1 - k/k (.3

The covariance uf the error in obtained by multiplying the error by the state and taking the expected value:

~k+l/k ý E(k+L/kXk'+0

= E!i/k (Ok+C~k + UiO

0 k+ /-O# + Sk (2.24)

The covariance for the current estimate can be written in a similar way,

k/k 41i' +Ik/k-l = (I-kkkP/-

where *k+1'k41a

and Pk,1/k = kik/ol+ + S . (2.25)%

These are Kalwaz filter eQuations for the on-i-step estimation problem. To extend this to the smoothing problem,
*where N is greater than ka . it Is necessary to see how tl.e error.' in the estimate evolve. The matrix Ok1in lý(2.23) shows how the estimation error& evolve from one point to the next pcint. Applying this to the points from -~~

k to N one can write

'C/N-1 'Pm'PN.. ... Okk~k/k-1 +

+ taerse involving llj and vj for k49. N -1 * (2.25) ..

Sic ~ Is uncorrelated with the uj mnd vi the unknown1 covariance can be written we

where OPk,, - P+

smd Oj1 ý ' +I Bj1/j~j(2.27) % V.

3.4 other Snoothing kMolutions

The fixed point smoothing eniution g~iveu by (2.13), (2.19) and (2.27) will uiow br, used to derive other recursive
erorionh of the smoothing solution. At seach point ehere th.p new information Ijis received, it is multiplied b

the weighting Matrix S/ in (2.18',. The sm~oothead ext Leltes at points k a d kia I 1 can he written as the j~ Z
weighted su3 of al). the now informsation,

1%M v/k 4.

N/ i

Fros (2.27) the previousliy uuknown covarimnois Land the wolghtAng coeffictent can us related to a new matrix C

where -k PtW1P~~+j (2.29) .

.2t*o

. . . ... ... .. . ...

%
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For tho waighting coefficients in (2.28), a

Bk/ =2Ckl/

Dina* Bk/ = (xk 'iI''(.3)''~

Subtracting C~ times the second equation in (2, 28) from the first equation, and) making uso of (2,.30) to c"I *

out the terms Involving the now information, gives a relation between the smouthadecitimate at pmoints kL and ~ ~
kh+ 1 , '-

ik/N - lk/k Cz(MlNx./)(2.31)

This second version in called smoothing with filtered *stimaeite. The smoothed easlimate at kIn i calculated
from Ase smoothed estimate at kL + I and the filtered esitlMaLe, in ?he same way, the smoothed covariance (2.20)
can be wr'itten as the sum of terms

P0 Sk B./'mz )Bm,! for m kL and kL 1 (2.32)

PreuultizulyIog the equation w~th m + 1 In (2. 31), by CIL and pont-multiplying by Ck' subtracting from
the equation with m = k , and2 making use of (2.30) givem a reip-tion between the covaribnom of the smoothed ~,'
estimates at roints kL si~d kL + I ,~'

Pk/N - Pk/k 'zCk(Pk~i/N-Pk-1/k)Cq (2.33) .y

An alternative definition of the Matrix Ck which is useful is obtained frog (2.25), d

r %M/k~k+1Pk+l/k

* sine Pk /Mkf + I u Pk/k., 41 i *k) '.-+*

A slightly different form or smoothing using the filtered estimates is obtained by grouping termse and making *' '.

use of some identities. In (2. 24). Aultiplyins (2.31) by Ok 1 and subtracting xk/N gives ~U

Ok+1 k/N 'k
2M1/N = O+ k1I kik

-AXPII/k (1kWiN'-kl/- * * ,

since Iký C. Ok1k/ O*++'

The smoothing eznlution with measurements, the third version, is written in a similar form, but it raquires.o,.'
sa detailed algebra, Making !iss of oompiicated identities, to allow the equivalence. Thle Measurement smoothing .

Involves a mew vector wk which is 'iwlculated sequentially and, In the continuous version of the problem, can t. '

be interpreted as a Lsgrenge .ultiplaor. The smoothing solution involving m easurements is

Ok4nt/N 
1
k+1/" ~.~'**~..-,-

5 ~~4N+1- + tR'W (NIHiAt ) W ,*...,-

with cs.:0. (2.36)

Cocmparing (2.331) and (2.36) gives a direct interpretation of the vector ,jk but no hint how to derive the ' a

reaurbion formula for c.k %

Pi+L/k(~k+1 i/Nk*1/k) . (2.37) ~ ~a

In order to deriv& the recursion formula it will be necessary to make use of the two relations * "

I.. . ~kX~M/M + ,(2.38) V' \

Theme relations arise naturally when using the Maximum likelihood derivation, hut they soee artificial here.

* me first reaio a be prLve byMutilin :2 ;bz7 HIn(-2) o o the ietyTesecond
relation can be proved by showing that

PM/k~R~ .(2.39,

starting soh(.3)ad mkgusoftetorlins@wlla(23)gives the desired recursive relation

fa Ilka*~b

ff
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- k4 P li( I I A kxk) / !4k L h / k) k % l~

P;ýA~k+L/N -k~ ¶4

xHfhn-~xfN

Texeso fourt /d latvriont the filled poixedt a solution g b21) ecaursivte semouo frthed etm toine Always coarfixned

numther ifpita bhn telts esrm nto.vItcng besuritten tn ~shown belo usedo bhecas itontisr4

ca edfor deterb 237 rb the filtering solution, it is2ecssay)ha

bhee ko'iglr so thr -a beavole fbt aadUk aesnua,- .v.

for systento tefxdpint describedbyas e ofmtr2difretaleuains,

-./ (2.42)4

4kk- - *VE ZNB1 + V N 1111-lt*11-1O
The s cont i tou s beueentasobtaied fo the marc syste anedfnd by tbr e eq-snular Itio th mari QkI in

itwhere no c ang ane for of th columins v althor g if sat a ials zeotesotigsouin ipiyt

It thenondn ic matrix issnua h mohn ou ith knvowvng coeffireients onn' be use beas-tcnan
rHo sh tite en s oluin iupt isncsatrix ithakont efiins

ben and n owinjlr sovthrae.myb tpolmi ohQ n kaesnuaN

3. ~ ~ us' =ONUU TINS-s . *0O I

Ae-4

NX +t V 0)9)t 40T (3.2) 1 * r .,*/

where
a~~~~~~~4 annx3clmnvco fstt aib

v, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '¼ annxIclm itr.fsse ipt n"rsao yai oax nr ounvco fFauomn otu)ucroae os
s~ ~ = an rx I>~:~ 4 colum vecto ofcninoskow esueet



The pr~oprty of the delta function 8(t) in that the functioni is zero for t 0 but the integral of g~t)

times the function is g(O) if the integral includes the origin. The a priori information in that the initLal
value of the State, % 0 is a random variable with mean Z, and covariance P,

Th: ~ ~ 0 =mote esiatof h and EC (x, - 0) (x, -No F, (3.4) 44. .

Th mote4stmt.o h state at time t , given all thi measurements up to time T in denoted by ..

Tefiltered estimate s denoted by it/ or simply i The covariances of the errors in time smoothed and ~ ~~~
.1filtered e.:,tiaaten are PU/T and Ptt=P respeatively, Tfho linriar eatimate is a linear comebination of the . ,

a prilori information end an integral or the measurements

1t/ 21 At/,0 + J At/,Z do (3.3) L

The beat ectionate in tho linear estimate sh'oh minimizon the Intasral. of the mean square error,

3.2 Oontinuous System as Limiting Ferms of Discrete Rysteme *5~
The discrete system can be considered "s the simpled version of the continuous system while the continuous . 9..,*

system can be considered as the limiting form of the discrete, These results will be ineed to derive the con- '...'

tinuous beet. estimate 4.5 the limiting case of the discrete beet estimate, P'irst, consider the continuous system,. .%
The linear differential equation canm be integrated from time t to time a to get

i(s) 0 (s,t)x(t) + ti*(S,t),

where u5(st f O' 5a)u(a) da (37

and where $(s,t) Is the transition matrix which satisfies the differential equations

'I Let s t + I where c is small, And therd is an obvious analogy between the continuous system sliud the ~a
discrete system. d(,)'tar:~st

Zk1=x(t+a)

Uk= u'(t+dlt) %36 4 ~

8ines the ouvarisoce of the continuous dyvnamic noise u(o) is a delta funotion, the coyarianoe of the random
Input Uk is 01oltdas follows*

Thus, starting with a continuous system, one can take a series of samples and convert It to a discrete system.
The linear equation for the seasurements can also be integrated from time t Lo time t 4+ £ to get &an
"average' value for the measuremnt.- Assume for the moment that H(t) and z(t) are constant over that

intervl, 1(t (IA) (O.)d a I4(t)x(t) + v..h.M....a.±

4*tct 0/0 4 v C"d

Actually, the Integral of the change In H1(t) and x~t) will be of order I but that can be neglected for
4. small £ The enalogy between the continuous measurements and the discrete measaurements is

k 1(t)

vt k *tEt (3.11) ..

444 
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*The covariance of the notse@ is

N EVtv,,) P , (1/4.) Rkcr) do' :2 R(t)/e 3 2

Next. consider the discrete system, The limiting form of the system difference equation Is obtained by making t " V .

a Taylor series expansion of the transition matrix for small 4e and neglecting terms of order 41 denoted. by %. ~ %

Xt+ = [ 4- F9 + 0C1c))] Xt) + U~t) . %

,,rn x(t +c) - x (t)] A dx (t)/dt .(3. 13) '• ".*' .

To summarize, the limiting form of the discrete system in oaltaied for email a t9-

- r Xk, 1 10 /C dxfdt

§k1- 1 Fe
Qk QI'

*44 ,4

3 .3 Filtering and Smoothing Solutions.......

* The nontinuous smoothing solutions are presented here u the limiting casesa of the discrete tclutione derived
earlier, Applying the limiting process to the filtering solution in (2,21) end (2,22) end the covarianne in
(2.24) give, the continuous filtering solution. h

dx/dt . 1+ Bit

dP/dt r.P W+ P'- W + Q

with it sa-N and a~ PHI"'r (8.15) 6.0*( % .4~'4~44%4

where I It/ and P Pt/t sand the initial conditions are

10 To and PO-P

The number of terms In the continuous ncue is fewer then that in the discrete case because

[Itkak/k.L;k + NO~ 1H - 'w + (fl/')J RL- 8 6

V smoetimes in a dilicrste problem it might be convenient to integrate the discrete difference equatione for the
covariance on a digital computer by changing them to the corresponding differential equations. As the limiting
process shows, one requirement for this apiproximation to be valid is that %4

Applying the limiting process to the fixed point smoothing solution in (2.15), j2.19) sand (2. 27) and the
corresponding ccivariance in (2. 20) gives the continuous fixed point smoothing solution.

dg u/d DCT.t)l7

UtTA - D(T,t)ttb(T,t)'

where . D(TOt z PjS(TtOM H'R' end

* ,(T,t) a the matrix which satisfies the differential oquation %4 "

dYP(T, t)/MT a (F - BH)V(T. t)

Applying the limiting process to the smoothing solution Involving the filtered estimate in (2.31) and the%
corresponding coveriances in (2.33) gives the smoothing solution for the continuous cane, ..-

*% ,

% % 4

M' .4 140 L
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dit/T/ot = k/T + I"t -t/t) .,

dPt/T/dt = (P+QP'I)Pt/, + Pt/T(Pn + '*)I - Q M(318)

These difforential equations must be Integrated backwards fromt T to 0 and the beginning conditions at t = T

are the terminal conditions on tho filter equations i1 ,VT and P~,/., The limiting form of the Matrix Ck hasbeen written as 2

Ck - i -*+l) c ((.1) 6..,."

* Applying the limiting prnoese to the filtering solution involving the measurements in (9.36) gives the mo.%th-

ins solution for the continuous case "

dxt,/,dt = Ft,,+

dw/dt - pc- H/R- 1(v-Hit/T) (3,0)

Onc eagin the differential equations are integrated backwardn from T to 0 and the beginning conditions are "'.-".-t
the terminal conditions on the filter o-,Jations 'T/T and cu(T) =0 .' '0

2'* VFinally, applying the liiiiting process to the fixed lag solution of a seconds gives

dht/r/dT ý "/ + D(T,t)iT + Q.W...V

dPt/,/dT u (P+FQP)nPt/ + Pt/,(P+FP+')' - Q - D(T.t)M)(Tt)'

where t T T-s, (3.21) - .a,

4. APPLICATION " STOCIIAMTIC DRAG MODEL . .. -.

4.1 Satellite Traeking with Itocahstic Drag ' ,

*This sebtion presents an sxample of swaothing on satellite tracking where a stoohastic model In used to
.improve accuracy. The practical problem which arise in smoothing are essentially the stal ai those in filter-,.. " 4. '.*
ins. A model for the system equations must be developed as well As a model for the teasuremente, Values suet ,*",, *.*

be chosen for the mean and covarience of the dyummic noise and the measurement noise and tar the a priarL
estimate and its covarlnoce, The primary difference between practical problem In filtering and those iii
mouthing is it the effset of including dynoomid noise on the model, If there is no dynamic nOise in the adels
the system Is deterLijistic and the smoothing.solution Is obtained directly from the final value of the filtered
solution. When there is dynamic noise, the smoothing solution can~nt be obtained so easily and say require
significant additional work. Correlated noise on the measurement# can have a similar effect to dtynamic noise, \. . .

To handle correlated noise, the state equations are augmented by including additional state variables for the
correlated part of the noise. '.' .+'-

The problem of trajectory estimation involves reconstructing the position history of a apses Vehiole from, "
a series of meuorements such a ruase, angles, or Doppler velocity, When there is only Iravity acceleratton, -

due to engine thrust or air drag, ths motion is determinietic and can be completely specified by six parameters. % *.'.. '.

These six might be the position and velocity at some initial time, or a set of mix -orbit elements at the time
of the ancending node. From the six psrameters, the current and future motion con be determined by numerical .......

integration of the acceleration due to the earth's gjravitational field or from a closod-for. approximation to
the Integrated motion.

In eoneral, when drag Is included, the assumption is usually sade that Its effast can also be represent'ed
u a deterministic phenomenon (for Instance, u at po1ynonetal with undetermined ooeffloiants). This treRtment

may be adequate as long as drag is dot a significant factor in the satellite motion, However, for low sititudc
satellites, stochastic fluctuations i- atmosphneric density can ount noticeable chanes in the motion. '+ -. ,.,

The particular stochastic model presented here Is based on the assumption ýhat the statistical properties

of the atmosphere can be adequately represent+ed by a first-order stationary Osues-Markov process. Thortifore, " "
the satellite motion con be determined by eight parameters that mre a net of sic seen orbit elements, a Seventh %
parameter that is related to the conotant average value of the dreg, and eh eighth parameter that Is related to
the Instantaneous deviation of the stochastic drag from its mean value A similar model could be developed 6 2
when therm is acceleration due to angine thrust. The stochastic fluoturticns in thrust Light be due tn ohsagens
in the direction of thrust or the em*ins performanne. , . .

4.1 Iimpl/ted Nodel fer Aasl)ini

The main effect of the drag socoliration is to ohanve the In-track motion, of the satellite. The satellite.
arrivel at sow positLon in space a little sooner or later, depending on ebether the drag has been a little
larger or smaller than expected. The aiwplifled discrete model of the motion will involve four state Yariables-

the in-track axnular position y1, the in-track angular velocity Y, the mean drag acceleratio :, and the
stochastic drag acceleration y'., .- 'V.

•.•'.4... .... ,.,

,....- '-.4'-. .



The Continuous stocheastic acceleration~ b(t) Is assumed to be a tero-mean first-ardor Markov prv.3esu with
o *ponnt~ial correlation and at time constant 1/o .'The differential equation doscribing the stochastic accelera-
tion has stationary znro-moanu white noise u~t) en the excitation,

db(t)/dt =- ob(t) + u~t)

I[u(t)u(t 4 a)] c .s (4.1)

LThe discrete version of the stochastic acceleration to aivcan by a difference equation, 6.

b(t+T) =b(t) mxp (-oT) + P

variable~euaton bior The sissrem ofte difrnileutosfrteas rmto r

C-cT) ..0

are

10-,

(00011

T V/2 Tg/2



en ach cae25 measurementsae taken, strigwith at The dnoi elements of tocovarianceeo the

estimates of the state fov canin I are previentod in Tablu I for both filtering end smoothing. Notice how siot-*' '

Ing decreases the error substalntially, %c Figure I the varia~nces of the filtered and smoothed estimates for thle u~p .. " '
angular position y, ore plotted for both case I and case 2, In both osares the variancoeprjprouifie'e a steady-
stats value where the Informantion 108t by dynamic noise halencess the Information gained from additional measure-
ments, Reducing the variaiwcc of the stochmotic dreg reduves the steady-eitate variance of the estimattes. In ~'

YFigure 2, the variancoo for the singular position tire plottod for both onme I and case 3. Notice how the 'iiitiul * *

conditions (the a priori information) havoi a significant effect on the first few astimatos, although that rapidly
* ~dies out.

'I%

4.3 Numerical Results with Real I),ta9

The atuchnetio drag model hut, been tested by using data, taken during the first three days of satellite 100 ,.

Omicrun''., The satellite wan launched on November 12, 1060, with a pcriod of 90.4 min, and weax up for only
47 days. 'The apogee height, vuriaeo he~iht, and inclination were 614 st~atuto miles, 113 statute miloeus and
01.90, respectively. over tile first three days 'thle average oonetatnt drag was 24 x 10-4 fractional decoy of the.
memil-major axis per revol utionu, which corresponds to it period decay of about 0.2 sec/rev, This siatellita waus.
coser. because fluctuations in atmospheric density ovnr the first two day" caused a drag change of over 50%

from the first day to tile second, anid beoauee thmuc were a large number of highly accurate Baker-Nunn optical 7It

sightings of the satellite. 'rh total data consist of 13 partion over radar stations and aim sots of optical
,~ , ~sightings, spaced so that there In at glp of about 9 hour's botween the first alid second day, when ther.3 were no .! %~.\

measurements, (There wait also a seventh set of optical sighiting., which was discarded because it was completely *,.*,.,

J.Inconsistent, by socors of miles, with all the rest of the data.) ,

Results were obtained using both optical and radat data. but, in the resuitA presented hare, the rasd: data - \*

were used to determine the orbit, wherein the optical data were used am at check. This approach was particularly L .I:.,

appropriate because the optical data were highly accurate (perhaps to less than one hundred feet) and also
because the radar data wore concentrated mainly in the northern hemisphere, whereas the optical data were mainly
in the southern hemisphere. With a given set of data, the quantittes thott can be varied are the initial cond¶ .

tions (thec Initial estimate anid itA covariance), the r~m, s, drag of thu stonhastic model M, and the correlation ~
I of the stochastic model Wes). it was desired to eliminate the effect of the initial conditions, so they were

chosen with a rather large coviariance and with an estimate which matched tic data from the first few radar 5

stations. For all the resultw presented hero the Initial conditions senre held fixed, while only the r.m.s. ,¶* . .'

drag and correlation of the model were changed. v

Since the most important effect of drag Is to chasxs 6he time equation, it is the in-track residuals that c
should be examined, Because the radar rang. measiurements are so much sore aoccurate than the angle measurements

reaches a maaImum M~te point of closest approach), 'The weighted r~m.u, in-track resid-als for radar data alone , . .'-

are plotted In Figure 3 aso a function of r.m.s, drag, with the correlation held fixed at two revolutions (about '.

3 rFrvery low r.m~s. dragl, the stochastic model reduces to the detereinistic model and the weighted re.ms
rsdasapproach the value obtained using the deterministic model (8800 ft). Notice that the r,m,#. residuals d -

so h tochastic model reach at minimum at about one@-tenth of the value obtained using the deterministic model.
rrvrhihr.mas. drag, the forwsard estimation procedure tended to be marginall~y stable, The high value of , -

stohasic ragwo usd t ovrcrrot te etimte fist ne aythen the other, The r.a~s. in-track residuals r. 'ijr

.5'',for rsdar data alone are plotted again in Figure 4 u at function of the correlation, with the r.a.s, drag held
fixed at 0o IV. The results lihow that the r.m.a. residual, were not very sensitive to the correlation. Onee

%again, as the correlation gets very large, the stooheetic model will approach the deterministic model. The '. '>

estimate of the stochastic drag is plotted in Figure 5 as a function of revolutions for two values of the corrals- '- 5 '

%tics with or held flixed at 4 a l0", Notice how the larger value of the correlation tends to sink the rapdX~-\~.'
fluctuations in the drag. 0,* . .'"

A point-by-point onnpaz'ison of the In-track residlials at aidh radar pains is~ presented in Table 11 for the
deteminsti moel ithr~ms. ragzeroandthestahasic , o wih te r~.%,dra 4x10"andthecorels

I., ~~tion 10 rev. Comparing the two sets of resultu shown that tic stoohastic treatment of drag has reduced the t~~ '

.d residuals from the deterministic treatment using constant drag by an order of magnitude, from thousands of feet
to hundreds of feet. In order to check the radar results, the optical data were included with mere weight,
i.e., the residuals of the optical sighting. were calculuted, but no differential corrections were made. The %..-~'',\
residuals at three of the optical stations were loes than 200 ft and at the fouirth station, following the gap .,

of 9 hr with no measurements, the residuals were 1500 ft. The prediction of the optical esasureasate after
3rvad6ray toilOneing tile eind 01 tite radar data gave reoiduals of 2,000 sand 70,000 ft. respectively, Il

separated from the satellite on the 31 orbit, und this may have Influenced the drag charectorietics.

.11 4
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TA3LU I

Plasonal Eleamets at tile Covariance ,

point W aov(y1,) oov(y,) coV(y3') aov(y,)

0 100 1.00 1.00 010100
1 0.69 1.31 0.92 0.0100 J1
2 0160 1.31 0.54 0.0100 pl
3 0.62 0.00 0.20 0.0100 f ' '

4 0.79 oleo 0.13 0,0100 4...
5 0.75 . 0.40 0.07 0.0100 .-

10 0.58 0.1!5 Mon01 O,009ODS

15 0.50 0.10 0.004 0O.UDO
20 0.48 0 V093 0,0026 MGM9

2S 0.41 0.069 0.0020 0,0099 % ,

Smoothtd Esti~mate P.m

OOV(yl) COV(Yt) GOV&,3) o()

35 0.47 . 0.069 010020 0,0099

-24 0.26 01056 0.0020 010096 ~
23 0,15 0.026 0.0020 0.0091 i~~~

22 0.501021 0.0020 010055 "IN

21 0.15 0.017 0.,0020 0.0060 *::
20 0.15 01015 010020 0.0078 ý.JA

15 0.135 0.014 o.00'.0 0.0070
10 .014 014 010020 'OILW ..

5 ~~~0.140.10000 007

1 0.26 0,052 0.0020 MORO ,

0 0.45 0,062 0,0020 0.0094

TAIBL 11

Comparisons of In-Track Mesiduals, 103 ft

AnaReoluation b DeterministicO Stoch~atied

2 4.0 .. 01
P. 6.1 5..0.9

4 0 .1 0.3 -0.2
8 A ~~~7.1-1605- .

6 $181 -3.0 0.4 ",p
7 A 11.4 -4.4 0.2 N-~-' .".*,

R 13.4 2.1 0.4 *~

90 19.0 . 1.6
1031011 2.6 0.7.

it 0 20.1 . 0.2
12 3 20.1 180.4
13 0 21.1 . 0.1
14 R 21.1 0.0 -0.1 *A

15, 22.1 2.6 2.1 .%~

to A 23.1 0.6 0.3
17 328.4 4.6 0.1 4 . .

1is 31.1 ... 25.0

L19 1 0 34.1 .. 70.0 .~* " *~

O0ptical z 0 and radar R . O3adsr data with constant dras model. '

Ob810 0  tiue of first aaoendin nods. dpada data with zvro weisht on optical (for a 0. 4 x10'6

01 10 rev)

'N'jAtJ**~
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CHuAPTER A -NONLIN4EAR ShIOOTIIN(I TECIINIIIUFS *..-

John S.Peller

1. INTRODUICTION

The sooLied16 'nonlineer smoothing" problem is the problem of ontimetting the nttet of some noisy preancm*
Lol. tme gve, oniny mneasurements relato,4 to the proocne over an entlre m,'umurement interval which Includes '

the time t, The nonlincear smoothing problem differs from the linenr smoothing problem in that the differential '

squat loun riemoribing tho pronousm and the ob? arvationo can hlieuni tinear an weil as lieaur. A typii'ml nonlinear S

smooth ing problem is the pont-fl igt cetipiationi of the fl ight path of it minelle based on tracking symteio moasure-
nvmnte made during the entire ditratlon of thu flIiglit. If the untirneto of the minnilu' a position aind volocity at I
the midpoint of the flight is desired, the estimate son be basod en all of the measurements made, including those .~' ...

0,' *made after the midpoint ans well tn thoen made before. Thin is the smoothing problem, If either the differential . *

eQuations desuribing the flight of the missile or the measurements made to deter~mine the actual flight path (or ~ ~
both) are nonLinear, the problem of estimating the missile' a position end velocity is caliled a nonlinear smoothing % . "*~

problem, In thin chapter, methods of solving the nonlinear smtoothing problem will be presented, r~
bymwoothing problems (or arty estimation problems for that matter) may be clsassified accourding to the criterion
bywhich 'he quality of the estimate in to buejudged. In thin ohaptor, as in the rent of this publication, only

probabaliettm oriteria will be connsIdered, ror the smoothing problem, this in a marked departure froem practice; ~ 1
normaolly, smoothing in performeod by statistical tonmhniquos such as fitting is polynomlial to a set of observations'*'

'4in A leant squares fashion without considering the known properties of the noire in the nmeasurements or in the Li

In order to describe the elansifieatioes, sone definitions are necessary. Let 1(t) be a vector function .s. '

state X and time t 1 t will be called the observation process. Suppose the process rune from timet 0
tothe times t = TI . 's&ndlthat the observat ion yM it) in recorded -for all t -in the interval from 0 to T
Te soothing problem in to esiaeat o ~vtinthInevlboprigonalhebsvtos

inthe interval, Denote the estimate by ineva(yoprtngo)

If1(t) Is seleoted so that the proijebikity 1(t) - X(t) is maximized, the estimate 1(t) is called the '.~

11im i elihcod estilate of X1) f X(, )i eote ota the eovsriance of the estimate
(1 ~(t) ] -1(1t)[(t) - W 1 woe9. steepcainoperator) In minimized, teetmt s4~o

teminimum variance estimate, M~inimum variance estimates are particularly ueeful in missile accuracy analysisI ~Io linear plant with additive gsussian white nW4s. and linter observations with additive gaussian white noise. ... .... e...-
testate of the plant X(t) It, a random process with a oaunsisa distribution, and arty estimate of 3(t)-,-...

deie ayi linear operation on the observations will alno be a gaussian random variable, For this case, both%
4temaximum likelihood esiaeadtemnmmvrac siaeamequal to the mean o atclrgusa

distribution derived by buhaietwee oprthe .Cneuety o arty kind of linear esiainterit is I

b anoilinear plant end nonlinear observations, the probability density function of the estimate conditioned '

onal the observations Is net generally suausion, In thin case, the maximum likelihood estimate (%woih can be
shown to be equal to that value of 1(t) for which the subject density function has its maximum value) will
differ from the minimum variance estimate (wehich can be shown to be equal to the mean value or first moment t~f
the subject density runationl. Thus, the procedure used to solve the nonlinear smoothing problem will differ
depending upon which type of estimate Is desired, Primary emphasis in this chapter will be placed on the problem
of finding the minimum variinos estimate. becauae this estimate is more useful in fields such its missi~le accuracy
analysis end other probabalietic applications of the smoothing renults, However, a giartiouluar pproach for use
in obtaining maximume likelihood estimates will also be discussed,

Minimim variance smoothing theory will be covered in Sictions 2 and 3 of this chepier, in Section 2, 'exact" ~ ,,
differential equations for the "smoothed expectation" of an arbitarY function of time state are derived, In '1
$ectien 3. these differential equations are approximated by other differential equations which are esuily solved s~

on a computer to obtain the minimum variance esatimate. Section 4 presents a brief discusmion of maximum b'

likelihood nonlieaar smoothing. J,

4. KXACT DIFFEftNNTIAL 19QUATION FOR THlE slOOTRIED EXPECTATION

In Section 2. 1, the problem in formulated, and Initial steps are taken towards deriving the d~sirnni exant
differential equations. in particular, a differential form in derived for the probability density funCtion Of

PRECEDING PAGE BLANK
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the state conditioned on all the observationsl. In sUbsequnnt Aubsectiona, adjoint theory and vikrlouik exphhlmionn*", ,.T
are emeployed to L'onvert thin to ant exact differential equation for thu expectiftioih of an a'rhitraly function of ~
the state. conditioned on all tho observations,

3. F Problem Statwmnt and theo Saonthing nenLity Func~tion

Let the Bysten. bu represented by the n-dimnsniornal state vectiý 1(t) and let the obmervktions y(x, t) ho
represented by the m-dinientiornal vector ;(t) . Lot thene vectork, satisfy the followini entihtiona!

imi =(t f(n't) + 
7 .(t) (2. 1)

2() g(x,t) , (t) ,(2.2)

6lwhoire ýmt and h~(t) are forinally gaumniqili white njilme processes. Equat iorlR (2. 1) arid (2. 2) are cons qdered.

.0to be formtlinen, J the fallowinig 2quntionm: ..-

dz(t) =g (x,t) dt + 67(t) 4r ,(2.4)

V . where r denotes any terms for which the expectations satisfy

cotiuow irt9Wr) O(dt
2) (2.6) :

there 0(. )/it -~0 as dt -. 0 The function J3Q, ) is Assumed to be piecewise continuous in t anid to
possess pt-,:wso oniuosfis derivativeis in x .No explicit kasumptions concerning g(x.t) are made
herein. However. assuemptions will be we-do concerning the proress j(t) and thy avaiilability of a filhoring N-

density function, the realization of which waty constrain q!.t) to have certain properties, in particular, to % %~
be piecewise riohtinuous in both x Md t .Both fuiActio;;%s. f (x. 0 tl -ni M(x,t) . may be nonlinear.

The independent variable t is assumed to he constrained to some set. closed at leaut on the right. denioted *.

by ft e*T). It is possible for t, to be minus infinity, but T Is finite Let Z tdenote the set of . .

random variables 1.(t) for It~ ý t C t2

* PaIsr notational ease. Zt0* , %.Il simply be denoted by 2,. Assume that the conditict.,l distribution of -. ' "

JM . ivn .: eits ad i bsltelyaon inuus T is Iplies that the conditional density of 1(t),'

and s rfered o a thesmothis dnsiy fuctin. he weeousoccurrences of the density function
edi) J ImaeIdeialtogvItaseilsmo dnae It will therefore be referred to as the
ffttringdt s function and denoted 4e

As the iirst step in obtaining a differential form for the smoothing density function sfg.t) the smoothing
density function is written In the form

I'P 1(t) (,,17 TJ p1.1k eitt 'At' -L -. Zr1P(t.-t) ftiZ;- dL' 2.0

*.ere the integration Is over all n-ctmponents of v' (this convention will be used throughout).

tiAt this pnin.. the one and only axwsumpt Ion conccrnind t'~e -3blerviition process Is made. The obeervat ion
process is a&sstoed to be separable'. Separability torlies that bounds taken over dens sets of points ir,
(t,.T) are the soo as thoe" obtained over thi continuous 12aarter space. and that lleito ',hich are valid. ..--

when app~roached sequentially are still valid when approached continuously sand vice-ve ra.Tere is no effec-
tive loas of generality to "&ase that sooe proceas Is separable. because If some process j.(t) is not separabie,
then there exists a process irt) which In separable and which equals lilt) nith probability one;

te Pia(t) r ift)) = 1 (2. 11)

With the asparahility hypothesisth process xlt) is replaced with a discrete prcs ~)which isequal w -
'N to Z(t ýor t bRloncing to the set of rattlenIs anid equal io any conietarit for t belonging to the met of
- ~~irraltionals. Thus, only whtn t Is a ration) Mubrdoe t) conmvey hiky information concerning !(t)
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", Because the rationale are countable, i(t) can be replaced with V.(i) and, momentarily replacing t with i . ..
"Equation (2. 10) becomes

p (I)L!IZI] V- (41xi) +Xl 1) V z , p .Tp (1+,[1ZT du• (2. 12) k••r.. '[i'iz :'

The first term in the Integral can be writtehnits
., ,: "'-2. "

[• : p•( • .•(il +1) = , I ý, px .. _(ii) -- ~i 1 V , zi . Zi. ,?) (2,,13) .. . . .,''" X :,.

"Because of the gaumsnan white noise assumption, Equation~s (2.3) and (2.4) represent Markov proceeses. *JAing f' . '. "
the Markov property that the pnat and future are independent when conditioned on the present,

PAM GLI x(i +1) = V . ZiI ZiiT I - pA(l)[A (1 +1) , Z] . (2,14)

-Subtitutine MIRqtions (2.13) and (2.14) in (2, 12),

• P1 i[6•11  -- / P X(i + 1) V Z ip( (i[Z1 ] di'. (2.15)- ~ ~~~... !; .. ! -

By MByes' rule for conditional densities, '

1) ~ ~ g~) (IA~+1 * ]P (i)CIIZIJ i
p V"v + 1) ' ,.'.•' ,, !~lýI(

',•. .',,\... .,

The denominator of Equation (2. 18) cai be evaltited by

By the M.ro.v property,, .

(AIx(i) LA , Z1] ý P11  )[-Ii (i) = - (2,)1)

Using Equation (2.18). Equations (2. 16) and (2. 17) can bpi rewritten, respectively:

P1~j1  , - a-Li ,

and.(2,20)"-' " L"-i1-

el.... 4.'.-- •'

Thus. Equation (2.15) becomes

•-.j.•Psti)'lx) - _-•P11 1(t).iuZi d~.•. I '? -. . -
ru - - - "'' •.4.'••-,"•%I (i+ )['IX(i -,() 1]~ipI(j, 1)[tIZT1dv.

n.'h.[Z] . (2.21) - -

By the sparability hypothesis, t sad t + dt can be subetituted for i and 1 + 1 . respectively. Doiog

* .j this mW uising Equations (2.11) and (2.9) in Equation (2.21),

______[____t -.4].%..-,-

"'(JA.t) q(i't) ,.t . -s- , t+dt) dv (2.22) .,
d t -. .[.. ,.

- .- - -.

'a.-
or ~ ~

*5-.'PJi(t~dt)!t-(t) -•s1(v, t +dt) d" '""' ,~~(Aj) -- q(,.t) (2. 23). .• .'.---.

T,... P(td)-- t) .• , .. e "..

Note that Equation (2.2.3) Implies that the smoothing density function is not explicitly dependent on the

observation process in any manner. Of course, the filter density function q(L.t) would generally be expressed . : , ..
as a function of the obeervation vector sand its statistics, so that the smoothing density function is isplicitly

a function of the observation process through the filtdr density function. .

S- I .- s. -
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2.2 Differential Equation fur the Smeoothed Expectation 4

1nthis section. preliminary steps are takien to obtain a differential oquatiun far the 'smoothed exljootation" 1
of an arbitrary function of the stxte. First, some definit~ion. will be given. The smoothed expectation of au

abtayfunction ot the otatu, h(a) L3i defined as:

aritar (WQ8Et)du(.4

* For later use, the conditional filtered expmectation of an arbitrary foliation h(x) in defined an

Efh~~~ [xVr~t' hG'u,~t d 2,5

dE~h [3(t) E (ZVt)) E E.Idxit-dt)] ] (2.26) "~4

The objective of this section is to obtain an expiession at the term on the right si,$q of Equation (2. 27).

my definition (Equation (2.24)).

Buostituting Equation (0. 22) In Moution (2. 28),. i

KEh~x(t-dt)) I' M(14) p1(t-dt) Ptd 'td A(t) LIZ? i 2 9

The smouthing density function in Squation (2. 29) In evaluated at time t ,as is the Corresponding density
function in 9,h fX(t)J I This fact is used to advantage by deriving from Equations (2. 27) and (2. 29) an equation ~
of the form '

i~4 ~~~t)1 (2.30)- A.
dt t)}

where K, is an operator yet to be determined. The siaplest and quickest method of achieving this is first to
note that the E, operator corresponds to a ecalar product end then to use the theoury of adjoints. Denote the ..

scaiar product as *..A . .

If [quatiou (2.22) is written in the form

s *L t -dt) ::K,s(L,.t) ,(2.32)

where K0 is the operator indicated by Equation (2.22), then Equation (2.31) can be wr'itten as

a-

* Demoting the edjoint of K, by ,* Equation (2.331) becomes

;ei: ig~ [1(t -:t)2 (11h(;A), :9±.;)) d234

14oo tat hsargumnent of K.ýh is the argument after applying K* toh



Eq~uation (2,27) :lm now be rewritten am A',."_'"""•::J_•_•JJCdh (S-t) Nil.

dEh[(t)] " ,,4,W.dd (t) -tK*. (L), t (),t)- (2.37)
dt 7 - (t ),(~(),~ 1 t)

Equation (2.37) in the basie differential equation for the results Lo follow, It is necessary to evaluate the
operator K* first, and some necessary preliminary steps are premueted in flection 2,3. . " ". ...

2.3 Expanaion of a Particular I)ensity Function

Before procaeding with the evaluation of the. operator K4 . it is desirable vo find a riiffervnt expressiun J-•J , ,*..'.
for the density function p 3(t) [.,,1 x(t -dt) = i.'] . Tite is acconivplimhd in teis section.

Because the integration in Equation (2.35) is over _t, .this equation can be rewritten as: 1 A..
- (d h ( v ) P ( t )j .I x t - d t ) _u p j i( t , . t [ _ AZ t d t l d i , ( 2 , 3 8 ) .- . .

Me teer pV (LWx(-dt) '1 is evaluated by conmideration of the basic plant equation (En. (2.3)) and the - (
properties of the indepkndent-increment procoM, From Equation (2.3), ,-,

dW (t-dt) = x(t) - x(t -dt) - f(x , t-dt) dt + r (2.39)

The Jacdbian of this transformation is unity, so that, by first applying the Markov property and then . '

Equation (2.39), W1 )•_X(t -dt) -a P1 = P ýtIx(t -dt) I, td]!-."-.L " '

= Pdt(t-dt) - .(t-dt) - f(x , t-dt) dt + r] , (2,40)

Loft

I[d_(t)dt'(t)] Q(t)dt + O(dt) (2,42)
Then the oharacterlstic function becoaes - -"

( -•xp(dt) . (3.43) . , '

With the aid of the Inverse Fourier transform, %

Combinini Equations (2.40) and (2.44), %

,f. IVt - dt) f iw[--(P t -dt)dt + r) - o0d)(t...j~ j u{ ~~q(t)u~,4 (2.45)N

It is desirable to sxpand Equation (2.46) in a power series at this point: I- . - -

X I - w'Q(t)w do + O(dt) , (2.46) "'" ." "

The following identities involving the Dirac dlta function arc asaly veriied:,. ..

. ,~~ ~ , • - , • ,

-4** , ,--,. ".'..-., .



______a -V Lw( f -i.eq- Vw(-') dc , (2.48)--

BOLA_ -E) . ~
~ 2 ~~fj~p iow'(LA-t)) dw , (2.48)

By the P'roperties of the Dirac delta function,

f(X.,Y) b (X- M) dx f(x, Y) (2.50)

-.".A ,

Because of the ways Equations (2.48) end (2.40) were obtained,

dv~ 8Q.L-t~f (i) dv'(,1

~~Pj 
I Ij-

end

~a~~.)f(i.) di, 8 1')f(L') d.v,~ '~~*--

With the aid of Equations (%2.47) -(2.49), Equation (2.40) becomes

pI(t)rýwxt.-dt) -j V b(,U-1) - f tt(v tdt)dt] +Sv dt ) + O(dt),
.4.~~ J.1 . 4

which is the desired result of this section,.

1.4 Coapletion of Seoothed Exrtectation Equation *.

The derivation of tihe exact differential equation for the eaoothcd expectation of h(x) owr now be completed.
%By using Equation (2,17), Equation (2.28) becomes , b

j 1 (t)ýL1(t-dt) N'Q(, t.-dt)h(v) dv'. ,~*~

K~hj)(2.54) '

f.* ~ -dt t1(v t t- dt) did

Por convenience, the numerator and denominator of Equation (2.54) uill be denoted by Q and P ,respectively.
4. With the aid of Equation (2.53). Q can be written as

* . f dA~(P)q(i' , t -dt) Lf (P-t-t t

B;Mj 2 4J m

Nowv straightforward application of Equotions (2. 50) - (2.352) yields

(p t - d4.

Q Veq(e t -dt) -dt [ h(p)q(8 t *-dt) (f t jh ~.a4~

2L LC-h (j4)q (4, t -dt) Q Ct)' +(t ON (2.56)

4I4



P Is &imply evaluated by letting h(L±) 1 in Uquation'(2,88),

Let denote the collection of terma in brackets (1in 1i~ruptlnn CUM.0, Let O have &.similar meaning ~q

for P ,as given by Equation (2.6'7). Then (458

q(L,- , -d)4Odt

Assumoing {lp/q(E, t-dt) is bounded, 1/P can ho written a8

1I ( dtO,
4- + \ -t (dt) (2.59) .,4 ,

Substituting 0}. snd Opas given in Equations (2. 56) and (2. 57), rasp-actively, and simplifying, Equation (2, 54) ;

fuectonmes ~ Ti st ilbcm motstltr ic

1 1ý

1hm Zq(Lt) 1qtt i.

Bill.t +t dtk_ + O NdO j (2.80)

Bi t -dt) BýA B~(.t % f(,)d 0d)*(.2

UItni sperfrmng thatipiiaioslaigt Equation (2.6000)tilvai, all auments mad of d thae refaced bhat Q Thatoisa

tedffernceino Metween thetwol becpmesin isprtn laer Since

I + ý d (t. ........

diLA t) atf,(,4 8 * * ,,

-A -dt (/~)d + 0(dt) . (2.55)

4 t a
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t.~I Equation (2.30),

cobndwthEuto (2.05) in the desired different~a1 equation for the smoothed expectation of an arbitrs?.y 6"v.$ " '

function of x.

If the substitution

h (14 ~ (2.87)

is made In both sides of Equation MOO0), tht result in .

-fL~)J +

+2 n

~~5(Lkt) ZS(A,.t)ZqQ(,t)

Qj~t ý + O(dt) ,(2.68)

which is the differendial equation for the smoot~ing donaity functio~n.

It In Dosuible to derive a differential equation for the smoothed expectation of an arbitrary function of
the state in terms of filtered expectations, Striebel outlined a derivation of such an eqzuation in Reference 9,
based on thn limit of a discrete formulation. Pellerl used a similar umethod based on the formal teochniques with

differentials~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ tie een h euto spoone eewtot eiain(e Ple*:-' 2

dE~h(~(t:+ rr ~jt)
d u CA 4 .* 1) q (t)

whejrs Le is the baickward diffusion operator:

If the substitution
-bMe) = 1 I(-u 0 (2.71)

* is made in Equation (2.89), the result Is thu differential equation rar the smoothing density function as 0\", *
already given by Equation (2.69), as is to be expected.

Equations (2.85). (2.68), tind (2.681 are the principal results; they represent tio "exact" differential
equations sa09f ied by t~te smuothing expectation and smoothing density tunction. The bowidary condition for ____

Equation (2.08) is simply " e I

* .1 nd the boundary condition for Equations (2865) end (2.06) is given by the obvious relation

As was mentioned earlier, no use was made of the tact that Q is not a function of JA . tF1 fact, had lise
been made of this, it Is obviods theat one of the terms In Equation (2.65) would have WEe equal to morn,
ikosuse the result,& rematin valid, theme "exact" equations csn easily be extended to cover the p~roduct noise case
First, for concizioness, Equation (2.65) Is rewritten ti show explicitly the possible dependence of Q on the *

system state:

I~%
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;h LtLo -)

-R~Qjk()PUt) (2.74)
fv, .- , ,-j n(L t)BktJ al'

Now suppose
QCt.) M(X. t)dw,(t) (2.'75)

where w~t) in an it-vector increment in sri ilidepondont increment. process and tokx m'i n n n.R matrix,
Puthersoupirose that.*

a~ E(det) d.,'(t)J 0(t.)dt + O(dt) (2.76) . ) .

* ~than, by letting a

Equations (2.,66) und (2. '74) apply directly, rind the product noise case is acomoovrdated. ., 11

2.,5 Commen to oil tile Exact Differential Equations

%I Equations (2.65), (2.66), aprd (2.68) toiether with the boundary conditions given by Eqtuations (2.1k) and
(2.'73) are in theory sufficienlt to Nolve arty smrocthing problem. In fact, Rquations (2,68) and (2. 72) are
sufficient in themselves for this task sinrce once the smoothing dernaity function is found, the rsmoothred expecota-
tion of any function of the isystem state can be found by integrating that function multiplied by the smoothing % k
densilty function ovur all infinity in parameter space. NN

Although these equationst stit exact in tho mean squarL' sense, they are impossible to solve in pracotice end %'
they mrust be replaced by solvable differuntial equations whose holutions are "spproximately" equal to the solu- I ~* *,.

tions of these exact equations, The reasons that these eqruations ire impogsible to solve in practice are as
follows, Equation (2.68) for the smoothing density function Is a second-order partial difforentiatl equation in '... .a$'.*

all components of the state vector whose domrain is all tarftnity for this problem. Thle computer requirements
that result froer.this-type of..problem f1ar exceed what, is considered practical by today'-s standards in otterputor
technology, In addition, It is necessary to have the filtering uesnity function, q(ji,t) , available in anulyti. ~ *

enl form or to have its first arid second derivatives with respect to all stats vector comp~onents available in
sny form, This is virtually nevor true in practice.

Now that the difficultiese in solving for the smoothing density function are known, a brief note is in order.*.. .

on the difficulties in directly solving the .aquations for the smoothed expectation. F'irst, note that the
filtering density. function and itse first derivative with respect to all state vector components are required, k',
something we have already seen to bs almost never true. Second, note that the smoothing operator on the right

Naside of Equation (2.e661 operates oil each term in Equation (2.65). Ibis requires the evaluation of the --moothed
expectation of new terms. If these are computed by again applying Equations (2.65)I and (2.0a). still more new 0.'
terms are introduced. In fact, If the process is cont inued, a courtably infinite number of terms must be

evaluated.

Thus, It is clearly impossible to solve directly for tire smoothed expectation, or smoothing density function,
end approximations which- are more easily solved must be sought. In tire next. section, a p-krticular set of

apprpletios ae dvelpedwhich permit the determination of the minimum variance estimate. In a following d
*section, a sethod orf obtaining at maximum likelihood estimate will he described. This method, in based on an

entirely different procedure and will be presentedi without derivation. .

3. NINI1NJM VARIANCE SNOOTWINO APPRtOXIMATION$

smoothed meen and covariance. The case of a nonlinear system Is complicated bty the fact that the smoothing ~ , NjI,

density function Is not necessarily saustrian, and, consequently, the smoothed mean and covariance say not cown
peeydsrbLt Infact, omnindpeiosy onal infinite number of parameters are nrecessary

lto omletdelydescibe smoothing daaeens inty e gnctro l cs ause.n steeoecmpeeydsrbdb h

Becase f thsepproximations involving a finite number of parameters are sought. in the case of nonlinear
filtering theory, two general approaches are most evident, One approach is to approximate the conditioned
expectation of a function IV a Taylor series truncated after the quadratio terms. This Is the approach used by
3Bjny', Bass, Norum, and Bchiestartz, and fchwartz6. It Is equivalent to assuming certain higher order moments to
be negligible. The second approach Is to use qu~asimouents, This approroch, used by F~isher'. allows the con
ditional density function to be exprer~sed In terms of the conditional mean, conditional coveriance. and
qu~asi-omesnt functions. Both epproitches can be lised for the nuonlinear smoothing problem; th,. truncaterd Taylo
series approach will be presented In this section. The quasi-moment technique has greater generality, but results ~ ~.

7 ~ W

%NI~tI
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in very complex expressions shen applied to the smoothing problem. Section 4.2 very briefly aummari~'ew the Idea
of quusi-aomentit. (goe Puller3 for at mar* extansivo disoussilon of the quasi-moment technique in notilineiar
smoothing.) 

W 'ý.:

3.1 Nonlinear Minimum Variance Smoothing

Par minimum variance shIathing, the conditional mean of the state in the desired estimate; thus, In Equations

so that ~~.

jt [1*(3.2) bý

where the double overline Ii-l'cates the minimum variance smoothed uestimate. From thin point on. it is assumed
that Q.,k I.- indopendont of tj tate. 11ming thim aenopnjtion end ubriti tutingEuatijn itcn (3. 1). (2. 1) and
(2.64) into E~quation (2.65),

dt fqi4()) 1 q(A. t) 3
f I -(I.t) -(3.3)_

Equation 0.3.) in extat In the 6aan-sQuars sense (and to within 0(dt)). Approximations, are now desired for
each tron thright of Euat.ion(.)

Tord approximate f 1(a~t) , expand fiA, t) in a Tayloras~ries about ansd drop terms of greater than second

a fxa 2 Bxik zi k

where

Zi () is __

______ a(3.6)

Applying the amoothinig operator to both aides of Equation (3,4),

+(NJ -9 (3.7-).

Noting the Jkth element of the smoothing covariance matrix 8in 1 given by

X )(Ik-i(3.6)

14uation (3.1?) becomes -. 4..

An approximation for [Itj ) ~q3 )~k is now sou~ht. IfPt t)wr atal known in the form -7.

ol some salytia expression, such a, risher' a quasi-mnoment eapannion?, the desired approximation could easily
be atandt ehiqe ietoeusdt v"ut r,.(,) . %it practice, Q(S~t) Is unlikely to be avail-
able in analytic form. far our purposes, it will be assumed thit the filtered mean and comiarince have been
obtained (or approximated) by smei technique such as that of Schwmartza. To obtain an approximation for
LI/4(j.t0i L1q(1,t)/axk , it will be assused that a(z.t) is nearly gausasia, so that it in adequately approxi.

mated by a gaussion density function having the vompyted fltered meen and covariance. Denoting the filtered
watr andi cooyariance by jand P , respectively,

q(", t) (2ifr" I eP-1 -]p [a-l, (3. 10)
(P1 I4

% %S
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"where the time dependpch e ha' been euppret.eed. By straigit-forward evaluation (recalling that P-1 is . .. . . .

q1A , )L

B k.

Conesquently, %... .,

q(Lt)P (30hkl~ll (3.12) ', ~.

Applying the smoothingM operator to Equatior. (3. 12).

I ýq(xt)

.•]~~ ~ E " Ir (t)] (I -xi (1 . (3. 13) .. , .. ,.'• .

Ap li g•a sn ti8 pr lo o£ uto ( j,1 -. ?.,,.., o.('"10fit f es to ov kquate ( .) s id ( 3,) , ty det tin at io o 1 , "

_#• ~ ~~~dt : j••jx

i n i.erentlkl equation for the covariance is now desired, sinEe it appears in Equation (3,n14). By the
l inear ity of the sm eoothing oper ator.

Sjk d xxk Xk-e) = jxk - k

-,,

Sic Equtio (3.16) implies(,1) ".~

- e ehnuto fEuto d ( 3.19) , it dXisk)diiet , to' obtaing a ,,,,,',,,a.'e -ro.-.tion-to-f,

%-
dk Ft Xjx t. (ýJi'_dt

ithi suffici., l iea t h a evlu te ,,M ,,t , and - -Byl"tin

uliing Equations(.4 n (2.45).b

dk fjJ( - zk + Yj z ( j- k + , .. (a. '") (1•.)x (3. is'.)

+4 akf(P" ) |m• - 4jm 3,t), .- •.•,'..'.., ..- *% ,,

Bya the lhinerit ofnthe smooething operatorb, no

Ph r mechaniztio n ofp e Equatio (319,itissffcen t btina--hniabet-p-xmain'o:"k o

J) ('k 10-(11 1) 1 T, ( (XI - Y (h 1 X, go.xl x I(xi - i l)(1k -101 k , (3.20) )" ," " , ",• ."="

this sasumption implies that

k. ' i B it 2 8.* ý).*'.* . - '. *: '4

"....''.,'.% '. '.','.% ;.•' , • . . .'.'., " "%" ."•. .,..". '• . ., . • .- •,• .• , . .• ' '., .,. ,



and iubtracting f from each side (using the expansion Fquat~ion (3.7) for fjon the rtiht sJdo Of ~4
E94ustion (3.22)):

-jlx f f(I)x~ + (7' Ix1)k + ~ x-~(X, -x)X -%.2*,

Applying the smhoothing operator to both sides of Equation (3,2:3) and u~aing Equation (3.21), ~~:~ '
f Wx f n 2 l (3.24)

With the aid of Equations (3.7) and (.3.24), Equation (3.19) heconnn

fJ(W~k + tf(jid ýj + k Xt al 4. .!

+- i~ + C

+ - + t alk -3 P ) (XX

+j + X x 'M

5' j ie 1 J. rI (32k % 9999

It rem.ains to evaluate d(i i )/dt. It is not really necessary to evaluate this term since, in evailuating . .9

4uit I.pe~t to 4enersi vxjx, by Equation (3.215) and to generate mth rdoofolton
to ton(3,4) Nw t i Iteesingtostdythe basic dfenta qti satisfiedbyS
a%) n epresionforthereminin tem o Equtio M 6)sill be drvd

Frti sebohteodnrcaclsadtestochastic calculus Imply (P`01er0): .

9' ~~~Using Equation (3.14) in Equiation (3. 20).\ *

2 l + Cak lp 85 to

Using Equations (3. 15) andt (3.27M and recalling that Bil a* *.'. %

[ _1 k !'b +Sj Bf(]+ (jz I 1 .'k Up 2  s 18W j k* (3121)

lquaticns (3. 14) and (3.,28) are the principal results of this section; they art the desiredi equationh for 1N1
approximate r~onlinear minimum variance sacthing. ,,,..

F4 *7iK,

I.%
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S.32 Linear Minimum Variance Swaothing

It is Interesting to detormine the result,, of app~lying E~quations (3. 14) mid (3. 2R1) to the Laee of a linear
system, Por a linear system, Equation (2. 1) becomes .*"

where P'(t) is an n xn matrix. Thus ".V,-* 4 ., .".4%

f1(X,t) r3 3I ~

and 4\4. 44

* O~~ubstituting Equations (3.29) slid (3.30) into Equation (3. 14) yields 4 " "

4: 44' dt ' ~~ ~ E k(t')lP"'(t))k1(k1-') 4(.)"'''\C ,

or, equivalenitly, .l,' 4

dt

.444-~~~~ Proceed ins similarly for .S ~~~~: .

%VI~
5
's ft) (3.34) ~4~'

which, when substituted into Equation (3.28), beomones

dQjjt L~'I 1P 'IB~ -~ f:I +k (P .S., (3.35)

or, equivalently,

dB(t) (336
- s (F(t) + wot)rl't))5(t) + 8(t)(P'(t) +. Q(t)p'tJ- Q(t) (36) 4.4. 4 .

dt

Equations (5, 33) and (3, 36) are identical to linear smsoothing results obtained by' RAuch, Tung, and Striebel 1 l..
and repeated ',lsewhere in this publication, because the eumoothing density function is gaunsian, the minimum 0 .N i* '

variance and maximum likelihood estimates are Identical snd are provided by the solution to Equation (3.33).

Boundary condition'; for Equations (3.33) sand (3.30) are 4....*4.%444'

I(T) -1(T) (,7

.. *.and

S()a T (.8

where I' is the final time in the smoothing Intirval. N444 ý

The fact that Equations, (3. 14) said (3. 2Q) reduce to forms Identical with previously derived results for -' 4 ... 4

linear systems is expentcd. Each approximation Introduced In the derivations of the equations in this sectionl A""'"'

is not en approximation at all slain applied to linear systems. The filter density, q(Lt) . in gaussisa in ' *'

this out, aid the third central moments are zero. The expansions about I are also exact in this case. ," *

3.3 AnIterative Approach %" Ado

Toe approximate nonlinear minimum variance smoother has the advantage of Velative simplicity, but Is based ~ .

oncertain questionable assumptions. Assuming the third oentral .onont to he negligible is equivalent to &ssun,
lng there is no skewness to the density of j(t) uonditioned an all the dats. Hlowever, all sorts of simple ':. 4.

nonlinearitits produce densities with significant skewness when driven by forcing funations contain~ing geusnien ~6A
.4.44.4noise. It is. of course. quite possible to urse higher order approximations. Whether the improved pevformance % .. %.'...*,
0,would justify the increansed complexity in questionable. Including a moment of order a as the highest moment .'~

.4.44 ~In the approximation always requires the assumption that the moment of order m I Is negligible, Because oven -.. ''"



ardr momenta (at lan~t for near glaminsjsi cases) arc not at all negligible, it in clear that m 1 should not
bedan even number. Consequently. to include the effects o, hkownesa, both third and fourth order momeonta should

beincluded. It appears that such a proceduro may moon dostroy the simplicity of the approach, .* ~ ~
If one is truly onlicornod about the effect of assuming the third contral moment to be neglitIble, the follnwing

Iterative approach ts suggested. In llqunttons (3. 14) and (3. W8, the term Bf (1)/ýxj wits used an A shorthand
for Bt (X)/Dx1  evaluated at A and similarly tor Vf CX)/(ax ~)x1  If those terms are evaluated for
ac where jQ is the ot estimate of a town the followting ýterativu equations ore suggested to use

in plalce of E~quations 03.l4) anld (3.28):

IS + Qa~c (3.39) - t.J Ilk

J-1 k.i k-1

ik [8-k 8.1i J (QJ IEl" 1  ek QkIl ' 1.6j) (3.40

This tripe of Iteratiom Is simillar to giuasi-linearimittion; and whereas no specific studies have boen performed, ~
Sit is anticipated that ~, .~ and 80 - very rapidly, probably to high aceuracy with only a couple of

Iterations. It should be noted that Eq~cuations (3, 14) and (3. 28) should provide better estimates for nonlinear
systems than linear theory, and the use of the iterative technique 2hould permit quick convergence to very
accurate estimates - even more accurate thenu Irquntions (3, 14) said (3,28) used in noh- iterative fashion..

',,, 4. MAXIMUM LIKEL.IHOOD SMOOTHING

* ,~* For nonl~nsar sysitems, the smoothing density function will not, in general, be gaussian, thus the mean value
(minimum variance estimate) will not, In general, IAeaquai to the valtiw for which the smoothing daesity function .. ,.-*,

"V ~ hats its maximum value, In some, oases, one is more Interested in the maximum likelihood estimate. There are
toapproaches to th~is problem, one approach is to evaluate the maximum likelihood estimate directly, and a

t~echnique for this is presented in Section 4.1. The soaccd appruoac is first to find the smoothing density
funtion and then to find that value of the state for which the smoothing density function has its maximum . % .

value (for each t in the smoothing interval), A possible techniqu, of doing this and the resultant difficulties ..

will be briefly discussed in Section 4.2.

4.1 Direst Approach
This di.rectaproc Is due to Bryson and Framier", La the systemnb given by~ the nonlinear veto equaticn,

jmt) IUA-Rm) (4.1)

share x(t) is the n-dimensional state vector and g(t) is a control vector independent, of the state. Assume
the a priori estimates are available:%

iE [(te)J 1 (4.2)

E(9t1 ~ (t)(4.4)

E{gt) - i(t)] [(.r) - j('r0J } mt Q~ (-1) 1 "m A)

Let the relationship between the system state LMt sond the measurement process be given tv *.,**.*, .

1%bl 1t,(t),t0 - 0 (.,.0)

for the cagse of no measurement noise (h is a p-dimension vector), Let ,-. ..-

*(EA(t) - i(t)Ha@) jim' } A (t)s(t -') (4.7)

All be an a prcioi estimate of errors in l(t) .The Virgo delta function appseriilg in these equations indicates
'%its noise" in the plant, control. and measurements.

Bryson said Frazier find the mauimum likelihood estimeate of qlt) and the initial condition, &(to) . They .,.

easo state that the maximum likelihood estimate A(t) of the state Alt) is nbtainable from the maximuma 9 .,.

likelihood estisato g(t) of the control II(t) by the equation

% (jt 48
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Nr linear systoem, thin io clewry true. However, for honlinpar systems, it in not known to be true in
* general, and, in fact, the maximnturof one probability dennsity doon not norossanrily mnap into thin maximum of

snother probability deroilty funiCtion Llinply because of some functional relotioniahip haitween thio two variables.
Therefore, the -techniqun will be prametaitd here with the understandinag that. the result of the comnputationswsill
be the maxlomu likelihood estimate of tho control, mand that 1(t In simply that estimate of then state which %Y. 2
is consistent with the maximum likelihood estimate of' the control, Ic. ,that which satisfies Equation (4.0),

The maxinmum Likelihood Antina~to of ZAtc) and g(t) 1% found by minimizing the funritiaonal, "~ 'a

j I7 T.,t (4.9)

where

With thle 0UonstreRaltA

and

sBd adjoining the constraints of 1Cquationki (4, 11) and (4. 12) snd Ripli~ying the cailoulus of variations, Bryson wa.*

nd raxier show that the smoothed value. of the contrvol wid Initial condition satisfy - .. '

4 where

.4 ~~~and the boundary conditions, a~.,

N.' ý(T) (41)

By this approach, the smoothing problem (for maximum likelihood euitimates) becomes al two-point boundary
value problem, lhe numerical solution of two-point boundary value problems on digital codiputner is often very
difficult, sIthough good results are often attained by quasi-linoariestion techniques, Annealing suoh technique
succeed in solving the numerical version of this two-point boundary value problem, then this approach has the
advantage of not requiring a solution to the filtering problem before thie smoothing problem cant be worked.

4.3 Waaai-Noment Approach a

As mentioned previously, anothrr approach to the mtaximum likelihood estimation problem in to determiine the *

e, moothing density uaction end then to find that value which nuisimes the value of that function; this must .''

*be done for each value of t in the smoothing interval, In thine section, the technique of enpresoing a density
% funietion in tense of quael-sohienta, is briefly described, sod the reader As then referred to Peller' for further , .

Information on this approach. The material contained in this secotion is almost entirely derived from Fisher' s ,

work', particularly am presented i0 Reference 10. In fact, this mection should simply be constidered as a
selective abridgment. of Fisher' a work. .

Let p L, t) be an n-dimensional density function, and let P (LAM) be an n-dimeansional density function ,. ,

having the some mean end covarianat) asl PQAMt . Let .41 6'.:

* .(M,t) a Q.t 10) 4'''

Then, the coefficients of the enpansion of p(F4,t)' in a series of multi-dimnesialnal 11armit. polynomilals are
the ac-called quasis-oment functions. Hines the mulit-dinenniunal Hiermits polynomials are a complete set of )

a . ige-funotionn over n-diuaensiuonal INclidean Apacre, any probability denuity functiun can be written as a surinS
of these polynomiails, provided A,(p~t) is squauer-intagrable, i.eV.. It

'V V

%.



It is also possithle to approximate p(ps,t) If' it satisfies Equation (4.20), to any specified accuracy in the
integrable square error senme by a finite number of terms in the seories.

Denoting the mean and covarianoe by MMt and CMt, respoctively, and the characteristic functions of
p(kL,t) end p (Lt) by fON,t) and 4, (cX t) , respectively, Fishter shoen that .*

P 2 ~ (Lt L.t Kjk .... I (t) - '. (4.21) 1'

where- .,4

Ký ~~~~~ ~ ~ I .. "') a ,O 0(.2

ar h uaui-eoment funtions of order N .It cneasily be show that all 1us-momnta of first and Wecnd ~'
order ars zero.

Because the multi-dimensional Ijermite polynom'ials corresponding to the n xn matrix C*1(t) are related A
Nto a generating function as follows, ( ~

.~ Alp,,z~t [- lexp'rC Imp]- (4.23) j.

NI~~~~~* J.,.yJ... HV.... t

Equation (4.24) shows that anty probibility density function can be expressed directly in terms of the mean, 4. p4. M-.

covariance, and quasi-moment functions, Equation (4.,24) can be the basis of an approximation for tesmoothing .. .'*

density function, CLA,t) . P9IlerJ gives the basic development for this, although it is so tedious that parts ~*-
of it are only outlined. in terms of the required procedures. Whxile there are certain advantages to the quasi-
moment expansion of Equation M4 24). its use for the smoothing problem is not recommended, and it will receive
no further discussion here.

D. CONCLUSIONS

This chapter has develvped the exaot (in the mean-square sense) differential equations for the smoothing-
density function and the smoothed expectation of en arbitrary function of the state. These results were good
for nonlinear~ systems and observations corrupted by additive gauasian white noise and were extended to the ..
product noise case, In Section 3, approximate differential nquations were presented for minimumi variance smooth- -

W-r.Ing, although it wes assumed that the plant noise was not a function of the state for this case. One technique .

of maximus likelihood smoothing was presented and another suggested..

The equations developed in this chavt.r, particularly taie minimum variance equations of Section 3, should be
useful whenever probabaliatic smoothing of data is desired, such as in estimating missile guidance system accuracy
from noisy tracking data. Whereas statistical smoothing of data sometimes requires many passes over the data
or many iterations to fit some polynomial to the data in a least sqjuares fit, the technique presented here- ..

requires just two passes: one pass forward to get the filtered solution, end a second pass backwards to get the

smoutbed solution. The forward pass should probably use nonlinear filter theory such as that presented by
11chwartz' to obtain maximum value from. the approach.

Thre are certain unresolved questions regarding the results presented in this chapter. One, all results ~ ..

have been derived formally: little regard to mathematical rigor has been given. Thes questions of existence and

unqeesof solutione to the various differential equations have not been treated. In any area dealiF "ith .' , -
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Sstochastic processes, this could ho a serio•u emission since relatively little is knowtn uiinut the coditio-"
necessary to guarantee existence and uniqueness of solutions. Another question is the sunmitivity of the
results to uncertainties in the knoowledge of the plant and of the varinum crovarinnce mntrirpe involved. Thoe:

types of uncertainties are known to bo potontially very scrious in filter theory; come of tht'se problums are .' . -
. , treated elsewhere In this publication, N
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9. ~CHIAPTERK 10 -GENERAL QUESTIONS ON KALMAN FILTERING '

IN NAVIGATION SYSTEMS_

Larry 0. Srook and George T. Schmidt ,

Navigation systene are among the most popular areaw for the tvplloation of Kalman filtering. Must of the
major navigation system manufacturers have developed or proposed systems with Kalman filtering. and it is being . . ..
used in several vehicles that are in operational use, Two examples ase the Apollo space vehicle and the C-5A
transport aircraft. Kalman filtering has now become an expected part rf almost every proposed new navigation IoW_

system, The reasons for the popularity of Kalman filtering in navigation systems are not hard to find. There , - " . . . .
are at leant three major oompleoantury factors that have come together at the proper time. These factors are %
an increasod need, the mathemkticsl tools, and the neceasary equipeent. - .'.

The need for effective on.board data processing is great fur both space and terrestrial vehicles. The advent % . ^
of manned travel to the moon. with the requirement for self-contained navgaution, required an efficient method •- .
for the real-time processing of all navigation measurements. In terrestrial veiicies (both aircraft and marine)
the increased need is caused primarily by the introduction cf pnertial navigation systems that have very good
"higlh-frequency response and give a continuous indication of position, velocity, and attitude. Inv, .,re alec
self-contained and operate without electromalnntic inputs or outputs, However, they do have errors that grow
with time, Thus, for most applications, there is a desire to bound the position error growth with external
aids. Accuracy requirements dictate that this external data We processed am efficiently as possible.

A mathematical toohnioue was developed at just the right time to fulfill thes needs. The Kalman filter
theory, published ' in the early 1900' a, was recopized as an ideal solution to the navigation data processing L ,.. . '

problem for both space ,U and terrestrial vehicles$ La. These data processing problem can be fitted very nicely
Into the neceesary Kalman filter 'Usnseptions, which anue that the e1tiaatoe of the desired navigation outputs
are in fact very nearly optimum, This gives the design engineer confidence that the system is the beot that can o ,
reasonably be expected, without the concern that some other technique might be found that would significantly %
improve the system. Also, the recursive fo m of the filter is convenient, A now optimum astitate can be made . j ,!'_-." ..
very shortly after eacb new geasuriement Is hbtained. Nor is it neoessary to store a great imount of data or i. *'S..-4

invert a large matrix, as might be necessary in acre conventional, leant-s•quares fitting techniques, ' ,, * .'e.'-

However, as excellent a solution as Kalman filterinl is to the data processing problem, it would have beeon
of only academic interest if it were not for the fantastic rate of development in electronic circuits, which
makes possible very powerful digital flight computes. These three factors have con together at the proper
time to create considerable interest in Kalmn. filtering in the navigation industry. This interest partially
'mtivated this publication. j%.

In this chapter. sowe of the initial steps necessary for the applicstion of Kalman filtering will be discussed
in general. The application of filtering to terrestrial navigation will then be illustrated by simple examples,

Two methods are iulpst@4 for simplifying the problem in order that it can be more eailly handled on a practical
computer. Details are .thenegiven of the aligment and calibration of the inertial system in a spacecraft on top
of a swidink lauw iKoth~c;e,- Practic&l Imple.entation problems, as well s actual hardware difficulties, are o'.-%

* discuased in de;til. * it is -hoped that frest these simple examples the reader will be in a better position to .," .. ' %'..*
1 appreciate the applications that follow in the text. .

3. INITIAL STEPS IN THE APPLICATION OF KALMAN FILTERING

Tha Kalman filter itself is defined in very precise mathematical terms, but Its application to actual physical *,, "
systems Is rarely a precise science. Considerable engineering experience is needed to properly identify the
system to which the filter is to be ,plipd. to adequately model that system, and then tn develup a practical
program that aechani•es the filter in the on-board computer. The optimization of the filter must include many ,. '.-' -

factors which are difficult or Impossible to describe mathematically, such an the trade-off between performance ,-. %
and computer size. The statistical parameters are rarely based on the actual statistics of the Axhyeioal system, .'.' "
because these statistics are either too complicated or are not well known. The parameters are more likely to .

" . be chosen by lses formal methods which attempt to maximLze the performance in spite of the imperfectly known
ireal world. For example, the covariance matrix in the operational Kalsan filter will contain an estimate of L
the ra.s. position accuracy of the navigation system. best performance is usually obtained if this number

4 imatches fairly closely the actual r .msa position accuracy obtained by the system, even if the filter parameter ')'.'.

must be "adjusted" to'obtain this match, The noises associated with parameters that are modelod might be ". '
arbitrarily Increased to make up for paraters that were too snail or not well enough known to be included in

Sthe model.PRECEDING PAGE BLANK i= i "
%. •
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doe of the first steps in applying Kalman filtering is to identify the system oil which the filter Is to be
based, The choice of system in not as obvious as it might seem, The meet direct approach is to estimate the
desired paramoters of the vehicle directly. A functional diagram of thin approach is shown in Figure 1, me The ,.. 4-.. ,
primary system on which the filter in based it the system of equations thut descrihe 0ho motions of the vehicle

itself. This direct method is used in space navigation systems, This approach c,,lo also be used in terrestrial
navigation systems where the Kalman filter uses all mnanitrements, including inertial measure.onts. to produce ' 45V "" ..

estimates of the position and velocity of the vehicle directly. However, for practical reasons which will be
discussed later, an indirect method it, used where the filter eutlimatem the error in an inertial navigation
system. The corrected inertial output is then used to indicate the position and valocity of the vehicle. In
this case, the system on which the filter is based is the one which doscribes the errors in the inertial system,
A functional diagram is shown in Figure 2,

The system on which the filter is to bh based is specified by a set of stato variables that are defined S. .,.._. ,

formally by a set of mathematical relations. In practice, for actual physical systems, there is never enough
information to satisfy these mathematical relations perfectly. Further, it is never practical to include more ,.

than a few of the major vkriables in the oj-board computer. One of the basic design problems in the choice of
state varibles for the navigation filter and the assocated trade-off of performance versus computer requirements.-_'

An a first stop in the choice of state variables, theoretical error anialyses and test data can be used to
construct a set of state variables which describe the total system much more accurately than the description .. - - •
expected from the on-board filter, For a terrestrial navigation system, this more complete description could *%.. - ..
require as many ne fifty to sixty state variables with many more which could bh identified but are not worth
considering. The pirformance of filters based on various limited sets of state variables can then be evaluated

by ti ing computer simulations based on the more complete model, One is chosen which is ahown by the simulations '- - -
to beat satisfy the system requirements. Fbr terrestrial systems, practical filters have consisted of between ' . " " -

teven and twenty state variables. n effective operational test program is the only way to definitely confirm
the design of the filter.

The mathematioal relations which give the formal definition of the state variables are:

(a) The desired output must be some function of the state variables. ,...

(b) The measurements must be a function of the state variables and uncorrelated errors. the.controls

(c) The state variables at one time must be a function of the state variables at a previous time, the controls
to the system between the two times, and the uncorrelated (white) noise inputs between the two times.

The first relation oan usually be satisfied very easily, The desired output of a navigation system is the
position, velocity, and possibly attitude of the vehicle with respect to scme navigation coordinate frems. The ,.. , .,'
variables which represent position and velocity can usually be included directly in the state space, The seound -
relation involving the measurements can be more difficult to formulate. The measurements will generally consist."" .,'.' S.-..

of two parts: a desired part which is acme function of the states of the vehicle, such as position, velocity,
or acceleration; and an undesired error. An error which can be considered uncorrelated between meuurements

does not require ansy additional state variables, However, if there are significant components of the error
which are correlated, the model for the error must be added to the state variables.

The most effective overall design of the system can usually be obtained by minlimizng the amount of fire-'-•,-. •

processing of the input data before it is used in the filter. One advantage of Kalman filtering is that
measurements can be processed in raw form; this can greatly simplify the sensor sub-systems. For example, if N.
an inertial system is to be aided by LORAN, it is not necessary for the LORAN equipment to solve for a position
,fix, which ha then to be inserted in the filter to update the inertial system. The filter can be constructed IV
to acoept time difference measurements directly, thus simplifying the LORAN equipment, Another advantage of

processin the raw mesurements Is that the model for measurseent error can be such simpler, If the measurements
are processed before being used by the filter, the modifications and crose-correlations of the error statintios
caused by the preprocessing must be aceounted for by the filter. Again using LORAN as an example, the errors in .:, . "
time differences can probably be adequately modeled as simple errors with no cross-correlations. The errors in , . .. '- . - .

latitude-longitude oordinate would' be complicated functions of LORAN station-vehiole geometry and they would

ube sros-currelated.

Te final step in the forming of the state vector is the addition of any variables necessary to deoribe the
dynamic behavior ul •le state variables. The total met of state variables is the minimum number of dependent

variables in the differential equations that describe the system. The inputs to the system can only be white •, .
noises and controls which are deterministic quantities tlat are known to the filter. Many cf the basic sources

of error i- navigation systems are very highly autocorrelated as, for example, gyro drift rate, To satisfy the s. ' ."".

requirement for white noise inputs, a shaping filter must be devised which produces the desired correlated error.
The input to the shaping filter is white noise, and the dependent variables in the shaping filter are added to

et. the state space. If there are controls Into the system which are not known quantities available to the filter.

they too would have to be modeled as random noise.

Several general comments will now be made about the formulation of the state variables for space and tWrres- •l•D•.•• a 'A
trial navigation systems. The Kalman filter for a space navigation system is. in many wars, more straightforward ,%.. ,..., ... 4

than for a terrestrial system. The desired outputs are the position and velocity vectors of the vehicle; this . .. . .

requires six state variables, The measurements usually consist of optical angular measurements between celestial .... . ,'

.% .
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bodies and are functions of vehicle position. The optical massurements are usually retlitively far apart, so
*that most of the orror is uncorrelAtod with, the previous error. In many cases the correlated part of the error 0 4

wlbeinsignificant, and no additiunal state variable will bo required, In other situations, one additional 4". J

variable might be required. Thu inertial measurements madeIi in a spacecraft are obtained only during thrusting
maneuvers, During this time there would not normally bo any other source of datsaon the change in velocity.
Thus, the inertial measurement is taewn as a deterministic control quantity and Is not filteredl. Ilia dynamio
equations for a space vehicle are also clear cut. If the position and velocity of a space vehicle are known at
one time, the position and velocity for any future tine con be predicted with grant accuracy. Thto uncertaintien
due to solar and atmospheric pressures, gravitational field locertainticli, and computing irnaceurAcies are very , -

small unloss the vahicle is in a low orbit. Thus, tho dynamic behavior can be desnribed with the six basaic '
vabiable with possibly a snail amount of white noisa input to account for all the disturbances. Therefore, for .,,

an on- board space navigator with neeligihie correlatedi measurement errors. the entire filter can be based very.
* . ~~nicely on six state variables,.,-~.

The filter for a terrestrinl syntem Is not nearly as clear out. The desired outputs are again position and 4 ,.-ý4.
Tleerrors in uiiy of these sensors are very highly correlated in time, Tile Inertial instrumnents will add at

least six variables - three attitude errors and three gyro drift rates -and possibly more for errors much as

scale factor errors and aooeleratilon. eeosiL Ive gyro drifts. The Doppler would require at least tho variablesI ~for scals factor and boresight errore. For radio aidei, the sample period may be long enough for correlated ''

er-rors to be neglected, Tile dynnmic equations ara the source of considerable difficulty if the Kalman filter
* is to be used in the direct approach as shown in Figure 1. this direct formulation requires that a statistical

dynamic model for tile vehicle be included in the, state space. While the future state of a spacecraft can be ' "''"'

predicted accurately for weeks, the future position of an aircraft can be predicted accurately for only a few . N
seconds, The model used to describe these random motions is difficult to obtain, contains very high frequency
components, and can be highly nonlinear. A direct filter for a terrestrial hystem Is, therefore, difficult to ________

formulate and puts great demand on the computer. Thus, although this direct filter approach is more intellectu-
ally satisfying, at the present time it Is more of academic Interest than of practical importance,

Ilation of lhs navigation problem using thils method can be very instructive and aid in the basic underatanding ~ .*% p

of both the filtering process and the navigation proceiss. This filter will give the optimum performance of an ,-
inertial navigation system even if no external data are available. This means the Kalman filter automatically "

solves some of the classical problems' in inertial navigation. Optimum self-contained "'damingin" of the 84-minute
and 24-hour error Oscillations will be obtained, and the system will uivs the optimum indication of North by <

continuously 1gyrocompassiils", Those. satements are not as important as they might seem, It turns out that,

for the levelIs of random motion that must be assumed for most vehicles, the optimum solution is only very slightly

only improve performance by separating the accelerations due to system errors from the actual accelerations of
-~ the vehicle. The system errors do have distinctive dynamic oharacteristics which makce detection possible: however, .

their magnitudes are so much smaller thani the accelerations of the vehicle that they are very difficult to - , ~
separate. If any improvement could be expected at all, it would be for at system in a very stable vehiclo, such * -

ts a submarine. . .........

This direct filter will also live optimum performance when other sources of navigation information are added*
tothe inertial data, and even seen there are only external aids with no Inertial data, For example, this filter *'

could be used to combine Doppler, LORAN, and magnetic heading Information without using an inertial system, It ' *~''

=therefore has the advantage of continuing to operate after a failure in the inertial system. %

If the navigation system does Iinclude an Inertial system and some other source of navigation date, there isn *

acompletely different way of formiulating the navigation problem which avoids most of the pracia problems of
the previous method. Instead of estimating the state of the vehicle directly, the filter is used to estimate
te error state of an inertial navigaticon system, The maertial system follows the high-frequency motions of _

the vehic~le very accurately, but has low-frequency errors which gros with time. The dynamic system on which the-
fleisbased is the set of error equations for the inertial system, which are relatively well known, well

abehaved, low frequency, and essentially linear. The sample periLod can range from several seconds up to a minute
without greatly influencing the effectiveness of the filter. orthoee reasons, this method is used for virtually ~
every practical terrestrial Kalman filter mechanization. . ~ \,*

The formulation of a Kalmsn filter for terrestrial navigation can best be illustrated by simple exeamples.
Therefore, both methods are applied to a simplified navigation problem: the specific filter equations are defined,.

and simulation results are given. First, at the risk of being repetitious with prev~oua chapters, the basic
Kalman filter equations are stated. Thn equations are stated in the form most applicable to the navigation
problem and are a mixture of the discrete form and the continuous form. The discrete form is used when a new
measurement is introduced, end the continuous form is used between measurenents. The equations are also a mixture ,. * .'

of linear and notilinear equations, the full nonlinear equations being used for the simulation of the system and *.. ,'-

of the measurement Process. Linearization of these equations about the vatimated state is used for the covariance *

matri equaions

-%..-

% .
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3. 51LJMNARY OF BASIC FILTER EQUATIONS

It is assumed that the state of the entire system, including sennore, vehi.cle, And. environment., cani be~9* A
described by differential equations of the form

where g art knowni control inputs and aj are white noises. ror the assumptionn to be made here, it can We
shown that the contro~l does not affect the formaot the optieum filter, Thus, the control variables will not be
shown explicitly in tefollowing discussion.,I is Assumed that measurements aemade atdiscrete times
according to the relation

IN) (_ h tam), 11y] (3.2)

where X(t5 ) are errors In the measurements that are uncurrelated between maoaurements. (Tics-correlated errors ~
In the measaurements would have to be included In the state vector Z .) Assuming that the optiwal estimates%

ar lose enough to the true values for highor-order terms to be neglected, the opjtimuim measurement process isn
given by Kalman' a op.timum linear filter, Tho basic equations are:*i

At a mensuresent tim#

£ j' + E4H?(IIM4HT + I)) h(0 b,,t)) , .

S -E'HY(IM'H
7 

+ U)' 'HE' .

Between eeoaiuroents
A % '

A' ~~where the prime C') indicates conditions that exist just before the measurement, The covariance matrix of *~ ~ 'Y,

where ( represents the expected or mean value, 81 is the error in the estimate. and

PH

U : KR N 4N i

The matrices R end Q are defined by

The optinum filter for a linearised system in which the higher-order toerm can be neglected is shown in~ disagram b"''.'

form in Figure 3, where, at the sample times, the estimate of the state A is changed by an impulse through
the weighting factor, K a E'HI(IE'I T + U) L * '-'f'~

bot sh drctad indirect forms of the Kalman filter are illustrated by 'applying then io similar, simplifiedA

navigation problems. Por this example the vehicle is constrained to save only along a meridian on the surface

of a spherical non-rotating earth, The vehicle is disturbed by random accelerations with gaussian distributionI and san osponontial siatocerrelation function. Inertial measurements are obtained from an accelerometer that is
mounted on a platform that rotates about an axis perpendicular to the meridian plane. The orientation of the
jolatform is controlled by a mingle-degree-of- freedcom gyro. The platform can be cormanded to rotate at a given
rate by a signal seet to the gyro, and it will Also rotate due to gyro drift, The gyro drift rats is assumed , I
to be a random-walk function beginning at some initial bias value, The accelerometer measurements are used by
the direct filter to produce statistical estetatee of the positioaj and velocity of the vehicle. For the indireot
formulation, the accelerometer output is connected directly to the i'ro through the proper gain to give a deter
ministic Schulor-tuned inertial navigator. The measurement in this case is the difference between inertial
velocity and velocity from A Doppler radar, The Doppler radar Is assumed to have a scale factor error that is * ~
also described by a randomr-walk from an initial bias value. A schematic drawing of the navigation problem with
the direct filter is sheen in Figure 4. The iiagrami for the indirect formulation is baseically the same except
that Doppler data is Also an input into the computer.

41. %
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Tile steps for applyilig a eatistiral filter are: (1) chonso the state variablei that describe the complete *." " "
system; (2) determine the dynfmic equntions that describe those state vlriable.; (3) derive the equations that
relate the measurements to the state variables; (4) develop the matrices of partial derivatives that are finod.;
in the covarisnce matrix equations ; and (5) if It can be aaumeui that the lin~nr approximationx of the errors ,..
are sufficient and that all signal aend lnitial conditions have gausslin distributiona, apply Equations (3.3).
These steps are first applied to the direct form of the filter,

The state variables that describe this simplified navigation problem are vehicle accelerktion a , velocity v , ., . . .
latitude L, platform misalignment froml vertical C and Lyro drift rate d , A diagias of thu ,ysatem ta shown ,

in Pigure 5. 'The numbers at the output of the $&in* K mean discrete changew are made at the correspondin..g
points in the sytetm at the sample timos, The equations describing the dynamio. of theme variables are,.

S•-O's + Oen. .

. v/R (4.1) "

& v/lt + d o

where o, is thc inverse correlation time of the vehicle acceleration, K is the radius of the earth, and ns . *,.
and .14 are the white noise inputs into the models of vehicle acceleration and gyro drift rats, respectively,
The ot equation derives from the fact that the platform is rotated by O/R in order to keep it aligned with
the vertical while the true vertical rotates by v/K . The platform in also torqued by a to compensate for
the gyro drift rate d . The known control a is therefore - Q/R - a , The equations for the estimated stats ','''"', ".*;-
variables are the same as Equations (4, 1) with the aetual situte variables r~placed by the eotimated variables .. ". "
and the noise terms deleted. Note that beiuse of c an nd & are zero, . .

The aerAureant of the aecelerometer is given by

s a goorol (g - (v'/Rt)]sin(+ to (4,2) ...... A,......,. ..

where g is the acceleration of gravity and n in uncorrelated noise in the me-surveent, " %

The P and H matrices are obtained by taking the partial derivatives of Equations (4, 1) and (4,2) with .
respect to the state variables, The F matrix In given by ,,. , ,

-o' 0 0 0 0
1 0 a 0 0,

F 0 A" 0 0 0 (4.3)
I " 0 0 .'

0 0 0 0J, 8i11l

Sand the H matrix by %

H [i 0 0 Cs - (O'I/R)] 0] (4.4) '"""" " '

In the equation for H , the angle a. ii small such that cos a oe be assumed I and terms involving sin ,, .. - .-.
coan be neglected as second order. The noise matrices are given by ,.', • '.

A~ 0 0 01
*1 N 0 0 0 0 0, , ,,...,

0 0 0 "0

0 0 0 0 D'.,~':

where A and D are defined by

<o5(t) "a1 r)) a DS(t-T) ,-' . '.9

mad

All term are now defined so the optimun filter for this problem is completely defined by Equations (3.3). 1. • ,

An eample of the response of this meridian system to typical inputs is given in nlgurea 0-9. The three.-, .
sources of disturbLnces in the system are the random-walk gyro drift rate, the disturbance acceleration, and ' ". .A

4 -i::!i::! : ~!

•:",,' '. ,,,'."'," -v,', ' ",.,'.'.,.;"..'." ." ",,'," '-" '' • "','..'.."......,,."...."." "."'..".......""......-........"."."."..
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the random' measurement error. The random-salk gyro drift increases the r.m, a, drift by 0.05 moru/hr ''' (A moreP
toi approximat~ely 0.015 dog/hr.) The disturbance acetleration ham an ru, a. value of 0.003 ft/secC and a co"reln-
tion tieso of 1 min. The random measurement error has an rae~. value of 0.001 ft/sec2. The samepling iierind 1
for the measurement is I sec. Alan showit for the same inputs are the rempamees Of a SLihuler-unned undamped .'
system and R systiem with lead-lav dampiing. The acoelaratinns of the vehiclo in steaidy-ntate motion between
maneuvers used in this example are optimistically small even for a very stable vehicle such an a submiarine. heAn .4

the noise increamos, the performance of the optimum system approaches very rapidly the performance of a deter-
mtnlistic Schuler-tuned system. However, thin examplo does show that improvement is at least theoretically
possit'le, . *.

A Kalman filter is again applied to essentially the same navigation problem sexept that the Indirect ap.proach
in used. The inertial sYVntem in mechanized in a closed Schuler loop and tine filter uses Do~ppler data to eotimate' f
inertial errors. The State Variables that doencriho the error ecluaticonn to which the filter is to be eVplied .. ,~

are: Doppler sarle factor error tiSI', inertial velocity error AiŽv I inertiAl latitude error 1% platform A..'.~ .

misalignment (A a end gyro drift d . The errors are defined asl the Indicated values minus the true values..
A diagram of the system is shown In Figure 10. Written in matrix form, the differential equations for the state
variables are

ASPF Fu 0 0 0 0 L6EF I

0 " 0 0 v16 0 (C5

0I 0i 0 0 1 ad 0. "

0 0 0 +[j a.

nohe aesuremnent equation is

(ue -v 1 l0 0 0] u +e.C. (4.6) 'A

The P and H matrices are given in Equations (4.5) and (4.6), respectively, The matrices U and N are
defined by

U (~

NC 0 0 0 0-

If N 10 0 0 0 01
0 0 a 0 0

whereL d
(00~) od(r)) Nd S(t -T)

(n Mt0 (,(r)) N5 63 -)

The initial estimates for the state variables are assumed to be zero. It is also assumed that there is no
* -. initial cross-correlation between state variables, The Initial covariance matrix (1) is then a diagonal matrix

sade up of the expected mean-squared value of each of the variables tbomaalvas, since tse initial estimates are *1 ' .~ .%
zero. With numbers specified for all the constants involved, all the information is now available to define. . -

'I. the filter using Equations (8.3).

The results for the simulated operation of this system are given for the following typical values!

initial position error Z 0 - -

initial velocity error a

Initial tilt = 0. 2 min :.
initial gyro drift 1.0 meru

initial scale factor error =0.3%.5.- . .

random-walk gyro drift (N,) a (0. 1 seru) 5/hrr' '..

random scale factor (N,.) a (0.05%) in/r

uncorrelated velocity error (Al) a 0.5 kinot. r-

k

r4 %.

A %'
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* ~It lis asswumed that thu Vehiclu acceleratestt 0 knots, holds this velocity for one hour, accelerates t
*1200 knots, and then stops after 4 hours. Figuren 11-13 show the position, velocity. maid tilt errors in the

inertial system with andi without the filter, Fliguros 14-15 show the estiitimtai of gKvro drift and scale factor
* error that are made by the filter. P'igureA 10-M0 show the expected unnertainty in each of the state variabl H.

These uncertainties are given by the squure roo tit the diagonal olementm of the covarianre matrix, It cait it
4 " ea~see that thore In a drop in most of theu nourtuintiest at one hour when the velocity changed, rThe chtange in '*, 4%
* * ~velocity helpis the filter distinguish between Inertial errors And Dopplor errors, becounu the Doppler errors .

depend on velocity while the Inertial errors do not. %.

Bly cosipari ng Equatiounm (4. 3) and (11.5), the dynami c eQUationls for the I nd irect fil tur appear very ofi I lar to
those for the direct filter. In the first elemeont. of the state vector, Doppler scale teeter replaces vehicle
Acceleration. There is oine additional term which eives the feedback of mimalignnent error into velocity error 9..
that its due to the closing of the Schuler loop. Although the filter4 Appear similar, they have very differentt
Characteristics. In the tiirect filter, the system Is (otiritiated by white noise driving the acceleration of theo
vehicle. 7ito Contributiont of the Inertial errorst to the moeasurement lit so snail by compuiirt~o as to be very

* ~~~nearly uinobservable. Alan, the ssetplo rate for the filter must be very high to accurately follow the accelera- ,.**

tiorta of the vehicle,. On the ether hand, the measturement In the indirect, filter is made op entirely of nystem .-

errors *- either inertial or Doppler. Thems the filter can very effectively identify aold remove navigation erro rs
*and in almost tindepondent of vehicle motions. Also, the. sample rate only hus to be fast enough to keep up with

the slowly chianging ineortial utid Doppler errors. Fintally, since tin system IN corrected after each measutrementt, I
the predicted measurement diffortinco is zero and there is no need to extrapolate the error state varioibles. , .. .

5. APPLICATIONS, CON5RQUENCEM, AND PII0BLE'&S OP FILTERINO : V

anBesides the navigation problem, Kalman filtering also greatly aidn the italalignment and Calibration of V,
an iertal ystm, Afiler f te &e fom w tht ued or nvigtio ca beused, during pre-flighth, to

process externalI information itt order ho estimate the aisalignarents and miacalibrations of the system, Thek
external information may be just the fact that the aircraft is not moving so that any bias velocity in Velocity
error, The state variables that are used In the pro-flight normally include platform misalignments, gyro irtitts, I. -. '. 1
and any other terms which mightt be subject to day-to-da~y variations, such ats gyro and accelerometer scala faiwtors.

Inaddition, the calibration program might he run with the platform in several different attitudes to help the :-T :--.
filter separate error sources, . * 4 h

S ~~~The calibration problem and the navigation problema Kae so similar that in meny eases the samme computer program . '

can be used, It is aecossary to innlude in the navigation filter toast of the major inertial system error sources,
such as Misalignment. and p1ro drifts, These paraimeters are the some ones that must be estimated during the pre- ~ 3
flight calibration program. Thus, with only quantitative changes in some of the statistical values describing ** -. -

the system, the navigation filter will also handle the calibration problem. F'or example, a filter which in
designed to use Doppler radar moasurements can be used for calibration by making thit Doppler meesuremoent zero
and by greatly reducing the assumed error in the measurement,

In most cases, filtering techniques will both improve the accuracy of the calibration process and shorten
*.the time required. A filter can easily handle the problem of motion during tb, alignment, such as sied buffeting,

Rod can also be sichenised to account for the changing Characteristics of Components during warm-up. The sawne
type of filter can be used to transfer alignment from a master system to another inertial system, such as in
aircraft carriier operations. Alignment and calibration are considered further in section 7, e',,

A'

~ 1Filtering techniques are also useful for post- flight analyses of navigation sYstems during a test program,
4in this application, all necessary system data io recorded daring flight, Along with all available reference- - .

data. The reference datao is used in the saes way as it is used in flight; hut reference data is usually much
more accurate ant the error model for the navigation system Can be much more complete. In poet-flight analyses -

even better use of the information can be eads, by extending the filter to include optimum asmoothing tochniques,#Ne
which means that reference data are ased from both sides of the point in question, b,

z44

One of the moot Important consequences of the use of statistical filtering for navigation 'is that It changes
'-the basic ilgure of merit for the component parts of the navigation system, The dynamic and statistical nature
of the error becomes very important, In additiou to its absolute accuracy. -What is ultimately Important is the .- ~
total accuracy of the overall system after the measurements have been processed by the filter. Thus, what is
important is the ability of the filter to deteet and compensate for the errors. Far example. If A Lomponattt .'

has Poor day-to-day stability but the error is nearly constant once warmed-up, the total system accuracy might
be better than with a component with batter absolute Accuracy but with loss stability during the flight. rthe
parameters that give at measure of this lack of stability during flight are the noise inputs to the error equations.
There aire given by the N anti U matrices in the filter equations (see Equations (3.3)). Thus, on* of the .*

important parameters of a component is the size of thin noise term, which is a part of the error model for that -~

component, For example, if gyro drift can truly be described by a randrom-walk model as used in the exsample in
Sectiom 4, then an Important figure. nf merit for a gyro is the increase in mean-squared gyro drift per unit time. -,-...,-

%I,~ The units for this parameter would be (moral 5/hour. When a filter is used, this number eight be more important :,-. 2
than the drift rate itself,

Ate even sore Isportant consideration is the dynamic characteristics of the errors. If a filter is used to
%combine the information from two systens which haye errors With the saee dynamic characteristics, then the filter .

6661,



can do little more than produce a statietical avurallo which might redulce the error around 2U to 30lY. On the
other hand, if thne errors hkevo uniqua d~yunmit characlteriaticb, then tho filter will be able to distinguish til'
errors aod obtaini a possible 70 to 110% Improveoment. Am was mentioned in thu oxamptles, this result is aentiivmltnmnls*'
when so noertial -syatem and Doppler radar are combined, Most inertial errorn are relatend to some inerti al ditreti

tion while Doppler errorst are rvlale'd to aircraft axes. Tihus, when a turn is made, the filter is, to some tiegrec
able to distinguish alid calibravt the errors.

% ~A very valuable by-product of the use of statistical filtering its that an estimate it; availahle at all timun
for the accuracy of the navigation nystem. 'This fenture hae at least thrt'e posslible uses. Pirmt, the informa-
lion could ho displayedi directly. Tho navigation mysteil would then give the vehiole oporntor not onily the
indicated position and velocity, but tihe estimated ancuracy of thstsv cniuihrs. In some situations thin informntion
could be invaluable. Secondly, a record could be kept of the acturi Ant] estimated error in the system, for
exemple, at terminal points. If theore were, onl an average, too mutch discrepantcy between how well the system wais
doing and 11ow well it thought it wris doing, thin would Indicate that the system wail not olonratinlg properly. Tho
problem could bo tite either to some comrponpent whichr wits tireedincl specificatiouns, or to improper modeling of the
system. A third use of this statistical data would bo the automatic editing of the input da~ta. The filter..-* , **

already has so estimate of the expected error in the measulrements. Ilium, Itit masnusrement is in error by motre
tihan three or four titaildst-d devistions, it conl be alutomatically rejected anti in~dicationl Cal he givenl to the
operator that sotmething migiht be wrons,

Two of the more Important problems in the uso of statistical filtering tire the requirements for a large flight I

computer sod the need fer adequate statistical models of the component parts of the system, The computational '.

problem is duo to the necessity of computing, in real time, the optimumo statiatica.1 weighting factors. The ¶"

weighting factors involve the integration of a matrix differential equation for the covet lance matrix (see ~"~
Equations (3. 3)), This matrix has dimensions n .n , where ix is the number of variables being estimated by *.

lbs filter. The amlount of comlputation required Is roughly proportlonnl to n3 . Thus, the more complete the
model, the worse the cuomputational problem. For a particullar navigation system there sill be a trade-off between ,

accuracy and computer capability, For any systei there will be a point beyond whidth a larger computer gives -

very little improvement. Considerable knowledge of the system is needed to actually determine the accuracy/

4, computer-sizo trade-off. This fact leads Into the qther major problem. Some possible solutions to the computa-
tion problem are given In the next section,.

The other major problem is the need for statistical models for all the iletruinnt inovditenvgtioli
system. Computer simulations of typical navigation problems using supposedly realistic statistical models producen .

outstanding Performance when Kalman filtering is used, But the results in the real world are not necessarily
this good because of unsuspected errors with which the filter is not capable ot coping. A detailed statistical
error model for- an inertial msytoiti has not really been essential in the past, but now that the model is actually

a part of the mystem, Its determination in mucih more important, 'To be confident of having a cocmplete model, it *

11i4is necessary to test the system in an operational environment as near ais Possible to the one in which the system,
is actually goidg to be used, This flight test program is necessary to assure that the statistical filter can

handle any Peculiarity in the Sytm tI vr epu in this flight test program to record all information ,

tefilter and determine what tha results could have been without having to re-fly the aircraft. It is thus ' .

possbleto ptiizethefiltr wth rea saing inflight test expenses.

The first method for reducing thte computational losd is to eliminate elements of the covarisnce matrix that

have a negligible contribution to the operation of the syste., The linear filter given by Equations (3,3) gives

the "mathematically optimum" filter for the model that was assumed to represent the physical system; i.e., termse

are included even if they would redone the mean-squired uncertainty only In the ninth or tenth significant
figure. The assumed statisttoal model, however, represents the actual system to n0 moeer than two or three

Wsignificant figures. The problem is to lorcate those terms that can be eliminated without significantly degrading --r7

the performance.

' - A method for prodciunlg an effeotive suio-optimum fitter, which the authors have used with some success, is to
use physical insight into the particular problem to identify the primary flow of information in the optimum

filter. The optimum filter is them separated into smaller filtors that preserve this primary flow of information
while neglecting terms which have negligible affect, The details of the design of the elub-optielum filter ar
obtained by simulating both the optimum and sub-optimum filters for identical, typical problems. The design of ....

'Cthe suib-optimum filter in then adjusted so that its performance matches that of the optimum filter as nearly as V 7 '-
possible. This simulation process also indicates the efficiency of the sub-optimum filter, This approach has y,,

bsoen relatively successful, particularly for simplifying the computation of the covariance matrix.

The second method fur simplifying the optimum filter Is to use pre-computed gains. if the filter equatione. , .*,

aire auc that the gains at each mase~urement ars only functions of time and of the a priori assumptions of the ,*,

statistics of the noises and the initial state, then, by specifying the measurement schedule or rats, the gains
may be pre-nomnputed sod stored in the vehicle'sa computer. For a email number of measurements this is a Practical . -- . .

solution to the problem involved in implementing so optimum filter. For a large number of measuremenlts, the 'A ,tsi5 w.

pro-computed gains are usually smoothlly varying with respect to time and may be approximauted by suitable curves ," .. .

% ~ (straight lines, exponentials, etce.) that give Almost Identical filter responses as the true gains, Some of
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the minor sairi.n may even bW ttelectoei completely. 'Thin. technique will be appliled to the pro-launch calibration
and al ignment of an inertilal platform In a mpaeecrafL on toli of a awaying launch vehicle alid is, lit fact, similarI
to the techniqlue used In thet Apollo Ouldinnce NavigaltiOn and Control khystem.

7. PRlt-LAIJNCII CALIBIRATION ANDI ALIGNMENT '~ ..

7. 1 Physical Pmim fat, Caulibratiotn anti Alignment

The inertial syntum to be calibrateid and aligned Incillldti gyroscotpes rand accelerometers. The known gravity
acceleration mngnitude Is used to calibrate thu accelproinutern; tile known Inertial rate of rotation, of the ~
gravity Vector at a point ott the surface of the earth in used to calibrate tile gyroh. lin this procedure, the
syntnm to approximately aligned to thet local vertical coordinates (vertical. south, and cunet), than the ityrios
are usted to Inwirtnount at, Inertial coordinate system. Thu two ealproxtitntuly horizontal anevrlaroieoter output..
(mouth enid easnt) atle uned by the uptitmun filtur to getierate ostimates of tho sysetm minalietmlent with remecl;c
to the local vertical coordinates mald of the gyro drifts by comparing tho aceecremanti of tho rotation of the
gravity vuctor with thu known rotitt lol rlae In the Wert 10li coord inLet~s inetrlilu~ello by the gyron. 'rho verti cal
gyro drift Is the most difficult quanltity to measure sinen it caluiuse Only a third-ordar effect onl tho nououred
acceleration. Gyro failures can be closely associated %ith chlancest in drift due to accele'rationl of gravity ~'P~
along the input nixis. so the pro-mounch calibration of a gyro in a vertical poisition Is highly desirable. r

Since the estimates of the alignmeunt. end drift variables will depend on the measurement by the aecceleraomterk '4'

of the rotation of the gravity vector in the inertial. coordinatna instrumennted by the gyros, the major distur- ,sl 4 4

battens are the aooleroenetor quantization and the wind-induced sway of tite launuh vehicle. 'Ile model of the :-
system for the optimum filter must include Variablesi due to the away. The complete filter must be simlulated on . .- -' -

a digital computer; it will he linear, so that by specifying the measurement schedule the optimum gains may be
pro-costputed, 'fTh gains will he approximated by funotions that will be atored iii the flight oomputer, IThe method
for using this simplified filter in other platform positions, an illustration of a system test program, and
praotitcal hardware problems will be presented.

7.2 hodels %4

In this section the models of the launch vehicle end the inertial system will be presented. The launch vehicle ,':"~

bending dynamics in the north-south and east-west directions are approximated by identical second-order systems. .

The wind causing the vehicle away lit asieemed to be exponentially correlatud with at correlation time of l/X loc.
F'or convenience 'we -aestise the -wind lil each horisontal direction is uncorrolated with the other direction, as
is indicated in F'igure 21. Titse correlation function of the white noise requlired to produce the predicted value s ~'
of the missile sean-squared sway cian be found to beit: k-"..

DwSit -'r) = n(t)n(T)) - ('4cu(t ' + St-'r) , (M 1)
_X + t 

"`ý` ýa .%~

where (pl) is the predicted seamt-squared missile sway, n(t) 'is the white noise generating the exponentially
correlated wind, end con and t are the natural frequency end demping ratio of the second-order approximation
to the beading dynamics. The state vector for the sway variables in the south direction isn~."

1 a 2c - aI(72

wihere pe, v5 a~ are the horizontal displacteaent, velooity and acceleration in the north-Mouth direction.
The model for the away variables in the east direction (p", vs. a e) has the same form. For the computer simu-
lations to follow, they have the values: (pl) =100 cm2 east andosouth, X = 0.1 sec' t  we =a 21.09 rad/aec,

The platform orientation with respect to the local vertical coordinate eystem is described by three small
angles Ct, C , and y . if the platform axes N . y , z) were rotated by -oL, -0 , and -'y . the anuis Would - -"

coincide with the local vertical coordinates as shown in Figure 22. The state vector equation for this sub-state
is given byL ~ i'-~

ot-,

0 0 ri\ 1 + %n
07 0 0 1 + tys~l + .4-73

0 0 0 0vew...w d54.1

0 0 0I 0 0-. d." 0

I- YJ L I.I.- 6
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which has been assumed to bee, for mangle- erngritud'ea of Interest, a valid r'ipro.';ontation of ttio platforim dynwlnicii.
and (lý art- the horizontal &nil vert Icii comcjonetm of earth rate at the test site; (is, d , Ax, are then

ronstaint dri fta tiir th.' %Ott teal. s~outh. and kaut gytros: Anid t. t ,t art. the torrlulnig rittcu (if any) allplied ,I~

tu tht gyrns. U it. n'.asmeid that the torquting rates.. thu comipontents of earth rate. anid the eant gyro drift are '' i

krnotn pe.rfect ly, at) that the vectar on tin,' right rwo'r ost% kniurni control EM t anid is inndaopndurnt of the st-ate%
of the system...

Using the sail angle' bi4ntirft last Wn. the' south and east necelorometer pulmo rate outputs due to plittform
V. orientation In the gravity fietY may he writteni a.,

'I 'g . ~(7.4) :.

s here po, sand o,o represent thPe total puelse counts at some instant of timte, and g is the local gravity
(c/1c2.A I crn..'see pulse accolerumentce, clunntizatioh has tbeen Atueuired.

% Accielerometer pulse' rate's caninot he InstunntguieoiisiY meaurued, but the total pulses. which make up tlie output
clue to sway veloc it) and orientatitnriIn tlie grievi'y field. ewi We counted. The filIter must dist.inguiishi butwoen
the puta# count due to the high frequency sway anid the pulrse count dire to the slow rotution of tho gravity vector 9 ¶
in the ninrtial coordinsitfs instrumrented by the gtyros, Inrhererrt in thesei meoasuremenats are quantiztationi error$.

*The weasurement vector Is a

1 I v 51  [p0- 1. 01 -

The term 'n"a rppreatnts the quantiastion error at every sampling of the accelerometer pulse count registers
* ~~Although the quanitization error is runifonrmlny distributed, the measurement noise iA massumed to be gaugsian w~ith

zero bean, 'rho Measurements are wade once a second with .

Tbe state vector is i3-diae'asional; the state vector differential equation is *'. -

d&/dt = IA t + ii(t) 7

M Ue rigure 23 for I and

* W~~ith the derivation of the model for the system, the complete optimum linear filter is defined, The accelero- -~4~ 0

1' moter pulse count registers will be usopled at constant rates. The ostImated state vector is extrapolated
V ~between Measurements according to

P 4n (7.8)

&Wi the covariance matrix accnrding to

9, 2 01+ 3(7.9)

* where 4. and 8 are pr..computeld constant matriceis for the time step of cne second between measurements. They

* aa*tisf7 the following differential equations: a

dS/dt = pa + BpT 4 N 8(0) =0 (1.10) u ' ,

which Wn~ bes inoterated on a digital computer for a time step bestween measurements of 1 second. At the time of ..

a measurement, i and 9 area chaunged according to 94uatious (3. 3) said t , U , and N are given In Figure 23... .

* 7.3 Computar Simulations ~-
A complete nonlinear simulation of the inertial platform in 6 swaying launch vehicle was made on a digital

* computer in order to simulate real acceleromester outputs. The Initial misalignmenxts were I degree on all axes:
drifts were 1%) meru for the vertical and south gyros and zero for' the east gyro. (A Meru is approximately
0.015 dee/hr.) The r.e. a. sway in each horizontal direction was 10 cm. The initial conditions for the covariance -. '

matrix were I der for the aligtment angles and 100 meru2 for the gyro drifts. The swsy variable variances were

100 cm', 440 cs'/sec?, and 1900 cm'/sec* for position, velocity, and acceleration. All initial cross-correlation ..

terse were assumed sero. 'rhe Initial estimate of the state was a zero vector. ~

This response of the filter was eicellent for ihese-cortditiona. A number of runs were first made in which the ,~d.wBrt

Cmatrix U was varied so is to causei good agreement between the r...s. error as determined by the filter and the 0

actual error. 'The' errora between the estimates and the actual values of Azimuth angle. vertical gyro drift and
- south gyro drift are shown in Figures 24 -26. The scrurs reach small value, for the three casnne in 15, 40, aind

10 minutes respectively. Note that, sifice the measurements are taken eivery second, about 2400 somples are
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required to estimate the drift of the vertical gyro. Clearly, any significant errors in the model for this 'l F
system will result in dramtic errors in the vertical drift estimatio~n. The errol's in the estimates of the two
leveling Ranjis (ý,e and A1 are negligible after this first few measurements, The estimates of the away vari-
ables aro not particularly good, since we are samplilng once per second and the away period Is 3 seconas, These
simulations were run under aissumed perfect knowledge of east gyro drift because of the classical result that
east gyro drift cannot be identified from Rzimuth error. The fact that east gyro drift must be known presents .

no problem; as seen from F'igure 26, the south gyro can be calibrated in about 10 minutes and the error shows
little sensitivity to d.. This gyro cass than bo placed east by rotating the platform anid a complete alignment
and calibration made. (Tile question of other platformi positions is; discussed later.)

7,4 Deinof the Simplified System

S '~~~~The gains for the optimum filter may be pre-computed for all trials, since the measurement times will be the .ws 4
4

same and the a priori Assumption for the stntiatic3 of the Initial state vector and noises will not change,
For the problem at hand, the implementation of the gains into the inertial system involved, first, the design ''" '

of a aimplified optimum filter. The gains for each state variable' estimate depend on both accelerometer measure- * 'I
menta and, in general, one gain is much smaller than the other and can be neglected. In this problem all cross- ~-
coupling measurenment gaiuns are neglected, e.g., vertical drift estimation dependr, primarily on the south
accelerometer, so the east accelerometer measurement gain for vertical drift estimation is not implemented,
Typically the predominant gaitts vary as in Figure 27. The pa. gain represents the number used to multiply the
difference in the measured and predicted output of the south acclerometer and to update PC* . The at gain '-
multiplies the same difference. These gains can be approximated by exponentials and straight-line segments where, '

at disti-ot Interva's, the time consantsnt and slopes are changed to continually fit the approximate gains to .
the true gains, The gains for position, velocity, and acceleration quickly reach steady-state values and say .

be approximated by three constants,

The response of a simplified filter is shown 'in Figures 24 -20. . The process of design enters, since It'
* ~~required a number of runs using different slopes and tihde constants for the gains to get a good match with the '\-\

response of the complete filter, In fact, In the end, the same exponential gains were used for both Do, and %
Poo , and the same exponential gain magnitude wus used for /3 14d ''.The total pre-computed constants were .~. .

three sway variable gains. two initial conditions for expomentials, and sets of the following five numbers which - %
are changed at ten discrete times: two time constants for exPonentials (pa5 and 13) sand three slopes for
straight-line asementb (a, do '.dy Table I summarizes theme comments,. .*

A%
TABLEI P

Approxsiete Gainsw

Variable Acceler-ometer used Form of approximaet gain

Poo south *XPOmential segmsent&

Poeast same value as Poo gala %%%
vs south constant .

veast same as

south constant

P, south Constant ~
oueat Bsae value "m to

Peast same value as e P,~ .

south, straight-line segments

A east . exponential segments

Vy south -,a3 gain
d south straight-line segments *

deast straig~ht-line segments ' '*

7.5 Implementations

A slight vaiation of this simplified filter wan implemented in the Apollo auidance Navigation aNd Control '"¶-

System, Part of the program was concernled with Initialization for platform positions other than the one Con-
sidered here, The optimum filter, once implemented, does aot change for other platform positions: the measure-
mants that the filter gets sre made to simulate the~standard platform configuration. For example, if the
platform axes cer. vertical, north, and east, and If the sign of the north accelerometer output were changed
to simulate a south accelerometer. the filter output for the variables in the south direction need only be
interpreted as negative of their true values. ,

N-.
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oPr some applications, It may be desirable to torque the mouth gyro at negative horizontal eautk rate to koep
the cant axis level, The form of the filter and the filter gains do not chnage because perfect torquing in
assemed; just add negative horiontal earth rate to the extrapolation of the angle ji It. has also boon found [, )
convenient to use a simple first-order extrapolation of the alignment angles (A = C + d It , ete.). The swy ..L. . , .wa.y. .- *'.q ,m

variables are extrapolated wc'ording to a away transition matrix whose elements can be changed t- vompenaste ,. -.. , o.
*,T• for variations in parameters between different launch vehicles. ,

Once the optimum filter has been implemented according to the simple method outlined, It can be readily % 2 . ',I'.."

adapted to various problems of alignment and calibration. ror example, consider the following system test
procedure in which the platform axes are idontifiedc a x 1, y, 2 -

(1) run a 10-min test with a up, y south, z east to determine y gyro bias drift; ".......

(2) at 10 min read out y drift and use the angle estimates to align the platform to the local vertical . ' ,.,
coordinates; continue to hold that orientation by torquing the gyros at negative earth rate for 90 see
while counting pulses from the x accelerometer:

(3) orient the platform to x down, y esat, 2 south and run a 10-min test to determinee z bias drift;

(4) use the angle estimates at 10 min to align the platform and then torque for 90 seec at negative earth
rate while counting x accelerometer pulse:;

(5) torque the south gyro with the negative of the horizontal component of earth rate for 45 min while ' e4

determining vertical drift (x gyro), The y gyro bias, as determined in step 1, is do for this step.

This procedure takes about 09 minutes, after which enough information is available to determine y gyro bias
drift, a gyro bias, the sum of z gyro bias and acceleration-sensitive drift, and a accelerometer bias and
scale factor, One can readily imagine how an automated system test procedure can be set up to completely cali -
brats the system In the swaying spacecraft. The last step in the program would be an alignment run to ready
the system for launch. Through all of this, the bsic simplified optimum filter does not change,

.7.8 Nardwar. Problem.s

The primary source of azimuth error is the uncertainty in calibration of the east gyro drift; the primary
source of vertical drift estimation error is due to variations in the east gyro drift during a test, If the - *.. ,
east gyro has a large drift due to acceleration along its linput axis, then it is desirable to keep the input
Ixis almost horizontal to minimize the variation in east gyro drift by torquing the south gyro at negative
-borisontal earth rate. Unfortunately, if the bias of the -south gyro changes when it is torqued, then the south . ..
gyro calibration will yield two answers corresponding to the torqued and untorqued oases, respectively. (Torquing ...-
was done in the system test program.) Another problem could occur if the accelerometer biases chense during the .%

calibration. Fisure 28 shows the effect of an exponentially changing east a•celerometmr bias on south drift

Another possible problem area appears when uning pulsed integrating acoelvrometers, If either horizontal " *' ."
accelerometer has a large deed-zone for near zero inputs, large transients In the filter output will rppear.,'r'" ,'*. C

The form of the transients will vary depending on the time during the test that the accelerometer goes through
the dead-sons. Vertical drift estimation is particularly sensitive to a dead-zone in the south accelerometer, k -
In some eases a transient on the order of 800 meru has been observed; the filter never reached the correct value -* '
of drift at the end of 45 minutes because this vertical drift gain is small at the end of the test, As a

-. " practical solution to the problem, the platform is deliberately offset (between steps 4 and 5 in the system
test program) from the vertical before beginning a vertical drift test so that the accelerometer never goes -
through null.

These problems are Indicative of the strange results that can occur when the model for the system is incorrect.

Philosophically, ae have designed a total system test and an such it should indicate, In soms manner, out-of-
specification conditions which would then require lower level testing. The model must therefore include all ,,
in-specification conditions and the designer' a experience must be used to recognize out-of-specification '

situations.

7.7 Laboratory Test esults,

A significant portion of the filter desirn wu done in the laboratory, since digital simulation can never . -

equal actual hardware testing In pointing out the important problem areas. As part of the filter implementation -lie
verification, the Apollo inertial platform was suspended by a cable from the laboratory ceiling. The platform . ,.
was pushed to simulate spacecraft motion on the launch pad. Comparisons with independent measurement techniques" .
verified the program accuracy to within the limits of the gyro performance.

S. CONCLUSIONS

Navigation systems are oue of the most important applications of Kalman filtering. Conversely, Kalman filter- ________,___ __._
ing is one of the most important new developments in navigation systems. It is likely that most future navigation '
mytoms will involve Kalmsan filtering in some form, However. considerable engineering experience is required %..- . -. . " . "

%4,



to develop an effective filter, because the physical systems are never procimoly d-fined, the necessary
statist~ical models are not well known, end the computer in nover large enough, It in hoped the diuutinuiona in
this chapter can bo of some help In obtaining the understanding necessary to deveInp efficient navigation filters,

I n ammary, we might suggest eight steps for the succeestul implemuentation of a filter, such As %ass Illustratnd
here:. .

1. Develop modela.

- , , ,2. Digitally simulate model and filter equations,

3. Design simplified filter:
00n restrict model,r
(b) ducouple variables,
(o) approximate gains.

4. Digi-tal simulation of system mod simp~lified filter.

5. Implementaiion Into guidance computer.,

0. Chcot

8. Recycle to step 1I

The requirement to simulate the ecemplete system with the filter equations has been inserted to demonstrate the W

filter equations and look only at the propagation of the covariance matrix. Finally, as practical experience
indicates modeling errors, the sources must be found snd practical solutions implemented.
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Pig. 1 Navigation problem using direct filterr
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CIPAPTICE It -APPLIVATtEOP Of 94LIAN PILIPEING.
11MSV TO 4116319NI I'EITIAL

NAVlIATION SWIT11111

la Ute pLIS too decadia different eavicstite denmori biate bees combined with an auer' :%I platform to obtain
vmie~asulti-sonsoir systems for porerfcrwio the navigation function, The mail objuttilt in integrating sensors

int a yott hs ben o iefoet %* aviatinalaccr-i.7obltainable when Inforoatiou from Independent sensors
Is protterly mixead. An'jti.sr objective baa been to Increase the probability of succoes of %given' mission that

d~f ern mbinationie of sensors. eanch cambsbl of Providing useful info-sation during a mission. fueductiop in
Soi uysetm coet and v taght cw. also result In such dealings being obtained Implicitl~y Uthaiotgi 0 relosastlon in

astsvidumi merger performancne roquiremaeet. the reduction In stnsor r~quirtments in auiti4*anact Cv.-tom usually

Mae= a dectlesse in donlan complexity with attandim' reductiona in mneaer ciao. weight Lbd cost. Iacreased roile.

Sello She development of Rlaents filtering theory. it wvu realised in the navigation field Piat Integrated
~upaoks eratimn offered the oppertunities alread~y outlined for obtsainig Improved navigation system charootet-

istil'. Nosever. the Analysis and optimizaion uf the @"ror behavior in them" systems is a complex teask, sincei
Ums mels doearibisg these errols #to stocasmtic, time-vorisnt mad have high dimenollu. The dealitn for theI

Sentero of error in maltimeemaur myatoto were obtained mainly by using the classical frequency, domain sad rootRem Seeksiq2s c~oordinated with trial end evror design experiniaetticon ana&log or digital rempuater. The
OF" t3 he Ralsma theory and the availability' of more sophisticated digital woeputiag hardware and softiware

forE imaetligatiag comolex system or-r behavior basn revolutionized the design of tho error control mechanism for~~ .. 1 ~ D ultil-ienso HAviesti A systd- D;pHictions. The Impetus fnr this ch~itiat results from 09e esiatence of the
Iwo!' sovarkte eustrolier soluti'j. for linear, stochastic msytras, as provided by I~aima. sad the mewa by which
dot'i.ed behavior of complex sys~emw can be essained, so provided throigh the use of high speed, large capacity
dislital computers. the significsanc of theme Points for practical desiru problems will become more evIdeirt later.D

Ibis chapter begils by deseribimp the saviastlon function sand the requqirements which are tonally Imposed as
maIpemle swstmas. Ike Major classificatiion& within which aNot Wkwigation5omoenso~ cta lie grauped are defined,. ~

A % illmtrate kew thee. different navigation sensors bay@ heen employed In conventional decigns, the theory of
*menation of three fundamental sugeented inertial nsvigsitOn sy"Itess is Presented. 41th thi diacuattijn, a
perspective to Obtained for considering a Klal ma, chat.Ixa'.im for these systems Wn A later meation.

11i1me.t the somputations' alloratkatn or orrer tontrol lit an actual inletf. Is lisitod, constralints must be
IMedW - the complexity sand configuration of nay Kaimns design proposed. $ome of t.Se prsckicol probleM. aacot.
beg the ecufigurstieno ot the error controller In actual sy-stems ate discussed. and the baaic operations which are
twpoueuted In sulti-sanner navigation system applications are 'iefinvtd, The quostinn of the catipleiity of the
Wsage design is also considered. Loid a procal~ro which has been used in error controller ',inthosis is described.
This deism approech in then used to obtain a xsainn orr,)r control mechanization which is flutithle for applying
eacb of te Wars augmented inertial navigation $Ystesi Previo.Atly eammined to a particiilsr system mission.

The chapter concludes by Illustrating the sytet" Performance for this mission, an obtained with the derived
Waves ofh"Inionlc, sand dimcoswneg the enimlue fteatures of the tOree navigation system..** .- 4
3. N4GSAflSN AND T-. :11113001 IMPLOYCO11 IN AlVl@4tilo S151:E13

INrutaetio of a navication systsm Is to de'..raine the Position of a vehicle such that it ctan be direct=

110 other Positlion defined In the selected frome of rofotence, Terrestrial navigation Is ucually performed with
respect to en orthoeonal %ciordteate system affixed to the earth watch has one siun coincident with the terrestrial
polo sad~two &iss In the equatorial plane. Vehicle position In this frame of r-f.t'Pnc. Is denoted In terms of the
twa. angular wmesaren of latitude and longitude and the linpar measure of hltitudt. A% peen in Figure 1, longsitude
is meweard eastward or westaird mbout the polar airs Irmo, the xero lonqituinadis a-rician which passes through
Ofeewwicils. bagland. Latitude ý Is mean-ired north or mouth from the equatorial Plano about an axiis orthogonal

'U" I . .6 &e aenidionai plane IA which the vehicle lies. Altitude Is is measured positively or negatively with respect ~ **-
. eft Revel along the !3cal vel-ical at the latitude end longitude of the vehirlw.

k * P~~~RECWDIN& PARE BLAW Mou:b.p

~~~~~~~Po L.l a. -&0--.. .. y.. .

- ab
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UJ oIdtion to T414el0 position. the mavisatimays&Ft" Is olftee rewired to provide velocity of the V4his16
with resaet to %he earlh. The cmploent$ of the velocity vector we usually desired alms the orbhoeasal as*$

/' of a eeerdiati latq. louated A. the vehicle positift. This retoeesce Is calied the loWil geographic coordinate
spite and bad v9e axis coloenieat with thq local vertical and two UP* in th• Losl level or hovills plwho,
an slim the local icrth lise Wd the other directed eaftuard,

MAethler type if data often reuulred fran a savisationa slyot is vehicle attitudq with respect to the local
marllen plane and Borth line, Is moplihtlestia evianice mystene, alttude inforestioa is relulred to accomplish
lamtomtie airerft guildamei and coatrol for woapom del.very, arume. t' piO-selected delstinati.s, and looding
sed take-off, Attitude lnformatios is available sheo the cavitation system llaorporal.es a stabillved referenoe
suach me nA imertial platform,

To "gifts se or all of the Davis&, bs proten rvqj1rQ.llntp discussed, different types of secsors vre evployed.
Noat of these navimatimn sOsoro can is placed In xo of three catelories b,.sed on the typee of deta tihat t'ey
provide. The" three classes onbompaes savlatioci llsorl which pruvide Inetial, sppei, or p0aitlal information
to sme orem. Sca of these sensors (e.g.. Loertisl, LO•AN) are capable of achieving Rcue or all of the msaiea-

Stien Setp rete "Iremets aetanamoueij, Othrs (e.g.. Wyper tailer. ran@e masauring euuitmeatsi require Informs-
lien fm eother uawlgatilu stesors, prlmartll sa inert lal platform to so, aoplish the divlatiom fusction, IFca
of the three eluamlstis ne to n O• escrlied to i.troauce jnsllng material on the principled of optratlio of
aemes hsic asmoted Inertial m'illatl'm systees,

*.l ltortial $Mi re

The hele Olnelnt of U Inertial oeisor Is the platfort The platform conaists of a mchalnlcal structure In
whleb the lur;1la iastt'rupomts are haunted. V; to three ace•leroueterr are Incorporated In the platforz for
uealurial orthtoaal specific force Lesgltuolos, Iyroecopen are incoro rated for the attitude meeautoent or
sbtaitltutlnm of the aceoleroeoter triae t a specified or.ontation.

ViMa Imoaledga of the local mees.attraetlla vector. an Lnottlal sen•or ".n be usd to deteruine the vector
muelerstmn of the darrying-vehlile wlith reapqlt to the inertial space. When this information it provided to
a -m-e'er, suh•eeguet lotegratins CI be performed to yield vehicle veleoity and position. is addition to this

," bse eapability to provide sufficient Iifornation for autonomous lav!tltimo, Inertial seneaot are used m
atltude reeorenmee providing the sngular om letstton of t"e vehfiul with respect to the local borison pilas

sod sorwa lime. This attitude date it used is the operatior of other nvighat.on ls•nors, an will toe en,.

sol poe Sm r ovd

Some eassor n a provide speed of the earrying-vehicle alonel different wireotione. The Interpretatlo of this
I-fe.loliot an a vector. hcoever, reguires the usa cf an attitude reference syste., Two tyreo of speed c.pcnertnt
*eeteurieg lmetrueest exist, The first type determines speed with respet to t i womisu in which the vehicle
trnvoelm of achieved by air-speed Indicators or ships' ogs. the second ty?'e -mplaoy the Doppler frequency shift

, j pbooerea skieb is asomplified in Doppler motor or radar, These Doppler I',,truments provide speed with respectto a refleetisg orae., usually the farth' a surface. The attitude data provided tic stabilize this Imterg etic
40011 field vTllaitY ema Ssets allm the 4381 4e9Mae4" coordinate wse. Bubaequent integrstioo of the velocity
ecupoaeet data Is a coiputer can )aold the profest latitude, longitude and altitude of the vehicle.

t.4 Peeltlem or iplar Seetsrs
A nleiter' of u;aIeficatloom exist for 14omoi'i llthil ;rovidb information useful 'o determienin position. on@

typo Includes tracking systems,such se aatro-trlckere and oritical slghts, whinh provide the sngular ,riestatitm
of a point of known inertial or Ceoglralpit location with respect to a set of coordinate mase of known orientation
In the vehicle. *hie type rf sensor requires an sttt,'e reforenca jnd c(•puter t3obtsin useful navisati-n date.

Anotlhr bale claasfifiaticn for -uititn sensors includes those which ase hened on timing mechanime,
Ilmlud"d are systemes Atch measure:

fa) tise hetweee the tranelma|ioo ama receipt fi a pulse of onera itrn objects of knows location. This It

' •J ,•. ., ... done "t4 h ranging radar, laser range-findere ind diatanre meoourissg wquipaentm.

(b) Differnce between time of arrival of palses from different tra•smitters with knono lcoation. this io
um with 41i1ti131 LMRAN, sad cugas sad proposed e1t6lt6 pavilatlwn systeem.

(el) Intsreted Doppler shift data to provide the change in rfange to a reflectinl or traneuittit• target.

to obtain pr eisico in these ireeg,. hinh frequencies art eeployed, Multiple frequencies can tv used to
resolve emb!umities, In pyrteon, these "e"ors are usually employed with other types of smaviateie sensors sed
a digital computer, With an inertial censor, for @,tmple. desd-reckcaing of vehicle pneitim caj be pqrforisd
betwoen the times at which positlio information is available, witu the advaitage that navigatit data is available
eoot inuomlely.

Angular leforsatima OaL be provided with radio eoutuMont hitnlg directional rdiation characteristics.
Unwinlse of sam& equitment are found is lstrument landisg tystess at ahiports, which provide glide-slope and

t ,p r a •d I from -11e ave;ailabl copy.



besurif. mole eAdieatione to iftlma aircraft. Another eSammie is Provide., by elIlsey7 TAAM sad civilianl Ml.
imap sitatimes. which pree~de ledicatioee of vehinle bearlac with respect to the respect we tisnowlltera. The
Own &smt s vehiale headling Indicator available Is the moor.0tic compesas 'blob provlides heedaAe Information
rebltive to the msmaisel pole' of the siurl..

3. C61IVIINIIIINAL AW41OUNIIS E NISTIAL NAVIGATION 51*1311

L.I deme Q

IbTis seetion reviews tl,o matter in which different caonnrs have boon @splayed in war* ecaveationei augmentid
* ~~iseftial sawvilatics sysemes. noe discussion will. permit & better understanuding c'ý the adnUitaes gained t~,rough

the ae. of cysto. error contrfI~ors based on kalsan theory. shitch are discussed later. To provide this intro.
* dangets., the theory of cperat:om for three augmented Inertial nevisatina systems is discussed, The threse

marleaslim systaso that hats b9%s ewlected are comsonly referred to as Doppler-Inertial. LU.'.4-loortial and

As inertial sensor hap boom selected for sech of the"e system. sinai, on A-piicatinfis of any camp 0.u1ity, the
movidtioel systems will incolode an inertial senror, This occurs b~jsmes the !nvrtlsl bonsor opvwidee the metJ
deME101 form of Information pcoeiblov trough a direct measulrement of accoloIt atn and attitude often necessary
for tUe operation of other nev.gation sensora. The three navigation systems &eleoted illu"grate dist incut sethods
of system operation thrajuah the character of the sensor 1j~o.en in the invirtial sernior. In *eah of the systems,
a somputer mt he assumed to perform the reout red procestime, at meacurewent date to cu~tais the senient ian
"vertohle output$. since the Inertial sensor plarn a basic role in nab system, V'e theory of Its autaneocus

*spooism will be diiwseaaed :irt.

L1 mab hmertaalk Naviatio hlstm gOpration '
Masa Inertial plstfe'. eas orovide output* useful for navigation. the aceelerometer as"c want he made

Meiudt with the orientation samedto is the navigatlie *%Putor. to coot terrestrial navlasticin sopllcationi
a Sosler-tused %iatform Is employed. Is such an inertial system, two orthogonal accelerometers are initillyi~
SUlpad adi than .ciat'iscd In the locel-level plane, A third orthogonal accelerometer, if Wed. will then be
Mosielit with the locnl grevity vestnr, The maintegisnoc of mayj flad platform crietst ior with respect to

'.1Um Searth requires rotation of the platfurm with respect to inertial space to compensate for the rotation of the
ea" with reepoet to inertial spa@e and amy relative aniular rate of thsage of the geographic position of the
in'g'owrivehwils. ?1he uleisth of the platform Is noficed of the angular rotation is the level plea of at of

2 the level rectlerometera from the locai north line. We will sassum that o*e of the level seaelirctootere to
* aimmy poiuted earthward, reewltlee to chat iIs known the ncrth-slavol platfterm mchsflis~iin.

W~e the platforim Is ailluMd, the accelerometer orientatioa "tunued In the navigation computer allows the
@steld spteii force oassectnots to be processed to yield useful navigat..an information. wor terrmestrial

**1 ms~Waropll ., vehicle velocity san poaltine with renpe~t to the coordinats traes offixed to the north Is required. ( -

W derive this Information frm the accelerometer inputs, acceleration with respect to inertial sr&,% in firs.
oblaimid by salstrestims the ffute of knowin local gravity from the specific force measuremeto. Ie dertvrmtire
at vebeli 1velocity with respect to the. earth. laken with respect to the accolerametor coordloste creten. is tbe,'

C ~obltoie by lemoving computed coriollw acceleration cocmponents from these Inertial acceloratkoos, The Coriolis
"satueration coomruemts are deponlont on the velocity and rtotetoo rate of the accelerometer triad with respect
to the oath and the rotation roei of the earth with reipmet to inertial space. The resultlae throe derivativesi

(Yhj 25e %a *~ I(Pha' Zf5  (A'Z1ve)euzu

"VI - aC x v s - " sie e

,1 I I

'I.'m0 aWe specific foroe mscnithdes measured by the tsec, north and vertical oi'celeriewro,
respectivealy.

are computed components of vehicle velocity silt respect to the earth along thes local eat,
earth sand vertical geoograpLc sacs,. respectively;

L~ss6 are the Insantatneous computed tUamponents of angular rat-3 of tho local geographic ties with
respect to the earth about the east., north saM vertical axes. due ta vehicle velocity with

* respect to the earth;

W se the compete' componests of the saplala ret#s of the earth with renpoet to inertial spaec
* ch~abot the local north and vertical &sos (cote o, Z0

eo..pdce a !

C~ ~ ~ ~~~~~~~~~~M -. - .Ijjmýbe~EX'___________
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to the 4MO Mftitde t ofh1b local gkA.hob gravity vector aloga the lowal wertleal.

So bubsed trmsa h right side of Unutires (3.1) are the Coriols acoelsratiom ompomeeta. latesr&.
OWN of thee deri"VIG.ye which are with respect to the local geographic coardinate wyatesa, yields the emeuated
"louwe of veblele Wooelly with reopeen to the earth exprussed Is &lo~e gewsrphic coiordinates.

The *canpted eamposeuts of relative maedlar rate of the local geographic eonirdisates whome added ae cmpute.l
tool oarth-rato componenst are euslopod to rotate the atrom it. inertial space to P~imtsaf tie ioeal-lovel.
eorth-selaved attestation 6f the Dla91Mi. The relative rates are obtalsed fram thP pojpeatel velocity componentsa

Pat 0  Po ton ta 06
where &~ S the comptl'sd .crldianal radius of the vart'a sand M, to the cooputed normel radius of the earth.
r"e einputd local earth rats goag aeta are obtinimd by projeetiao the @a"t rate aibuut the pole atc, 'be local
North "Ad vertical alseo:

The SIMPutie aasusu.- rate of cheese -,f the Plattars orieaitatloa with respect to inertial swisaeL thean

go setual saepuler rate of rotatlns of the platfor, with rospe~I to Loert iai space diffire from lqustt-se (3.4)

IF tt IStua flctlot due to errors is the platform aros:

is he OMPAW 100ar 'St ofchoe@of the Platform with rac oI~ta w xrse

01.1.1) aeso ateoatorrerenigesoeraliged aro drift rtte w~th respect %tt inertial spaceIexpressed showt the Uwa1 Geographic sees,

The final atop in~ deteralmins the navigation variables Is the cowoutstion of veiiola prioltioi In the earth
*aordiaeto froms. Let itudq sam longltude a.rt computed as la,tegtala of the local relative ancailar rate vector

* IdSmNOMetl about the l-Aal east bait @Ad torrdatrlsl p01,q respectivelY. Attituade Is obtained 64 the integral of
vehicle VelodItY With respec! to the werth &Ions the local vertical ais:

d
ji 51 - W

vehicle alh.I ae

AbokdisgrafhIllustrativsng mematicalLy the 00sal'uatlga at a Srholer-tunsd. north-slaved. tree-inertial
moiaissse eie ySulos(3.1)-(3.6) Is shown to Figure 2.j

'4,1''-P'4
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rho afvtieete of we11056 in Inertial sabieor derive from fbO evellabilItY of Vehicle attitude iaforeation
from tm platfoer global@ andf dywiicully-exact chees.. Is vehicle velocity obtainpd Iran the aroolorinetiv
BiMMUlinn. These type@ Of Leforostim are U31111l17 meesaary fee the "oeration of other stoniais subeystess
Is U0e Vshielf. he win draw~ama in employing an Inertial systems for eutosomsou aevlastlea '.a that lb'i error@
Ps blatfora attitude and stmog.'e4 vehicle petition and velodity have oscillatory behavlar. Stochaeticonele
eeiarme will therefore sause eastauaded diverdeceu In these ,v,'ors as *he Operatings tim iucrveea. To retain
the volushie featuresg of the Inertial 4ystoom oterotire while coust@I5.Oties the diverisut wed oscillatory error
eharasseritlte. other stsberd have loma Ianoilcratei in sahisatlon @Yoktas ti obtain bammde am fthe Inertial
aysles grrrew. Themse au1ilary soops measure aa osedmpmanot of poeiltoo. th.. rats of ef-ugp of position or
sagulur erieutatios. Mote the arror Is this @easoured variable is esasrall, bassided, at leats a bound is
"Sea~sed for the relevant leertialvsto etesrror to the iotternted r evigetiuna sytem.

Asaprpreciation of the campleslty of the augmented Inertial uavigation asyses design problen Is geined through
ma *sassisakiu of the oeluatiosa doereibins the errors in the leertisi system outputs. A r"eariptin which is
adequate for bost ADPpl.atioos is oktained with a set of nine time-vartamt, Winier di floetetisi equat'ouls with
etehoastie &spots. Thee* vquatlom, oa" be obtained by diftertacloa the sets tef SqUat iwia 1.1i), (4. 5) sand (3,O)
frnm these ame equations espresand in terse of only true velugo of the variMles Invalved. by then Introducing
the ef fects at errors in the noeleromme,'ro and Cr.., mad thee by ignoring "tenod-order twra in the error
varieblee.I I

the variables %need to repreprent error In the loertial asrimstlar @yet@:, .re defined me Wolou. where the

true valves of the ttiblst questilon are double subscript id'~ie

aree tNo er-r I,

Imputed apparnetgrvt ol .

Pros these definition the follosino errors in Ii,. computer rate of Weida"io of the loed peooemphi asoee

%ith respeat 1to s the rt an d optderhtt bu 4sr 4vetclha r eie ofrtodr

to, fg - P 1v5No

So& LOU -~ P']u g,

The first set of differential equations given below deseritipp the angular devistion -f 'he arceleraseter
eoodiante, sum from the l.a socarsphic coordinate moss, This platform attitud6 error is obtained by Integra*

tIn -110 differeseetotl iaotmteatosne rats of rotation of the actual Pletfoe mand local go~rephio 'ioordnaste
frame, tboee. or~ors are dofi-ted by the three lifforectial aqustiava:

asee ~ ~ ~ ~ ~ ~ ~ (h with 4p. be nts'llgoabe ~ f~

dt

'*)*+ be\ . .* 4..I )
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TheO second met of differential equations describes the propagation of error in the computed values of east, ::~ ~ ~ :
(Svg ~ ZN - + Ve - [iP.+l1hnlw 0 Vz E p + Nas + 4 '

+ ESP + 2&)0 "VN + [P + 21bm

D tvm'] C Ia - t's'1 + V- ESP + 26N ]'Vo - (P + l1SVI. + ,

+ Ip 0 V~* P 5 V 1 0 (3.8)

% %
+1P+28flJ~cV, + (P + 21Sc

Sare. stochastic functions representing genoralised measurement eror %ntees, ot
ve.rtical accelerometers,

The final set of differaintisi equations describes the propagation of error in the computed values of vehicle
longitude, latitude and altitude: 4\

dt

d. (3.9)

7t"[be] O~lo n.,

A block diagram Illustrat ing the linear error model of the level channels of a dohuler-tuned, north-slaved,
free-Inertial nlavigation system defined by Equations (3'l(,)is shown In Figure 3,

Due to the stochastic, time-variant, multi-variable form of these error equattiOns the application of classical
frequency domain and root-locus technique is not effeotive for error controller design unless assumptions cash be-
made whieh simplify tihe equations., In most applications, such assumptions result in constraints on the manner ~- ~"~\

-' ~~in which the eystem io aoprated, For example, platform alignment mochanizations have been designed with classical .' ?
approaches, assuming tirne-itovariande and minimal coupling between error variables. Such assmutptione are only --

wi ~~~valid If the vehicle undergoes ito acceleration, which constraino system operation significantly. since Kalman ,.-'-

theory adoemmodateii the time-variant character of navigation system behavior, only operational conditions which , (.a''
"4 ~~require a non-linear description of error behavior need he avoided when this approach is employed, Most dosign 4 *

efforts using Kalman concepts for error control deal with the minimization of mechnrisation complexity that can ' ~'''
be obtained for the givqn system performance requirements, Digital computers are nsually required to deal eith%
this synthesis problem effectively, r' 4"''~~ W%

The Introduction of Kalman theory hats helped to change the viewpoint of analysts in augmented inertial navi-%
gaticn system design from one in which variouis other sensors simply aid the inertial sensor in performing the N '*.%' %
navigation function to one whiere each sensor is regarded as a sourug of information available to the navigation ~ e ~m
computer to be used in deriving vatlues of the required naviiation variables, With this new viewpoint, the 4

system outputs at any Instant of time, regardless of vehicle flight dynsmioe or intermittent availability of data ~
from amy sensor, can be optimal in the sonse that all Infcrmation hats been fully utilized. This complete absorp-
tion of sensor dats is realised through the use of correlation information contained in the system errnr -

covarisicos matrix, The cat of this matrix as a basis for measurement data mixing Lin Kalsan filtering constitutes .Z~
the unique and novel aspect of this design approach, .,..-

When Xalman theory is applied to terrestrial navigation systems, the covarianee satrix is propagated in real-.\ .

time in the system. computer, -due to the %inprodiotable naturo of vehicle maneuvers &ad navigation sensor data
availability. As a consequence, the instantaneous statistical state of the system, reflected by the covarinoce ~* ,

matrix, to always available tc enable optimal utilization of now s*ensr measurementd, in following sections wef~
will describe the manner in which Klalman filter concepts are employed in error controller design for otugmented 5 ,
Inertial navigation systems. For the present we describe the manner in which different navigation sensora have' .

been used to control inertial navigation system errors with sore conventional system meohanizatione.

3.3 Dopgler-Inertial Navigation System operation

In a Doppler- inert ial navigation system, the sensor which augtseints the Inertial sensor is the Doppler radsar.
The Doppler radar oseasons the frequency shift betbeen a transmitted and reflected radio wave, This Doppler
shift is proportional to the speed of the vehicle with respect to thai reflecting luriace along the direction in -which the bean of energy is transmitted. Doppler radars have been developed which can provide three independent
components of vehicle speed. These components are, however, expressed in a coordinate system related to the -

1.s4 '



Doppler antenna, whosm orientation to not known with respect to the earth, Consequontiy, a Doppler radar
* I , cannot perform the navigation function autonomously, but reqiuires that the Doppler Antenna be stabiiivose

mechianically or comnputationally using Attitude Information provided by an inertial platform or some other .. ý "
orientation reference, Once the stabilimation of the Doppler Npoed msasuremento is achieved, vohiol.t velocitty~
with respect to earth slom the local seat, north, and virticsi ax*$ i. known, Allowing changes In vehicle '- A
position with respect to the earth to be obtained from integration In the system comiputer.

The errors in the determination of vehicle speed In anternna coordinates from the Doppler frequenoy shi ft are
due teo various equipment calibration errors (e.g., antenna temperature shifts, boom mi rlotIisninenta, eto.) and the o ', , N ,

statistical character of the beam reflecting surface over which the vehicle travels. nn'the beam has finite '

width, for a given vehicle speed a continuous spectrum of Dloppier frequency shift informattion is extracted from r: ,

the reflected beam. Thu controid of this return iN usually ti-aaked and a scale Assigned boaord on nominal opeurat.
Ins conditions, If the character of tius reflecting terrain changes markedly, the semaiged scale fintor will be,
in error, Most of this type of difficulty in using flojpler radar occurs over' water where the surfaco smoothniess ~ ~ I ,

distorts the return spectrum, Such problems have been solve(d to smoue extent by board lobing. Over very smooth V
surfaces, however, the Dloppier radar output cannot be used, as inmufficient return energy is received, Autonomous *

novigat ion eith Doppler radar is Rals dogradeil in over-water operation when surface currents exisqt, Without an.ju*-
independent reforenne, nanvigation with respect to the smoving surface rather than the earth takes place. The .L

important characteristic of the Dloppier errors lIa that they call be expressed as bounded fixed fractions ofte
vehicle speed acemponents. Consequenitly, the errors Lit the Doppler speed components, expreesed along the pafr

otiefrmthe inrilsse ilrsl nasystem which has error coeponents along these aizeswih r
lessthanthebound@.

* ~In a conventional coupling of the Doppler and inertial datal I, the velocity componeonts obtained from each .

sensor, or other suitable independent functions of these variables, are differenced from each ether, ar ' ,*4

*sufficiently small errors, these differences can be expressed as a linear combination of various errors associated4
with the boppler and Inertial sensors. These signals own then be fed back to correct or tompensate the different
mourems of error in the navigation system, Thi eventual desired result Is the reduc 'tion of error in all the
navigution system outputs, A block diagram Illustrating a conventional ground speed and drift angle damped north- ~ Y
slaved inertial navigation system sechanizittion is shown in Figure 4. It can be seen In this figure that the
differences between predicted and Doppler measured ground spoeeIand drift angle Aar fed back through gains to 6
correct the computed north and east velocities and alter the computed platform spatial rate components,.'I ~

* 3.4 LORAN-Inertial Navigation Bystem Operation

:n a LAAAN~inertLa1..naviaation -systems the data used tosougment -the inertial symbem In IMerformingx the navigation %
function is derived from a LORA tioe-difference roceiver, LONAN employed as an autonomous navigation system * I~

provdesposiioninfomaton olyThe position is derived from measurements of the difference between the local
provides~~~4., poiio nfraionlN

time of receipt of pulses transmitted from stations at knowin position on the surface of the earth, At least three
stations are required if atcmplete position fix is to be obtained from LORAN, Ono of the stations, called the
master, transmits the flint pulse, This pulse when received by the two other stations, which are called slaves,
Is then retransmitted. Upon receiving the master pulse, the LOWA radio receiver in the vehicle starts a precise ,, -

clock which measures the times until the pulsee are received from the slave Stations, The constant differenno
of the distances from two fixed points defines a hyperboloid in space with the station positions as the foci,'
Consequently, the time-difference measurement obtained from a nester-slave statica pair will locate the vehicle
on such a surface, Assuming the vehicle in near the surface of the earth, a line-of-position is defined, When '~ ~'
a second time-difference measurement creates a line -of-position which intersects with the other, the position of .,

vi ~~~the vehicle Is defined, The reason that time-difference Is measured in LRaw, as opposed to the tiew it takes , %.'~' *~.r

a pulse to travel from a station to the vehicle, is that there is then no requirement for precise synchronisation .'* -

of the vehicle and station clocks with an absolute time standard, If precise synchronization were Achieved, the . A'

derivation of range to two stations, using an absolute time standard and a time-of-receipt receiver on the

vehicle, would auffice to obtain a complete position fix on the earth's surface,

Irrors exist in the determination of true tims-difference at the vehicle for a variety of reasons, including . % :: ..
synchroaisation error at the slave stationls in puase retransmission, ambient receiver and atmospheric noiese and .. ,

local radio interference near the vehicle, Another important source of error is that'associated with the lack ~ .,

of precise knowledge of the speed of propagation of electromagnetic energy over the earth's surface, This in
* cause 'd by stochastic variations In the propagation path definition, The result is an actual time-difference ,,-.,*P.

grid which is distorted relitive to that predicted using soodetic date only.

The Important characteristic of these errors in the us. of LORAN in aiding the inertial system In navigation i 4 * ' ~-
is that they are bounded, Hence the error in position obtained fromt the time-difference measurements In areas
of defined LORAN coverage sill serve as an upper bound on the position error for the navigation synstm, Proper ,'.. *4,*.

mining of position information from the LORAN and inertial sensors can result in less error In all system out- ~ ,

puts than could be achieved with either sensor operating autonomously. n '"~

.1 Int a conventional coupling of Information from the LORAN and inertial sensors, tine-difference predictions A
derived from the inertial system, or predicted geopraphio position information derived from the LORAN measure-
ments, are subtracted from the Appropriate variable from the other sensor. For suffiociently small eurore,%
this difference can be expressed as a linear combination of errirs associated with each of the sensors, Conas Z
quently, as in the Doppler -inertilal system, the same basis exists for the design of a linear feedback controller *,. ,.
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to reduce thte orrora Lit the outputs of the system, This bania has been exploited in the post, where tinie- %~'
Invariant 'vror control mechanism' hWe been designed. Those mochaiiisationa are usually far frnin optimal owinig
to the forsmefltionodl limited applicability Lif the time.linvariance assumptioni for the inertial error model, an of e'4.-.@44
well its to the varying quality of titme-difference data as tho vehicle moves through a L~ORAN coverage area, The
une rfr Kalman filtering concepts In the design of such a navigation system offers great benefits. we the time- '' 4

variant behavior of tho error can be accounted for automatically on a real-tinis basisB..' .

3,5 Aatro-Inertial Navigation lYat~e Operation ,

The final navigation syatem to be disousaid in one In which a atar-tracker is employed to measure, at the
*vehicle, the angular orientation of astronominal bodies itub known colisstiiul position. Like the Doppler, an

aetro-tracker cannot be employed autonaminuaiy to determine vehicle position., Ati attitude reference with known
orientation with resptect to ani sairth-fiiied coordinate system must be provided to allow an interpretation of the \M1 4

sighting angles. Normally, the opticial sxls of the tracker is oriented by alewitig it through bearing and2r
elevation angles, respectively, from an Initial coincidutnce with the local north lime, An astro-tri'sker unuially .'4*,

incorporates o. detect ion and servo-moolhaniam systeit which drives the telescope elevation and bear'ing glimbals 4ý

until a detected light source resides at the center of time field-of-view, Whem this is achioved, measurements 0 . .

of the bearing angle from the local north line In the luocl-level plane, and the elevation angie out of the
local .level plane, can be read directly from telescope givibale.

In an automated tracker system, the optical axis Is tiret directed tti a point in the sky where, based on the
computed vehicle position end known celestial poaition of a'star, the star would be expected to be found. .~~4. /

Bcueoerosin the copted vehicle poiinand the atiuereferenoc sd the star will deviate from %,
the center of the field' of-vise, The errors in the initial pointing mange ca" be determined by cernterimg the ~ . '

star and vseaurius the changess in the telescope' a angular oristmtatiort, 11 the angular errors in vehilel position
and platform attitude are sufficiently small, the pointing anfls errors can bit expreessd isa linear combinations of '' 1 ~
these errors. ' or example, elevation and bearing angle errors could be linear functions of the errora in
computed vehicle latitude and longitude, platform azimuth error, anid the platformi tilt errors about the localL
north and east axes, These causes of pointing angle error can be expressed about axes of an orthogonal coordinate
system which has one axis coincident with the optical axis of too tracker, Mince the initial teleoccope orients- '"

ticam error can be expreesid about a&esm orthogonal to the iino-of-isiht axis, the atisular error component along .1-%
the telescope aisl is unobservable. The errors in the elevation and bearing angle measurements due to the %..I4"
tracker system itself are bounded, These errors result from mechanical misalignment of the telescope, electrical ,*"

bias and nolase in the nulling control loops, and environmental effects, such as the index of refraction of the
atmosphere, ~~
ts a omnvemtiqnsl ast,,o-inertial system, where the attitude reterence Is of high quality, it is usually

assumedi that no error exists in the plitform level, corrections are then made only to the computed vehicle
position and the asimuth orientation of the platform, Usually in a star-tracker system, sequences of stare ''n *4
are shot to determine vehicle position, After each shot, residual error exists about the most recent line-of- :h
sight, uulees stare with orthogonal lines-cf-eight are available. Conventional mechaniwationa usually do not %',,
capitalist on the relative orienitation of the lines-of-sight that exist in a star shut sequence due to the -,. -.---

* ~~bookkeeping involved. By automatically accounting for then optimal use of all proviotis meseurombrnt data, Kalmsen t.

theory offers a much mure powerful approach for obtaining error separ'ation for this navigation system.

4. PRACTICAL CONNIOIRATIONS IN USING KALMAN THEKORY IN NIAVIGATION SYSTIM 0191ON ' 4m*- .,

The successful application of any method to achieve real-time error control in mult.!-senoor navigation systems -

requires un awareness of the constraints Imposed by the actual hardware available for the system mechanization.
4 ~int measurement rates and aceiputation error resulting from computation equiumezmt and/or computation algorithm '.

obaratotristics !ý..t he determined to establish the efficacy of any error control concept, In the following
paragraphs, the '.Aioations of the characteristics 'of navigation computers and sensors on the implementation 4

of an error controller based on Kalman linear correlation theory are outlined, %0..~,-'

4.1 Digital Compustatione- -

In the past, conventional augmented inertial navigation systems have been mechanized using analog computing
elements. Such aun approach is adequate for very simple mechanizationn where otringmit requirements for comptuts-
tiommal accuracy do not exist, More recently, the saJority of saumented inertial navigation systems have employed.
various types of digital computing elements (e.g. , general purpose and digital differential analyser) to
accomplish the required computat ions, Some of the advantages encountered in the use of thdse digital computers '

4. ~~~are capability for increased computational precision and flexibility In implementing logical functions, The.*-....-
current trend toward increased proceasing rate, and greater storage at reduced cost Is an additional attraction. *. -. *'* '
The disadvantages ineurredi in digital computation stem primarily from the finite rate at which logical and
arithmetic operations can be performed. Theme finite ratee generate requirements for the use of computational
algorithms to accomplish mathematical operations. Computatioual algorithms cian, however, achieve only imperfect
realizations of the doearsd mathematical operations, The moat familiar, and probaikly, most important, of thales .

operations in practice Is that of Integration, Genurally, an error control mechanization for virtually any " '

'4~~~' 7 5,4*~4
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formulation with the discrete seasureieneta made at a finito rate. However, in tho limit, thu iirymon-liqnirikmon .

filter Converses to the PrytioniJohatisen filter, while the augmented ittmte formulation is Nei. lietinne. With .---... '.- ---

continuous absorption ot mentsor data, possible for the Came whore only correlft~ed noise exinti. in the sensor
measurements, the augmented satte formulation with discrete observations will be comparatively lean optimal. . -.

Resultit obtained by tiryson, Johansen und lienrikson imply thtit, on the seenso Miionlilog rutte in inaraneed, pur- .. 4'
formance achisvotd with the augmented Ktote formulation willA tend to the thooretical optimum obtained by Bryson ~
and Johanson, until comnputational Instability is reached. This result has been demonstrated by Hischel",

Iftefounisascae with the difference of a sensor mnasurienot cod the predicted value of thvit %V %.': :
meaureentbasd o sytemcomute naiguianvarabls ae lng ithresectto the measurement sampling

frequency, then there will be little benefit in foster measurement tiampling. In cruise mmnvigition system
appliciations, the sensor sampling intervals velected are seldom much shorleor than the Correlat~ions time associated '

with the highest freqiuency nolee. ShorLer Riumpling periodst have little utility except, perhalin, during the
time when the inertial platform is tieing aligned, During this poriod, error deviations in system position and %.\. .4

individtuil Information pvococsning proceduron. If tl ene time 'constants are long, significant dyne~mic error canll

associatedi with the augmenting senstor, This has been demonstrated in conventional LORAN-inertial mystems
5,,,l,,q*,.

where tlis rats of change ok time-difference has been orppleed to the LORAN receiver from the inertial mystees, 61
Iuch a mechanization ralieves the receiver from the task of tracking dynamic Changes in time-differenoe, at ' .. ~.% ~ 1

least to the limits of the inertial errors, thereby commoitting it primarily to the teak of separating transmitted . ' %

information from noise, When thia is done, long receiver time Constants on theodramnyscdsa h
retained.,6

toI some cues, the additional design complexity implied by such am approach may not be desired, What is done
In these situations is to select tins constants which achtieve a balance between stochastic and dynamic errnr in '1 4 ý 11
the sensor processing design. In Doppler-inertial navigation systemsN, the time constant of the frequency shift 0:> 'A.~
tracker in the Doppler radur can be shurt, on the order of 0.1 second, The p~urpose of employing short-time c: N 4

constants in the detection process in to minimize the dynamic error in the variable being measured. When short-
4time constants aro used in the sensor filtering networks, a systemn correction utilizing the Kalman filtering **

equations at comparable rates may not be achievable due to allocation of computer times to error control. When
this occurs, meihods mush be devised to minimiae the information loss resultinga from the slow sampling rate, .

The moot popular technique for sinittasieg this information 105510 requires at high rate of comparison of the
snomesrmnsndtepredicted values of these mosaxurements, These differences, taken at the desired

samplngr reducabe inethed random a sesrnoise in r thsmeroro ifrecthrbhi oing bewe ytmcreto nthe s rlTive inform-P
4.' fiamlteing ratl educbe tnsertedo sensoar nie- inthis errr s dtifference, sythereb imprcoving nthe rltive infrma-
P tion content at the system update time, Note that this scheme does not introduce dynamic error in the sensor

mesrmna nyteerrdfeec nomtonttesqec fwhole-valnes measurements, Is being S- 4

41 error used for system correction in improved,

A first-order representation of this pre-filtering approach is indicated schemnatically in Figure 5. Here
predicted values, m , are diffarenced with the raw measurements, mn These differences are weighted with a
filtering gain, kt , snd used to update a summing register, At the system update time, the smoothed difference,

7,is weighted with the Kalemin gain to obtain the system correction. Thes umming register is usually zeroed
jwhenever its contents are used, L.& 0"t

The principal characteristic to investigate beifore employing such a mechanization, is the degree of distortion
- ~Imposed on information passing through the pro-filter, Unless the pro-filtering is modeled in the Kalman tormu-

lotion, the actual error uharactieristics differ from, the modeled error characteristics. In augmented inertial
navillation system applications, serious distortion will usually only occur during platform alignment modes. For
thesem cases, an analysis of the distortion of error signals due to platform attitude error due to pussage through .*

the pro-filter should be mader, Workable love~ls of distortion can be obtained with an appropriate selection of Ila.
~~~ ~~sensor and pro-filter time Constants and the system update Interval. . ~ ---- -

In this section we have considered some of the practical problems which arise in acitually implementing a
-, given error controller in the nikvtgoticn ..omputer, In augmented Inertial navigation systems, digital computers,*.

4 ~~are required for the complex arithmetic and logical operations associated with a Kalman error controller, Real- * .,

time propagation of the system error covariance matrix is required to accommodate the real-.time dynamic maneuvers
of the vehicle and the poosibis internsittencr., and variation in quality of sensor data. Finally, the reasons for ----

finite discrete sampling of sensor data for system correction were discussed and a method tar minimizing informa- ... * - -

tion loss was noted. In the next section, am approach is presented which hast been used to alleviate same of the V .. *-'.-

computational burden Imposed on the digital computer. This approach deals with the synthesis of the error
controller rather than tho toohniquoi described far its Implementation. .4--'
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5. *VNTIIESIS F~k LINEAR EURJR CONTROLLERS USING KALMAN 11IE0RT

5. 1 General

Th. control of error in any system requires a definition of the sources of error and their dynamic behavior.

aed white-noise driving functions, it is a simple matter to diroctly apply KIleimn' R filtering theory for the
control of these errors. If the model in znon-linear, aither a linearizatian must be made or a different control 'i

algorithik must first be employed until the orrora arc reduced sufficiently for linear behavior to be realized.

The linear differential eqoatiois describing navigation system error are forced by stochastic functions,
These stochastic drivirsg functionh have various degrees of auto-correlation, ranging from biases to essentially
white Doise termse, To. devise dynamic models for such noise errors, correlatiou functions arn derived from
empirical data o~tained about the noise sources, Linear dynamic systemn excited by white noise are then synthe- %¶-
sixed from an anal~ysis of these describing oorrelmtion functions to represent these error sources In the total
system &rror model. Thus for multi-sensor navigation systemsn, Information which In available about errors usually
results in the dofinition of an extensive linear error model. The application of Kalman theory employing such
error models results in significai~t computer computation time and storage requirements. To reduce these cociruta- .A.----

tional requirements, various methods have been tried In order to find sicpler error control schemes which atill1

the complex error model itself to determine what simplifications can be made to reduce the computational burden,
In this approach, one employs to advantage the fact that certain error components and dynaenic interactions tend *.. ,-1

to dominate the error bonav~,r in the system outputs, This approach of simplifying the error model to reduce
the computational requirmmaots is Important, because it enables the analyst to use his experience directly in .

determining the error controller design.

5.2 simplified Limear Error Centroller Synthesis and Evaluation

Since the- error model plays the central role in the Kalman linear error controller, Its simplification yields
a natural method of reducing the controller complexity. Oeaerally, the idea Is to retain. the more dominant

* statevariables &And their dynamic interaction to define a simnler error model. To be speoific, three stops are *, **"4

inowled In this design simplification. The first atop is to reduce the dimension of the refined error model by r
deleting those components if the error state vector which are felt to contribute least to overall error in the.

uable moystem outputs. The second step is to eliminate dynamic inter-couplInas b'uteeen these retained state
vralsjnhioh contribute least to the definition of their behavior, These two steps amount to obtaining

simplified differential equations describing the more dominant state variables of the originnIl error model, once
tm steps are accomplished. refinement of thepropoed -filter -based on the simplified error model Is made..• . -

Thoe: parameters are selected so as to. compensate to some extent for the simplifications made in the preceding
sto.ps

To determine whether an error munel simplification or parameter adjuftmhnt Is appropriate, the effect ano

overall syrtr a perfortance must be adcertained. Since the systems considered in navigation applications are
highly complex, little progress in making such determinations can be made in a pimpl say analytically.,
Consequently. digital computer programs #hich provide either simulation results or iolutions to complex arrays
of snalytical equations must be employed in studying such systems. For general system studios, Monte Carlo
simulatioa programs have been applied with success. Usually, however, in applying such programs a large ~
number of runs must be made to obtain precise results. Precision Is required in this synthesis problem. as the .4Q
exact statistical effect on system performance due to a design change must be nowu for desion decisions to be.

T or the case In which an adeqaate representation of the system can be obtained from ia linaor error model, the
following approach has proved usetul In determining linear controller designs which are simpler than the
opirial. This technique will be ninu:sesd for the design of a Kalsan error controller based on a simpler error
pel a tfion tesystem than the reference error model. The Kalman error controller impacts on the system error
4, p ropagaion aupdate times, which occur when a relible comparnson of data derived from any two independent %
sensors cdes rmade and the hastem computphsuie time tod erform all computations required for updating.

etoon thequrepdate Iantants. all system errors propagate freely from the initial values resulting after the most
oeet systhem eupdate. Between the system correction tines we assume that the actual system error behavior so
dwrbe d by errthe linear vector differentlewation

d , - , 4b

shere tt ofno

", t) is an c-dimenrional vectr, describing all system errors which hve Initial values described by the.

covariance matrix:

AM Is am n n xr matrix defining the linear dynamics of the errors in the refined or reference error modeld

4 1 1
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* 4(t) is a zero-meen, white noise process, where

*~)( E[,tx(.) 7-

With this notation, a well-known equation? describing tho propagation of the covarionce matrIx corresponding % ..

to the system error x(t) is%

d CYt) A(t)y(t) I+. >(t)ATft) % ~t

Whenever an update is to be made, it is assumed that the compIarisonl of data from different sensors results in a
* linear combination of the errors x(t) ,plud tin additive white noise component. Thus the error which in actually

observed is defined, in terms of the variables denoted below, * .

y(t) 6- H(t)x(t) + 77(t) (.3

where >~.,-*

y(t) is the in-dimensional Rrror differencoe which in actuolly' observed; *

H1(t) is an m x n matrix describing the linear inter -relnt ionah ip of the n-error components of x(t) entering

into the observation error:
?I1(t) is a zero-mean, white noise process, where *.,

When am update Is executed, en n x m gain matrix, Kft) is used to weight the vector, y(t) ,to form a
correction vector, o(t) .This is then iritroduced into the system to result in the following change in the
current system error:

where

x'.(t) is the current system error before and after the update is made, respectively:

C(t) K (t)y(t.) 1s sn n-dimensional correction vector; 4

K(t) is the a x a gain matrix used to weight the observed error difference, YMt

The transition of the covarience matrix describing system error upon update is given by the well-known equation

r~t) = - (t)II(t)]r(t)F.I - K(t)H(t)J T 
+ K(t)R(t)K(t)r 85 *'~.

%her# 2*'(t) is the covariance matrix before and after update, respectively,i .\:A ""

For that oase in which the optimal linear controller with respect to thw error model is implemented, the
optimal gain is given by the well-known equation'

K*(t) 0 Z(t)H(t)?[H(t)%'(t)H(t T? + lt(t)V' 5.8

The use of the optimal gain %*(t) ,allows Equation (5,5) to be written in the simplified form

Our interoat here is not the use of this optimal mechanization, but rather one which is leest complex, where the
reduction in complexity results from a direct examination of the system error in Equation (8.1). With this______

vectr It) ofreduced dimension IT, a 4 5 4 n-, Is obtained, The analysis then examines the subset of elements
ofteerr yaismatrix A(t) , which describe the interaction of the error components in 1(t) . Elements .

othsaboitdportion of the matrix A~t) uo~t* felt to describe signifioant interaction of the components .*.,

of2t r hneliminated. A new dynamic matrix X~t) .o dimension I , I cain then be formed ofth
reandeeet fA~t) *The next stip~is to determine whether-the disturbance white noise process, I(t), -

migt e mdiiedtoaid in deciigthe actual system errpropagation. Usually an increase in the mgi
tude ofthe etanedwhite noise components is beneficial. in that additional uncertainty is artificially
intodued ntothesimpler error moecompensating tacsextent for the ireduction in uncoertainty ta s.........
assciaed iththeelimination of error components in obtaining 1(t) from x(t) The final result is then

a*ipe ro oe described by

it

I~)i h -dimensional error vector (m~ 4 a ):

I~t)is he 5x Idimensional dynamics matrix for the vector I(t);

C i)isa f-dimeanional zero-mean, white noise process, wherni

%** %*,

P a -5 -,
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T lealteeuto descriptingo the oropavation poesr ,ltgfof the usarane ma trierror reonde ingt Equation (5 .8) is~ .. ,.. .-

= It)(t +~t)(t~ +~C) (.9 :. 4% " .1.
The decriptiohngeof the smlfe observation prmasu tri x fromthe isn ob thied brrormodeling onlutiose (l.8) nis in.'
H(t) involving the error components' rotained in 1(t) . Again to compensate the reduction in the uncertainty

Ndue to elimination of error vector Ocmpoaents, the white noise process. 71(t) , might be modified in obtaining %,P~w w
a model of observed error. As was done in the case of the disturbance noise pruocss, the mugnitudes of the ' .
observation noige components are usually assumed larger to introduce, artificially, uncertainty into the
description of th6 simpler model. The final result is a representation oi the error actually observed in terms
of the variables denoted below: %4h~n. n4

where **~. ~I '-I... ~ ~y(t) is the actual m..dimensional observation vector; 4 ~
9(t) io an (m x 8) matrix specifying the relationship desired between components of the error vector 1(t);

tt) Is a mero-mean, is-dimetnsional white noise process describing additive noise in the observed errors 4
(m% 3), where

(5.'1'r) - Am~ -r

an~d used to wesight the sntual obs4.rved error, the correction obtained for the simplified error model at update Is %.\'.. 4,. '

where 2".*f:)eis the modeled systpip 'the before and after update, repctvlyadat K y(5, in2th

4 orrection 'vector. The tremsiti.on 11th oainemtx corresponding to the simplified error model Is
expoppd fomEquation (5,12) aso

Now thttetechnical details have been presented, a review is In order. First, by assumption, the analyst
Pasbe ie complex liermodel, defining error propagation in Equation (8. 1). and the observed errors in

Irvto 53.for some system, The objective is to design an error controller which, while having the stati-'
aical correlation attributes-of Kalsen theory, has a lesser computational burden then that implied by the

optimal mechanization. The optimal eochanization requires the use of Equations 15.2), (5.4), (5.6) and (3.7).

can be Introduced into Equation (5.1) and their impact on Equation (5.3). The results are the simplified
szprssins (.8)and 5.1). rom these equations a less complex Kalman mechanization is implied, which would

beIpeetdwith Equations (6.9) end (,i)(.1)

Claltesm.t ro otolrrealises poorer performance than that achieved with a mechanization '~

basd a th coplee erormodel. However, the performance loss incurred by using the simpler mechanization

migt b Inignficntin terms of the performance required of the system. The question of practical Importance
which remains is that of detaining the performance loss. The method by which this question is answered is also

% oignalerormodel thtaemade.

The mtobywhich the answers to these questions are obtained is quite simple. First the ultimate perfor-
mae btinbl i dtem~edby propagattag the covariance matrix 1(t) , using Eoquation (5.2), with optimal ____

updaingthrughtheuse of Squations (5,0) end 05.7). The solution for T(t) , denoted 15,(t) , and, in
particular. for the diagonal elements or error variances then serves as the reference against which performance0.......
obtained with amy other mechanization can be compared. The second step involves the prpg ti fth) w

by ~usion(5.). t te udat intans, he ainK*() ,using Equation (5.11). is computed and used in
usin(.1) oult (t) . odtrieteeffect of using R*(t) , which is sub-optimal compared to
t otane y qutin(5,6) onteata ytmerrors, an (n x ) matrix K(t) is defiuad by

aumnigRt utb:wihzrs hn(t oemployed in Euto(5).wihdescribes the effect4
anthe actual system error covariance matrixr thal results from the use of an abtrygain matrix. Compari-

ki son of the solution for Z(t) , denoted as X5(t) and determined In the second step, with the reference
soltio :F(t). otaied n te frstste. tenindicates the degree of performance degradation thatreut

VYthrough the use of the proposed :oaenutationally-loss burdensome mechanization.reut

.44 d
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There is a significant increase in coant of the computer analysis with an increase in the dimension of the
reference model in the synthesis approach described. Therefore. the analyst must often make certain approui.
nations even in the raerernc. error model. To obtain at uidtstblo roleseg model of' manageable dixmenrio~i, multiple ~*
sources of error which enter the system at the smem point can be mergedi ind resrfesefited me single nolise error,
To maintain the integrity of the design results, the statistical charactarltitiei of this lumped noise source can
t. selected to more than account for the multiple sources of error represented. For exanple, in the design of
augme'nted inertial navigation systems, a finely-detailed structure can be developed to model the error in the
acceleraseter measurements or the stability of the gyro orientation. Upon examining this detailed error structure ~ ', ,,

and considering the environment in which the instrument must operate, thre analyst can represent these errors as
mingle sources of first-order correlated noise. With these assumptions used to obtain a sirmple stochastic gyro P
drift rate or accelerometer biase shift, the synthesis trcohiique described could then be usmed to determine 2~~~
precisely the relationships between proposed design innovations and the system performance. i.4

Once a navigantion system error controller is derived with this technique, some question might exist am to the
validity of the assumptions made in using simple descriptions of the Inertial instruments. This question can *. ,.,.,.*-'.

now be addressed in a meaningful manner by employing a Monte Carlo program to simulate the System using refined .**.*.- --

error models and the newly-derived error controller. Accepting th,% imprecision of results obtainable with a
few trials usiug the Monite Carlo program, gross deviations from expected System performance can be adequately i.
Identified at a reasonable coat.

In summarizing thie section, a straightforward application of Kalman theory to augmented inertial navigation .

system design using all information about the sensor error characteristics can result In a design which is %
impractical in terms of the requirements imposed on the system digital computer. A method of obtaining an error
control mechanization which has the desirable correlation property of a. Kalman filter was described in detail,. ,

4*This approach is direct in the mense that it deals with the charactenr of the modeled error characteristics of the j% -i
sensors, A digital computation procedure was outlined whereby this synthesis approach could he utilixed in
designing error controllers for complex syetems. This procedure has been used In the avionics systems industry,

4 . particularly in obtaining the augmented inertial navigation system error control mechanization described in
Section 7.4

¶ 60. INPLEIIENTATION OF KALMAN ERROR CONTROLLERS IN AUGOMENTED INERTIAL NAVIGATION SYSTEMS

6, Gneral

in a previous section, practical considerations Influencing the Implementation of a Kalman error controller '' ,- *

in sm augmented Inertial navigation system were discussed, We now consider the detailed operations which are ~ . - -"

implemented to mechanism the derived error controller in the system digital computer, When the synthesis of ~
the Kalman controller is completed, the design error model for the system is described by the following linear 4 4

differential equation, which is represwnted schematically in the block diagram of Figure 8! 4

In augmented inertial navigation systems, measurements are made at dioeeinstants o time and compared,
withestmats o thir alus cmpued fom he ystm nvigtio vaiabesFor sufficiently ocl ros

tedfe-coftemeasmurement and the predicted value can be represented as a linear combination of error .,.~

staes.ili difernceis called the observation error and is written

Y~tj = 9yi~t) + tj) (6.2)

When a measurement is made the observation error is multiplied by a Kalman-derived gain matrix to form a
-correction vector to update the system; ~f§7.74:

11(ti)-'4 , 1,iy~i .6.3

The updated value of the mode led error state vector of the system is expressmed by

When corrections are used to alter the valpem of the navigation variables within the system, servo -meuhan Iism
cntrol of the modeled errors is realized. The impliuistions of such a mechanization as opposed to the formal %,:-~.~ .

Islam filter Implementatiot. are noted later.

Adescription ci -;he e.rror behavior of the system for the operations defined above can be represented ,*.*,,

acbertatirmii'. iy tho liloch diagram shown in Figure 7. This diagram is analogous to that for a servo-mechanism
whit. utto-1.1- rfo nit- 'he system outputs by feeding linear combinations of these outputs back through the

* ~gal". -" !. 5t.:-K -'hwory contributes to error controller design primarily through the algorithm used to * .
4

.. ,

ebts,..a -ri Y. - it --i. 'the gain matrix obtaJ nod with Kalman theory takes oosnisscece of the statistical state
of 0. . t ;a. represented b7 the ci'varisnce matrix end the quality and type of observation available

,,r state vector chainges with time between the system correction instants as described by
fquatio', i. . " cuveriances of these error states also change. These changes in the statistical state of

q3" 44e ~ ~ *'~-~ -'~* '~, ~ %~'*,'-4-.'. ~ ~ 5~ ~ ~ .* ~,'.N
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the system error can be determined in real-time through the propagation of the system error covariance matrix.
Alternate methods have been derived for pIrforming the computatlons required for propagating thin information [.. .
These methods include direct Integration of the differentinl equation for the cuvnrianoes aid discrete prop&-
iation through use of the transition matrix. Other schemes' deal with root mean square values rather than the
variances of the errors to reduce the precision requirements in the digital comutetion. In any case, the
particular application under consideration and the equi•pent aveilable for system implementation will determine
which of these computational techniques is the most advantageous to employ. Mhn a measurement is made with a
sensor, the correction of the system requires the computation of the gain matrix. When a system correction In
made, changes occur in the statistical inter-relationshipa bet 4Oei the error state variables. At the update
time the covariance matrix elements are altered to reflect the fact that the system correction was made. -

A review of the above paragraphs concludes that the foliowing basic operations must be implemented in the ' '. , ."

system digital computer to accomplish the mechanization of a Kalmna error controller, /""

1. Propagation of rovariance matrix variables between instants of timn at which measurements are made,

2. Seleotion and sempling of the messuremsait data to be processed at the system update time.

3. Computation. based oin the valuen of system variables at the update time, of predicted valueb for the
selected measurements and formation of the differences of these predictions with the actual measurement ' • ,';.
data to obtain observed errors. 0',, -

4. Computation of the Kalman gain matrix, based on covariance matrix values at the update time and the type
and quality of the measurement data. - .".. .. '.

5. Weighting of the observed error with the Kalman gain matrix to obtain the correction term used to update . .
the system variables whose errors are represented in the design error model. '".

G. Updating of the covariance variables at the update time to reflect the execution of the system correction.

The logical relationship of these basic operations is summarized schematicall~y in Figure a. ....

i 6~~~~~.9 Error Controller Configurations •\•.'.•....'.'.

Two major approaches have boon proposed for the configuration of the error control meohanism, In the first . . .

and most popular approach, the system correction vector determined at a measurement time is used to update values " ', .
of the navigation variables and to bias noise sources within the system. This is the basic feedback scheme
already discussed. In the second approach, only the system outputs sre corrected using the values of propagated . • " '-ni*
estimates of the system errors. .*' .

6.3 Feedback Correction ?4A

In the feedback correction scheme, the system is organized schematically am ohnwn in Figure 9, Hers corrections \ . ...
are made to these errors in each subsystem whioh are included in the design error model, The feedback of the , ,r
corrections deriVed by weighting the observed error with the Kalman gain matrix has-two advantages. Since the .. ..
Kalman controller is based on a linear error model of the system. any process which keeps th i s assumption valid
is advantageous. Since proper feedback correction will tend to decrease error within the system, it is adventa- % . .. q*
geous to maintain the linearity assumptlon made for the behavior of the errors. Classically., feedback has been
used to neutralize sutomatically the effect of variations wb:thn a system. This Insoenitivity property Inherent
to feedback systems leads to the second advantage in employing the servo-mechanism approach. The more error J . •,
states which are Included in the design error model, the better should be the performance obtained by the system, -

8  
' .

Hoeover, the basio Insensitivity realized by feedback to the system variations implies that the effect of many ."
sources of error will automatically be reduced even when they are not included in the design error model.

0.4 Output Correction

In the output correction scheme, the system is organized schematically as shown In Figure 10. Here no direct
corrections are made to assumed sources of error in the subsystems. The linear error model equations for the '.',
system are used to propagate the error state vector estimate, A correction vector is then derived as a linear
transformation of the propagated error vector and used to update only the system outputs.

The chief disadvantage of such an approach is that error is introduced through imperfect modeling. This occurs i,. 1.

through two effects, Since error in the system is not corrected toward the null. as with the feedback method.
the assumption of linearity can become invalid, Also, the insensitivity characteristic of the feedback scheme % %
is lost. Consequently, a higher-dimensional linear error model will probably have to be employed as a basis of %..' .' *..

the Kalman filter to obtain performance comparable with that obtained using the feedback scheme. Another dis- ""'•.. '. .
advantage of this approach is that an estimate of the modeled system error states must be propagated. This isn '.. • "
avoided in the feedback meohanization. An advantage of this approach in that improper updates resulting from ,.,. .. '. '.. '. i.

undetected apurious subsystem operation will affect only the outputs, tn the feedback method.sn improper update
can drive a subsystef to an improper operating region, resulting in a lose of overall systom performance.
However, such behavior can be avoided in the feedback method by developing effective checks on subsystem operation
and the mtasured error difference.

V ,,
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7.A KALMAN ERROR CONTROLLER DE.SIGN FOR MUJLTI-SENSOR AUGMENTED INE~RTIAL NAVIGATION SYSTEMS

7.1 General

The Doppler radar, aetro-tracker, IOPA1N receiver and inertial platform are representatives of different classes .

of navigation sensors having complementary characteriatios which can be *npl6yed to advantage in an integrated%
navigation system. The Autonomous and conventional integrated operation of the$* sensor@ hlal been discussed,
The Doppler- inert ial, antro-inertial and LORAN -inertial -nav Igat ion modes are ro-examinod below, using the more ' \\

1:4 sophisticated Kalman linear corrulation theory for moro optimal mixing of the sensor data, The mechanization
obtained is suitable for Implementing any combination of the foregoing modes, icluding the fully -integrated
astro-Doppler-inertial-l.ORAN navigation miode.

Am previously noted, a straightforward application of Klalman theory say not be demirable or necessary in
obtaining a navigalion syntem error control mecharnization: not desirable, owing to the MA~nitude of the computer
requirements implied for an implementation based on a detailed error model of each sensor; not n.oessary, as the
mission to which the system is to be applied may tiot worrant a highly-complex mechaenization. A thorough examnei
tion jot the navigation system requirenonts generated by the intended mission must he made if the resulting
desin i to be out-effective. .

The mission considered In synthesizing the navigation system of this section is termed fmst-reaction, meaning
that accurate values of vehicle Position, velocity end attitude are desired within a short period of time after0.
,the system toac ar, auted -tra~r. Inthis missionnooperation tal res ctison the vehicle should result from any ds.-,
characteinstincee navigatio ,nstem opareot Forothis mission te ,mp: system error control mechantimation
described below was derived using synthesis procedure described in Section 5. The performance of the naviglation
system, imple.ented with the derived Kalman mechanimation, is illustrated for the fast-reacticn mission in the

Sprincipal integrated modes of operation, . ,,

Y h Derivation ot the Kalmni Mchnieatione

AThe straightforward application of Kalman theory to a detailed error model of an astro-Dopplsr-inert ialnLOR I ..
system could easily involve computations dealing with fifty or more error state variables having quite complex 0 ' %.

dynasicinteractionis Ifsa Kalman mechant iation were based on such amodel, corrections would be obtained for
theAounted sourhctes sysequipment an id environmeal ee rrorant wel a s h thy pe system' a navigation outputs. In
addition, through a detailed desoription ofrtbedynamic interaction of variables, error propagation over the %
long-term would be accurately predicted,

Anexminieation of the application of the navigation system to meet the requirements of the fast-reaction mission
results in the primary requirement that the inertial platform be rapidly aligned rgtnardles of the operational % P

environment, Rapid platform alignment is necesseary as the mission requires dynamically accurate attitude and Ie
velocity information, which are natural outputs only of the inertial system, Accurate values of these variables .' \' -
will not he available until platform alignment is achieved, If platform alignment and control of positiot and % ~*~
velocity errors are the principal objectives of the Kalman error control mechanization, it remains only to , .
determine which of the system errors and interactions has esperial importance in meeting this objective, a .ionc
position, velocity and attitude are the required system outputs, it Is clear that errors in thes* variables.,
must be controlled, Clearly then, a minimal mechanization would incorporate at least the errors in these van-,
ables as components of the state vector of the simple error modil.

Plaeethtformalinmedis essentially A process of eliminating high initial values of attitude error and any error
In comuted velsiy or position occurring as a result of attitude error. The existence in the system error
mothel of biases or noise sources associated with equipment or induced by the environment will then only be %
relevant if such sources seriously affect alignment, The optimal control of errors resulting from stochastic %
inputs to a system is usually a problem which occurs more often in the steady-state. In navigation systems, such
error control is of importance in applications involving long-tern cruise missionse requiring extremely high navi-
gation accuracy. Fox the alignment application, many such sources are not likely to be very important and
consequently, can be eliminated in the simple error model. It will be recalled that the loss in uncertainty,
resulting from an elimination of these variables from the error model, can be partially accounted for by ,rti-, -

ficitly Increasing the vracS of appropriate white noise sources in the simple model. However, exceptions to
this philosophy exist, Theme excemptions can occur when the error in question is a long-term noise which consti-0-
tutes a significant fraction of the difference between a measurement value and the prediction of that value :*%'.¶'.,'., -. ,-.
during platform alignment, When this situation exists, the modeling error, resulting from an exclusion of the -
noise source in question, can oause a signifioant loss in system performance which cannot be offset by white noie sot ,,.
parameter adjustments, One care of this sort occurs during gyro compassing of the Inertial platform with Doppler
speed data containing large biastes Another example is afforded by the cas in which there exists significant .-

% distortion of the actual electronic LOWA time difference grid from the theoretical grid based on geodetic data.
This distortion is caused by variations in the Propagation speed of the electromagnetic energy over the earth's a .
surface rsulting from unaccounted vrriations in the nature of the paths of propagation. st cc- .

In addition to the elimination of most noise sources in the alignment application, dynamic interactions
between the retained, error state variables can be reduced to a minimuw by eliminating those defining error
propagation characteristics which are long-term with respect to the feat-reaction mission. Such couplings .,
re associated primarily, with the inertial sensor -defining the characteristic 24-hour oscillations end odu- %. -,.*. c,....,.

lating Foucault frequencies which are present in a detailed error model,

Z d'
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7.3 Isam Iror Cotrolle Desciptio

After exmsilninga&detailed error modoal fthe navigation system and the requirepients of the asat-rsaution mission
aogthe lines outlined, the following minimal error cocntrol mechanimation can be derived, This mechanization . .

will incur only it small lose lIn system Performance duringe platfor'm alignment, if relatively accurate sensors are *.,i.t

employed In the navigation system. The mechaniation asdunuzu the north-olave, luhuler-tuned platform implements- '4. ~~tion, but can Accommodate any local-level platform mechaniostion with only slight modification, It is a minimal . * *.

design In the sense that only the errors in the required system outputs are represented Inv the simplified error
state vector, ounseecuntly reducing the model dimension to a minimum. The seven elements of this state vector are _________

.16

,*where d ;i z . 7:
are the angular errors In msytem cmue eil oiin ersne t oain bu h oa

A4Mf r h nua errors in platform attitude, -represented as rotations about the local easet, north and

whie te tirdcomponent is called platform iiwimuth mAmalignsenb-

Temtideiigthe dynamic interaction of thoee seven error stats variables is ~4'
0 0 0 it- 0 0

0 0 R-
1  0 0 a 0..5' ,

0 0 0 : -4: 0
~()a 0 0 D0 H as 72

40 0 0 0 0 0 0%

0 0 0 1- 'it 0 0

*0 0 4-a* 0 4-j 0 0

This matrix has been reduced to include only thome terms essential to alignment followed by cruise navigation
for a short times period, The result ts that only ten of the elements rar non-Nero, Of these, four are Identical iV...

constants A"' . f being a nominal radius for the earth and four are derived from the specific force measure-

rat terms, ~e*~ being the computed rates at which the platform must rotate about the local
eas an nothaxes, respectively, to remain locally-level, Clearly, this representation of inertial error

behavior Is ounh simpler than that described in seotion 3.
The sera-seen. white disturbmnce noise vector, o~oriespooding to hkuation (7. 1). can include up to seven -..

componlenlts

to account toa certain extent for the deletion of noise state variables from the detailed system error model, .. i-

The variances of the elements are of principal importance in accounting for errors which have an

,;on N. a.
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effect on the platform aso does a gyro drift rate about the corresponding axim. 'The varianoes of the elements ' '

6V r4 Introduced to account for error& which have R stoch~atic effect onl the velocity computation as does
acceirniueter noise, Quantization error, miualignmeent, etc. .Finally,,the variances of the elements s
reflect additional uncertainty in the position coemputation.N. ...-

'The description of the error model given above corresponds to propagation between instants of time at which
system updates are sade, 'To employ Kalman' a algorithm at an update time, a model of observation error must be
constructed, in an mat ro -Doppler -inert iai -LOWM navigation system, the measurements that can be modei with the
sensors which augment the inortial sensor are Doppler ground speed, Doppler drift sngle, LOPAN time-differencoeie) _________

tracker elevation angle, and tracker bearing angle. * -

When ons of these measurements Is made, it in differenoed with R predicted value of the measurement based oil
the coimputnd villuen of the system navigation viriabeme, If the associated errors are sufficiently small, themeasurement diffoeionco can be represented as a linear combination of the errors involved. The coefficients of the :
error terms in such an expression are simply gradient components evaluated at the local operating polint. Bince' w'
noise terits associated with the tracker. Doppler and lORAN sensors are not 1incorporated in tho simole error modul, .

the observation matrices involve only gradient componeontsq relative to the errors in the navigation eariahies,
'These satrices sre now defined for tile different measurements,

The vehiale ground speed observation matrix ts expressed as

where e0  Is vehicle track anasl an 6 CV , 4( VI I) : eoe h difference between computed, Va. an
Doppler-measured, Vg - ground speed, 14 .% W d

Te vehiale' drift angle observation matrix is expressed as

V9 Vg0  0'I %)
'Iwhere 1'8 6 S, - Sol denotes the difference between computed, 8e and Doppler-measured, drift angle,%

The tise-differiince observation matrix is expressed as

4 kt a Nin Ad - silt 94)o (Gasd3A, - Cos As). 0 0 0 0 01(7B

where i are the computed bearing angles to the LORAN asater and slave stations relative to the local northA4
lids, respectively, C Is the velocity of light, an d A4t [t denotes the difference between computed, *~"~ .,

The elevation angle observation matrix is expressed as 6*

where so is the computed star bearing angle with respect to the local north axis, and 6Em e R u,- ] denotes.' .. Y p
the difference of computed, 9, . and tracker-seasured, Kr star elevation angle.

The bearing angle observation matrix is expressed as %4 4\~. ,

R k m (-Cos 8ten I + tan O)c (-sin 8 tan Rln 0 0 -l (Cos B tan 3C)c (sin 8 tanl KC),) (7.8)

where 0e is the computed latitude, I the computed star elevation with respect to the local-level plane, and i**U4~5. ~
AB mB - ST) denotes the difference between computed, B, , and tracker-messured, BT . bearing,.

The final elements of the error model to be defined are the gero-mean, additive aht osepoe ses i \ "'"

ated with each of the measurements cited above, As has been stated previously, uncertainty can be artificially
associated wihteosrainpoesi tesml ro oe yicesigtevracso hs os
components fr ovalues asesociated with the detailed error model. then the sensors used to align the inertial ,, -'"."olatform are ý latively accurate, the componepte deleted in constructing a simple error model on which to basethe V~mnsoinzto a eacutdfor adequately by this method, For the above system, the vector

deoiladditive white observation noise would include:

'7. t~(7-g)
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the local- levnl orientation as the earth rotates, Deviationm of the platform axes from the masaumod coordinates

result inn sroeuu rotation of the platform coordinate system, Teraligtl eiv ytepetr
azimuth mielivrnment will again gerieratoe rrors iii computed system position and velcoit:/, Those errors then

* ~provide the basin to remove approximately the azimuth error. It should Ile P.,ted that efflictive detsrminntion I'9

of the error in computed ayAtem position or velocity duo to azimuth minalictitent can occur only after plat~formA
level has been obtained, Djring ground alignment, platform leveling is achleved much more rapidly than the
gyrocompuasing of the platform azimuth. Further, as the latitude at which aliginment occurm in increased, the
time required for the azimuth gyroconipassing also increason, Seth these offocts obtain as the coafficiont in the
linear error muode~l of the Inertial system which couples platform azimuth misalignment te pletforr' tilt in small

* , with respect to unity and decreases In magnitude asl the latitude Is increased, The speed at which~ overall
alignment is achieved is also dependent on the system correction rate and the rn.o~, value *.tnd correlation
characteristics of the stochastic motions of the platform, F'or the exumplo~s of this section, a system correction 90

* ~~was made every second, and the null refertuace in velocity was assumed to bo characterized b~. u white rwiso with y,
an rue~. value of 1/8 ft/mee,

frrom this dimonusioni wo sea that the platform uk11 be aligned only after the ar~inuth error is minimized. In 444**

Figures 12-14, symt.em performanoce is illustrated for the fres-Inartiul modes for gruund etligmnmnt times of 2, '

4 iid 10 minutus. At 10 minutes, ground ulignnent haes easentinlly been comploted and subsequent errors shown in .

computed Mystem position and velocity are due primarily to stochanstic errorso In the inertial equipment. From
these particular results, the inertial systeco would be refurred to as a 0.7?3 mile per hour Inertial system, This
inertial sensor error characteristic applies for all the performancA curves shown in this section, At 2 minutes, ,
a relittively largior azimuth misalignment exists, Consequently, when the aircraft executes the flight dynamics 14 4,
descrribe above, the acceleration measurameet etrroi due to azimuth misalignment domainates the propagation of %%,,.,.

aru ncomputed system position and velocity, '6

7.7 Doppler inertial Navigation Mande 4

The system performance obtainable in the locpler -inertial mode of navigation doirs not depend critically on the
ground alignment time, aso once the system is airborne, speed measurements made with the Doppler radar can be used *4\,.

tocntneth lafr ali-nment During th eiod ofaron lignet, system performance will obviously
be degraded with respect to the perfaimance ehicah results when a longer platform ground alignment times is assumed, 6.

Since the Inertial and Doppler sensor both employ the inertial plittform for stabilization, no deviation between

detection of attitude error results thetsfore from the differing longer ters error characteristios of the two * ,4

anDocut o ppilatirs Sic h rsneo hs siltons onlyf du te toplatform attitudeerror Thfet

th tblmdDoppler data, a basis for error separation at the velocity level exists. It turns out that air-."' .

ban lafr alignment Doppler data is equivalenit in form to ground alignment assuming % null velocity reference, 44d*4

The rapidity at which the velocity error characteristics can be separated dypends on the quality and Quantity S .'...

of the Doppler data, For two of the performance curves shown in Figures 15-i7, the Doppler was assumed to 4

provide horizontal speed components with an r,m,o, bias error of 0.1% and an r,a,s. white noise error of 4%,
A * Experiments made for this mission, as indicated in Figures iS-1'7 show that doubling of the re.e~. hisls values

results in significant loss of steywe perforsance if the minimal Kalmnai sechanization is employed. Buch sonal-
tivities can be determined preciseily through the use of the correlation analysis technique described in Suction ~ 4 ~ .~ ,

5. In the oases considered In Figures 15-17, different white observation noise covariance matrices, Ri, were 4

employed. These matrices differed over the time period from 2 to 30 minutes ill which most of the platform
amimuth misalignment is achieved with the Dopplor date. When the At matrix Is increased by a factor of three,444 4 C

%the tuning factor, errors in computed velocity and the platform azmiuth alignment are significantly reduoed, *,
WThis occurs because the Doppler biks errors, unslodeled in the Kalman controller, oan be accounted for to some % 44

extent, artificially by Increasing the white observation noise variances.

Using tI~e Doppler data, correctious to the modeled errors in computed System position, velocity and the plat-
Nform attitude were made with the Kalwan error controller every B seconds, These updates were Initiated at the 4 '4.4%Ivehicle take-off, An important characteristic of systems error using the Kalman mechanization is the uorrection *4 44~4

of position realized with the velocity data, In conventional design, since the correlation infi)rmation relating,-
%seasured velooity error and position error Is not available, no basis for updating the error In computed system 6' '..

position 'oxists. Consequently, only a bounding effect on velcity error is realized In contrast to effective 1. ..

control of all the modeled errors with the Xalman design.

7.6 LORAN-Inertial Navigation Mode ~
(iyst~s performance obtained in the LORAN-inertial navigation mode is essentially limited only by the quality. ..-

anid quantity of the geodetic position data derived from the LORAN tine-differences, Unlike the Doppler updating N~'.V..
process, extremely rapid alignment of the inertial platform can be realised with the receiver data for the fast- ..-

reaction miasiom., 'This obtains as the platform does not play the data stabilization role with lORAN data that ., . -,.

it does with Doppler data. When the aircraft takes off, transient acceleration errors and, subsequently, velocity , 4.

sand position errors, exist in the inertial system am a result of the platform attitude error. Thase components
of Inertial system position error are readily detectable using time-difference. data obtained In a region of
defined LORAN coverage, Correction of platform attitude and computed velocity is achieved with the correlation ~44
data relating measured positlion error to error in computed system velocity and the platform misalignment angles. ... ,

The real-time availability of this information accounts automatically for any vehicle flighi profile or sequence 444,.

44 44 *, 4
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ocf msAeuremniits of LORAN* time-diffirenuea. In conventional demigun.i amcohonization which accounts for thu infilnitI'
a ~~~variety of flight and aid data p~rofiles possible would require all extensive amount of comnplex bookkeeping in the

airborne computer, while being inherently sub-optimal,

The principal complication involved in employing LORtAN in prementnd by any warpaig" error which exiats botwilon
the actual time-difference grid anni a prodinted time-difference grid based onl accurate computation using geodetic
data. The warpage ia due to unaccounted variatinoni along the traneimiaclion paths between thn LORAN atnt loneA and .

the aircraft, which affect the speed of propagation of the electromagfnetic oehergy, Modeling of theme orrors I
highly comIplex, an tha changing propagation paths continually introdune now conductivity find reflecting sorfecd
variations. In the fast-reaction missiona the effect ot grid distortion can be minimized by accepting an a

initial system poaition at the airfield which in based on actual time-difference date, Thin approach resultis_
in oorroctioiim to the system which are degraded only by the changas in distortion ahich occur between the air-
field slid poinit of initial use of [,ORAN' measurements, Conneqn.ontly. if the distortion correlation distanice ii'
large with rimotto distance travoeld before the LORKAN in :d,:syntem perfornmance losduo to grid arpea a . ..

modeling error will he small, 9xperinents hove Indicated that, If noccurata atochastic models of the wwrpane
pheomea Ae eploed.onl enallcorectonato ilegri ditorionrcaltConsequently, a LORAN-inertial

in tems ofmasured time-difforelline coordinates.

ted the performance curves shown in Figures 18-90, the LORAN time-difference data were assumed to be contanina- T

tdby first-urder, S0 second correlated noises with ravaluea of 0.14 micro-sedonds and white noises with
lamasa valuea of 0.005 micro-seconde. The LORAN time-difference data was used to make a syatem correctidn every
10 asends, these updates being initiated 60 secionds from the take-off time. In addition, conatant bitsa or war- a

page error I, ithe time of propagation from each transmitter to the aircraft are assumed in two of the caseo shown,. 'a '

The ralas. vatc i used were 1 anld 5 micro-seconda. In these eases, the system Positiun was not initialinsil uwing a.~a'a

the LORAN time-difference data with the result that highly degrading updates to platform azimuth alignment arid ~ -a~

*computed f. -stem velocity are made when the LOW," data is first umed after take-off. Once computed vehicle
position has boon updated with the LOWA time-d fferenoea, error ;as to the transmilssion path biases appieasr In ., .~.~,

the computed systere position, W~Cept for the rmanges In geodetic position errors due to the changing effects of
* ~~the time-difference biasesn ao the vehicle moo a inthe L~OWt coverage area, the ouiinsequmnt observation errors are

caused primiarily by the other system *rror si~reao, Consequently, with further updating, onmputed vehicle robo- a\.,*,%

".1 ~~~~~city and platform attitude error lira brought under control as indicated in the figures.,,.,. ~~a\a
The germetry involving an assumed L.ORAN chain of three transmitters and the airora#1 profile is indicated in %

Figure It. The master station is at i20 421 latitude and 1010 6' leogitude, the two slaves$ mire at 180 Is' and
g5 .451 laitodie andi p0000 and 1000 40' longitude, -respectively. U the aircraft travels 'through the coverag

aarea, the capability of deducing position from the two time -di fferenceso varies duo to changes in tile gradient* %.%
relating tive-difference error to geodetic position error, in this example, position can lie determined to a

r~m~. peciionof 713ft//lisa at tie airfield and 3001 ft,'pAsoc at tile mission termination point for independent
ru a rrorm of a micro-second in both time-differancer.

7.0 Astro-Inertial Navigation Mode

System performance in the astro-inertial navigation mode is limited by the capability of th" tracker to lock ~
onto a light source In the ambient noise environment and the accursay with which the tracking axis can be re-
lated to the local geographic axes. The tracking precision is dependent on electronic component roise of the

0Itracker and the brightness of the star relative to its immediate hsokground. The accuracy in dnemnn h
singn ia rientaticn of the tracker axle with respect to the local geographic coordinates is dopendent on the
so- A. .0y of the mechanical alignment of the tracker gimbal axes to the reference inertial platform axes and to
the accuracy of the alignment of these platform coordinates to the geographic frame.

* Io the fast-remotion mission, the dominant system error at the first star shot is the platform azimuth mis.
alignment. This error is very observable at this time, go the error in computed system position and error
associated with the tracker are relatively small. Consequently, an accurate alignment of the platform azimuthi is ,\

achieved with the first systoxmoorreotioe. Subseauent system corrections serve primarily ti, bound the three plat-.
form misalignment eangles and the errors in computed system positicn,

Significant error@ can be made in conventional astro-inertial system meohasoizations, as these geoolaniLtiolls .

usually assume that the platform reference coordinate system In locally-level. This assumption results In
erroneous updates to compiited position and platform azimuth to offset any existing tilt. -An arc-second of

*poeition error created by an arc-second of platform tilt is approximately 100 feet. In a Kialman error controller %*
design, the contribution of tilt to observed star position error can be modeled alid accounted for properly in . , ,. '..

system updating, The sensitivity between attitude error and system position error implies, however, that tilt .-

0 Inducing errors require adequat, modeling in the Ktalman design. The main advantage of a Kalman mechanization in ,

114tro-inertial navigation systems Is the automatic accommodation of the infinite variety of star-to-vehicle
Position relationships possible, 'Data resulting from each star shot in an arbitrary sequence can be optimally%
employed, as consideration Is automatically made for the residual error coincident with the optical axis end the ~.y
currciA' relationship between attitude errol' and error in computed system position when the correction is

determined
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Paor the performatnes curve. ehown in r1ijurea-.il-23, the star elevation and bearing angle meahuromentil are ~...'~',
contaminated by a first-ordar correlatod naae. with roes value of 5 arc-smacndo and a -;orrelfation timo of 4
hours. It v.1dition, a white noise of rae~, value 2 aro-Nocoaids was a~suwiidý Two stern were considered in ýPTOQ
making tha, i-stein correctionn, These starm had elevat ion anglen of 30 and 60 degreow and boaringi anNgive of Zeol
and 120 d 'eona, respnctively, 'rhe shotm alternated between thle two store, being made every 60 moconds and
initiatiin' 00 seconds after tako-off, In Pigurom 21.23, selected curves from the prscodilig sets of figure% 1>.ve .,.

been dispI.-ead to permit convatiiint comvarimonA of system performence, . .

Thin chapter has considered the application of KalIman filtering theory to error control in niulti-sotn4ur navi-
gatica systems by detai lin~g a particular error control dewmign, The reader han been introduced ill the busic *.ypom
of existing nnvigation sensorls and how their com130nlemetary characterthticm havm boen exploited in the past ia
ausmenlorl inertial navigation oystems, The praotictil ampents of lImplententing the mucth more sophinticated Nalmall
error controllers wets@ digouumsd so well as practical synthnsin ti'chniquem whiobh have boon emnployod to renl11 m
coouputntioviai ty foaeible tinnistim. The domign example which was coneiidered illuntrated sysem performance 11, thle
principal tifivigation node3 to purtrey the particular charaot~erinticv of tho navigation sensor ougmenting tit-p nertial nysteni,

4-4 The state-of-the-art in the application of highly-)ooplox data processing techniques, such as Kalmnau filtering
theory, is rapidly Changing, The use of these sophisticated procedures is limited by the capability of ditital
computation equipment available for the synthesis of appropriate designs end the mechanization of these designs
ill actual systems. Limitations in some applications exist owing to the lack of information adequately Identi-
Waig and describing all consequential system error oharacteristias, '''*"y.

An the coat of computation decreases and more information defining system error behavior becomes available,I. smore marked improvems:its in navigation system accuracy can be achieved with existing sensor, A relaxation ~ ~
of individual sensor accuracy reqiuirements permitted by more complex software destin will, In turn, permit simpler . ,

*sensor design, Aonsor simplification coupled with nstural design improvements csn result in less costly, lightfr, k ,%

mors reliable and mere easily maintained sensors, Thojse more sophimticated error control techniques imply a shift ~ ~ *'*
from complexity in hardware to complexity in software, resulting tin navigation systen designs with higher souracY
aoud reliability, simpler maintenance, and reduaed esie, weight and cost,
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CHIAPTER It APPLICATION OF KALMAN VILTERIO TO •., ]>....'

""I,.--.' %"-,.•

BARO/INKRTIAL HIGH~lT iiYST145 • ... ,

PMbsrham and P,Munvil•l*ei', "]l"'•

, .. a.,,• ,,

1, INTRODUCTIONS,. ... .. ,,,.,-. ., ,

The aviatorb.hik hind no alternative, until recently, to the use tf baromotrio pressure to the sourcie uf his hnhht .~ (

a'id heght rate inforemt ion, Despite the Inglenuity of the doaigus, which ins resulted in tho dovelopmonwt of eo, "° ' "
extremely sensitive and accurate Instruoment, thie fact remnins that tho use of pressure necessitates anmumptionie __,__"___-

about toe structure of the atmosphere in order to derive height or height rate, This hae led to the oncOept of a
standard atnosphere (e.g., ICAN), Errors can occur due to variations in the lapse rate, the height of the tropo.-
pause and in eec-level temperature and pressure. Even though a datum is establivhod before take-off, this means , a,,.. a, .
that clinbing or diving through a non.standurd atmosphere will result in height rate errors of up to B%, with . - +
corresponding errore in height, The two "aotucli" shown in Figure 5 were recorded on the same day (let March '',. .' -
iN1?), one over Cornwall and the second 600 nautical miles further north, over the Shetland Isles, In each •ce ame
the pressure error is seen to correspond to a m•an elope (of 0,005 and 0,015 respectively) with a random noise . " '
superimposed, With variations In the sigc and magnitude of the sean slope, these are typical rec9rds* Effects
such Is lag and hysteresis make It viry dangerous to rely on height rate, accuracy at times when height rate itself
is changing rapidly (such as during an overshoot when landing),

It was natural therefore that, with the advent' of praotical Inertial platforms, the avionics system desliner %
should have looked with interest to see what help he could get from the vertioal inertial channel, Unlike the
horimontal channels, which are comfortably bounded by the Schuler loop, the vertical channel is unstable, so that ','% '.--"
any aooelerometer errors will cause the height error to increase as the square of time, Moreover the effeot of -,

gravity on the vertical accelerometer has to be cancelled .since this correction is height-dependent, an error in-
assumed height will result In an acceleration errnr in the sense which will increase the original error,

However, it is easily seen that I5arontric and inertial height systems ore largely complementary to each other. .. . .... a

The former provides good height rate information in nearly level flight (subject only to the slope of the isobars -. - .,.,

to the vertical plane, which in typically I foot per mile standard deviation), but is poor in climbs or dives or in - , • - ,
the presence of significant vertical acceleration, On the other hand the inertial syste.m needs to be hounded by t,_ " ',.'.'","],

am external reference (such as barometric data) for sustained periods, but provides direct information about , a'., -- •"
vertical acceleration end a good short-term reference for use during climbing or diving.

The use of such baro/inertial mixed systems is considered in more detail below,

3. TRADITIONAL IANO/INERTIAL MIXING

The operation of a KRalsn filter in a baro/inertlil height system cannot be fully appreciated without first . ,

considering the sore traditional mixing systems and their limitations, .

3.1 Fixed Gain Systeuee
a•. : ', '. . a a

The basic mixIin loop is shown in Figure 1. There is no drift compensation for the Inertial channel and, i '

assuming that the system i`N trimnsed before flight, the dominant error at high altitude would probably be poor
"gV compenestion due to the use of erroneous height. In a closed-loop climb inertial height (hi) will be forced
to follow ohanges in pressure heilht (hp) with resultant height rate errors of up to 8%, On the other hand, during - - %.
am open-loop climb the system would oon become unstable because of the uncompensated acceleration errors. The I,.,,."' .
transient which would normally occur on re-closing the loop could be reduced by a "fast re-set" phase, in which .

the iuedbinok through K, Is temporarily increased.
Addition of drift compensation, as shown in Figure 2, would improve the open-loop climb as the Inertial channel ,,Q.. ,. ,

would now start in a well trimned state. However, even with a feat re-set the system cannot settle without a . ...

lengthy transient on re-olosing the loop as the Lot of forcing h, to equal h0 will necessitate additional drift . '.,
compensation to accommodate the now error in "g" correction, , +, - a

Adding a pressure height correction loop, as shown in Figure 3, is a big improvement as it removed the transient
on re-olosing the inertial loop and is making an attempt to operate ill Otrul" height, It operates in two different
states based on the following assumptions: A

(a) In level flight the barometric ,late gives perfect height rate I nog elope of isobars) and can be used . ,a -.. ,. ,...

to trim accurately the inertial channel. RCDN AEB~iPRECEDING I_ a ", ..... " ""
+o~~~~~~~~~~~ t1i Sort., i'i.ilo....,,- • :.::

%, , • ,---•.



(b) In ashort period of climbing. the inertial channel may be considered perfect and used ta determine the
errIn change of height as indicated by th. barometric unit.

In practice arsme difficult compromises are necessary. Perfectly level Tlivht can never be achieved and, to

4 ~~keep the inertial channel bounded, it 1s necessary to remain In the closed-loop state up to moderate height rates, .

in which cue the pressure height rates can have significant errors. If, on the other hand, the switeohing takes

place at lower height rates, the inertial channel could be left open-loop for excessive periods during slow climbs,

with resultant instability,

2.2 Variable Gain Syateeis

The above considerations load one to examine the possibility or using a variable, gain systexn, asi shown in Pigurtl,

4. rather than direct switching between the third and fourth integrators. Both K, and Ku can be made height-

reto-dependent. In level flight K3 = I and Ký = 0 , so that the dy-stem becomes equivalent to the system in

Figure 2. With Increasing height rate K. will increasr, and K 3  iill decrease. The error signal is now distri- ~
buted between the inertial and barosetrin. systnem acording to thn values of andK3 This Is similar to the

multi-dimensional corre, t ion t,, the satse vector after a me'asuremenit with a Kalnian filter, end the valuen of K3  'I. ~~~aid % are being used in a similar way to the appropriate terms In the gain matrix. Despite the increase of___________
complexity the system in F'igure 4 is still very imperfect compared with the Kalmian filter described in Section 3.

* ~Withi a Kalman filter the error botween forecast and measurement restilts, in general, in corrections being fed.j
bac toalltheelements in the stats vector in aecordance with the current values in the variance matrix. This

wit th Kamanfilter, the terms h1i the v!-ianne matrix reflect the previous history of the system and 
are not

trimeted inertial system, hand tce crepnigysmall Vauso aine soitdwith it, almost the whole

*discievancy arising at teStart of a climb would be attributed to anabnormal atmosphere, 
vegrrys wf ellh rate. L '-

-. , Pinall,. the filter described below has a built-in capability to learn the structure of the atmosphere and Make short-

tars use of this knowledge.

3. '11NK KALMNA~ FILTER HIGIiai SYSTEM

3,1 The State Vector '. 4

sinces the *jurposm.of-the filter is to control the-vertioal channel -of an inertial navigator It. in obvious that

ve'noity (I V0) and height (c hi). Measurement will consist of a comparison of tnert'.al and pressure height, soa

term ri~oresenting ero npressure height (c hp) must be included. With the subscripts I p und t r~presenting

inertial, pressure and tru5 values respectively, these are defined as follows:

(V1  * Vt -vi(3.2) -

44 hi hit - hi (3.3)

a hp lit-bp. (3.4)

To enable the filter to learn iomething of the departures from standard of the atmosphere, a further element ''

(8) is included in the state voector. This "a defined by the relationship

andis.in ffet.the slope of the plot of pressure height error against true height, The complete state vector

it hi

CC ______

Iaja

32. The Transition' Matrix 
4'

Issiaeation of the chosen state victor shoes that the first three terms are concerned with the open-' -op inertial

system. sed the lost two terms with the atmospheric model. These two sets only Interact an a result of the measure-

ment process which, of course, builds up a strong correlation between inertial and pressure height estimates.
Htowever, In developing the transition matrix, which controls the updating process by the equations of motion, the

two cats cam bb considered meparately.

44

A'4. ."



Now the classical equations of motion for ak uniformly accelerating system without any feedback clan be expressed '- -

F - 1 v
I 0 1 Ea k

where t is the time interval between state k and state (k +I), snd must be chosen so that the acceleration error 4

asY be considered constant during one step, However, in the vertical channel of an inertial navigator there exist$
* .4in additional feedback, A height error in CalaUlLting the value of g'" will give en acceleration error of 3 x 106

ft sec*2 for every foot of hvight error. If ( 110 is the acceleration error from all causes other than erroneous % %.~
"g" oomVeneatiofl (i.e. untrimmed accelerometer drift) which may be connidered constant between two successive stepS, ~*
then the total error is

9a si 9a + (3 i0,6)6 hi *:.:.,h 4~

Considering now the chance in E aI during one cycle, we have

* £A(d aj) = x i0'*0( hi)

(3 X ioettc d vil i + (1.5 c lo, t)] (Ca)6 .(3

0c 60-t [= +9 90kS +0t') . .)

W,

The thesiio r matinin termsi the inetiate chneto shouls idcoeall haebt% ieadadsacecreae xo .,

Oftha e deayinice iteris obiou thesate svyedtao n atoSei stucurhould bealyhvebtoat me ofd isttlce usrelater axpro- ,

longed period of time, or at a distant location. However, In view of the difficulty of modelling at correlation with M/.9* 4'

distance it was decided to use only an exponential time correlation with an arbitrarily chosen 10,000 seccond time .. , A,.
constant. This is represented as

8 , (I- 101t803k(310

From the definition of 6 in Equation (3.5) and of a hp in Equation (3A), we have that '

~(e h9 ) (fit - ~t '

6~being the computed beet estimate of height rate,

Thus 0~ h~) 4  (I h p)k - 6hSk 31) '. 4~

Combining (0.0), (3.10) and (3.12), the complete transition matrix for thet state vector at (3.6) becomes

0 1 t 0 0

0 0 0 (1 10110 1

Lo 0

%

%,44 4 ~ %

%4 ~

A%4
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3.3 The Measurement Istrix ~ '*~

The messsuremen; matrix required for baro/inartial mixing in lj',\ r

Id = [1 0 0 0 -1] (3.14)

This selects; from the state vector the terms .%"%!~'

3.4 Plant Noise

3.4.1 Acceleration

Plant noise oh acceleration can airise from a number of causes, of which the following are of most significance:

(a) random changes in bias level, which typically occur every 10 minutes on average with changes with a . '

standard deviation of about io" g;

(b) g2 distortion (with a force feedback accelerometer) with a typical level of 2 x 10"5 g/gt for a typical
inertial quality accelerometer.

Cocsiderin% each of these It turn, the random changes increase the variance by 10-10 go every 10 minuten, or
by 17 x 10O1 ft' see" in one 10 second cycle.

The second cause is more difficult to sassess. However, an examination of the acceleration power spectral____
dlensities for a typical etr ike aircraft enables us to derive some approximate figures. Assuming an ant i-vibration
mounting with a 10 c/s resonant frequency, and typical damping, the power spectral densities are first weighted

%1by the square of the amplitude traiiimission curve for the mounting and then integrated over frequency to provide,.
mean square acceleration power levels for typical flight conditions. These can be converted Into equivalent bitoi
levels by application of the massumud go distortion coefficient of 2 x 10'1 g/gl, It is found that, for the air- ,* .' , ,

craft investigated, the highest lovel ocoura while pulling high "g",. This is followed in descending order by take-

off and landing and then by high IAB dives at a factor of 20 down on the high "a" cas,.

We are not interested in the asomlute level of vibration, or the resultant bias, bizt in the variance of the
.9henge of~bial'per computing cjolo (10 seavada), Consider asiskpje example of-& flight -which has, on average, one

* . ~~~~high 'Is" manoeuvre every 10 minutes (with a bias level of 10"' ft oio'2), the rest of the flight being straight and *-. '~".,,

level (negligible bias), This will rasult in two changes of bias level for each manoeuvre, or nne change in every
30 computing cycles, This gives a variance of the change of scoeleratioa bias per step of 3.3 x 10~'0 ft' sec",

""p ~ or about 20g. of that due to random changes. Similar consideration of a high IAS dive occurring on average once evory
5 minutes results in a negligible variance of 0.02 x 10*10 ftl see", which indicates that only the high u"g
mmnoeuvres need be considered. Allowing a small increase in variance to account for other conditions, the plant
noise consists of the addition tech cycle of 21 x 10P 10 ft0 seo"4 to the variance of acceleration error.

3.4.2 Departure fron' Standard Atmosphere (5) '

It was assumed that, overall, the standard deviation of 8 was 0,03, although there is sose evidence that a ''

higher value should be chosen. In prolonged level flight a plant noise contribution is required to maintain this
level, despite the decay term introduced into the transition matrix. F'or a 10 second cycle this term io 0.999, -

* ~which results in the variance p of varying an

P+ I (0-999)2Pk t n

where a is the plant noise contribution, If pký1  = k =(0,03)2 in the steady state, it is required that
I to 1.8 x 100i during level flight.

During climbs or divee it is obvious that the probability of a change of slope of the atmomphoric error is
ofrssd Analysis of typical measured atmospheres (see Figrehr)indiates additional contribution to the

variance of of about 48x 10-4' for a 10 second clewhr ib te modulus of the height rate In

~' jThe total plant noise to be added to the variance of 5each cycle is thus (1.8 + COW~h) X to.

3.4.3 Pressure Height ,

On the assumption that all isobarit surfaces are horimontal planes, any uncertainty in pressure height must
arise from a lack of knowledge of the true value of 8 during a climb or dive. This io mllowed for by the plant ~ . ,
noise on S described above. However, in practice the isobaric surfaces In any region will be slightly sloped
(with a standard deviation of about I foot per nautical mile), The system has no means of determining such a slope, ~ OI~

apart from making height fixes (which are discussed below). To implement such a system would require two extra
termse In the state vector (northerly and easterly afopes) which would couple Inito the pressure height correction ' ,

term through terms in the transition matrix involving displacements determined by the horizontal channels, This *'

1%. Z

-4,

.V "N %



would be =ce a tt..F, ,... -...- % -

I •'

Swould be direetly equivasant to the coupling of S into the h4ight error by the ih term. In practice suoh
a refinement he hardly practical in the absence of a s ontinuous external measurement, such as verthiea Doppler,band would not be worth the ectra complication. It must be appreciated, however, theat without such terms the I' !• •
predicted heliht and height rite errors end th~eir varianoesa re rulative to the isoburlo surfaces and not to a " - -o ,• . .,.
horisontal datum. T'o allow for ohangee in slope, however, a small acount of planit noise is added directly to the ,.., *'' = •.'."

presumre he~igt. This amounts to the addition of 4 10"' ft2 to the variance of pressure height at each computing . ,.... 'e'.'..~. •'

cycle, '*' ' ,',i."

The measurement noise is the inability of the system to determine the correct static pressture of the undisturbed -. . ,•II-4

atmosphere outside the aircraft, This is essentially peculiar to a particular system and would need to be carefully
studied In oach practical case. However, for the purposes of this study, some general observations were made for
use in mathematical modelling, Sources of error considered included .

(a) random Instrument noise,.',, '

(b) hysteresis effects,

(0) instrumental lags, inm=:

(d) effects of wind sust.,

The first three errors were studied for a typical modern fords re-balance air data system, The random inetro '...,'....,.u....]

mset noise wir found to have a standard deviation of about 0,11 millibar, Although relatively large under some ,.

conditions, hysteresis and lag effects were found to be very reproducible and, as such, could be allowed for by . 4

modelling in the digital computer of a practical system, In this IIIe only the statistics of the error in model]IngS~~~~need hp considered. •..:.....

The actual pressure changes occurring due to gusts are, in general, small, Peak values of typically I millibar
change in I kilometre can be recorded during thunderstorms and about an order less in ordinary "gusty" conditions.

"allnce the "a1 time. all weather" standard deviation must be vrry small. It should be noted, however, that a poor
, design of pitot-static will result in air velocity changes during lusts being recorded as pseudo-pressure-ohatiges,

far the purposqe of mathematical modelling the overall standard deviation of measurement noise wes assumed to be ..... '''... .

0,12 millibar for Iil e 25 ft see" and 0,32 millibar for Ifi • 25 ft see" . These were converted to height Ierrors by the usanl relationship of (0,dhl x 10"' + 27,S) feet per millibar. The two conditions wore introduced ••,
on the grounds that Iag effects are more signifinant during climbs end dives, In practice, of course, the measure-

ment noise used could result from a study of the actual system.

3.0 Height Fixes "d, ' "
For a height fix using, for example, a radio altimeter, the required measurement matrix is %

M ti 0 00 0] , ',

This selects 9 hi from the state vector, which is compared with (hr + hg - hi), wl..ro hr is the radio altimeter 0
height end h is the height of the ground ahove datum. Since In the steady state the normal baro/inertial measure- ,, ," "%meats result In a correaltion between inertial and p~ressure height which approaches unity, the ease correction will , ."•

ueuallj be made to both.

4. THEl MATHEMATICAL MODE£L '•'",., ,

Orthodox modelling was used, making use of gaussian weighted random numbers of appropriate standard deviations - . -
to generate discrete errors for the "real world" model. One point of interest to this particular case is the model 4,,, '
used for the atmosphere. Examination of a number of recorded atmosphere error plots, two of which are shown in 4-" .•"."',, %
Figure 5, had suggested a fairly well defined smen slope in each case, with random noise superimposed. The latter ' '
could be approximated by a mrnes of straight line segments connecting points with a mean separation in height of
about 5000 ft and with a standard deviation departure from the mean slope of 100 ft.

A series of random numbers, with rectangular distribution in the range 0 to 1, were drawn until one of them fell
within the range 0 to 0. 1. This was taken to represent a change point, each number in the series corresponding i'o
a height change of 500 ft. Thus, if the seventh number drawn was the first to fall within the range 0 to 0.1. this .'. ,
represented a change point at 3500 ft. A gausslan weighted random number with standard deviation 100 ft was then
drawn to represent the departure of this change point from the line of mean slope. A series of change points with .
mean separation 1000 ft were thus generated and were joined to provide a model of the atmosphere. The ful line .' ,
in Figure 5 show typical models generated In this manner (with mean slopes of 0.00 and 0, iS respectively). It is
seen that they compare well with the actual records.

1 Due to the much lower level snd similar frequency of gS
2  

distortion changes compared with random accelerometer
changes, it was not thought worthwhile to model both effects separately. Instead the frequency of random changes. % %
was slightly increased to compensate, Thus, on each cycle, a rnndom number in the range 0 to 1 was drawn. If this q .,'," m*
fell within the range 0 to 0,02 a gaussian weighted random change of standard deviation 0.00032 ft sec"2 was added .
to the "real world" acceleration error,.'.'..= .... .. .V

"-,. '...• ... ...-.

-,.
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Rnot typical results obtained with the mathematical model or* shown In Figures 6 -10. No results have boon T• 7-•L,..-

shown for short duration high rate climbs or dives, as the errors &rising from the e are negligible, due to the, , •t

high degree of reliance placed on the inertial channesl. it should also be spprooistd that reversals of hoisht k. .,•..

rate also produce revesrals of the "forcing function", that Is the erroneous height rate derived from pressure, "i ...

so that the Kalmon filter is easily able tu separate inertial1 and barometric errors. This in an important feature*"n'• •m

which, unlike the systems described In Section 2, enables the inertial channel to be trimmed accurately durLing" . •'"

typical terrain-following profiles. Theoretically the filter can distinguish between pressuer and inertial errors _ .. "" •_ ,

wehnever the height rate changes at all. r.h ,•.i.,•,.•.,,•

For this reason long climbs at low rates have been illustrated Be reprGa~nting the worst case for the filter,'.-- -.. "%

Figure .how,. th. height rate error and standard deviation, for, Ralimb to 80,000 it at 150 ft ,.o- through an
atmosphere with mean 0,05 after rn initial settling period of love] flight. A further five minutes of ,...j.:.••

level flight is followed by a dive at the same rate, levelling out at ground level. The standard deviation Just,• .. . ,,,,.

S4 % .% ,• = '

exceeds .0.2 ft soo"• 4t the omd of the descent, but raiiidly drops to a negligible amount on regaining level flight. •"". ""
The act al error for th ined within the m thndard deviation curve and shown no systematic trends. The beerns-

pond inf heght error with it e standard deviation in shewn in e iruror and rerveg s e similar pnttern, the standard t

deviation relching about 80 ot at the nd of the descent. This height rat e inprfcited at interels as it
represents an esperially difficult one for truditional height systems,her oseg rtdidfm rse

Aso that os cs o the K~alman filter isesh b e igt uep nrte ineta an bay romonetrcimb errrs Tha ios a otant fee, a tsmla ure' M 4 -

wh illustrated the surte ia and in with a heinht rate of only i0 ft ialic, so thot the astedt to 0r000 ft and the

iuaeqlent dterant -fo h ll tn d p of 20 minutes, This results in a considrds ble Increase in th i v eriancs of ther

ihenertial system so thrt U effect of thv seen value ofh t (0.0b) hhows a,. defnte allt.remtic error build-uph a

oF both velonity (Flong 8 nd hcisht (Fi.ow.a It demonstrate d a v ery imprtant featur t case Kalman filter,

During the climb the heironsoue prrsore hand ht s hard es were able to stlem t the inert60 l sfstem af the reliance that

lould be plaed on the ldtter deireated, However, tlellin outar level, the stv anace etrix a ompln t .

me.t of orrelations in the off-diaoonal terms Thus, on r eald ning level fliglht, althmouh no measurement ol absolute % ., • ,AA '...., .*
height is r fde, the filter is not only able to aorrnet the inertial velocity error, but t also able to correct , ,"

the height error which had arisen an a rdeult of this vslocitn error v
Figure a0 shown the Kalman filter a timtte of t with the true slue for comparison, during the asn iorret -

aeedial to dflurte 0 and '/ n fr"rdtina.high sstms

6. CONCLUIIION8 , . .. ;

The wort a s for thpie fail uflter height unit isa vr ringeo cl tial haeiht Informateon, si r any

V prautisal system it is essential that the oem of the plant and measurement nOi nt should be carefully studied and

modelled so accurately os possible it ht not celaimed that the asffc thert ial systetem asb abt i t h is optimi t t
represents er whfulihtartin point for the study of t pecifis sirpraft or em.. n

, - -, , .

ir 0 o t K fl .o8 w t te u o o ao u g e n_

poud.ng.to"Figures .and-1,

. ,.O,,LIJ.,.I..I

The Klmanfilte canprovde a sefu toolfor he otimalmixig ofbaro/.ert., heght-nfortion Fora.y

,'.'..','•",'.v '; ,'

•- ,- . *• ,,

o•o . • . I. , .

.*/. ".;•. .. .%.. ', ";•..2•.'%•..'.•.',.•.'%"..•.;;•.,;%'#j % •.% . .% . ?., , •_- . ....- -• • .-. .-... ... , :.o .. -.. , ,4, ,.." .
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NOTATION

Coordinate frrames

V4 T orthogonal, earth-fixed reference frouts %

Irorthogonal, wonder taimuth, local vertical, ideal reference fraee
%,%,'.

orthogonal, wonder azimuth, lonal vertical, comutational frame

M1 orthogonal platform reference frame

AIP' non-orthogonal, acoeleroimeter Input axis frame

alir non-orthogonal, gyro infut axis frame

011 orthogonal, ith gyro Input-output-spin axle froanc~~K

Ope.rational and itructural symbrila

- ~~~(superior arrow) three-dimeuniotial vector I*. .~

*(superior dot) tite differantiatlton

d )

time differentiation 'S ,

7 Asuperscript) matrix tranoposeL.'. *~.;-

-1 rn.(euperacript) matrix inverse

vector gradient

2!approximately sizual *--'*s

inverse Lapilace transformation S

a Laplace variable

IUt . esemble expectation operation ý

Navigational Sym~bols

7 specific fores Rating on ball

fin Al

~:1Am£ estisate of It in Cl

70 accelerometer outputs in AIP
Inertial acoeleration of ball

O gravitational force (per unit masa) Rating on ball ,

asrodynmio force (per unit masa) acting on aircraft

T ~thrust foroce (per unit mass) acting on aircraft

i ~~Doppler velocity vector .

8 plumb-bob gravity

A0  ~~Coriolis and centripstal acceleration estimate in CF 5P~I

'511 %

S;~%

% ', *
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11 earth rate in CP

Vi aircraft level velocity with respect to earth in C?

airctaift rate in CP%

aircraft latitude (computed)

bilazimuthi readout

platform heading (indicated) ~u
Vc aircraft groundseped (computed)

aircraft ground track anglge (computed)

. ,, earth's curvature matrix (compauted)I U angular rate matrix (computed)
baircraft altitude (computed) 4,
V1 aircraft vertical velocity (computed)

commanded (uncomipensated) gyro torquing rates in CP

lip total inertial angular rate of platform in PAP

IF11P IF to PR? transformation matrix

IPIA PRP to Air transformation matrix

TO 0!? to PRP transformation matrix r ' s

T1 cci PRr to Mi~ transformation matrix u k ,~

T SM to Or tranafirmation matrix

aaccelerometer motes errors in AIP' :
anaccelerometer boise errors In Air~, ~ .

accelerometer bias error calibrations in ArtL...

(A1U] acaelerometer scoals factor and Input axin orthogonality error calibration matrix

;e swro fixed drift rate calibration In CUP?

111] ro scoale factor mand input axis orthogonality error calibration matrix ,

(Cii) gyro mass unbalance error calibration matrix

WOdaoa yosae atrerrmti

SPA diagonal acelromee scale factor error matrix

aisimulator error gsnerating function for jth gyro % 4-

AL' Kalman fiLlter symbols

Y observation vector

X augmented navigation State vector .. ~

-A.*. 7.,
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suponted~~ navgaio ero ttevco

timte aumne naiainerrsaeaco

P ~ agmne navigation sse error cotatine vectori

navigation system fochýerror co inoise matrix .,

K' epsilon gain vector

AYobservation residual *

P~ observation matrix (discrete observation) ..

"4epsilon" gan scoalar a

C ~~~observation noise scalar 4

dimension of

Use system control vector

~~(z) estimhte control algorithm ., .. ,

W) system control algorithm

* tr.ybl naviga~ion system s:::: vector vco

H navigation systec dercringfntio n fnction

p vector defined by Equation (2.2), ah indicated in text

q vector of random time- uncorrelated errors in the navigation observation

a function defined by Equr~tion (2. 2)

41 ~~~P augmented navigation systeam description function trcn fu tis ".

u vector of augmented navigation system white noise forin fucton

a functional. time-dependent relationship between navigation observations and augmented navigation 4''

system state

vI j aaircraft position
o.

z simulator true position and velocity victor

e~ vector of principal augmented navigation system errors

vector of forcing augmented navigation system errurs *,*a

11 matrix of linearized to a coefficients

:'Z 2 -A .
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CHAPTER 13 -APPLICATION OF KALMAN FILTERING TO THE
C-5 GUJIDANCE ANDJ CONTROL SYSTEM-

Stanley P. Schmidt, John D. Weinberg and John 8. Lukesh

1. INTRODUJCTION
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3.'1 Fundamental Concepts ':

As will be seen, the C-5 navigation system in its Primary modes of operation uses an Inertial measurement/
unit to maintain a continuous knowledge of the position ajid velocity of the aircraft. It will also bo seen that

"* 'aabthe Kalman filter is used to update the inertial navigation system when data from other navigation aids ii i- .,
available... . , .

The following in a brief description of the fundamentals of inertial navigation systems and the practical appli- .&... .
cation of Kalman filter theory to them.

2.1.1 Iniertoia Navigation Systems*

Figure I is a highly simpliied block diagram illustrating the fundamental operation of an inertial navigation .
system, The principnl components, the inertial measurement unit (IMU) ald the computer are shown."

The IMU contains a etable plat form on which three gyros and three linear accolerometers are orthogonally - S "
mounted. As implied by its name, the stable platform nmaintains en orientation, commLunded by the computer, whicl,. .
is independent of the orientation of the csce. This in accomplishod, as indicated In Figure 1. by senging error
signals from the gyro output axis pick-offs and, through feedback, by providing the appropriate platform drive
nulling torques, This "inner loop' feedback control system must have sufficient gain sed dynamic response to
keep the pick-off errors small, regardless of IMU case attitude motions.

If the inner loop functions properly, then the platform maintains the orientation dictated to the gyros by ', '-
the computer. Each gyro, however, is not a perfect device, of course, and tends to exhibit a small "drift rate". - .
That is, even when the gyro output axis pick-off is nulled, the gyro case (fixed to the platform) has a rotation
rate about the input axis direction which differs slightly from the commanded rate, ''

These drift rates, and the unwanted output axis• torques which attend them. arise because of internal rota-
tional unbalances in the gyro about its output axis, aro output axis turquer scale factor errors, and from .,,
several other, sore subtle, m~chanisws. If the computer could somehow estimate the unwanted output axis torques, L
than their effect on platform orientttion could be removed by applying appropriate angular rate compensating •-'." :,.', .- :-;
signals to the gyro output axis torquers. . ,

As indicated in Figure 1, the accelerometer outputs are the measured specific force which is sent to the q

digital computer it, the form of pulse trains. The specific force vector, i n givean as i -.- Z=-. '

where i sn the inertial acceleration vector and G is the gravitational attraction per unit mass, It the
position is known, • can be calculated. '- -'

lleece, it can be seen that the navigation equations perform the functions of accepting specific force and ,.-.

performing the other computations nejeosary so that position and velocity are continuously available.

To initialize operation, the *yso em must be aligned so that the coordinate frame of the stable platform and
1P• computer are coincident. The initial position and velocity must also be known.

The inertial navigation equations used in the C-5 are referred to as a wander azimuth geodetic vertical
mechanization. This means that: (a) the coordinate frame has tew axes in the locally-level tangent plane, and
(b) no attempt is msde to maintain the level axes in a preferred azimuth direction (such as north). The plat-
form io initially aligned by driving it with the torquers until the outputs of the two level accelerometers are
arc. Once it has thus been leveled, its azimuth relative to north is determined by monitoring the level gyro
cm.mand rates, which are necessary to keep it level despite the rotation of the earth. The arc tangent of the
ratio of these two rates then provides an estime.te of the platform heading rolative'to north. This operation
Is called self-gyrocompassing. During subsequent operation, position and velocity data are computed and applied.
through the gyro torquers to maintain the platform locally-level despite aircraft motion across the surface of
"the garth.

2.1.2 Kulma Filtr Theory

Because of the various error sources in gyros, accelerometers, the Initialization process, and navigation
equation approximations, the position and velocity indicated by the inertial navigation system is in error.
The error also gross with tine after initialization.

Data which are functionally related to the true aircraft position and velocity can also be obtained from
many other sources. As examples, baronetric pressure provides an Indication of altitude. Doppler radar provides

Reference 3 is highly recemnded for those desiring further information.

Toe output asis of a aenisg-dears*e-ot-freedoe Lrroseops is that axis (normal to the spin axis) about which the spinning
rotor is free to rotate utth respect to the gro case. The input axis (normal to the spin and output asew) is therefore
the dir•etion about which the aro to sensitive to rotational cast notion with respect to Inertial space.

LINN
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a measure of ground speed, and so forth. Conceprtually, it is desired to use this external data to update the ___________

inertial navigation system; unfortunately these data, too, are Imiporfect, because of moasurement errors wild
other effects (e.ga., the pressure-altitude relatlonehip is non-constant), .~ibI e~W

%"..-

Kalman filter theory Provides at means by which algorithms can be derived for digital compute?, processing of
such measurement data observations'. The resultant algorithm. are feasible for use with on-board computers in
that there Is no requirement for storage of large quantities of data: that is, each utiservation is processed N
sequentially as it occurs in time, and after it is processed the raw data can be overwritten with new delta, Asn
oi-iginally presented, theg Kalmani algorithms were restricted to:

Mh Observations linearly related to the state vector.

(c) Observations ocourring at equally spaced time Intervals.

The practicalt spplioation of the theory requires removal of these throe restrictions. Removal of the third "

Arestriction in trivial and is readily accomplished by stating the original algorithm given by Kalmns In the two
parts:

(1) at mci obriervation:

(21 between successive observations,.

Theoretical proofs which remove the first two restrictions for nonlinear systems are not available. Practi-
cally. however, one should recogniize that almost all real syatems obey approximately linear relationships in -. I

the vicinity of a given solution. As a result, a practical filter for nonlinear systeoms can be derived by appro- *.

* ~~priate use of variational equations about a solution which is "close to" the desired solution, The desired *- ..

solution in the case at hand would be the true value of the navigation state vector (aircraft position, velocity, ""- *-'

etc.) whtioh the observations are used to estimate. If this solution were known there would be no need for the

filter. Hence, since it is not, the most obvious second choice is linearization about the best estimate of the-
navigation state ventor, which is indeed available, If the solution converses. ri moro observations are taken, . .. ,.,

the linearization approximation becomes more end more valid.

Tile algorithms are Presented here in one of the many forms which are applicable to a general nonlinear .~*

problem"5. rollowitg this, the overall implementation of the filter in the C-5 navigation system is discussed.

Gliven a system which obeys the differential equations

Z H(Z;U,p,t) (21

where
Z=normally defined state vector;

* I U = vector of forcing funotions: U may be composed of known functions of time and/or random
S functions of time:

* ~p = vector of constants whose Values are required to give a unique set of Equations (2. D). 's

The vector observations of this system obey ,.

Y(tl 8M SZV, t) +. q(t) (2.2) 5

where

V = a vector of deterministic quantities (e.g., cocmmta-t) rnecessary to uniquely define the equations.

QMt a random, time-uncorrelated errors of observattontitN

An augmented state vector X can now be constructed, viz.:

such tbat',

Pa (Xt) +' u(t) .(2.3)

*The word observation is choseln here to indicate a measurement used In the sees. of Reference 2. This distinction is
wu~e because not all measurements are prnoessed in this sense. as will be seon later.

The first known study reerilss of a practical application of the filter ore given in Reference 4.

Several forms are presented in Reference 5.

Amy time -corre Iated seasuresent errore can he defined an componients of V , This also requires definition of differ-
sotial equations for these cosponontn with white noaise type driving functions. '- -

5%,*

.. These techniques are presented Ia sore detail Inr Reference 5, although the notation there is somewhat different. ~

%1
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r
u(t) 4hite noise (random forcing functuonn).

Also,

¥t) Y 0(X,Ot + q(t) , (2.4) . .\'.'

2.1.3 Ma•lified KalmZa Filter Equations . ... • .'

The modified Kalman filter for such a system and its observations is summarized by Equations (2.5) - (2, 11).
for which the following definitions and assumptions apply:.. * " .. •r

(a) VxO( ix. denotes the gradient of the bracketed function evaluated at X X . e, .. "

(b) t* denotes the observation time, to denotes the time of the lat change in the estimated state (which %
coincides with the time of the last observation). 4" .

..-. '

(c) The subscript a denotes "after the observation is included" and the subscript b denote. "before the ", .

observation in included". Hence, from Equation (2.7), at an observation time, Pb = (tN , and P, in -,7

Equatlon (2.9) becomes P(t.) in Equation (2.'7) when updating to the next observation time. Further
cosments (regarding multiple obseorvations occurring at the same time) are included in the subsequent

a, Between obeeruuvtion (titme update) ,,.

f(t) W (t,) + F(X,1) dT , %
to ," ' ,"

dtt

•' ". -. : .• . ,..
At observation time, to (observation update)

P(tm) W 0(tm:tO)P(to)tW(t,:th) + A(t,;t,) (2.7) .

;(to) - (K1 +92  t *. [ (t t)] (2.8) .

Pa~s) ~ Klb + K (NpbMT + C)K? (2.9)

""(t* +0) W R(t +r ; t )U(t,) (2.10)

Is(to +T) Xb(to+.r) + ;(t*+) w (2-11)

equation (2,5) simply represents as integration of the differential equations,

X 0(X,t)

using f(t,) as initial conditions, R(t) is the beet estimate of X(t) * because the random function u(t)
of Equation (23,) is a zero mean white noise variable.

Iguation (2,G) defines the differential equations for the transition matrix, which relate. small deviations

in (to) to small deviations in e (t) , that is,

C' t 0 -X( t o )* '•' 'U """'" ""'""""'

By defining-. m*X'X t•dfnn -. .'-"-,.
""• ! • ~~~X • ""'"""

then, approximately, " a i.

,, .• 1(t) Om@tt)R~to) + I t 4(t;,hu(,)• . .d.'.

to

NIenoe, defining the covariance matrix P(to5 b. "'.-" .'" .

where SE] mnsm the expected value of the bracketed quantity, and using the white noies definition of the

random variables, u , it follows that: " .

-_ 0P(ti) U Ii(t)i(t*)J E Iquation (2.7) . .'."' ',

a'I '., *:'..*' .
*..0

-- %

S" "" : ::i"'-'j
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M~ti;t c) in Equation (2. 7) to tho random uncertainty in the state caused by the raatdom variablef u

Eqain(2.6)I defines the change in the state estimate resulting front the observation, and Equation (2.9)A
updates the covariance matrix P to include tho effects of the observation,.4

In these equations: %4 I

Ys) actutil observation ~..;~:e

~~>1. f~~t 5 ) O(i,t.) 2computed (estimated) observation __________

MIN*) - (t*) = bsurvation residual ~..A..,V
* K '(MpbM?+ C) \

Beeo footnote ' ~

=control gain of epsilon technlique

The equation& are for a single observation, that is, each observation type is sequentially processed, K isn ~ "' a
the conventional gain for the Kalman linear filter. K, represents one type of fix Esee References 7I and Stfor
protventing divergence of the filter resulting from unnodeled and computational orrc'rs. In this cobater, the use a* a**.a

of K5 im, called the "epsilon" technique,

K, causes overweighting of the most recent observiation in Equation (2.8), This, in turn, causes an additive V.~'

growth of the covaylauce matrix in rEquation (2.' 9)

Because of the computation tiffm required to carry out the calculations, i(t.) in only available after a
V. in~~small delay, lEquation (2. 10) therefore predicts i(t) ahead to t ine t, + T , share ir is larger than the " ' V

computation tilne. When real-time reaches to + -r equation (2. 11) is used to modify the total system state ,. .

estimate,

2.1.4 C-S Navigation System ronsiderotiOna '

Proto the preceding discussion on fundamentals of inertiml naiga11tion systems, a method of Implementing the :''-

Kalman filter in a navigation system can be recognized. This is to use the basic inertial navigation system
in the role of solving equation (2.5). To facilitate this, the components of the state vector X(t) were ..

chosen to include quantities (such tm position and velocity), estimates of which are carried in the digit~al A.

computer registers, Also Included are the attitude of the inertial platform of the IMU, gyro drift rates, ~
sccelerometer biases, measurement errors, and so on. This augmented state vector then contains all the quanti-
ties necessary for describing the 4vnamio response of the real system for given initial conditions.

-77*VV~

Mhe u(t) of equation Mq.) can be interpreted as random forcing functions In the inertial system or In the

2easurement devices which prevent perfect time updating. Physical evidence has shown that gyros and many other
relI devices have errors which vary with time and/or other environmental factors, Hence, this random forcing -- *.a.*

function concept plrovides a means of Including such affects in the filter algorithms. ' a .* '*

Figure 2 Is a block diagram depicting the conceptual real-time implementation of a Kalman filter, In accordsncw . f
with the above standpoint, in an on-board navigation computer. In particular, the sequence of operations involved
Ine migetdha cycleofu atteontionr filter is shown. Although the figure is largely sefexlntri shul ... -'.. q..

bentdtatcrflateto osequencing these operations, so ast minimise or eliminate possible harmful ~ * < ' -
control lags, is inherent in the diagram.

* ~Details of the Kalman filter which Is mechanized in the C-5 navigation system are discussed In later sections. , .

3.1 Navigation System Description

The C-5 navigation system consists of the Inertial-Doppler Navigation Equipment (lINE) and a number of suxili- '.

sty navigation aids, meoufactured by several sub-contractors. Northrop Electronics Division io the system % ~., .

Integrator aso sell as the supplier of major equipment items, including the Ildi and the on-board digital computers.
Figure 3 is a simpliffied block diagram of the system'. As shown in the block diagram, a high degree of redund- ...-

ancy mu incorporated In the design to enhance overall reliability. The two on-board digital computere are the % "/.'.
heart of the basic system. The navigator's control and indicator panels enable him to decide what mode to select.~
ehat navigation Information to use or rajsct, and so forth. aCA.V

ifootna to: The assourween '¶eaon ia ausd here to he I x 1. This #'.owa uset of scalar division, rather than the matins
io rs on require in th .or. generitl csamseot an a 5 I msesuressot.
Isaforenne I gives soms additicual details.

N '-*0
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The Digital Computer

The computers shown in Figure 3 are Northrop Electronice Division goneral-purposo, parallel operation digital .

computers (NDC-1051A), The word length is 23 bits. The memory esimo are 12,288 and 8,132 words, respectively,

for the primary ,,id auxiliary computers. Other characteristics are an follows: . *,, ,.. .

Memory type: Random accese core, non-volatile DM ' "

Instructions: 51, with two instructions per word and half-word. . . .
arithmetic capabilities _ . ..

Half-word 6 mioroseconds ,'.' .,I*..v
--dd timt: ull-word 8 microseconds

MultiplyHalf-word 28 microseconds

multiply time: rull-word 74 microseconds

Indexing '

Other features: Indirect addressing
Roll table (push-down stack)

The 11111 ~~Interrupt capability. ,*"*4. -

The lUl (Inertial Measurement Unit), shown in Figure 3, is the Northrop floated ball, gimballess platform.
Three Northrop single-degree-of-freedom floated. rate-Integrating groscopes are orthogonally mounted inside

the floated ball. Each gyro error signal in detected and amplified. The amplified signals are applied to ball-

mounted torquerv which cause the hall to rotate, This high-gain, three-axis, feedback attitude control system

rotationally isolates the floated ball from the case, maintaining a stable platform to a high degree of accuracy."i.'• o r~Eah gyro has an input torquer whose comm~and siglness are controlled by the digittal computer. Hance, the platform -; -- •-
attitude relative to a given reference frame can be changed by quantities computed by the digital computer.

Three Kearfott l.inear pendulous accelerometers are also orthogonally mounted inside the floated inner ball, "

The aoccelerometer-sensed signals are sent to the digital computer in ihe form of a train of pulses, The number .

of pulses in a given- unit of time divided by the time interval is a messure of the average specific force exerted . '•- *.'..**

on the IMU case over the interval, The frequency of the pulses for the C-a system is high enough for this
average specific force to be considered as a continuous quantity, for all practical purposes,

The IMU also contains an electrostatio, three-axis, spherical angle measuring system. This "ball readout" m

provides a seasure of the orientation of the platform cae (outer ball) relative to the stable member (inner ball). r'.. .,. . •

Dokppler Radar ~~'.
The Doppler radar, manufactured by the GPtL Division of General Precision Systems, Inc., supplies the computer •,4:',"

with seamurements of ground speed and drift angle". B utilizing information from the "ball readout" mentioned

previously it is possible to obtain the ground speed relative to platform %eso.

LORAN

The LORAN receiver is manufactured by oll ine Radio Company, When available, the LORAN data is converted by

the digital computer to position information and displayed to the navigator. Subject to his judwment and control, %

the LORAN data can also be used to update the best estimate of the state vector which includes poitcion, velocity,

and other quantities, 
r.

TACAN

' The TACAN receivers, manufactured by Hoffman glectronics, provide slant range and bearing information to .

ground stations at known locations. The navigator can'use this data, when it is available, in a similar manner

"to that described for the LORAN.

Multi-node Radar (We)

The multi-mods radar. manufactured by Norden Division of United Aircraft, provides many modes of operation

-- for the C-5. Two modes are used to obtain navigation Information. In the terminal phase of flight, the navi-

gator can, through a cathode ray tube display, sight on landmark patterns whose position relative to desired

supply end/or personnel drop location is known. Slant range and hearing data is provided by the MR during the

terminal phase. The navigator can also use the MMR for sighting on landmarks whose abiolut•e position (latitude

.md longitude) uas known. In this mods the measurements of range, bearing, and landmark location go directly %
-,o the Kalman filte..

The drift maile is the eagle batImte the ground speed vector and the aircraft longitudinsal ais.

4-

-'..* .- ,,'.-,,,,..-. -. . --.. *-.'-"

S* , ' " ". " " * '% ". ".t -q Iq" " ' - -. " " . % ". 4 ' 4" m 1 .4"



I. ~295 ~2 Attitude-Heading Reference Unit (Al1111)

The. two redundant attitude and heading reference units, shown In Pigure 3, are maenufactured by Lear Biaglet.
Data, from these units in used to provide a back-utp mode of. operation in case of mu IWU malfunction,

Central Air Data Computer (G4C00,,

The two air data computers are manufactured by Elliot Brothers, Oity of the functions of the CAflC is to i

provide barometric pressure altitude data to the nnvigation system, (See0 Reference 1 for other function.).

Inertal-Dpple Naviatio Equpmen

11igure 4 is & functional block diag~ram of the C-5 Inertia) -Doppler Navigation Equipment, which performe the
navigation function it, the primary modo of operation, This major subsystem of the navigation system is supplied
by Northrop Electronics Division. It contain% elements organized and located as shown iii Figure 4. The Droppler ,
antenneaend:IMUar in thfj nose visor of the aircraft, The vlectronics rack contains thisA-D/,D-A (anelo:-t:-

eiia nd digital-to-anatlug) converters, the digita~l conputora, and the Doppler signal data converter, The
cotoend indicator puanels are ita the navigator' a area,

Before inatallation In the aircraft, a tape reader, which in part of the auxiliary ground equipment, ia used

compter Th naigaor lsohasaccss o sme art ofthecomputer memory through akeyboard ipt

As ca be-ev~en romthi odiscuso reaiv o Figure 3, the C-5 navigation sys~iem ha. numerous equipment
avigtosion mods deen dince uponl yse reliability. In, addition, the navigator can select any one of four basic ~ .,, ~ ~

noviatin mdesdepndig upn euipent vaiabiityA biefdescription ci these primary mo'ics13owk j10R

Fre netil ki od uesth IUdgialcopuer adbarometric pleasure measuroments of altitude. W,.
Doplr-notilThis moeadds teDoppler moamurementa to those used In rho free-inertial mode,

rbpper eadfiekonng'In aseof MU ailure, if the Doppler and AHRU equipments wre available, this

given. o" to andeced %oemt notemmr gon rar
Tru Aisped PailRecanii; t bththe IMU aniteDplrradar fail, AUW hand airspeed data fo h
OW cn beuse to ontnue eadreckoning,

in SW oe o th" bsicmods, osiiondata from LflRA, TACAN, multi-mode radar, or visualInomtn
4e als11 used to update the best estimate of the state vector.

to-addition to these nvgtomdehr are also the platfors allinmont (~udo i)mds ee
an in the navigatiola modes, teKlafierIn used for weighting the various available dat tocninal
optimize navigation end platform alignment.

Finjally, a special terminal navigation mode uses mulft-mods rscaia data to attain the high relative-position ~e
eacuracy required for determining the computed air release point (CARP?) in cargo or personnel drops.

q ~The design performance goals for the C-5 navigation system are thorse defined for system Jnitializotion and
navigation in the Doppler-inertial and free-inertial modes, as follows,

(a) Ground alignment (-750 to +150 latitude):
(1 i-pfrm40 a alignment after warm-up, both in 25 minutes. > ~ -' .

(2 nta oiinuncertainty: 1.0 nautical mile M3o). *.*.,*

()Ainetatrwrupin 20 minutes. ~S'.~.~.-
(2) nital osiionuncertainty: 5.0 nsutic'al miles (3o).

(1) Oround alignment - first 5hours; D.75 nautical mile per hour CP
(a)~~~~ send Dope-neta5 hours: 1.25 nautical miles per hour M.

(2)~~ ~ ~ ~ Aibreainet-fisn or:10autical mile per hour MRY,
- eod5 hours :2.0 nautical miles per hour CEP'. .,v

%'.
''p

% ,- .

9'%

%5 .*.



Ths eingIaae xlie sflos The system should be able to be aindwithin 25 minutes from________

mile oin ground ainetthenebepstoerogrwhresoudenolarger than 0.715 nautical. -,.

either the Doppler-inertikl or the free-inertial mod6. rllowing air alignments, the c'orresponding goals ire
1.0 and 2,0 nautical miles per hour, even with a 5 nautical mile (30' initial Position uncertainty.

hefreli otalmde Promnegasart, of course, the more stringent. That is, Dopplor data provides

adredeasurerilmoet hc.i poe sd must improve the system performance over that obtained with theL . ...

Obviously, the operational environmnent fur ground al igunment is far more severe then it laboratory environment,.
The C-5 Is a heavy logistics transpiort arid the IMU and other equipment are located in the nase visor. Mhe noge %

Nvisor in open while the aircraft is loading cargot The around alignment process must be carried out during %-vigor motions creatend by winds arid cargo-londing treuisiente. ijefinitionti of approximate, but realistic, statisti- M. -

cal models for muchi factors were required during the Kaiman filter devolopirujit effort.

2.3.3 Scheduling hoquiremente

An unusuully stringent schedule wan maintuined on the entire C-5 program by Lockheed, Northrop, and the other
equiprint suppliers, For that reason, when considering Yvetous system refinements in which a number of aleNJ -
tives presented themselves, decision deadlines had' to be mot, sometimes requiring a lees thorough than desired
evaluation of each alterniitiVe,

1.4 Problam Summnary end Approanh

Give., a) erfomane soolfoaton5RndPhysical characteristics of the C-5 subseystem hardware,
W RqieovrlC-sytmfunctional capabilities and performance goals, OV 'io

frm ay oucs suhasprcicl xereneand data from conventional inertial navigaion systems) was '\

avhighle degeoe tia ofo ieconstheatioa s preliminary analysis, and practical experience all contributed to give

tive solutions exiat. Hence, as the design gradually evolved, engineering Judgment plsyedi a large role in the ~'
selection of the specific solution from the availnble alternatives. ~' rj .'

an solving a problem of this type, it )s logical to first ask four primary questionsi

(1) What is known about the problem?6

(2) What additional information must be obtitined?%
3 lowe is thia additional information to I. obtainea? ,' .-

(4) Can the generation of this information be organized so that it in available when needed?

The answers to question ()are sumsmarized, In the paragraph above, and the other questions are disoumeed below.
N ote that answers to question (3) are the solutions to the Problems rosed implicitly by Question (2). Thne X
answer to 'quostion (4) is really the approach to solving the overall problem. That is, the overall problem is
Sjseparated into many small problems, the solutions of which are organized to provide a logical time sequence of.
overall system development, Typical problems and solution approesches involved In the 0-B Naloasn filter design
development are Illustrated In the following paragraphs.

Preliminary statistical information was ,oaded on system Performance in its principle modes of operation
(e.g., boppler-inertial navigation following a ground alignment). Adequate statistical error analysis techniques ~ ~ ~ ~ 3.
fur linear systems were already available, Furthe~r. pest applications'hed shown that such techniques were
applicable to nonlinear problems, if the idea of a nominal trajectory representing the sean value of the ensemble , ,, ,

* ac~wre used. use of linear variational equations for small deviations from the nominal trajectory therefore w,*.
provided the desired linear equations for propagating and relating subsystem and system errors for C-5.,.

Us the (circular error probability) Luats for enisemble positicon error growth ies interpreted as measing that. for an
arbitrsoy system selection and tent evaluation, the probability in 0.5 that the position error ii lws% than the specified

anmar
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To use this theory several steps were required: .%

(1) Derivation of an approximate but realistic mathematical model of the inertial system.
(2) Derivation of variational equations for the inertial system error model.,. .

(3) Development of subsystem error models. .A .'•.- -

(4) Developmnnt of general-purpose digital computer progra•s for calculating ensemble error anslysis data.

These error analysis programs, though preliminary in omse respects, must be sufficiently flexible to enable
investigation of porformanoew sensitivity to measurement oyling rates, non-included error sources, and the like
Marly answers to questions In such arese were mandatory to allow reasonably accurate, first-cut assessment of S e ' ,

the demands which the finai Kalman filter program would make on the on-board computer,

Exdmple 2

Information was needed relating the nunmher of state variables of the Kalman filter to real-time computer .
speed and memory requirements.

Since, given the algorithms, an experienced real-time programmer can estimate time and memory factore, this 4.
problem was solved by out-and-try procedures, Initially, "bull park" alnswers were found, Those aot ma guide- .1.,
lines until new information requires refinements. As described in Saotion 3, such data, together with the results , 6"..
from the ensemble error analysis programs, indicated a need for development of a special data smoothing algorithm "• "

for the raw data, beford Kalman filter proocessing.

Example 3,

Information was needed about such nonlinear phenomena as the build-up cif computational error in the on-board R -
Kalman solutions. No known theory could provide answers to such questions. Simulation of the system on a

• ,pgeneral-purpose digital computer, however, promised a very practical solution. Hence, development of a simulator ' 'S"

and study of such effects under simulated conditions was the solution chosen. As the design evolved prior to ..... ,,
laboratory and flight tests, the simulator was expected to become the primary tool for validation and/or checking %., ..

of algorithm refinements, It the simulator design were made sufficiently versatile, it would also help in under- .,
standing the causes of, and determining fixes for, anomalistic behavior of the real hardware in later stages of .. . .
the system development, ',

Itese are a few eaxtplea of the considerations which influenced the approach to the overall problem solution,'r
Prom the three examples given, it should be reasonably obvious that the problems could not all be solvnd simul. ,.
taneously. An orderly, time-sequenced approach had to be formulated with overlaps in obvious areas, and 'ith ',-'. "-
contingencies for.redireotion based on new information. Such sn approach adapted itself naturally to the overall % ; "
system development time schedule. The sequence of presentation in the next two sections follows, to a large er

degree, the overall approach adopted by Northrop management at the start of the development effort,.'. '

3. DESIGN DEVELOPMENT AND DESCRIPTION I '-

The previous section his bristly discussed some of the problems which had to be solved in the development of %%-%- .
a practical C-6 Kalman filter, The most important initial steps war@ the derivations of:

(a) the system state vector, .•.. .. . .

(b) dynamic equations for the state vector,
(o) variational equations for propagating errors in the state vector,

(d) statistical models for the error sources,

Furthermore, a general-purpoas computer program was needed early for evaluating effeats of various subsystem
"desigp parameters on system performance.

As data was gathered from the above tasks, the constraints imposed by the limitations of the roel-time "
computer we.:e investigated,. Theme were:

(a) real-time availability,.

(b) computational precision, .

(a) @emory availability.

This section follows the nverall development in the sequence given, and aummarizes the design algorithms of "
the real-time computer that resulted from this phase of the development. ."'" . "

3,1 Msthematical Modeling

The general definition of an appropriate mathematical model for a real system is one of the sust difficult
tasks in thu applioation of Kalman filter theory. The decision as to what degree of approximation is appropriate -
is prirarwy, since unnecessary complexity sill result in unacceptable real-time computer storage and memory
requirements.
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To illistrate, c'onsider the problem of defining A C-5 system state vector, The primary objective of the ... .
navigation iYstem is to provide continuous, accurate indications of the C-5 aircraft position, velocity, and. .. ... . .
heading'.

The differential equations for aircraft acceleration can be written in the form rt" ./ ," " ',.',

+ .+*a r~t+¶ 5  (3.1,) "' ."" 4." .

where - , V
a aircraft Acceleration " 9

:revitatlonel force/unit mans, Ti:'mneahrd'jb sid ,agat1

S•aerodyn am ic fo rc e/ unit ma~s s, , %,, . , , . s ,

" :thrust fore#/unit mama...'•' ,',,,,.•

rho velocity F lad position 1' would comprise six vector elements earn, To describe )•and a great .,.........,..

Smany more state variables would he needed. This definition would permit treatment of the IU accelerometer out-... _
put many other sensed quantities (e.g., engine settings, control deflections, etc.) as observations, If,
Sthe differential equations wire written In the form

.~~~ ,(3.9)- ••1

where 7 represents IAR) accelerometer outputs, then it would no longer be neceasary to model the aircraft '
attitude motions, engine dynamics, etc, A large number of state variables would thereby be replaced by the j '

outputs of a mesuring instrument. In the use of Eiquation (3, 2), however, the IMU accelerometer outputs are Lart: ..
not observations in the Kalman filter theory sense. Instead, they are foroing function. 'Nevertheless, as will
be soen, errors In thee 'measured" forcing functions can be accounted for with this approach, We

ror either of the two sots of Equatinns (3, 1) or (3. 2), Doppler data, barometric preseure, LORAN, TACAN, snd . -

the like, all of which are only funcLions of position "eid/or velocity, can be treated u observations. Slppose - ," .,, ,.
now that the IMU fails, Assuming that Doppler data is still evailablo, the equation • ,,

can now be written, where 1(t) is the Doppler velocity measurements, The Doppler data is no longer an obser-

vation in the filter theory aense; however, the LOVAN and TACAN data, which res functions of the position state
variables, ', are still observations, ,

The definition implied by Equation (3.2) was the one selected for C-8. As mentioned earlier, a wander azimuth,
geodetio vertical frame had already boen selected for the navigation equations, Hence, the differential Equations

_..4- (3, 2) were changed to define the vehicle acceleration sad velocity in this rotating reference frame. ..... ... '.-, .

"Cars in state vector definitions also 4llowed the auqations for the dead-reockoning modes to be sub-sets of
the equations for the 0opplor-inertial modes. This permitted a miuch simpler overall fcrmulation for the multi-

3.1.1 Pree-Inertial Uole Model "

As already discussed, it was planned to use the free-inertial navigator (in the primary m-xile) for updating ' ,...
4 '~ , the total estimate of state in the time intervels between moasurement cycling of the Kalman filter. Therefore,

the need for an integration of nonlinear differential equations as part of the Kalman filter was obviated. - '- '-" ,
However, at derivation of an approximate model of the system was needed as a basis for an api~roximate transition
matrix for the Kalman filter. As described earlier, the differential equations for the system state were

X (Xt) + U.(34

"-, - Using thes, the variational equations: .• " +~., ..'.,,,•.

I : A(t)x (3.5)

were required, ehere., . .,,
A(t) 5 Vx[(l((x,t))J n~t)-x(tt ' (,, . .,,. . S

"i(t) is the estimate of system state. Several of the components of i(t) are available frne the inertial
navigator.

The inertial navigator consists of the liWU and the navigato•n equations solved in the NDC-I05IA computer

(soe Ptgure 1). A reasonable model for Equation (3,4) can be defined iby writing approximate differential - -

mqeations for the IIU computer system. To illustrate how this can be acocomplished, consider the modeling of
the way by which the specific force vector in obtained for input to the navigation equations (see Figure 5).

An inertial, nom-rotating coordinate frame In aeeumed hers for simplicity of description.

t -.P 21

,.. b ~ *W,",,- ', -. 'r t4,W -j'
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The true, vector specific force 4 Is transformied to tile plattorm roforance frame by tho trensforestion ___________

T11 11(t) Sinoe the accelarometor-scnnitive axer arm tnot procienly Orthogonoal. the nan-orthogonnl trrunsforni a-
t ion. TPIA I tansforms the specific force to accelitrunioter maxes. In IdCi~tioII, tocceleroneters have Ocalea -~
fancture which are not prectimely known; the diagonal matrix VIA rnpresents theme factors, Finally, the accelero- %
meter outputs are also corrupted by Wile offmets and noise,. represented by th w etr b aold
respectively. The vector 10represents thu simplified, COntinHOUs miodel far the outputs of the aRtualfi

Stendsrd C-6 system procedures include Provision for estimiation ot all tho above acoeloruittater-relatod efrora ni., h~
aund for a set of gyro-relatsd errors dicumssed i'elos Re wall, during periodic, laboratory calibration operation
on each IMU. Theme numbers are then incorporated into the computer to apnpropriately compensate the aocelerometer
inputA to, and the gyro commnand outputs from, the computer during gntuali ayatam opecution, In this connection .

the vetor ?in Figure 3donates tile alibration for Rccnieromater nullibian ii. anld the 1 m~atrix Cai9 .

[a) IA [T SA]"

The estimated specific forces vector We can therefore be written in terms of all theme quantities, The errc'r
in X, duo to eauh one of the contributing aceleolrotietric error sources csn. in turn, be approximated by first-' j
order variations of thoee relationships,.

The error in As causel by the errors in the transformation ?~,,,(t) must also be derived. These latter r
errors are called tilts because'. ideally, T1 111 , I , if f1  is defined in the true local tangent planes,,~
reference system,

Continuing with rigure s, the vector We feeds the navigation equations, whinh are shown schemativally in L
Figure 8. Although the NDC-1051A calculations are discrete rather than continuous, their repetition rate is
high (12 Hz). Hence the error differential situations for those calculations can be approximated by taking
gradients of the nonlinear equations with respect to thle various variablew..4

Three of the nine fundamental state variahles can be identified by referring to Figure ff. Those are the
integrator outputs:

* Vt. Vt, - vertinal and level velocities

h =altitude

Two others, latitude end longitude, are obtained from the transformation T Tite final fundameental state sle
varishlem are the three rotations necessary for defining the t~ranef ormatital Tp1 2P(t) discussed above.

The closure of the loop (i.e., thle gyro signal processing) is illustrated in Figure 'V. The gyro torquing ,.5

signals, represented by the vector we , are transformed by the calibration matrix [suj). This matrix is a
calibration for the, gyro scale, factor errors (diagonal matrix M1) Rend the gyro i nPut axIls non-o.r thogonalities ~,
(matrix T,,,,). Note that T,11p transforms rates from the gyro input axis frtmw to the platform reference j4Ie
f rule, Also, [jj (~lT 1 ~VI...,:

Shown also are the (u1 I matrix, which cuinpensates for gyro drift rates caused by static ease unbalance n
tevector itte I hic1 is a cslibration of the fixed gyro drift rate, In Figure 7, aWd is the actual vector '

ditrate of the gyros, referred to the Input axis. Rlefetriceo .1 gives wainy details On the umodeling of such
factors.

The final output is the total Inertial rate of the platform, 4.Again, first-order variations of the
'I ~~~various equations are used to define errors in ; created by tile various error sources.,'***"

The process Just outlined led to ths definition of approximate variational equations for the free-Inertial ,

* navigator errors in the state-space form:

( xi1) (9 x9) (9 x 41) (41 x1)

W OOt~ + A3t)ef

There are nine error state, variablee and 41 error forcing functions. Some of the error forcing functions%
were Restaeed to be constants (e.g..* accelerometer and gyro eisalignmente). while others were prescribed functions
of the flight Path (e.g,, static mass unbinlaoce drifts): however, known fluctuatAons in gyro drift rate sod

Aaccelerometer noise* needed a random charactsrizat Ion. This won accomplished byr assuming that such errors were
representmisle by white noise driving a first-order filter In accordance with Figure 5.

before the final, augmentedi state vector formulation is defined, a brief consideration of the observation
modeling Is in order.
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3. 1.2 Obserat (ton Made I

The process of appropriately describing the observations and their error models follows a pattern similar to ........O
that described for the ftee-inertial model.

Incranisacs(.g OMtime-dffrence pair and inertial navigator latitude and longitude), u2 -

noliesa r ere uall o aproiatEd by hineteiali indsbytoea ifirs-order s f itr othrs alr dyime ctioned, Th ai on exis s ldts % ,' .

Moheln of the time prpgtino:ubfiystem orrrirm ocam::tated the use of timo-correlatod randomn variables. '

th eiiinof 17mr ro tt aibe cntn lmsand/or ourrelatud noise) of the type described, .

by th etrV a!Equation(22)

3.1.3 Final Linear Dynamic ErrorMoe

Augmentation of the fundamental state vector -to Include all the d,3otrmninstio type of error nources led to a
final dynamico error model of the form

(67 N 1) W6' X V) (6? X 1) (67 X 1) %'

T1he vector 1(t) represents the total augmented error statle vector. The vector n(t) reprtsonts the white%%
noise Inputs for some of the augmented state variables. Most of the components of ft(t) are identically zero. - x.,

0

It should be noted that this model asewneas a smooth time propagation of system errors. In reality, bocause of
the quantized, iterative nature of digital computer signal processing, the actual errors really exhibit stair-
case behavior. However, because of the fineness of the quantimatioji (typicallyv one part in 22?), sand the high
iteration aiid sampling rates employed (e.gI., 12 liz), the continuous approximation is an %dequats one and, of
course, highly convenient for simplifying any necessary Mathematical manipulations of the model,.~ 0

3.1 Lniestbie Error Analysis Program

At this stage of the overall development effort it was possible to start the construction of a 67-variable
ensemble errcr -analysis program, hereafter coiled Program I for convenience of referenco. The purpose of this ...
program was to establiph the system performance possible if the C-5 Kalman filter incorporated all 6? state ,*.'

variables, This error model, although still approximate, contained all the error sources considered as having I:..'-
some significance; it is therefore hereafter referred to ts a "complete" error model. ~

WData from this program was intended to serve am a reference standard, against which the performance of submes- . ... ,

quent, less sophisticated altornativois could be measured. Construction of the overall Program required: .. , 0.

(1) A means of generating demirei flight profiles.

(2) Input means for controlling all the assamed Initial error sources, the flight profile, and the sequence 4

()The Lloih o paigte rror covariance matrix between the observations.

Ofthese, ites= 1 and 2 are program details which will not be pursued here. For item 3, an optimal filter
wasasumd..Itm , hweer meit mss isusion snc it incorporatedsoeapxitonwhcwre...... VA

Osubsequently used In the actual, on-board Kalman filter program.

3.2f.1 ofdcto B tha bechnenthero r::mtixrsligfo ofhebervations.

Tealgorithm for peitoofhecovoriance mtiacosheintervalsbewnsucsieoraosws
developed as follows. .O .

It1(t) denotes the error in the state tstimate at time t , then

;(o (t"etn)1(t0) + 0(t,:i (,r1 d-r(38

describes the error' propagatiLon acress the prediction time Interval (6t v to to) between successive observatlons t

Defining the covariance matrix of the error tw

It:In apprent that the on-board computer could not eel:: such a :Ualusmux rblmi real-time and, em wil1 be seon. It i".v _14" 1*4.

Inntpatca od o

Lae hnts nevlwl e$ett eth cul1nlgtm fteK~a itr
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wa tentatively Ma~nsud sufficiently acourato for extrapolation over at At interval, flubst) tuticni of Equation

(;.10) into (3.15) given

fo r1 + (At -JA At (3.1'?)

A. Yo %..% .ON

or, for n > I (see footnote),

CA 0lt r. 7. + At* Ai 1 + fhAt')': ft A' + (At*) AL- (31)P, 1 .-. " ,," , . i

where At' At1 e At , and terms of order higher than (t') Ihave been dropped,

Equation (3.18) still presonted difficulties, primarily becauno mechanization of the last (double summation)
term suggested considerable complexity. This term wan therefore tentatively dropped, an sore all the remaining
"soond-order terms, exmopt for c"rtain principal ones otr ooLatod With con.tant elements of the matrix A1 .,

The residual expansion finally adoptd was thus ..

C(At) - I - + (t'AI.tAt') [At +At'] (3,19). . .

where A, + Att s AI,/ and Ae s nd Aor are respectivelY the constant and non-constant portions of . \. .

the matrix AJ Ac represents a matrix of selected, principal constant elements of All.,

For preliminary evaluation, a small program was constructed to check the validity of Equation (3,t19) if used

* recursively to approximate atationary linear dynamics (e.g. , the C-5 ground alignment situation) over long
periods of time. Although this program used oniy a limited-dimnension model, the model incorporated the principal
dynamical characteristi, s associated with the stationary elements of the A matrix. The rsult i Indicated
extremely smallI percentage drifts relative to an exact solution (ohtained by use of Equation (3. 12) on the%

limited-dlmensicn model) over 10-hour periods, even with At as large as several minutes.

The airborne modes require additional non-stationary A matrix terms that depend on the aircraft flight
profile. Evaluation of the sdequaciy of Equation (3, 19) in airborne modes wats therefore deferred untilI after
the development of the system simulation program, described later in this chapter,,'' '*

J.2.2 Obeeruetions

I'., ~~~Three types of information external to the inertial navigation subsystem would be available for comparison -\X .,. .*

with Its outputs in the ground alignment mode and the inertial and Doppler- inertial navigation modes: ,

(a) barometric altitude fro, the VADC;
(M) groundspeed and drift angle from the Doppler: ,. , ,.. ,

Observation of the Information described by (a) is discussed here to illustrate the general approach.

linces the aircraft is parked during ground alignment, either the zero velocity or the fixed position of the -

aircraft can be used as the information reference against which to compare, respectively. the inertial navigator '.*. ? '

velocity or positiont. However, since the use of velocity-level measurements was already anticipated for Doppler-
Inertial navigation, velocity comparison was selected for ground alignment., This provided it greater uniformity N
between the ground alignment and Doppler- inertal mode neehetni 0it tonotrtons. , .. ,.,

4, ' leer prIf either one of the Inertial navigator level velocity readings is denoted by v the corresponding Kalman 4 un
. observation Y , used in ground alignment, could therefore be %

The signal v can be decomposed into the form:ed od

v 2vA +&V, (3.20) *

Swhere vA is the actual visor velocity component, due to wind and loading along the level direction associated .... . .
* a~ewith v , and pv is the error in the signal v arising primarily from Initial tilts of the platform with- ' "

respect to the vertical, and from unoul-brated piatfore drif t rate. s

Fo.tmolo! The notation from here on has boen purposely slorliti"I fur nooeatnotss; thus. b(L&) is seed for tm 4 tot)

proile, product stion Io implies the -ude;•r of uo t of matril factors (I I toe from right to left).

tadept for the notions induced by wied ad aircraft ioribe t .... ,.. ,

bithr refoereed. it properly uAed. is entirely equivalent to the other,

* -h4 -oldethttefosvir aeaollysatoaj uilioudlllet '.r•.t,• ' '.•.

S*-.4' ,'...'. ,,'

4ieth ai .att sko ut¢|on Sl Sen. tterth .rovooot4o , , -ze pottno th •, .. . as..

rud t ifm ih o , re r ". . .

v~lei• r otton. o~~r si, hu. o violt-lv, m~rnt a- }r,• ,ttipt~dfo Dpp~r •.••. .• ..
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Pro-m the standpoint of Equatisso (3. 20), It, would apponr that Sv in the signal containing inforeat~iour. Rod ~
V 0  is the noine from which it must be separatted. Howovc'r, this amsumption aboust v A Is Justi tied only ifv
consists mn'stly of noise which is of high frequency with rtespect to both thes Iv signal content and the con-
tomplated observation Iteration rats. Su!ý'auso of thn frequency response characturintics of the, massive C-5
aircraft to random wind and loading disturbances. this proved to be true for ground alignuenrt, If it were not
true, it tight have heeni necessary to introduce error state variables to acocount for systematic low-frequency
behavior of VA to moet alignment performuance goals. Such variables, which general ie thm system error state
vector concept, were Indeed introduced elsewhere to account for low-frequonry Components in other node
observation@.

.1S inces 8v was an early, natural choice as one of the essenstial ali-mode state variablcss, andi since the nota-
ticn relating meawuremtentm to state is

.0Y - Y (R-;) +

by association, 14 was therefore defined as: ..

1 2 3 ... 8v. n

Thesvechoicent, two scalar menuasvrea,,ts Instead of one (two-dimensicnAl) vector measurement for ground alignment
desrve cmmet. bi dhiced~i nt rqure at ix nversion, Instead, two successive passes are made through ~

the observation update portion of the Kalman equations, Caoh pass only involves a division for the inversion *"'

of the quantity MMPI? + C in Equation (2.D), In fact, all observations were defined is scalars to make this
A processing simplification uniform.

Although this approach is theoretically exact only if the noise associated with each separate observation is
uncorrela~ted with that associated with every other observation, ground alignment proved to be the only C-5 casoe ~ ,' %~* ~ .

where this condition was not substantially met. The resulting performance of ground alignment, as will be seen, ., i
I nevertheless met design goals, despite this thooretical infringepent,

Having defined the observation matrices associated with all C-il modes and information sources, it was then
possible to compiete the 67-variable ensemble error analysis program (Program 1) by incorporat'ng the following
matrix equations:

Q M WMMT +0CM 4
b =PN

T ' 3 2) .,

P ; P -WP *dh '

These, together with Equation (3. 10), completed the set of recursion equations necessary to obtain the time 1. 4

history of the covariance mnatrix P of navigator errors through a typical C-5 flight operation.
To simulate such flights, the program was equipped with a general, flexible flight profile sub-routinj

caal fpoidn ra icl rie lmb ecn n turn phases in any comsmanided sequence. The navi-
gation signals thus generated were used to drive the dynamic elements of the transition matrix.

* Pr-ogrsam I was coded in FDRThA1( IV single prqcision far use on the IBMd 7090 or 300 computers, On completion .,.--

dif. checkout, the immediate, extensive use of Program I at this stage established the ability of a 67-variable, , w'~*
%*I precision 7090 or 300 mechanization to meet or exceed all C-5 navigation system performance goals.%%

3.3 Design Rsview and Discussion-
At this stage of the development the overall final filter design was beginning to take shape, Approximately ,

* , ~~half the development time had elapsed, however, and many of the difficult problems imposed byn the real-times
ocuputer constraints had yet to be faced. ~-

3.3.1 Ovserall Design .

The overall design mechanization for the multi-mode system was reasonably well defined. Figure 9 is a funo-i M,4 -
* * ~tiosal block diagram of the overall msechanization, showing the rule of the filter In the overall navigation -

Information processing. Although this Is essentially an analog diagram, definition of the overall sequencing
-rZ1 of the digital calculations was also well advanced, u sill be aeen below.

In this connection, it was recognized that the actual Kalman fiiter would requira an appreciables time to- -. ,

proceep a &Ingle set of observations and to produce revised error eatimatn; for application as system corrections.
Whil this wass going on, data on current position and velocity would continue to be required for inputs to other, -

non-navigational functions (o.g.. aircrurt ýterrin') and for display, Since such signals might be available at
several different points (e. g.,. groundspeed from corrected Doppler groundspeed or from the horizontal navigation ALL
equations in Figure 9), one source had to be uniformly selected a3 "best" between successive Kalman corrections 3-,, ,. ~
Because of their relatively high update frequency and their relative smoothness, the (corrected) inertial naviga A. , ,

tiork signals aere chosen as the best outputs for this purpose. - ,

% ' ~

%..
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3.3.2 Kalman Filler Deusgn

Table I stmmarizes the C-5 Kalman filter equations. The compul *Lons mhown, together with the foreation of . ,

the various matrices involved, comprise one full Kalman processing cycle in the on-board computer, and are given q,.

in the order of actual processing.

As discussed earlier in this chapter, the Kalman equations are modified to include the "epsilon" weightling

technique and to provide for system and estimator control. At one time it was contemplated not to inchnnezc '. " ," ,."

control at all, but rather to perform only open-loop error estimation, Navigation signals would then be corrected

with these estimates only for output to other equipments. This approach was discarded in favor of the closed- "

loop control technique shown, becauso It was recognized that otherwise the linearization required would be done V ,

about the uncontrolled syuLem state. A large error build-up in this uncontrolled state would cause a corres-

pondingly larger departure from the desired linear properties.

The essentials of the control technique used, which are summarized symbolically in Table I by the notations .'

fi) and go , are an foIlowes

(a) Impulsiue Cornrol Wherever possiblo, the contents of a computer register whose error is modeled as a' ' 4

state vector element are corrected by adding the estimate of error (with the proper sign) to the computer
register, Simultaneously, the register containingl the error estimate is set to zero, This in done to each such.,..,..

register pair one in every Kalman computational cycle.

(M) Finite Duration Control The above impulsive type of control is used uniformly for all registers controlled '., "

by the C-5 Kalman mechanization, with one important exception. This exception pertains to those two state vector .

elements which model the two components of platform tilt; i.e., the two components of the small angular deviation

betveen the actual and desired platform verticals. To remove the actual tilts, the gyros are commanded to torque

the platform vertical at a uniform rate over the next Kalman interval, This rate is exactly that required to

take out the estimated tilt in the platform in one Kalman cycle. At the see time that these leveling rates",

oe-s first applied, the platform drift rate estimatea, are set to these computed leveling rates, The current V"

tilt estimates are left untouched.

Note that a basic, built-in invariant implicit in these control techniques is the difference between the actual
and the esttaatsW system behavior. This invariance allows retention of the simple, open-loop covarianoe matrix *4'.,

recursion relations unchanged, if it Is assumed that the additional errors created by the Application of control •".

are negligible, This assumption was made at this stage of development for later validation.

The off-optimal "epsilon" factor was introduced in the design algorithms as a precautionary weasurn to combat

unmodeled and numerical errors (set References 7 snd 8).

3.3.3 Other Relevant Information %

Concurrently with the effort described thus far, soe additional data was being accumulated as a result of % ....

related work on another system. For example, an NMC-105 computer (24-bit word) had been programced for Kalman -'

estimation in the fine ground align mode, and laboratory tests were conducted with an INU of different design
f rom another program. The results were not overly encouraging,

One of the problems was the difficulty of maintaining a prdltive definite covarianee matrix. The other appear- , .

ed to be conecoted with the use of fixed-point arithmetic. Inly poor estimates of gro drift rates were obtained. " '. %,

This seemed to be tied to the loss of numerical significance in the covariance mardet h ie-on
calculations. These results were one of the reuaons for the introduction of the "epsilon" technique In the Z'., •,•

basic mechanizastion equations for the C-B system.

3.4 Constraint- Imposed Problem and Solutions

One of the principal problems which had to be dealt with at this point was the identification of the mallest • ,. .

sysema error model which could be mechanized for the on-board Kalman filter, and still meet system performance ,' .

-~ . goals. Use of the complete, 67-variable model of Program I, for exsmple, would require far too much memory and .

real-time of the on-board computer. However, Program I results did indicate that the complete model, if . -

mechanied, would substantially surpass system performance goals. This, therefore, provided a reasonable per- 4.'

foruanee margin to work with, in terms of the lose of performance inevitably expected from on-board use of 0 4

smailer models.

"4 Actual quantitative evaluation of this performance loss is a relatively subtle problem which cannot be solved,

for example, by comparison of 67-variable model Program I results with results from an analogous program in- .%. '- -,

Soorporating the smaller model. Rather, a more general type of computer error analysis program is required. •

ZI I will be seen, the stringent overall C-5 development schedule had a direct effect at this time on the selection % ,.

of the type of program to be constructed to fill this role.

In addition, definition of the airborne computer tape sub-routines had been proceeding concurrently in all

Other non-Kalman areas. 3ince design lit these more. conventional areas naturally proceeded faster than it did

in the sore novel Kalman area, the procrams for these sub-routines, together with their attendant word count

and time allocations, began to crystallit•e somewhat ahead of those for the Kalman sub-routine. This process

led to the early establishment of word count and- real-time allocations for the Kalman sub.routine. These allo-

cations constituted the two primary constraints on the filter design. . . .

i %,.
*% .' .,',..' a.• ",,

•'.,-, -" .;.--•., •- ,r..,•,,.,.j,••,,,••.,,.,.• ,,•%,,., ••"•.•-,;•',,,• -],. -•- •, '• ,, . -•;.•-.' ,.. . ", :-... : :'
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Those ContraintB, together with the accuracy goals find all-mode operation requirements, comprised the
framework within which the Kalman design hed to be completed, T1he problems created hyI these contraints, the

~~ methods of attack used, and the final design solutions adopted are now discuased.

3.4.1 Computer Storqgr Considerat iont

The relative fractions of the total computer storage allocated to the various functions of a real system
like this one is always a matter of compromise, requiring continuous trade-off evaluations. A Kalmait filter
having suffcient. dime~nsion to A~ztisfY the C-8 requirement was new, although experience did exist on more
limited implementations. However, these. implementations were inadequate an a basis for entimating the C-5 ---

Kama torage roquirenent. Nevertheless, the storage available wms defined quits ,closely, becaume the 12,.2088word. ......
total (primezy computer) war, fixed and the requirement for most of the other routinsa cozzld be closely estiha~ted
on the basis of experience. '

Depending on how much program comnpaction effort was to be applied to the other routines, the storage Raviltible
for the Kalman routine ranged from 2.000 to 3000 words. It wag immediately evident that the model size must be. ,

reduced (from 67) as far as performance goals would allow.

In conjunction with this effort, it became evident that the miniml word length to be used in carrying out 74 Kp
all arithmetic operations would have to be determined, If doublej, rather than single. precision operations 7
were used, these would obviously double the non-instruction atorage requirements, This consideration of word '.*

length also naturally raised a question us to the type of arithmetic to be used (fixed. or floating-point).

Finally, further consideration atrongly suggested that the requirement for multi-mode filter operition might 6
demand at sizeable portion of the overall Kalmasn word allocation fzr intermode switching,

~ 3.4.2 Error Model Dimension

It was recognized Immediately that a natural, two-step iterative process, together with the techniques A~ Y '
necessary to carry out these steps, could be required to determine the minimal error model for the Kalman filter

114011W WOM. T essteps ware (1) a method for cytmtoially, discarding error variables from the cmlt
(6'7-variabie) model, and (2) a method for evaluation of the reduced models thus obta ined. ,,

This latter need - for a reduced model evaluation tool - led to the development of the second major ensembleA
error analysis program (hereafter referred to as Program 11). Two types or formulation, of differing ospabili- -.
ties, were considered. The first and more general of those was based on am extended set of recursive cvrec
matrix equetions (see Klaterenoe 9). This type of formulation allows complete freedom in discarding (a) arbi- * ~ A

trarily selected error variables, and (b) arbitrarily Welcted elements of the residual tranal~tion and system ., ,,,* .

noise matrices,.

A second and simpler formulation was also a6vailable'0, This one allowed calculation of the incorease in error
Produced tw discarding constant state vector elements only. Daspite this theoretical limitation, it bad the

ovridn avntg ta i llwd ioru hnligof all bias& errors (Whioli were predominant) and permitted ~ A

such faster program coflstrtjoticn by only requiring the addition of a few simple operations to Program 1: F'or
practical reasons, then, and In the light of the tight development achodul a requirements, the second and simpler-
formulation was adopted.

A An efficient method for discarding variables had to be devised, since the turn-around time for Program 11
results was one or two days, Hence, the obvious brute-force approach involving removal of one variable at ~ ~ ~ ( ,A
time could not be used. instead it was necessary to try to identify at once some extensive acts of variables ~
whose removal wn~ild, in a few steps, closely approximate the desired ainimal error model. These discarded aets,j ~ ~which finally comprised no less than 8i of the original 67 variables, were arrived at as follows. '

hetwien the times that Program I (the original 67-variable model) was formulated and Progrsm 11 was completed
and available, it had been determined for a variety of practical. reasons, not to provide outputs from certain . .. ,.,-.-

-, cm~~~o-beard navigation equipments as Kalmsan filter inputs, The state variables originally included In the 07-variable,~'
model to account for the errors In these, measurements were thus automatically discarded as a first stop. For '-- -.

example, although two radar altimeters would be aboard the C-5 aircraft, these would only furnish altitude above '-'
terrain, and up to a maximum of only 2500 feet, Since only the estimation of altitude above sea level was con-
templated for the Kalman filter, and since the C-5 aircraft would typically spend only a negligible percentage --.-. -- ~-"
of mission time below 2500 feet over the ocean, uss of the radar altimeter date by the filter was excluded.
The radar altimeter state variables in the original error model could therefore be discarded.

tn addition, where several elements hod been used in the complete model to describe the high, Intermediate.
and low-frequency components of the error in a subsystem navigation reference signal (e.g.,1 Doppler groundspeed), *

*these were cocmpressed Into one, where plausible, by eliminating all but the largest amplitude component,

Pinally, the largest of the tria gets of discarded elements was composed of the velocity and/or acceleration- '-.- -.

sesit errors associated with the lId! gyros and accelerometers. Thesse errors, although Important in a tactical
aiorcratftedlesign application, were expected to produce only minor perf~ormance degradations in such- a huge trane- . .-

prt aircraft as the C-5.

V % %~
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Tables 11 and III summarize the 87-to-iS model size reduction finally attained by the techniques just
described, Pigure 10 illutstrates the small ensemble performance degradation of the final 10-variable model,
relative to the complete model, for a typical C-5 great circle, flight, as obtained by Program Jr.

3.4.3 Word Length/Arithme~tic Type ~~-~:-~--
In parallel with the effort to reduce error model size. an investigation was conducted to determine the moat

suitable word length/arithmetic type for the filter.

One of the problems identified alt--qt at the start of this effort was the large dynamic range requirements
of certain covariacce matrix elements during the transient phases of filter operation. For example, it was .,

estimated that platform tilts of, typically, one degres would have to be reduce- to about one second of arc in. ., a.

a short period at the beginning of ground alignment. This reduction was necessary to achieve sufficient~ly. .

accurate platform drift rate calibration during the remaining ground slignment time. The ratio of starting *

tilts to residual tilts is about 3800 to 1. The tilt variances carried in the covariance matrix must, howevsr, .- ,..~

traverse the square of this range Ri.e., about 10? to 1). A single word of the airborne computer is only 28 bits&
(27 bits plus sign) in length, Hence, if single precision, fixed-point arithmetic acre used, the accuracy of ... . .

settled tilt variance computations would only be about 3 binary bits. The effect of round-off end truzication
errors on a word of only 3-bit significance during this critical alignment period was believed to be intolerable.Mr . w oI ~ At this juncture, a wide variety of alternative solutions seemed available, comprieing all remaining conceivable '

combinations of (i) word length, and 00i fixed- or floating-point arithmetic, However, In the light of further
scrutiny, these options were not all practical possibilities.

Before the final reduction to 16 variables, a P'-Aql of dimension 24 had been attained In the parallel error ', *.

model size reduction Investigation. With this aizs as . sial, a preliminary siming of the overall Kalman sub-
U *r0Iaihte storage Tequiremente had produced an estimate of 3300 words, predicated an the use of double Precision, OO

fixed-pont, arithmetic. % .~e

Althcugn this figure wrnm still in the ball park, it was evidint at this point that 3300 words could be made
available only if a considerable programming ef fort on the other ronutnee wits undertaken. (Because of experience .. ,

gained on previous programs, most of the other routines already mads efficient use of storage and further one- -,, ... *,.

pe.otion would have bpwn diffic'glt,) Therefore, the necessity for implementing the double precision fixed-point %*- ,..*

arithmetic spproach (or aaV method t'.eat required more than a single 28-hit word) was quiestioned. Attention wsee~..
then focused an the use of floating-point arithmetic. Irixed-point arithmetic requires careful scailing of all
varietiles so that adequate signifiosnow is retained, while avoiding any danger of overflow. The scaling con-
lideration is unusually complicated in the K~lman filter routine because of the extensive matrix operations. , * '

Asignificant advantage of the float iog-Voint 4pproach, therefore, is that the veialing task is avoided entirely. 's .,-

The hardware peculiarities of the vac*,ine limelf now coomletpod the rapidly narrowing restriction of choice.
The NDC-1051A computer hid a built. in (i.ea., hardwired) capability for performing either full-word or half-word :-:
flied-poirit arithmetic. It was not practical t4,~ conkeeplate a spl.it of the full 28-bit word into a mantissa ,

ouspriming msotl of these 28 bite snd a small exponent to provide just enough dynamic range to satisfy covariance
matrix requirements. (Although such a split could be used if accompanied by attendanrt sub-routines to Provide
arithmetic operayicos. such Aub-routines were expected to be somewhat slow. This would have resulted In an -..

V Inefficient. use of comtputer time.)

Tedsi chiewas thus narrowed to the use of loa.ting-point arithmetic, *jiizn single 28..bit word
sabroOequlyb anis n exponent. In particular, the restriction tu a short 14-bit (13 bits plus sign)

mantssacreted ned fr evluaionof filter performance with respect to round. off Pad truncation errors.
line ths ealutionwasclerlybeyond the existing or sully augmented capabilitieso ot either Program I or
Proram11.a rquiemet fr anowtype of evaluation program was established.

Finll, t n oite ot ar. orWeane lte I tischptrtht headptonof floating-point -
arithmetic wus the first and major rontribution toward increasinga the ningla Kalman cycle execution time. some , -

preliminary estimates, made at about the times this teothiqeeu was odopted, indicated uninterrupted execution times ~-*
of ahout 10 seconds. The prollminst:y real-time budget r&llonatsd about 20 uf computer real-time during ground .,

alignment and 5% in flight to the Kalman routine. lain led 10, estimates of one to thrae minutes for on-board
execution. Am will b'. seen, the unavoidable etdrgenc6 of these slow Kalman cycles led to a challenging problem
later In iam development. 1 ̀ 17.?4

3.4.4 Mid ti-modse ierquiremsence

The preceding; pustarspha hayse centered on the effort to optimime design of the Kalman filter algorithms with
reapect to storage rejautremennts. These efforts were characterized by use of the error model associsatd with
the most complicated mods of C-S navigation system operation. This is the Doppler-Darometrio-inartial mode,
augmented with position fixes from ainy or all of the on-board position-aeasturing sub-system equipments.

However, as has been pointed out, many different modes of system operation were contractually required. The
5$ ~~~error mcdel associated with each such mode differed with every other to varying degrees. Hence the Problems of- a,..

how to eechulz~e all such modes, and how to rwi tch between them, had to be sddrewasd. -.

1% ~~~ ~
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Multi-modep operation implies mombn uwitching in somi-what arbitrary snqtinlcus, said opilmal operation roqizirom
continuation or relatively complex transfer of tile estimation procosc. For tho*wo roasons R unifiod, eiulti-molde
Kalman filter domign was formeulate'a in solving the Problem of minimiizing Htorage roqUiremunts with this
nolocted approach, the concoept of ne standard error model proved Part~icuilarly useful, an follows.

This standard model was composed of the separate error models for the inortial rnavigaittor, the Doppler (ground.
speed and drift Lingila inputs, Rull thn CAflC (barometric Altitude) input. As such, It cotnstituted the largest

eimnsion (10) model required for dynsetic error pro;tgation in anzy iimvigsition and aligniment made. Fuirther. the
4 ~state veotor, tirtulaitionm atrix, and system rnfito matrix required to characterize any othezr mode could lin every

came be described either in terms of sub-nets of the standard sliLn vector and transition and system noise
matrices, or asi slightly modified sub-sots whose dimcikxions never exceeded 16. To at large extont, those con- L.
venient error model sub-sots existed because of the Care which had brsn previously taken, with regard to Intilr-mode

unfr ity n the design of the signal flow lil each of the mode menhsnizations,

The use of this concept mads it possible to view all mom-standard modes ise involving significant Information, ,

In only certain well-defined Portions of tile estimate and control vootorin and of the covariance and system noine ,

matrices, during both time and ii,ceet~rvrtcnt update opurations, The overall filter operations could then always , ' .

be dons ont a fixe~d dimension (10) busie, independent of mode, without corruption of the information-carrying
portion of these matrices by the Portions carrying meaningless information. lbs continuity of state varishloki,

counm t al moes e~g. psiton rroelalso facilittted the design of intor-mode switching and initialization
I-c .Rigid conformity to theme principles, in Conjunction with incorporation of the 16-variable model anid single-word

floating-point arithmetic. ultimately led to an all-nmode design which satittfied the ~22OOword allocation. L Y '

3.4.3 Cbmipun'r BeL-Tirse Allocation ...

Throughout the early and intermediate design definition phases, there was a gradual but nearly inevitable
drift toward at design requiring more and sore execut ion time, This drift was recognired, and investigation of
its implications on the final design was therefore initiated. 0J

The first problem was the needi for development of a transition matrix capable of extrapolation across roea- - .

tively large time intervals, Tile second problem was the potential lose of reference information (a. g,, Doppler "~','*

groundspeed amd dri ft angle measur.onents lit Doppler- inertial ope -ration). This latteor problem, which would arig*e
Inthe less frequent samipling imposed by a slower filter cycle, was initially ignored because it was assumted ~ e

that simple measurement averaciam over the bloe Kalmani opoputstional1 cycle was a solution. This assumption led
to the oppearance of an unentiolpatod problem late In the development,.

V 3.4.6 Tronri~tion Vat~rixI

The early effort in this area has 'already been discussed in soes depth. The need for evaluation of the pro- ~
liminary formulation developed at that tise had alriiady created the first need for a new tool with capabilities 4
beyond those of ensemble Programs I and 11. Thes system simulation program (SW) developed to fill this end many I{~'.~$ .

.4 ~other roles in the overall Kalmen filter dievelopmeont is described later In this chapter.

3.4.7 Measurement Averaging Wi"Sl*

One of the more stringent design goals of the C-5 navigation system design was the short time allowed for
the alignment and calibration of the inertial platform prior to Inertial or augmented inertial navigation. This ~
led to the attendant apecifiostion of the Kalman filter as the only approachl believed capable of achieving the
desired calibration levels in such short times. However, as with all statistical filter methods, success of
the Kalmanm filter depends on the amount of measurement data available in a specified time Interval.

~bi ~ ,As on example, the velocity signal to be used as the basic ground alignment measurement would be corrupted
IVthe velocity errors produced by the effects of wind and cargo loading on the parked aircraft during the align-

sent pericd. The time required to complete a single Kalman computational cycle was expected to he about one
smiuts. However, If the standard Kalmano formulation, which can accept only a single measuremont lin each cycle,
were used, only about one noisy data sample could be processed each minute. On the other hand, it hsd already
been determined. almost at program inception, that data sampling rates of at ilout one sample per second were

intrva an us te rsul fo th masuemet ocePer minutte, This seemed such en obviously satisfactory

soltio tat t ws ccete anthespt, ndattention was drcetoother areas. Much ltrInthprga
thi deison asre-xamne. Asmll nsebl eroranalysis pormwsconstructed to qnsantitatively evaluate
th prfrane f hs veagn Pocsswthrepetto platform drift rate recovery, The results were on---.- .-

Ana~sl ofthi phnomnonledto siplecinluson.Notonl wa th sinalnoise being smoothed (as
desied)by he aeraingProcssbutso wn te sgnalIts~flThiscretedserious driving arroal (e. g. , plot-

single-aicoxorain leeiglopmdl
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* ~A moification of the Kalman meaunrcomen procemaing formulation, designed to accommodate averages rather then
% samples, was therefore, evidently neoponary, Thin wits unidertakten, and led tn a simeple modification of the stan-

dard formulation. Finally, a simple ensemible error analysis prugrmm wan constructed to evnluatn the effect of
this method. Figure III shows a saimple, of the successful results of comuensatod averaging, as well as the

divergent characteristics obtained with uncompeensated averaging.
The modificationndvlpdtbaeonteasmtothtoemyrfrmaueettom toeoc(tie

point) of the staete vector t

yit) =M(tiet:t'WotO) 4 snf(.22

.4 ..

If a measuremsents yi(ti) in the interval to - to + Aet are avoi-ged, it follows that 4

Since q(t) is assilmed to be R random variable,, an averaged measurement can be defined as

Laox~t) + ,(3.24)

where

n number of mea~surements.

The technique Just described was incorporated Into the design. Figuzre 12 compares this formulation with the
normal Kalmani formulation.

4. DESIGN EVALUATION AND REFINE~MENT

% As already mentioned, evaluation of the effect on system performance of nmany imoportant, specific areas of the
basi Kalman filter design lay beyond the capabilities of any existing closed-formula theory, as well as those
of the ensemble error analysis Programs I and 11. These areas included the single-word floating-point arithmetic, h -. 'v -

'4,. e~~pproximations to the elements of the transition and data average observation matrices, the linear apporoximation . ,. .

to system error behavior, end the like. ' t

Such evaluation could, of course, be left until It could be accomplished with the real system hardware, as
soon as this became available, However, not only would this kind of an approach be highly wasteful of precious

4,,.; ~development time, but also - hoviver carefully designed azid monitored - teal system tests can rarely provide the
kind of environmental control essential to understanding all-mode system performance sensitivities to individual % %
effects such as those which were in question here. The considerations led to the development of a digital simu-

* lotion of the C-5 aircraft navigation system. This section describes this simulation, end the way in which it
was used to evaluate, validate, and refine the filter design. -9n.%4%~n*.

4.1 Simulator Descripation-S *. -- 5-

Simulation, as the name Implies, ts only an approximation to reality. Since the C-5 simu' -%tor was, in fact,
a program designed for use in a general-purpose digit.-l computer (ISM 71000 or 360), its approximations were
embodied In the mathematical models used to simulate real syatem hardware operation.

Figure 13 is a functional block diagram illustrating the major elements which are required to simulate thu
navigation system. As illustrated, at flight profile simulator in necessary for generating the true specific
force, 11(t) , acting on the IMU, and for supplying to the measurement simulation the true position ezid velocity,
denoted by the vector Z(t) . In particular, the flight profile simulator was made sufficiently versatile to
simulsie take-off, landing. cruise. and in-flight; maneuvers of the C-5 aircraft.

The IMU simulator accepts the true specific force from the flisgat plan simulator, and the commanded platform
torquing rates from the 1051A airborne computer simulator. The Kalman filter, which is a part of the 1051A .--

simulation, accepts Information from the simulated inertial navisation computations and from the measurement ..

simulator, and feeds heck corrections to the navigation simulation. ,,4..,.

The simgle-cycle times of only 10 seconds used for generating Pigare i1 results was tamedonaererl(i'nt)C

"aussption about the Walan filter computst- cal complexity. Por corresponding results for cycle. times. more appropriate #tfem

The notation here and in Figure 12 has been simplified for brevity by means of the symbols%

y - R 45Y
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ITh@ 1&U model used in ths simulation program in illustrated In F' i' 14. The ventor 7, is the true
specific force obtained from tho Flight Pr(.filn block of Figure 13,. Aiu rfttrix T is the trusformntion I ,:P*> ;"..,

from the coordinate system in which ft is nomputed to the plnttfornt reference frame, In particular, corruption .*. .. '-
of the specific force vector by accelernmetor.rslated errors is sinulatud, an shown ourosm the top of the figure ..
(see also Pigure 15), and results in the measured specific force vector, fs ' "tie curruption of tiu commanded .- '- .'
torquing rate vector, co . by gyro-related errors is simulated as shown in the remaindur of the figure (sen ". .. ' "N

also Figure 7), In addition to the gyro errors discussed earlier and showu in Figure 7, tbis more detailed model . .,,* .. •
.•include, a breakdown of gyro drift rates, d , into bias, programmed timo-functinn, and mams unbalance drift .'
"rates. Ocneration of themo for the ith gyro (i t 1,2,3) is represonted in this figure by the box 0, ' Genera- . -

tins of the mass unbalance drift rate, in particular, requires resolution of the specific force vector into the
misallined input, output and spin axes of each gyro. This is accomplished for the ith (i L 1,2,3) tyro by the ,
matrix I which produces the resolved spocific force vector fat . The overall resultant rate vector . .
is the actual inertial rotation rate of the platform in platform reference coordinates•,... ' .. ,

Updating of the matrix Ip!,p is done in a separate portion of the program in accordance with a sot of matrix
4 dAdfersntial equations". In addition to • those equations also require as inputs the components of the

inertial rate of rotation of thu true locally tanileugt, ideal woseder azimuth mile franme in this frame itmolf.
These components are, in turn, generated by the Plight Profile computations, usinc f, renulved into this Idetil " .7:4A
reference frame.

Some of the simplifying uasumptions built Into this simulation were:

(a) The measured specific force and the gyro torquing rates are continuous, -. •.'', *.'s..s•-.".4

(b) The inherent, dynamic instrument lags of the gyro and the accolgrometera are negligible, .," . "

(a) The dynamic lams of the platform servo loops are negligible. " .

These simplifying asumptione, which were mandatory if the simulation were to run at efficient speeds i.e., * .. , ' 4

such faster than real time, were motivated by the fact that the principal natural frequencies of inertial system %.... .
error propagation are extremely los (e,g,, Schuler frequency I cycle per 84.4 minutes). With respect to these,

the I&$ and samipling rates of the above neglected effects lay in ranges which ears. respectively, too short ,.
and too high, to offect output errors of interest.

4,1. 2 NDC..-f15 Navitmi(on •quation Simulation

Figure 1 sahows.some of .the. ¢etboilm of the coputations performed in the 1O05A computer. As already discussed, - e

laboratory calibrations are performed on each IMU to establish the elements of the calibration vectors aind n',,",,
matrices shcsn in the block diagrm, . For example, the null bias calibration will cancel the affects of vector . % ., .
ab of Figure 14, except for errors in the calibration and variations in *b caused by environmental factors, •"..

Under idealised conditio•si of perfect calibration, with reference to Figures 14 and 15,

1111ij] a ((TPO)(oFA)' , '[ep"" ".''"'" MV

and (4.2)

S....- .-.-. ..*.
Also the uij] matrix end the constant drift rate calibration vector pruduce a commanded drift rate. This -• . .4%..•..

will exactly cancel the fixed and static mabas unbalance drifts of the gyros under the idealized conditions .. "
This tyo of calibration 'tarries" the specific IMU and its 1081A computer so that the remaining errors are
"small. These ame matrices are used in the simulation of the C-5 aircraft navigatiln system, Inputs to the
simulator control the assumed calibration errors for an specific cast.

The wander azimuth equations are solved by numerical integration. No attempt is made to simulate any part
of the actual IOSlA arithmetic for the operations shewn in Pigure 15, Parallel studies in the development of
the real-time program had shown that the errors inti'oduced by 4his assmmption are Ins•lnificant. .. " .

- 4,' 4,4.3 Kalman Filter Simulat.(on_' "

Rather than attempting to design an all-mode simulator, different versions of the simulated Kalman filter '"4

sub-routine were programmed for each mode under study, Ibis approach Iras used to reduce complexity and run
time, Also, special versions were developed to isolate causes of certain problem &resm. For example, versions
with and without the 14-bit arithmetic mentioned below, and with and without data averaging, were constructed.

For final validation, the sequence of calculations, the 14-bit floating-point arithmetic, and all other ,. .
factors were simulated to a high degree of realism, To this end, a eperial machine language sub-routine was . .

o'nstriited for masking the 7090 word to simulxte the 14-bit floating-point arithmetic. This simple sub-routine
is used in the appropriate computations to introduoe the additional errnrs caused by the 14-bit floating-.point
arithmetic, RelatLye care was used In the order of calculation to preaerve as much accuracy as possible. Thems

- , •*Lrgrim details erse later used in the real-time program for the same purpose, :.
fl t-. ' -• • .•"%•

,I "r . 4,%, ."

.V.
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5'All valpea of all the controllable quantities (for example, the constants of the Rt matrix, the value of N"
the~ gai n factor, the variance of the random error in observation. aet.) are cointrolled by input end/or ova
lay ofblock data observation sequences, Kalmasn cycle time, otc. ,arc also input in a similar manner.

4.1.4 Observa~ion Simulation

Ttae observation simulattion models necessary for the variout motion of study ware mande a par"t of the Kalman -

filter sub-routine, Models were simulated ami realistically as possihlo to include all the relevant oruro
sources. Those errors, which could only be described by at random procesh, ware included by usling a soeleted -

smpole or samples. This *a% justified on the basis that the primary purpose of the eimulation won tn detect-
and correct major problems. Once problem areas are corrected, the real system should behave In a reasonably
linear manner as far as8 the error propagation in concerned.

4.2 Example Uses of the Simulatien Program

* not only Quits versatile but can almi be readily modified. By mleans of appropriate input data. values cani be
tselected for quantities controlling . ~

(a) the flight plan,
(b) the Initial errors,
(a) the constant and tine-varying IMtl errors,
(d) the observation sequence end the Kalman cycle time,...

aswell as many otners.

To a novice, such versatility poses a problem of where to begin, This prc~blem can be beat addressed by simp~ly ~.)
reviewing what the program was designed to test. The possible probles areas it, the Kalwan filter could be
expected to fall in the following categories: ~es

(a) Nonlinear phenomena.

(b) Numerical Inaccuracies and problems. -

(a) Ififects of inherent computational delays, ,..* '
(d) linmodeled or improperl~y m odeled errors, 1. .4

(a) Approximations in the wA~tionS,

* ~~~it was therefore planned to set up computer runs designed to exervise the simulated filter in a worst-caea"-
Xi ~~~sense with respect to each of thuse castgorism, Analysis of the resulting data would then uncover problems, if ~ , s',

present, Although selection of a worst cume in by no means a simple problem, tasory can be used to provide:1sensible guidelines. For exsaspie, the basic design is baued on linear theomy Hence, one of the firwt questions
"to ishow linear In this system?", To ohtain the answer, the simulator was used tet generate time histories of
actual navigation system ei'turs for various a-its of initial errors. Itemse were compared to errors predioter4 by
the transition matrix in accordance with tt)t)..

These runs validated thrt, for all practical purposes (i.e. , within resa "able values for ; I )). the aystem
errors propagate linearly. similar checks ware made on the measurenent functions. These also ingiobted that % 1,
the residuals were linearly related to estimate errors for all practical purposes, Hence the linearity amoumt- .

tions had been proved sound,

In checking the remaining siams a two-step process wage generally adopted:tl
VrMML Asa

(a) Demonstration that the filter ehahved normally ehen the only .rrars in the system were thoem included In
the filter, P .. -

Mb Adding unuodeled errors to determine degradation In performance or thd ox;.st*!2C6 of otherwise hidden . ~,a

4.2.1 Fine Ground Align Mode Descriptiocn 'a a*.

The purpose of the fine ground alignment sode is to:

44 ~(a) Precisely level the plttform, Platforii deviations from level are called tilts., .

.4(b) Obtain accurate coincidence between platform and coopiater aximuths. Th dferne 'ween th *zmuh

is called a heading error. Tedfeec .... h

(a) Precisely estimate drift rates of the level channel ipros (prom 2 and 3). %,r- 1.'

The fine ground align mode starts after 10 minutes of warm-up, dvring which time coaarso alignment of theI
Iplatform Is accomplished. At the utart of fine ground alignment the platform is thus reasonably oloe. to its ,

desredatitueTilts are fractions of a degree.' and coarse gyro-comriuning ham reduced the headling error to ,~~

a-~~ ~ fe degrees. ~ ~

Si1

II . h%
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Pigure 10 in a simplified eciceanatic of the oporation of a single level channel durng fine ground alignmentt
As illustrAtod, the accelerametcr un the platform senses a tilt proportional to gravitational force tin.os the
aine of the tilt angsle q5 ThIle velocity regilitor output, v ,will ramp as a result of the tilt angle. ,@
Belause of platform drift rato, an itpproximate quladlratic Pffset (in time) will also exist, ws shown Ini Figure 17.
The total output shown is the sum of the two effecti.

The data averaging dencriiacd earlier eruxplee the velocity register at a high rate to accumulate an AV91eg ie
* rssdina. At 45 socondec, thin avorage in input to the Kailmun filter, which conmputes, estimates of the stiateI
*errors. Hiowever, because of the time required for thpir CL.11PUtat.oo, thoeet estimates tire hot appliled until tile

elnd of the second oycle, At this tine, the velocity register is reset to a small value by the estimated velocit
error, and leveling rate and platform drift rate estimatea are also applied,.

Dluring the third cycle, the platform in almo-it perfectly leveled by the commanded lovaling rittel. In subse
*. quent cycles, the ren-idual quadratic sawtoothing of the~ velocity registeir in stoadiliy reduend as the platrorlii

drift rate in more and more accurately estimated and compalisated.

Dluring tile oporation jumt denorihod, the platform in held in a hingle, fixed-aziznuth orientationl which, to
farilitntr tile discussion, is hlere~ taken us cardincal (i.e. , tile platform axes are aligned approx imately nor~th
and east). In thin orientatioh, the filter ufter a short time foren t'sie platform into a steady-state, l,'vcl
condition in %hiivh, although tnc Input axis north gyro drift rate has been acourately calibrated, the iniput axle ~ ;,''~.

east gyro has not, Instead, tile platform (and therefore the input axie of this gyro) has a heading errol Just r

single-position gyrcconrpassitig, a& the above operation Is called, both a significant hepading error and an cost..QCdj~ne'
tyro drift rate t'emain, although the total platform drift rate about the east axis is compensated. .

To remove these important residual errors, tao-position gyrocoinpassing is employed for C.5 fine ground align-
meat, That is, after a B- or 7-minute period in the first position, the platform in slowed 90 degrees In azimuth, __
and the first-position process is repeated. Because of the reorientation of the level gyro input axes, however,
the heading error is removed, and the Input axis east Snow north',gyro is also calibrated during this second
operation. ~*

4.2.2 Nominal Reaults of Fine Ground Align Made Simulat ion ,,q

% h

The Kitclaan fine ground atlgipiiueft techniito" juut described Is moot easily evAluated when no iuneodeled e-rarore,
are Included in'the simulation run. This is because unmodeled errors produce extra error effects at the modeled t

variable levels which unfortunately do not behave in accordance with the filter model. Por example, a scale

north axis (in tile horizon plane), duo to the tordquing rate applied to this gyro to counter the Earth's rotation -4 ,

rate In this direction, This io duly compensated by the filter in the first position by means of a fixed re-bia c 'A- -. '*

ras Atrreoitoig.hweoýthsscl a eo ffsect is absent, since no Earth rate compensation torquing %
is applied to this gyro when its input axis Is west. However, the compensating re-bias rate remains to produce . .

an effective drift rate, and therefore a balancing heading error, in the seconld position,. , .

Since such effect@ would unnecessarily complicate the evaluation of performance with respect to other specific I.
filter design areas, unmodeled errors were not included in the simulation runs use.d to evaluate the fine ground
alignment filter design until the design had been essentially completed and validsted, j4,5

In ddiion Inorder to establish a fixed frame of reference for com~parisons between runs, a single set of
noia ale o modeled errors was used, as well as at nominal alignment configuration. Specifically, all **

run siulaedtwo-position fins ground algmn t45 degrees not aiue ihteiptaxes of gyro#
sn encieyeast and north in the first position, and north and wast in the final position. The times' j. "-

spen in achposition was about 7 mlinutes, which, together with the 1-minute slew, arcuonted foxr the overall
mavoungoa of15minutes tt . As to modeled errors, initial tilts about axes 2 end 3 were agcumed to be respec-

platform 2 handin +0,40 d-gree, gyros 2 enid 3 were each assigned a 40.02 degree per hour drift rate, and the ' ro a itau t+. ere,*~

Fiures 18, 10, end 20 summarize the results of 'a aimulation run with this nominal configuration, aftor most ', ~ ~ l

of the major problem areas had been ironed out, In particular, Pigure 18 is the simulated time history of the q,*
4.north velocity register for this run. The reamps due to the large initial platform tilts in each position are t

evident. The velocity error due to this tilt is largely removed at ths beginning of the third Kalman cycle In 4
each position, based ono the averAgle of the velocity data collected In the first Kalman cycle, aSued on the same

* ~data, the initial tilt is also accurately estimated and largely removed 0r the application of an appropriate
* - platform leveling rate dunilig the third cycle. In subsequent cycles, the drift rate and its tilt and volocit.s*

error effects are gradually estimated and removed.

71is was the expected duration of the. finai Kalman cycle ties midwky In the developemnt. It sas reduced to 22.5 oeconds *'..,-

later io the Program.,~.>.'-
This leveling is reflected iti the velocity register readings, whose instsntaneous slope is proportional to the inista- !. , *

,,a taneous tilt of the platform.

S pecifically the northeald comsponent. lit the horiznin plane, -ROM\,-

Fer inyvetigatiun Purposes, aollentioll in tile second1 position was often extended beyond 15 minutes overall, and alignmen A
Performance In Inter-cardinal orientations of the pistfors gere also exasinedi,

".0

..- k~~" ''Ak %6.M
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Although velocilty and platform tilt errore are thus quickly remoeud, calibration of the level gyro drift rates
and removal of the heading error in a much mlower process. Thit ia illustraetd in Figures 19 and 20, from which
It lb evident, in particular, that significsit calibration of the number 2 lovel gyro drift rate IN still pro-. ..,~ ttc@~
ceeding at the end of the allotted MS mintutes of alignment time*. S:'

4.2.3 Effects of Large tlUnode led Errors

larly laboratory results for the~ ground aligii mode were obtained before the calibration constant~s of Figure 10
were available, Fliguro 21 shows a typical time history of the north velocity register obtained from the actual
system at that time. Comparison with F'igure 18 shows that the behavior of the real system wets far froms nominal., ~j ±

It was recognized, however, that largo untodeled errors could easily produce such performance. Bince the final .-
byatem could be Precalihrated, there was little need for concern if the effects seen in Fligure 21 were indeed

The simulator web used to confirm this hypothesis: F'igure 22 shows the north velocity timue history obtained.
from a siirulated fine ground al lgume't, fat, which lsvge urucal ibreted scale factor errors on the g~yrcut wore
asovmed. The unimietakelule ainilaritY between the simulated an~d sc,.tuml velocity ruttponsum in Figpionnu 22 and 21
gave aeme confidence that tile Irregul~nrities obaserved In the real systemu results wore in fact raunund by its
lack of cilibrationu, rather than any filter design deficiuncie%. In partioular, it in evident that, lIn each
case, the platform wus riot adequately leveled by the commnead rate applied during the third cycle. Int the simu- h'
lation, this cas known to have bean caused by the large (10%) gyro soils factor error, which produced a net K

%5 leveling displacement of the platform during this cycle uhich wab 10% larger than that commanded. The reaulting
%Irregular behavior of the simulated system provided a: unique signature which was used in thia case, as well asn

throughout later phases of system test, te Identify problems due to lack of, or to faulty, system calibration. b.''.

4.2.4 Problems Causued by the. 14-Bit Floatiing-Point Arithetis*c

As mentioned earlier, several versions of tha sulb-routine which simulated the on-beard filter computations
were available, This made it possible to address the overall problem in a reasonably orderly manner, For u~.,

* ~~examptle, it was first established that satisfactory results were obtained with the single precision floating.
:jpoint 70901 arithmetic (28 bits and sign), before simulating the 14-bit arithmetic, -

it was also suspected, on the basis of prior experience, that there would likel~y be problems in maintaining %~~''" q
a positive definite covariance matrix. AA described earlier, however, two techniques for combating potential "
nmterical problems and unmodeled errors had been providoed' To recapitulate, these two taohnique4 were the
addition of the R. matrix in the tiee update operation-

P(t) Z OP(t W$ + it , -(4.8) f, .-' -A 5

andi the "'epsilon"' technique in the measurement update operations!

Neither of theme techniques, howiever, could provide a satisfactory solution to the numerical problem that ...
occurred *es a result of the use noi the Proposed 14-bit. flonting-point arithmetic. This was the lose of posi- W-.-
tive definiteness Mi.s_ the occurrence of negative dirgonal terms) in the oovi.rhanoe matrix on the first or -
seconu filter cycles in the simulated fins ground alignment mode. The problem did not occur initially, when v
the standard, Kalman disorato-meaaurement formulation was simulated, but only later, the first time the new,

- sveragod-meaaurement formulatiorn was tried. Tais tended to cloud the fundemental source of difficulty. Previcous .

experience had deinitely Indicated that the moat likaly problem area could be in the execution of Iquation (4.4).a'.
* ~ ~ ~ ?% prinolpaI changes in this equation introue b h vrad-measurement formulation ware; "~-t~4~.Z *

(a) the M vector had uore non-zero elements: 1O
(b) the a acalar (varianos of the random error in measurement) wits significantly smaller.

once thepe fabfioris were recognized, the value of MP(AT  sax comptured with the value of C . The problem was \

then immaediatel~y recognized, C was so small that early in the sequence (when P is large) It was effectively
s ero1 with respect to addition to NPM't . Also, the third term of Equation (4-4). which contains the "'epsilon"~.
gain, was effectively zerot In comparison to the second term.-

Increasing either ir or C to prevent the difficulty was not reasonable, The results of such increases wSau p;.

* would prevent good iistimation Later in the measurement sequence, Perhaps, in retrospect, an appropriate choice ~,, .

would haew been to: .0~

(a) Test if C <kWti T . *.

Mh If true, assign (UPM? +0) (1 +k)WNP . where the quantity It cjuld be selected somewhere In the
range 0.001 1 k < 0.1, ~.

Howlcever, the level of calibration achieved in this tim e wsmore thsan adleitate. This wse established 4Y the excellent lt M1
inertial cawteatioe Performance (not ahewn) aehieved in a aimulatiom of a flight following this alignment. .w

fi.e., iose than the Jast bit in the 14-hit register. %

%j .,
5. N.
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Th. ao~tual choice Lad~d was to a*sign

(MpM7 +C) (1. 01) (11pMT) 4 C

Ihe 1.01 factor prevented long of poriltive definitenoess early In the soque.nce. L~ater meaI'suremen(ŽIts were
weighted slightly leaw than optimally, but the performance lox& was timall, in comparison to that produced by

'N *other factora (e. g. ,unmodeled error soi~rcos),.

4.2.5 The Approxiwoax Transition Maztrix

rho transition matrix for tho tim#.- varying linear variational equation

was to be approximated by the formulation given tn Equation N3lI. To potential prublems were evident In this
exaension:

(1) Were the second-order termis retaino.) sufficietit for adequate prediction across the Kalman interval?

(2) Could the nonk-constatnt portion, AMC of the A mnatrix be treated as a constant acroem the interval?

In the ground align mode the matrix A is constant, Hence, one of the early uses of the simulator wila to 'P. 'W
* verify the adequacy of Equation (3. 19) for use in thia made. This investipation, quickly completed, resulted -

In the addition of a fee more selected second-order (constant) texast to the elements of the original formulation.

In the case of airborne mode filter operation, the question as to whethue or not the non-constsnt elements
of A could be treated as conktientsacmross each Kalmaen interval, required a much more extensive investigation .

with the::imulator. This was becausa results in this area were (not survrimingly) found to depend strongly on %'P'-

which fitroperations' were carried out seve Table 1).

Atthe tmofwriting, these investigations woeessentially complete, adteconstancy asewopition hadl been 4K *
proved valid, subject to certain conditions on the above faotorps which were realizable in the C-5 application. `
However, sany detailed discussion of this area, which, it is to be noted, has general importance far beyond the
C-S application. is outside the scope of this chapter. .~4

4.3 simulated Ground Align/larouetx-c- Inertial Performance'

Figure 23 abowie the gyro calibration history for a simulated fine ground alignment., in which all errors J!ý ý17-
believed to be significant (modeled and unmodeled) were included. in this cuse, unlike that of Figure 19 where IN, ~ -

oly modeled system errors were Included, the final, steady-state. level gyro compensation values attained:.$" V h'...
represent lumped compensations for the combined effects of gyro busn drift rates and the effective drift ratess -'.V:.,

produced by syro scale factor and input axis' alignment cslibration msatrix errors,. "-*~

It ts evident from Figure 23 that essentially no calibration of the number I (azimuth) ryro drift rate Is
attained In the overall 15-minute fine alignment sods period. This is because tae sensitivity of the level
velocity register averages, which are the Kalmen filter inputs in this mo~de. to azitmuth drift rates is con- \,'.,. &.*.*

siderably loes than it Is to level drift rates. This, however, is a li~itation, not of the 'halman filter ipproach, .'.-

but rather of tite basic, two (level) Position gyrocomvassing tnchniquu,% no other filter type could istatisticallY)
produce a significant asisuth drift rats calibration within the 15-minute alignment time using CIOi same posi~tion-
ing "equince andl geometry. ,,.

Fine alignment performance In the presenor of the unmodeled gyro errors can only be honestly evaluated, by '
Simulation of follow-on barometria inertial fJght. The goal (see Section 2) Ia a baroeetrio-inertial navigation .A
W& growth rate during ten-hour flights of no larger then 0.15 nautical mile per hour during the first five hours
end 1,25 nautical miles per hour in the second five hours. -.. ,

%Figure 24 gives the navigator performance in te'rms of the actual east and west position errors that accumulated -'' .
tor this particular set of unmodeled gyro errors. Shoen also are the "ensemble" results taken from the Kalman * .*

filter covurisncs matrix, Mei was s simulation of a barometrio-inertial flight, starting at 45 degrees latitude, . ,, ~ ,

accelerating osut to 800 ft/sec boritontal.velocity, climbing to 33,000 feet altitude, and thereafter cruising .. .4.-*.'

at constant altitude and speed on a great circle path, It Is seen in the figure that the actual east position
error exceeds the standard deviation obtainled from the Kalman filter covariance matrix. This was not unexpected ah
because: -.. *4

(a) The 16-by-iS Kalmean filter cosvarlance matrix does not Include all the error sources.

(b) The simple errors chosen were larger than would, on average, be obtained from a statistiCal esimle. .,, '

lie overall trends of the two curves (actual and standard deviation) have the some behavior. This gives con- q I%' %
fidence that the simplifications used In thd filter are appropriate for long-time propagation, ' '.,

6 VU vertical channel of a threo-degrsees-of-freedcu fee.iasertial nLvi$ator to unstable. For the C-5 navigator, stability
in maiatained by using the generalized all-sode Kalman filter with an altitude observation based on the barometric '~

satimeter. Therefore, this mad* of operation is referred to aso "barometric-inertial" instead of fUse-inertial,
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Previous ensemble Analysis had shown that straight flighits produce slightly worse bnroinotrioj- inertial
performance than flights which have turns., It was thereforu decided to establimh it rliht that includod a-Iturn, as a further test for the filter in the barometric. inarti al mode..

T1he path chosen was A level accoleration in the north direetion to 000 ft/mee, simultaneous with a climb to
33,000 feet, This wee followed1 by cruine for 20. minutes, then a 00-degree right turn taking 00 seconds, And t .. '

* , finally a long terminal gireat circle cruise on the now log at 000 ft/stec. Figure 2D givjis the navigation results ~
for theae conditions, Aligilmont and error conditions were Identical to those used In obtaining the results of *

Figure 24.ar lhi I foth tt Ts -

gAs can he seen in comparing Fgrs24 and 25, the Actual errors reslghty smalle for the xte. r i
is A (one-oasa) confirmaticon of the datiý ohtninod fromt the snaiutble analysis proarwns,

* ~An Interesting propeorty of the rproilts of Figures 24 andi '1 is that sustained oscillations at both earth rate
frequency snd Schuler frequency are contained In the errors, This it. particularly evident In the north position .

* error tiume histories. The approximato urror model tUsd in thu Kaimaii filter reflects these smaie nvcillations
and retains a fairly good phase relationsmhipi. This gives cuilfit.',nce that the entire Kalman filter error covariAncte

4 ~matrix does remain a good miodel of tile actual noet of errorai. This 1w not too important for fine aligrnmunt
followed by otherwise unaugmeinted barometric. inertlil oi'eratlo11 in the subnoqittnt flighL. if, however. addi-
tional data ou(.h aso i ILORAN poqition tix bocomo8 avsi lrble Inetir in the flight, Correct WOiehti;'K of thn'

observation to Improve navigation and to calibrate the IMU duepnds on the validity of the covarianco matrix, Wt

4.4 Laboratory Test of Ground Aliim/harnisetric-IneiL.al Performance'
Reliable confirmation of the deuscig of the C-6 Kalman filter In the lint ground align mode of operation

becaes posaible for the first time only when the IMU precalibration program checkout *ns completed, and this '' ~
prora become--- available for use in determining the gyro and Accelerometer error' compensation matrix *laments _____

I(see Section 4,1),.

This allowed laboratory system fine Align tests to be conducted for the first time with calibrated IMU'e, ,

Since filter design had been predicat-id from the start on the use of much precalibrated IMU's and quite a fee -

simulation results incorporating this armsumpt ion wsre already Available, extensive, direct, end meaningful comn-. * ,.**

pariaons between Actual anid simulated performance could now be carried out.

Figuriee 26 and 27 show, respectively, the eant velocity register and the drift rate compensation histories
during typical laboratory system fine align tests with calibrated IMU' s at this stage nt the program,

sopr uo igrs2,2,Lvd IS revestls that IMIJ calibration hed removed the mis-modeling difficulties,

Comparison of Figures 27 and 23 further st~bstantisats that the (15-vartable) filter- Incorporated system error ,,

model was adequate, as indicated by the highly similar simulated and laboratory system test results shown for '.% ,..

the gyro drift rate compensation histories during ground align,

iadiinthlaoaoytt.dpeeinFigure perforancextne (as 'shown) to establish azimuth drift

Itwsevident that, despite the weksniiiyIvle nextracting hdint rabote halforan iohourom

Finally, Fiue2 hw h nrilnvgto efrac fatypical laboratory system following nominal
(i.e., 15-minute, two-position) fine ground align, The excellent perferormr~oe (relative to the performance goal -. '* *

of 0.75 nautical mile per hour for the first five homrs (gee Section 2.3)) shown here was a strong overall con- 1VI
firwatiom, beyond that obtainable from operation in the fine Align mode only, of filler design adequacy,

4.5 Plight Test of Groned Al igm/Baromstric- Inertial Performance '', A-,

Although results (such as that shown in Figure 28) clearly demonstrated adequate performance of the C-5 filter % ,

design for ground align in the laboratory, and proved a high degree of confidence for its expected performance
in this sode in the field, demonsutratedi field capability could, of course, only be obtained in actual flight test, -

At the time of writing, performance results obtained from the first series of flight tests have confirmed
not only the adequacy of filter design for fins ground Alignment, hut for barometric-inertial navigation as sell....

In addition, these results hWe given a high degree of confidence that the design will also prove adequate
tm the remaining system modes of filter operation, which will be evaluated in the test program phuse* now being.........
etutred. . ~ ,* 4

Calibration of the azimuth, As well as the level gyro drift rates, provides even better subsequent inertial navigation.
This had been predicted by earlier simulation results (not shown).

4w

4JA LWýý %'.,'M '_4
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S. SNNART

The C-5 Salran filter softwasre development effort, which has been outlined in this chapter, resulted in a '"
* * final design which was op~timum in the prac..ical sense that it

(a) met the software performance specifications;
(b) fitted into the real-time, oa-board computer;
Mc set the pertinent, overall software developmenet acheJules, N, '¶

'To the extent possible, modern sample-data estimation and control theory was not only used in developing the
design, but in same areas actually extended (e.g., the "epsilon" and averaged-measeurement techniques). However, - .
as I typical of most practical problems, in a few areas, because theory was inadequate or development time

limited, approximate solutions had to be co,,etructe'1, based on engineering judgment and experience. Much of ~*.'.
the development effort was devoted to the construction Rrd use of the three major error analysis aind uystem

almost every major filter design docinion point throughout the program. Costly redesign and tape reprogrammtng A ' *'.~ 4 ,,

efforts late in the system deveolrpment were thereby avoided. Program Ill., in particular. aIna proved an invalu-
able tool frioaonndcorrection of both hardware and software "buw.,~" during system test.

6. FUTIUILvED

It IsolInteotfwyas that dgtlcomputers have become available which are sufcetyfast,
capacious, light and small to render feasible real-time on-board solutions of problems the size of that mechanized .*''-.,$ ,'

in the C-5 computer. The rapid advance in technology which crested these computers continues: next-generation . ~ .

models, with vastly improved o~eabilitiea, will soon be available. In particular, the use in such systems of
advanced, optiual, information processing techniques likec Kalman filtering, which were hitherto ignored because
of their attendant memory and real-tine cost, have now become feasible, Further, the suporl~or performance availl.
able in practice from such techniques, with respqct to prior methods, insures their future as the eventual
sanwdard techniques in such applications. This future will be all th) more rapidly realized, however, if bistter
solutions to some of the significant current problems attending the actual mechanization o 'f such teochniques are ,(~

reached, With respect to Kalman tilter mechanixations, two principal current problems are:

00) The Need for an Extremely Accurate System Descriptione. A Kalman filter must incorporate both P, model of A *AA..
the dynamic behavior of the system to which It In applied and the atatistics of the noiase inputs forcing thea
system. ..MeeianIJAed,perfesmance -depends os the -fidelity of the mechanized model to the real -system, and on the
accuracy with which the asacmod statistics characterize the actual random input procesaes. Such Information '..(.~

cannot in general be easil or cheaply obtained In the course of a real system development, where time sod funds '"

are lialted. FUrther work on appropriate modifications of the Kalman gain equations, which would provide a high ýp
degree of Insennitivity to system and input mis-modeling or under-modeling, is neoesaary".4

(b) Bound-off Error .Senseiteivity. The standard recursive Salman formulation for determining optimal measurement y ' ''.'

weighting involves the use of essentially squared, covariance. matrix information, Round-off errors asasociated .J~a ~ i,

with the fixed computer word length, which are Introduced at each computational step, produce an unduly rapid
rate of weighting error build-up, when compared with what could be obtained with a formulation based on unsquared

whehe thsedo not cost more in attendant speed snd memory requirements than they gain inaccuracy relative%

." The *epsilon" technique, as applied to the C-5 filterr, is one of the most attractive much modificarioem yet developed. -.- -~

Rmweer, even this technique requires much mure werk to establish a firm general basis for choosing parameter values.
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TABLE t

Kaimman Filter Equations

operat ion Matrix formulation

Observation

Residual

Estimator

rontrol bN,%

Observation Q*MPMT + C
.4Upd atea (p + I)kTQ, I

4DAt Suation (3. 19)

Time Iu A

Upd satee ero tr4ito atrix A t) + Ron

E ystem flocvrac arxf
U~

oQurantitynd definitio 1i~sin %

P observateiron coaine£ti x a *

z sysemerrova astion et mate i 1 x 1

R = yte oesa corarient matrix 1 x fta

Y r observation nois 1K

Q obeervation residual oov~riance matrix 1 K 1I.

b weighting vector Uf K 1I

I 2Identity matrix 11 K af=

c "epsilon" factor 1 X I

u so system control vector a K I

fO estimator control algorithm: applies .'h

aI stimate to system 4

oorrcations to be alplied to system

Atzperiod of Wdean cyol-i

a=state vector diwnelon 4a

Ik

Ov.\~'



TABLE 11~

Overall C-5 Error Model .4

Error snurce.. - '",¼ "
Comp lete Mecha~nised ~

Inertial Measurement Unit 50 13

Doppler *4 4, *.t

Groundspeed 3 1 0,~*
4 ~Drift Anile 3 1 ' >4 ;.

Vertical Volocity 3 0.

Altitude Reference Error

Barometric 2 1*'. V ,
ftRdar Altimeter a a

Position Reference ErrorI

Horizontal Position 2 0R

Heeding Reference Error
AHUt 1 0

0.5 Inertial Navigator Error Model :%~.:..

'.%.

Mode l
Error sourc. 4 w,-

Complete Mechanize~d

Velocity Error 3 3

Position Error 3 3______~~

Platform Attitude Error 3 3 .'

Eyro Drift Rate Error

Oorrei~ted aa 
4 *'~ '.~,'~.1Bias 0 40%

Scais Factor 20.. ~ *

Ease Unbalsace 6 0
Input Axils Alignmenit a 0

Mocelarouster Error

Correlated 3 1 %
Moam 3 0 .

* B~~~Saie Factor 3 0 *':c~.~~.
Input Axis Alignment 6 0 '.

Dali Resdout 2 %'. '' .

Totals 50 13

*A single state element is wsed to s.,dl rT readout/Doppler%
drift amgle aximuth error.
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* ~NOTATION/.

A ~~~measured susie 4 ~ '

k ~~angle with respect to vertioal in unknown landmasrk calculation %~.**

a denominator of weighting vnotor %*

Iddisturbing acceleration___________

somi-major aixl of horizon ellipse

measuremsent geometry vector

ba kib partitions of geomuetry vector

bl, iomi-sinor axis of horizon ellPase

C(z) special transcendenutal function

a speed of light

d factor in hori~on calculation ~

I cGOV~arlehu matrix

3.,~~~ 6x6 partition of covaribomnc matrixh *-

I ~~~~general derivative function *V.~;y

f(t) special function in' Rocks'sa method

* gravity gradient matrix

.3 special syavity vector

Identity matrix

unit vector %' 0.

IAI unit vector 5 relative to A

'k ~a *k 1iWm coefficients of gravity potential functions'*

kI ks derivative functions

* transfor~~~a~ion matrix r 04 *

mero satrix ,

Pk1 derivatives of Leg~adre polynomials

- q measured quantity

special variable in Riocksa method .~ . **

W measured range

poeition vector 3 relative to A..............

* rs earth equatorial radilum

posit ion vector of landmark%

.msean lunar radius q

rp radius of primary bod~y

tpv~c) Conic position vector

IVposition vector of vehicle

% '-S .
U'9.
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Sr~ projection of XCL

INa) special transcendental function

transforsation matrix

1011 horizon vectors

U projeotiun operator

Unit(g) unit vector in direction of .

1A1 velocity vector D relative to A A

Y1(o) conic voloo'ty vector ;A
error transition matri-

164 OGx o Partition of I matrix

.0L ..*. Is 3 ; sub-matrices of matrix

0, ,, vector partitions of I matrix

x generalized anomaly in Kepler's equation

10 component of position vector in horizon coordinates

v omponent of position vector in moon coordinates

IN component of position vector in borison coordinates

INV component of position vector in moon cooirdinates

s epeoial vector in measurement incorporation

BO , #I At three-dimensional partitions of X v ector N , % ., A

so , *i .. cOmponents of j vector * N.

Sangular error in landmark tracking 
. .V 114, .I

oi mean squared measurement error % ' .

a0  reoiprocal of semi-major uais

MR shaft amile Z

'V ifctor in measurement incorporstion

At integration time step , •

position deviation vector ftom conic , Y

Sdeviation in quantity a p

8. shaft and trunioo.mjle biases

i I position orrpr vector

6 parameter error vector

velocity error vector
SI~~~~ra trunnon• soils '",-,. "' "

ofA grvittional Aonstant of body A ,S,,,+•~. . ', ,.+ ', ,- ,,
M velocity deviation vector fros conic

IY II I Ii
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VIA Angie msrnem~oUolt error varianice

A VL landmark error variance * .-

variance of angular error 0 1

co-latitudd
special vector in Nystrbmas method

N polar ansle component of loandrirk tracking error ~~

special vector in Nystrom's method

weighting vector

*thartiedimani~zioral partitions of wq

S5ubscripts

command module 
~.*4\

dimension~~ ~ ~ ~ ~ ~ ofsae444t e siaed' 0

I earth

H horizon

lunar module or landmark

astago in integration time step

primary body
scnaybody

C ~sun
a star

vehicle

a *y * scoordinate aleso

T transpose of vector or matrix

Is altered variable

W comaind module

DIV diepla~ and keyboard

KNU inertial meassuriuo unit

Lac0 louar module computer

ARl rendezvous radar

IIseltant

vW ery hihfrequency

,C 40 ir d N
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- 'IThe scanning telescope (OCT), shown in Fiiuer 2, in a unity-putwer, wlde-tlcld-of-view instrument having a..I
single line of night. Both shaft and trijanion control of this line of eight Is possible. The shalt Angle in
made always to follow the sextant shaft angle, while8 the trunnion can h@ selected so that the astronaut niu ,~ay
look either along the star or landmark linex of tight of the sextant, The wide field of view aide considerably .*

in star and landmark recognition.

A very high frequency (V11F) link between the two vehicles exists which is normally used for Inter-vehicle %-...
voice communication, However, a signal path throaO~ this VII' link fromn the CM to the [IN and hack to the CMA
makes possible a moesurement of the range between the volilclon, Vham from this automatic VHF? rangme-link Is
ueed in the ChiC during rendezvous navigittion to complement the manually acquired optical measurements.%

optical navigation sightings are not required in the lunar module. However, to aid in a successful rendez-
vous with the command module, a randexvoul radar (1111), shown in Figure 3. in provided lund mounted near the UM
inertial measuring unit so that direct ion data can be related between the two. With this ira~truniunt the rikiigie ~ .,.

and range rate of the CM with r"GUect to the ILl as well am the direction, In terms of shaft and trunnion angles
* ,,'of the radar antenna, are made avaijLable to the lunair module computer (IJIC) for state vector updr~ting,

The command and lunar module computers are donisned to handle a rels~ivoly large and diverue sot of on-boi~rcd
data processing and control functions. Soame of the special requirements fur thin uumpoter include (a) rind-time
solution of aieveral problems simultaneously on a priority holl.pi, (b) efficient two-way communication with the
navigator, (c) capahility of ground contro~l radio links, and (d) multiple signal interfaces of both a discrete Lanxd continuously variable type. The memory section has a Cycle time "f 12ALNOC and consists of at fined (read \j*X.~
only) Portion of 313,804 words, together with an erseable portion of 2048 words, tscit word in nemory is 10 bits
lons (15 data bita and an odd parity bit), Data wcr~il are stared as signed 14-bit words,

Most of the computer programs relevant to guidance and navigation are written in a Peeudocode tnotation for .4 s.
eoconoey of storaes, This notation is encoded and stored as a list of data words, An "Interpreter" Program S *V.
translates this list Into a sequence of sub-routine linkagse. Thus, the small basic instruction set is
Mains numbers of 211 bits and sign,.

The display anud keyboard (OSXY). illustrated in Figure 4. serves as the communication medium between the
computer and the navigator, The Principal Dart of the display is a set ink three registers, each containing -

five decimal digits, so that a word of 15 bits can be displayed in one register by five octal digits. Three *.

registers are used because of the frequent, need to display the tbree components of a vector, bats are en~tered
in the coeputer by the astronaut through the kayboard. When the computer requires a response from the astronaut, IF

ayanlights are caused to flash on and off in order to attract his attention, ., '

1.1 Navigatieon batik Processing .. ~

The recursive formulation of the optimum lintear estimator, as originally devised by ht.IiKalman, lis ideally

obtained from on-boatrd instrument at ion. With the Kalman estimator, measurement data may be incorporatedi
sequentially, asthey or* obtained, without recourse to the batch processing techniques required by other .. .' ..

methods, Furthermore, within teframework of a single copttoa loihetmtso uniisin

addition to position and velocity, suoh as radar biases, may be included by the simple expedient of increasing
avoided by regarding all measurneaet data as single -diment ional or scalar information.

teach computer in the two vehicles maintains an estimate of the position and velocity vectors of both Its own
and the other spacecraft, There two state voctors are normally six-dimensional but at times are augmented by %~
certain parameters which msut also be estimated as part of the navigation process,.

In oilauixar-mideouris navigation the* command module computer only ,I involved and the CM state veutor is of
~~ ~ six dimensions, However, when the command module is navigating In lunur orbit, it'is necessary kilso to estimate -,~

s~~l~ the position vector of the* particular landsark which ic being tracked. This in conveniently acocomplishned by . .

utilizing aL nine-dimensional state. the first Nix elements of which a~re then components ot the CA Position sr~d
velocity vectors in moon-nentered, non-rotating rectangular coordinates, while the last treeeet r h -

* components of the lunar lanedmark position vector.

Two separate rendezvous navigation Progrsams, one in eash computer, are useO aimultaneously during tile rendex-
Y ous phase of the mission with each solving the navigation Problem independently of the other. lit the CMC the

* S six-dimensional state vector of either the CM or the LM can be updated fro.m the measurement data obtained with
the CM sensors, Normally. it is the UtA state vector which is altered, but the* mode is at the option of the

* ~astronauts. The selection of the updating mode is based primarily on which vehicle' a state to more accurately
known initially and which vehicle is activs in controlling the rendervour maneuvers..

Since the rendezvous radar of the LM is not structurally mounted with the IMU. significant unknown biases in -

the knowledge of the direction of the radar antenna are Possible, in order to achieve the required accuracy
during rendervous, it is necessary to include the RR angle biases as COMPolnxnts of the state Vector to he
estimated In the LJ4C. Although ths augmentsd state vector then has eight components, it Is treated ase nine-
dimensional, for comiputational convenience with the ninth element zero,*, .,-, 4

n*%* %*,K
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3, EXTRAPOLATION OF 711K STATE VECTOR AND ERROR TRANSITION MATRIX

The sItimates of position and velocity are maintained in the spacecraft computers in non.rotating rectangular
coordinates and are referenced to either the earth or the moon. An earth-centered equatorial coordinate -system
is used when the vehicle in outald) of the lunar sphere of influenou, Inside of thin sphere the of c of

coordinatoe coincides with the center of the woon, The extrapolation of position and volooity is made by a " ' ' *A "'

direct numerical integration of the equations of motion, , ', . , .,

The banjo equation may be written in vector form as , .

at rp y + •. '14 v- rP, Ad ).' .. • . .•,.% . . • , .'

where rpv in the vector powition of the vehicle with rempoot to the primary body P which is either the Garth , .

or moon, arid A. to the gravitational constant of P , The vector 
3ld is tho vector aooeleration which prevents

the motion of the vehicle from being precisely a conic with P at the focus,.

If ad i small compared with the uentral force field, direct gis of Equation (2.1) is inefficient. An an
alternative, the integration may be accomplished by employing the technique of differential accelerations

asuggested by Enoke (see pages 180-190 of Reference 2), 1 % ,

.I •hoks'sa Method

At time t, the position and velocity vectors zcy(t 0 ) and Yev(to) define an ojoulating conl orbit,

The vector difference 1(t) between the actual and conic orbits eatisfies the following differential equation' "A..,j_% *.

A ,,.[(

aubJect to the initial conditions , . A,

.o l - ' te) :( (t) ,"

where Lt(c, 4s -the osculatinlg conic.position vector. The numerical difficulties which would arise from the

evaluation a the coefficient of .PV in Sauation (2,2) sma be avoided. aoneno * ... "_q;;" I.A.

X•v~ W r4vm(t) + JWt (2.3).,., .,.w•

it follows that . '

S-• - f(q 0 ) . I - (1+ )3/ ,,,',--

where 
, .1  '

The function f(q) may be conveniently evaluated from , .. '* . "..

+ (1 x " •., 1 t) Ue.

(d ) Position in the osculatino orbit is ealculat ed from . , " ,

3* A

.rPvo)() "rpvto 0°•0 !)Pe(t0) + (t't0)-;" soyl) 400)..%;:':1.,.• (2.6)•.m

',.,, 0 ,F% . ,3 I•

.0and x Is determined u the root o£ K~epler's equation in the form -;.W q.., •,•

AIA (;Ap) (t - to) ! UJ~t° YPv(t o) 011<o ) + i - re(tI•o x B(~ ~l + r y 1tto)x . (2.8) _ . ,•

:%,
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The speetal trbrAncndental functione 5 and C are defined by , .

li X + i .. A,,,

I x X, '•.-.% .'

2" 4,:....}..

•(t) - • v o ( r) ".', ,',. -(2"10)

* he tirnt term on the rfght-hsnd side of the last equntioni must reranr, emuil, i~e. of the lear order as ' ,

&t),if t~he method is to ho efficient, Au the deviatiorn veotor 8 girown iii moni.t~ude, this torn, will .4 ¼''"
eventually increase i i uize. Therefore, in• ord or ta u ira i tnin~ th o n~ff ioieiiy, a nlew o scu lat inlg tirbiL should be ' " '" ' " "

doflirod by the Ltru positirnl end Velocity, Tire pruoess or eoiecotflrg lawrs conr•o orbit from which to onloulmiate ' A -'.•,"

devia~tionn is oailed rectification. Whecn t'eotifioat, ion •ccurs, the initial conditiousn of tile rlitfereirtial
ecuation for & are agnia mete and tire rigirt-hanld aide is simply the perturbation aucnleration 

5d at the
't ie, of rect.dication, .** '

+~

(iii) Thee poeltion rentor tpv(t) is computed from I~qUation (2.3) usingI •cluaion (2,6), Thea velocity vectoripv(t) li then computed as & o

1W pv~t) = p 0(9)(t) + +(t) 0(), V)

..,P Vv(O) Ct) • %~(x)-xf•t)+ onios •,y(t,) , (2.12) a
rPV(t 0)rPY(O)(t) ( 0 ) )rFV() (t)

3. i niaturbin| Acceleration "S CW

The ftorm of the disturbing aoeolerattn s d to be unl d deqendu on m.,s ph Ie of th e m iumon, T earth ord s .....
lunar orbit ohl the gravitatioal pert'rchatione aerisin from tire non-kpherioal hnapi ot the primary bodl P l.. '

reed be n u yIncdered, e uring tre. refluar a Ind tr deeartu fm igt, the rrivltattonil a tt n otiow r of tlati un end theou) ..

seonadar body t (either earth or moon) are relevant forces, A eumary of the vernouo freo appears bet oalult

(t ) Earth Orbit ar'e/' ' a' z

r (

tim of rev p.aton

Pv(oo is) t co(mpeuctd -s)

are the derivatives of the ftegendrn polyncaialesI'"•':'- -- "'q"

-hin the coenen of the engle • between thn writ vector J,v Lil the direction of IVand the u,.rit vector • .•,...,-,, ...

;: tln the d irection of the north irole: r 5  is tlhe equator ile r adius of the earth: enid J| s ,..• are tihe , , ' • . .,.' , ,

'• m 1)coeffnicint. of the second, third and fourthi tarmnioe of the earth's potential function, lire eubacript IE
.•.] ~~~denote. the center of tire earth am tire origin .f ocoordinotes, ,,,,.,,.,

[F(C(0) 1. 1?+ C( +pv - t~fle)2~g4 (2.11)

where the ourenripte Q arni S denote the secondary body and the sun, respectively, Trhu.. for saiple, roe A.' ,
in the poIltion vector of the mun with reirp eot to the primary bodly. The argument. q() are c olov'lated friwo,".'

wh aer 1. of .,.,.co2

N S eeo p a g e 1 2 o f l W e fe r e e c e 2 ,' .Q . .

t i . wh i ch i s u se d i .t t h e ue o f [qo t i o L ( 2, 1 4 ) a nd ¢ it h e r ( t. 1- ) o r (+ .1 7) , e h ri o h e h er * ap p tro p l t(. %

.1 DitrinAelrto

( ) , A •rbio .*' . ..6 A 
% - ,, .' . ; A .
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PC)

and the function f from Equation (2.5). *.. *

In the vicinity of the Inaer aphere of Influence a change in origin of coordinates is made. Thus 4

(118' Lunar Orbit'

%

k r

MV JJR
whore~~~~~~~~~~~~IU. rco istemaqua ais; 2 mv o rth ua qmoallnecuonnao ad

J2 2 k1 k. that coffc)n +ftemo' oeta ucinsscae ihtesyutyo h onaotIs ~' ~

thene theIsithd meansional oarladius m~vatri E4 (t ar dhefiunad by utrlpaecmpnnsofr n

As% notedin etion ,d feo rit vortairs as mlcatIond it sn ce ar to xan the ooju nyetmatest etorf n the true varlu ens.
An partr tof more thlan saix imenion, tehin ue order l ecssr to nl teetiain ofd Statistiar l loo tia Inr the prcessduing

oria aiainand t)a. the aredvous rada traie biases in the p osi for rendvezvoust avigation, re or thisy %
purena ah nin-dimeasional covariance matrix Jt i s defined a y* Lolw:r.*'

Tsotaed ful aSectione 1fofrh csrtie ppiations irt4 de Is thessirytorpsexpind the &tat* vect omptr sn the uvrac

ovrbitalnavimatrixn isd rsicetither redzosi oadr nrine biasesmoa In the LMCfo rendezvous navigation. procodtri,

puhoe a nr"inte-d relationa to e used i eatrapolatdeingted as f tolloisotindws:olos Tebls~l ~

where the vetrgcompasses o the gravitatenional vecor taretino the satmtun aros weofa the threr adisturbance

Toisike from thevasymtrialghae of the eartinrthand moon theinterpuaterin tonhe linacrize abomutes the bs

estn aty o t he vehiion lquantities ande eto fatd Hordver, of mm sppr x~iat lte eainadddtote state vectors will ak
iatsf thue-drensuiona lina %ifrrileuain ch

The aprpri at 2 fs relatio t.or a usa ed in dentaoted ib g th 9u4esol t ) marxI bandLflos h ri

du transpose moiof a h ve hilctorsec otepiay oyayb rttni h om

d?~ -ho

* ~ ~ ~ r +. .. v + .*. . . . . . 4V 3¶'~.J' .
* d*..*-.*-. r.3 r,* *., %~~"
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A ~ ~d (;(t? I
dt t) 't tt

where and 9are the three-dimonsion.1 Identity anud zero matvices, respectively,

fThe matrix 0(t) is the three-dimensional gradient of the gravitetional field with respect to the comoponents

of the position vecter r,*If we neglect the gradient of the vector £ 'hen it in easy to show that'*

17-v~t)r~qy(t)

which is n sufficiently good approxinat,ion or tranelunar and tranaearth flight, For orbital navigation about
the primary body only the first termi expre.-oinn for 2(t) nieed be iticludad.%

Sic 
%%"t) A (."-'

it is easy to c~how that the asix-dimenmional covariance matrix satisfion the following matrix differential
squat ion:

d /2 1 0

Lecauso of accumulated numerical inaccuracies, it is posoible that the covariance matrix may fail to remain N. -4 i~'"
positive definite after a large number of comsputations, ua it theoretically must. An innovation to avoid thin ,

problem, which has also the advantage of significantly reducing certain computational requirements, in to replace w,'¶. 3the covariohnce matrix by a matrix J(t) ,called the error transition matrix. The 1(t) matrix has the property!

1(t =!(t)!(t)? (2.21)

and thus, in aL sense, Is the square root of the coyariance matrix, If needed, the coearianee matrix may be
determined is the product of the matrix W(t) and ito transpose, thureby guaranteeing it to be at least positive%
semi-definite.

The chief computational advantage of the I matrix lies in the simplicity of the differentiwl equation which '*

It 6atisfiss. From the differential equation for E, I the fact that the components of the vector do not%
change with tikme, and E~quation (2.11), It Is obvious thatt

dt

Now let the nine-dimensionkl matrix W(t) be partitioned as

! *. (2.93)

Them, eo have ' -

d ik,
tE JI 1.'04

%pJd
Z. 0 1 (2.24

Thus, the extrapolation of the !matrix may be accomplished by successively integrating the vector differentia1l- ..-. *.'., .~

equations %i

Monlly. then, If D in the dimension of the matrix !(t) ,the differentiel. equations for the %i(t) voctors
sre simply

Ii Jfr 1sýl (t) '!i (t)J 1pv(t) IL(t)} + -ý-qt) {3;LIV(i It (t)] igvit) I M.i (2.20)%

1 0,1,,I,, - I

with tte second term omitted for orbital navigation about the primary body P

not mae 20? of Reference P.- ~~
V 'i. .%1

A :Z~

* 4;L

M1 -------.



2.4 Numierical lntegration

The extrapolation of the state vector and the error transition matrix requires the solution of n + I second- -.-- •. . " " ..

order vector differential equations, specifically 9quntions (2.10) and (2.26), Those are all special oatmee of V
the form ...-

(I. t(2.27). . ,•,

iii which the right-hand aids is a function of the independent variable and time only. 1qymtrtm's method, described
in Reference 3, is particularly well-suited to this form and given an Integration method of fourth-order accuracy, .
while requiring only three computations of the derivatives per time step. (The usual fourth-order Rune-Kutta
integration methods require four derivative oumputationn per time step, ) The second-order system in written as " ' .

d .~

(2.2R)d rc'""'"•'tJ'
dL

and the formulas are summzarized as follows: 'k

Z In•.+- + t ,Z,)At %

~~6 A.~mIt + ir(A.) "t

+(m J~l2k)A

(l qaio i1) (Zhto uti|te (2,29)cml 2,0,I i teear opeermtevaulc

ka~~~ '~l +t 10 + A,( ' t-+ At

S, '• . ...For efficient use of computer storage as well as computing time, the computations should betperformned in the
-following order: -

(1) Equation (2.10) is solved using the 1+b'stram formulae (2.29). It is necessary to preserve the values of
the vectorsi Ir at times t~ and to + ttt/2 for use In the solution of Equations (920.2)

(11) Equations (2.26) are solved one at a tise using formulao (.2ii), toehr ihth aue fiv which.
resulted from the first step. ~,

It bas been found emperimentalLy that the maximum value that the integration time step At can have In either ~
0,3(r,3,/,l)3'1 or 4000 seconds, whichever is the smaller.

3. INCORPORATION OF MEASUREMENT DATA 4.. "

An Important feature of the Apollo navigation method is that measurement data from a wide variety of souroe - ' .
may be incorporated within the same framework of computation, Aseociated with each measurement is A 0-dimensional V

vector b rsproesnting, to a first order of approximation, the variation in the measured quantity Q which would
result from variation. in the components of the state vector, Thus, esch measurement establishes a component of",. ,".. .. "
"the spacecraft state vector along the direction of the b vector in state •pace.

By algebraically combining the m satrix, the b vector and a mean-squared a prioPi estimation error aa in
f, the measurement, there are produced a weighting vector N and the step change to be made in the error transition

matrix to reflect the changes in the uncertainties in the estimated quantities am a result of the measurement.
The seirhting vector ew has D components a•d Is determined so that the obhervation data is utilized in a
.tatiaticully optimum mn.ner, .

According to the Kalman estimation theory for a one-dimensional soalar easurement. the weighting vector is '.'..-..-'•, " .'
..¶4 determined from. - . .

a
., I • , ~ ~~~(3.1) , : ,-...•

where I is the value of the covariance matrix extrapolated to the time of the measurement and "

a + (3.2)•%
?. .

.5... .:..-+.+. ,.,

. .

,,. , . . . ,, .. .. .. . -. "., ,, , : .,.,,:+'[,. ,"• ,• . . .• p,..,,.., . . ,, ... ... . .+,,• . .,... ... .. ,,,+... . ..w 0•
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(3.4)

::cv:::7:::AT +h ::tT (b3.5)n~ arx!o isauae9

Then, if SQ represents the difference between the quantity actually measured and its expecoted value based on 4.M

theAextrapolated value of the state vector, the change In the satte vector in simroot4

must be altered. Agin, tb. WIean theory dittsthat the now'au o ooO y i obtained
from

or, In terms of the Imatrix and the z vector, .9. OW 9~**

where is the D-dimensional identity matrix. '*.

What In dvsired, of course, in a formula tot up~dating the Imatrix rather then the Imatrix. The objec-
tive will he aehieved If a sQuare ront an be found for the parenthesized factor in Equation (3.6). indeed,
the desired result is obtained by determinting the value of the param.3tsr -/ such that

By straightforward computation it is seen that y must be

'V ~ (3.7)

so that the now value r is computed on.-

In order to take full adveatase of the three-dlsoiMOOM al.vector and matrix operations provided by the inter. _________
preter In the computer, tho nine-imensional I matrix is stored sequentially us follows:

Then, by defining the three-dimensional suh-matrioeu

I.I 1@ t'

so that ! 29

and partitioning the possibly mine-dimonsional vector. b, a.nd aia a.. *C

I I (2.10)k. %

1. athe computations developed in this station arm conveniently performed as

% %.

% I%
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where the subscripts I sand J rouse, respectively, from 0 to [D - t and from 0 to (D/3) - I

It n wrthempasiingthat the partioular formuiation of the Kalmiui estimator, developed in this and the
* . previOUS Section, has achieved what in felt to be a minimum in practical computational efficiency as well an a

mssprarinlg :n o rasable memory locations inthe small vohicle-borne Apollo computers, The latter in
posibl prmarly ecase f te Itrouctonof the error transition matrix instead of the more conventional

cuaItasoul bermakd however, that srinhfrwr application of the I matrix teohniques would not have

bee pssilehad the dynamics of the state vector model included what is commonly called "process noise".
ftno e hvoelected to neglect process noive in favor of computational compactness, the gradual and inevitable

dea fteelements of the I matrix must be countered in practice by a periodic re-initialization of those
elIets I should be clear that, without either including process noise or re-initialiuing the I matrix,
eventually all measurement data would be ignored simply because they would be given a zerowegtnfaor

4. COMMAND MODULE CISLUNAR - MIOCOUISI NAVIGATION

During the translunar and transearth phases of the Apollo mission. navigation data can be obtained with the
sextant by measeuring the angle between the limes of sight to a star and an earth or moon horizon or landmark. ..

When the -navigator depresses the mark button, Indicating to the computer that the tea target optical images are .*** I

properly sipapriaposod in the IXr field of view, the time of the measurement And the measured angle, i.e. the SXT
trunnion angle A, are automsatically' recorded in the CMC, The navigator must them inform the computer, through ,
the DIT, of the identity of the star and the particular feature of the earth or moon involved in the sighting. \'~
These data are used by the computer to-determine! 0) the CM state vector estimate and its associated error

- ~transition matrix extrapolated to the measurement time. as described in Section 2; (11) the estimated CM position '.

.vector tv relative to that body used in the measurement (since this may be either the primary body P or the
secondary body Q, 'the single subscript will serve without ambiguity); (III) the unit vector 1, In the dir'ection
by code number): and (10) the position vetr4 of telandmasrk, &amssuing a star-landmark measurement.

4.1 gtar-Landmark Messurestents

be corrected for aberration prior to processing. Aberration Is the term used to describe the change in the
apparent direction of an object due to the velocity of the cbeerver normal to the line of sight to the object.
It is only when this perpendicular velocity has a magmitude of tens of thousands of feet per second that the .
aberration correction I* soneessary, It should be remarked that the correction is not required for rendezvous %... '*~'\"

or orbit navigation. %.* ¶. .'.

The apparent direction of the star Is ccmputed from ' ~ ,.-

unit X~v+ UK(4.1)

where the notation Unit (g) is understood to mean a unit vector In the direction of the vector *The vector

YI. toesi the velocity of the earthreaietthsuedat hspeoflg.Tevlctyftesn
'k rlatie tothe tar s aleadytokn Ist negligibt for the bscu ina dhirchthemona isa n the primarye boyWh

expected direction of the landmark is obtained from

Is a ntvector deiigteestimated direction of the landmark relative to the vehicle. : -

Using the corrected unit vectors corresponding to the directions of the two 8XT lines of sight, the CMC
coptsthe measaured deviation 6Q as.

~~~~S -opue oa'1 Q...*. (4 .3)__
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-4 Although for oislunarqiideoures navigation the CM state vector is six-dimonsicmai, only the first th'ree

compononts of the measurement geometry vector _b defined in Sect ion 3. will be non-zero, since the measured Wa .
quantity is independent of velocity except through the small. aberration correction. To determine this non-zero

* ~~partition U, of the k vector, we computev the first-order differential of the erpressiwion*

'I 
w

r*1 co A OI

with the result that
VoA Lr rVL&in A 6A 1:4lLvt,

Then, since
rl~ r*L e and 61V 84V

wehaervLsinA SA jon A rV) .X Vf,

Hence

r*V aIn A Q: - cog A Pt)

or I%~~~4

~n Unit [1: (4, AVL) 44

Finally, the measursemet error variance is oomputed from

where al~ acd c-L are the assumedl error varoancee In the BXT trunnion angle and the landmarkh, rospeotively.

4,3 Star-Morison Measurements

1lie prosessing of star-hor~tion.'aeaaersment data -in the same as that required for star-landmark data, provided
the landmark location vector ris replaced by a vector from the spacecraft to the horizon. The determination
of this horison vector is made according to the following geometrical arguments.'~1Consider first an esrth-horizcn measurement. The star diruotion 4 and the estimated CM poeition vector 4

Z~determine a plane. Assumning that the horizon is at a constant altitude above the earth's surface. the inter-
* section of this measuremsnt plane with the horizon Is approximnately en ellipse, The orientation of this horizon 4%%~

ellipse is defined in terms of three mutually orthogonal unit vectors: 0

1, - unit (1 X Lv)

10 K unit (6 x 1) (4.6) 9 ~

where Is is a unoit vector in the direction of th at'aoa xs Referring to Figure 7, it is clear that_______

10 end 1, coincide with the semi-wajor and semi-minor axes of the horizon ellipse, respectively. The plane
-. containing the horizon ellipse is Inclined with respect to the earth's equatorial plane by an Nagle I , where

The shape of the horizon ellipse is determined by the lengths of its major end minor uss, Assuming the *

contour of the earth to be wall-agproximated by the so-called Fischer ellipsoid, the semi-major Axis of the
hrznellipse a5  is simply the sum of the semi-major axis of this ellipsoid and the constant horizon altitude. .

Likewise, the semi minor axis bH is found by adding the horizon altitude to that value of the radius of the
Fischer ellipsoid which corresponds to a latitude equal to the inclination angle I . -

The problem of determining the vector LL is readily solved in the horizon coordinate system for which the P A.-.
a nd y anes coincide with the directions 1. and i~*respectively, as illustrated in Figure 8. The matrix

1?(4.8) .

V will aerve to transform vectors from the original coordinate system to the horizon system. Let and 4H .

represent the components of r, and 1 in horizon coordinates, so that

%,



1H u1

Further, deis ad & vectors irAte on (xH,Y1 ) to te wopoints of tangency with th oioa

ell~ipe.

The vectors t, and 1, arA obtained b~r solving himulltaneoulyel the equation of the horizon W pellla:

And the equation of the line tangent to the ellipjo an(4,10)houhth oit(NY)

N(
lbb

glwegpr'i loehanve ~uto 41)co'epnra~ciey ih n

makes the iss~er angle wIthth trvcoTecrmnvtoIihn

threreh VF ane

Dh-veruas lof e this Wis qif astiob, to .1ethe r wt omeother res~ vlatdfatr, w the ero trand io Iarp doe

maintarin whic makesrthe rsmralertaton oft the stvariavectof, The bre -ati vecstat or bewen thentw eils..~ .'

4*,*wTI



5.1 Opti ca l Me ase ure ment se'

L'.
Approximately 6on per minute during the navigation portions of the rendezvous pha*e the Apollo navigator

eights the LM using the reticule psattern in the SXT star line of sight. When the mark button Is depressed, the%

the orientation of the navigation base with respect to the inertially stabilized platform, are all automatically

recorded in the CMI.

From theme five angles end the known orientation of the Inertial platform, the measured direction, jof
the IMl as observed from the CM is obtained, It is convenient to onsmider the unit vector 1, as having been
found by the simultaneous measurement of the angles between the lines of sight to the LMI and two stars. 'The
dat,4 are processed by selecting two convenient unit vectors (fiotitinus stur directions), converting the vector ... S,**

4 to an equivalent set of two artificial star-LAI uiesuremonts, and using the measurement incorporation pro-*
cedue. of Section 3 twice - once for each artificial measurement. 'These two unit, vectors are chosen such that 16b4

they and the estimated line of eight vector form an orthogonal triad.

The proosesaing of each of the two artificial measurements ia similar to the a inlunar -midcojurso navigation

zooate tothetime of the measurement.

Yrconvenience, the first fictitious star direction is chosen to be

Z Unit (IO e4 x o~ x S

where......

ie the estimated CI-to-LMI line of eight, The measured deviation is then given by ~~ ~

SQ a Go$" (4 1 -J) - - (5.2)t' S*

since 4W1 and -Act are perpendicular, This orthogonality also permits a simplification in the calculation of
the geometry vector .indeed, from eq~uLat ion (4.4), we have

be (5.3) %'44.' 4  %

The plus or minus bign Is selected, respectively, according as the CM or LMI state vector is to be updated.
N

Votlowicg the alteration of the appropriate state vector, the second artificial. measurement Is Incorporated
by recomputing the vicotor iCL sod selecting the fictitious star. direction as Lr. %

The measurement error variance C for each incorporation is a constant which Is the sun of the assumed error
variances of the SIT Pand knowledge of the IUU orientation.

S.I WVN Mange -Link Measurements S*:-.

Asynchronous with the msnually-L-cquirad optical data, And at approximately the semn frequency. VHF rouge
mneasurements are automatF~sWi taken. Again, the time of the measurement and the measured CM-to-LU range R

-are recorded in the WhC ,S4 *~

The measured deviation for this range measurement is simply

SQ = A -'rC (5.6)

In determine the geometry vector be we compute the first-order differential of

under the asmumpt ion that it im the CM sa.evco hc .t ectmtd There results

* R !PL m - P 6!i*s)*fo ..

eM 0c otaur.r hand, if the 11M state vector Is to be updated, the relationship would be

8R AC - -',

.. V %



ho. Ic. (616)% •b .

whore the upper or lower sign depends, respeciotlvl an whether the CM or LM state vector is to be changed..• • ,

6. LUNAR MODULE NAVIGATION DURIlNa RINDISZVOUI 
%,•,, • ,' ,,'."

While the CM0 Is actively acquiring and processing dais duringl the rendezvo ,us phase of A pollo, the sme, '- " : "navigation problem in being simultaneously and independently solved In the LMC. using tracking informettios n, ,
gathered from the rendezvous radar mounted an the LM vehicle. After R R tracking acquisition of the CIA It,.. • '.,# ., . ,established, the LMO records, at approximatL~iy one minute in~tervals. the measured range R and range rate i of . " ,,. ', • -the CM with respect to the Ito, togethenr with the shaft asu le 3 oand the trunnion angle 0 of the sinm a iled ,.% . • .radar dish, In addition to those four moseur od quantities, the time of the measurement and the tlhres I MN. • ,.. . .'gimbal Angles are also noted, 

•% *; ,\ ,
As described in semotion 1. eight variables are estim atted as part of the navigation procedure. Th~u usual •

thre comons mof the position an-d velocity vetors. r,, and 1Pv of the sloo.d spacecraft, L or,
i ! ~~~~with respect to the primary body P con~ s~tit te the fir est six components of ths state vector, The satin t esoo••';• .•' ., ,of the blase , 6A and 80 . in the Kit shaft and trunnion an gles are the seventh and eighth elements. A ' ' ; .. , .', ' • -dWW • vreiable is used for the ninth component to faclitaste three -d i nlo ons La i vector operations. ,••• • '; , .\• °

The measured quantities produce four sequential alterastions of the mnie-dio nsional statte vector through four ' . -'• ",•• ••,_,• - ,separate applications of ths measurement incorporation method described in station 3. The inoorporst~o m f '''Course, performed recursively, i ~e. at each stage the now components of the stts vet ootr, r wbultkns from the "." a " " ,,.-- , ~pr evi ei' updat o. are used In computing the nex t, update in the sequence. The asa uroe~ nt error varian ces s ' -i . . ...l'

- •~~~he mos urad deviation in range end the associated measurement Isometry vector JD, are the same as for the , % . _- ,--,' •1•~~V m o anu r sm a nt o f r a n g e I n t h e C M d an d n e e d n o t b e f a r t h e r d i s o u s o ed , F o r t h e r u g s -r a t o d a t a , t b ht .m ns u r e dk • " ' ° q °- . •', d e v i a t i o n I s #a n il y • s e e n t o b e ,0.|- ,

Th e s sogtstry vector h for the rans -ratoe ues ur emqnt provide& the first cu e t nuountored thus far for wh ich ' . . • • . " • " - " . :both the •o and b partitions are different from. zero. To determine the .b vector, we compute the first-• . ,* ..•" " ,- *t- -"' " -
ardor differential ;I the relation 

• ,. ,
UP -( rbo•)' (Y•o -%p) %".

Lr 
4

ft Et - 4r., 44

'Jhtr the u erptor that It in the Cd et ivel, wh ehe th M oLM state vector ic tn to c g

To obtain the proper relationship if the r i state voecm r Is to be eslt, mted, es need oney notre that w ofThur tih In ad tion o the for m ure and th the 
b v r' are 

" •-

gblageaeao t•e, k

withthee choine in oif n depndent an the partonular state vevtor te be updato d (plus oltd sCeat sinus for I).,

.3 R io de r An ten na An gl e Mea u rem en ts 
• • * , • - % , -ith respdec out radar a btodn P dish it at the ori s tbo sil caonete of te toord e vystemtor Tbn in esimae o .0..- . . •ofaft botioe takes plus aboui the positive and uI and ttn n hafo annle t h s s eve ura d freom th pose tive a

axins vaunnioa motion occurs in t plane nortml to the x plane and iontionian the oapat axis y . The cn-. .fTgurrtiou is such that the trunnion aise would aoinaide with the x axie for d ero shaft anvle wit• th trugfionu ",sarlte unda r those oirtumetances, measured from the a axisr of 4j ,f ,-
Leot ps d is ba unit vectors eaonstge ith oordinste e xes. By smot s of the recorded Ir U limbal anfmthstogether with the knowledge of the Inerthel orientation of the IsU, the compsonent of err re rvi sdly

beige,, •,.• , ; ppg-.,q4 , .,,.,,.,-•.•+ ,.- ,.. ..-.. + .¢.. f... 
.. , ,. :','.'. * ''q .. ",,.

The easreddevatin i rage nd te asocate sesursen gemety vetorhe re he eesas or he %

'.W eeueacofrea i heC ad ed o b urhr isuseic herag-rt dt, h~assrdIt*~ %
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obtained in basic reference coordinatem. It ini ua-)y to Yerify with reference to the figure that the *essured
deviation for the shaft anolm isr*.~\'

while that for the tr~imnion anglo in ~
tq R or inl-' I4. 0) + 801. 64

The position vector of the CM with respect to the LMI inmexpresuible in terms of cowponents along the RR.

SP !F VW- - ln

To obfiair the nmomrl.ement geometry vector aorresl~onding to the shaft angle, we again coinnute the differential 4

C oloe coso\

rIO - inAi oa

*rLO 0050 Unit(4x 4c)8 BA

HenZ.

Similarly, for the trunnion ongl, we have ~~ 4

GIm ino\

2 LO -cce ______

e. ___ (.

Colo; x (J LC,) x IO 5 ~OS

The quantity rcosO which appesars in the expresciona for 64 and 80 io siuply the length of the
Projection of the vector in the xx plane. By denoting this length by a1  we may calnulate its
value from~ ~ v(-(,L ) 65

ko i ,Udlt (6,X6L M )

and. for the trunnion nagle vector, J*,...-

bi a' ~ * t -e p a t d

where the plus or minus sign,. as before, Indicates eithor the CII or LMI tatA vector is to ke uaed

since the mateonn angles are independent of velocity. we conclude that b, = 0 for both. However. because
we are also estimating the angle biases, the b1  attoso h etr r o eo ned o h
eba.t angle, pariton ofte vetr aent eo Ide. o h

K..

and, for the trunnion angle, Lv

/o\
0'~-

-i*4,

I.. V

%5 %
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r '. • ' * ' ,

The eotimAtion of the radar bi.ses is included resardless of whether It is the CM or EM state vector which
is being ttstimated, Since the radar btoAea do not depend on which vehicle's state vector comprises the first ..•IA N aim. , 1'JI•l!
six components of the estimated state, there In no sign selection aseooiated with these b, partitionn.

S• .' .'.'.. ',

7. COMMAND MODULU ORBIT NAYVOATION
' ' .,. '. . i

When the Apollo spacecraft is in either earth or lunar orbit, navigation deta can he obtained hy optca"l
measurements of the lines of eight to landmarks. These planetary surface features can be either of the "known"
or "unknown" variety. A known landmark Is an Identifiable fe-ture whose coordinates are known and tabulted,.
In contrast, on unknown landmark is any surfaus feature which the astronaut may soleot and optically track in

the brief period during which it is visible. The mechanics of the measuring process in quite similar to the . ' '" ,'
CM-to-LN line of sight measurement procedure described in Section 5, stateve,.r, thlas2thre'con

7 e1 lnown landmark Measurements

Ai tndialtod in auction 1, orbit navigation involves a ntna-dimeonhonai state vector, the last three ecr-
ponoets of which are the coordinates of the landmark, Since the tracking period for one landmark in very short
(less than one minute in the case of the unrth and only two or three minutes duriog lunar orbit), all navination L4,w,.. 'Ldata for any particular landmark are aou.rr* before the processing begins., At the ConooLI.ion Of the trucking, ",_::n ,.:
the landmark partition of the state vector is initialized from the identification data entered by the navigator

into the computer,

Nufficient ChI erasable storage is allocated for five measurements on a single landmark. 1ho data from each . .-: •?."
of thoole sighting& consists of the time of the measurement and the set of angles described in Section 5, Prom %
these glas the easur'u unit vector 4 along the CM.to-landinark line of sight Is computed,

&, h of the measured unit vectorm is converted to an equivalent set of Lwo artificial star-landimark mesre- : ., .
In' • in. exactly the asmo manner as in the rendezvous navigation procedure discussed in Section 5. 'rhe only

diffarensc is that the geometry vector is nin,-dimenaional and is given by ';''C" " *" '''"

(7.1) ,

where rvL is the current estimated distance between the vehicle and the landmark, and • denotes the direm-
tion to the artificial stars,

71, Vanlown tandmark Measurements ,'-'"%..';'•

The nine-dimenmional orbit navigation technique provides a means of mapping on the surface of a planet a

poit which is designated only ky a nunber of soet of optical tracking data. This process may be used either ~ l
to locate a desired Id landing site which may have unknown coordinates or to map features on the surface of the
moon,

Assume that a landmark has been tracked and N sats of optical navigation data have been acquired. If the -'

navigator canmnt - or chooses not to - identify the landmark, it is then t•eated PA an unknown landamrk. In.
this process the data from the first navigation measurement are used to eompute an Initial estimate of the land- ,. ., '

mark louation. The nine-dimension state vector in then formed, and the data from the remaining N - I ilghtings •. y
1  

*"

are incorporated exaotly an if the optioally-dolilnated point hiWd been an identified landmark,

The determination of the initial estimate of the landmark position vector rt. is accomplished as follows.
Let J, be the .,asursd unit vector from the vehicle to the landmark calculated from the data of the first .' :..
measurement. Then

rL. w Ivy I rVLJn (7.2) . *~

with rv, obtained by applying the law of cosines to the triangle defined by EQuatiou (7.2). W• then have

rý,.- (3rpvycooAL,)rVL, + (r~v - r;)-0,(.),..••"..

where rp Is the radins of the primary body, and in the angle botwen the directions from (he vehicle to

the center of the primary body Pad the landmark and s computed from %

cnam A -1, Unit( Qv) %

RligEquation (7.3) and selecting the appropriate sign yields .

rvL rv coo AL gin' A (7.4)

- ; .-.. , ' ,",
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Thud. the Initial estimated location of the unknown landmark in vatalis4hed, The remaining N -1 Imets of
data are then used u for a kniown landmark, according to Sention 7.1.

* 7.3 Initialization of the Error Transition Matrix

Several different lazduiarkm are tracked by the Apollo navigator 1o navil-tte In orit about the earth or moon.
As a consequsnce, asecial methods are required to reinitialize the , rror tranaition matrix each time a new 4

4 landmark Is acquired. This is necoassry to reflect the fact that the initisl landem. k location arrors are not
correlated with the errors in the estimated CM position and velocity V#QtL:A, 'therefore, before processing the %

measurement data associated with a new landmark, it Is neoessasry to convert. the nine-dimenejonal error transition
matrix I to aL mix-dimensional matrix having the same CM position -tnd volocity error varianices and covariancem. U
A mew nine-dimensional matrix is then formed by augmenting appropri~its landmark unc,-rtainty information. .

As the first sagse in the initialization process it is necessary to determine a square root of the six-
dimensional partition E~of the nine-dimenmional oovarianoom at~Ix ,define. In Equation (2. 19). From
Equations (2.21) end (3.9, It Is clear that

/ T 10 13

b..1

The equare root of .i.e.. a six-dimeneional matrix li eoach that k.

to that the resulting set of algebraic equations for the elements of ~14, ismost easily solved,

The second Dart of the I matrix initialixation dependsaon whether the landmark being tracked Is known or
unknuvu. For a kwuow landmark, the new nine -dimensional I- matrix is formed asl Z' W.4'~~, *4

witb the upper left-hand six by six partition being the square root matixs 14 found in part one. The three-
dimensional sub-matrix J, is given a value consistent with the *xpeotqd errors in the knowledge of the land- ., .jhU\

mark location. In particular, 1, is chosen so that %

if, on the other hand, the measurements are made using an unknown landmark, the error in theintal'cmud

estimate of the location of the landmark will be a function of the uncertainties in the CM position esetimate, the %
tracking accuracy and the altitude of the landmark above the gravitational center (sea Reference 4). Iii this .' -*U

eome, part two for the initialization of the Il matrtx is sore noclicated.

The basic relationship among the quantities of interest is Equation (7.2). Errors in fry and l~.denoted
respectively by IL and 8~,will produce an error In the landvark location 11 . However, this error Is ,.- **

clearly in the plane of thelandmark, i.e., perpendicular to rL . Also, an error in rL will result in a -, -*

landmark position error in the direction of 1, and of a magnitude 8rjV'(fL,)/j1fL I whore 8%L is the error. . '

in the landmark altitude. Thus, the total error in the landmark location .1a given by -V:

V (I+r,,3j,) + 8r% is.... MR (.) .'

where

is the proJection operator which assures that onl~y the components of and 8 in the plane normal to 5- %

are related to the landmark locstion error. %.

Now, consider a coordinate syates in which the direction 1, Is along one of the ocoordinate axes, Then, if
SIs the transformation matrix which relates the selected axis system and the original reference system, we have

%5'5-

S U . S 'U~ , * I* 4 .-



The error in m~uay be expressed as: '

where OL in the small random angle between the true and measured directions to the landmark. Tlie polar angle X 0

Is defined in the plans normal to Is from the cotordinate axis to the Ptrojecotion of the measured direction of

Mamu a that ot and X are statistically Independent random varliables with zero moans. rurther, sassume that
X is unif0ormly distributed liver the interval -u to vi Then, for the covarioasn matrix of the uncertainity in .' .,

we obtain

0 
O)I0

r.71 1o 0 0 Uz ffg; ý
a 0 0

whore at is the varisance of ot , ~.

rimally, sluei 11 and the velocity error are statistioclly Independent of $,and Sr. isw may ~ '

calulate the following covarisnco matrices from Equation ('7.9)1

l.A.. ,

M,% result, the W matrix Isi hitialimed asj

where Ji.ý now 'Aitoruinsd mm the three-dimmasional triangular square root of

&W a *a.'rv'tU Q-ll..j) UV + -6'713

After incorporating the data obtained from thu tracking of a landmark, all at elements of the Wmatrix will

landmark position. This matrix is extrapolated, as described in Section 3, until a new landmark is monuired
necessitating a new initialization.

U. FLIGHT CXURbSINCU Of THE APOLLO NAVKOAT'ION BYSTIMN

The first manned trip to the vicinity of the moon of Apollo a during December 1960 gave an excellent test of
the Apollo system's on-board navigation capability' (@"~ Reference 5). Although ground tracking navigation was
the primary' system, the on-board navigation syatou had the task 'if confirming a saf* tiajactory and providing a
back-up for return to earth in thie remote chance that ground assistance become unavailable for on-board uao.

Apollo a was to uwe sun illuminated visual horimone rather than landmarks for operational simplicity, even ' ,

though, as confirmed from earth orbit by Astronaut Von Eisele in Apollo '7. the earth' a horizon does not Provide a 'wP

disinc tagetforvisual use. Moreover, the filter in the sextant bemamplitter, designed originally to dnhanou
R th conrastbetwen wter nd lndshen looking down at the earth, filters out the blue in such a way "s to mas-

the orion venmoreindstict.Originally a blue sensitive photometer had boon designed for horizon detection

theearh'shorzo u viualtagetroslte I deonsratou onsimlatrsthat, in somesubutv way. the
human with at little experi.,zoe can choose an altitude sufficiently repeatable, at least &As good as ±3 kilometers..4
Accordingly, a few weeks before the Apollo 8 launch, the navigator command module pilot, Jim Lovell, spent a fe



hudon the istexet eazth horizon simulator at the Manoaclumoettm Insetitute of Technology lit Cambridge for

tratuinn and to tolibrate the huilzon altitude lie eovemd to prefer, lie wan remiarkably cons~istent litnbubooing
a wu..ation l'2.8 kilometers above the sea level hurizoil. This V41UV waRi recorded In the CMC all part of the ()am

pre-latunchl mweooon load.

Trho plan fur the miumion wits to 6x~uoine the sextant stiglo mewasuremeunts madte "anly while mtill niear tho earth
and, based on tbo saciaouritft state vector determineO by ground truckiag. infer ,n real-time the horizon altitude
Lovell was using, After tho first s'evtn sightings on 1.1in earth attdistanctimof about 30 thOllemnd iautltoal miles
from evrth, it was eatimitted that he won using tn 18.2 kilometers altitude anid this CYIC wan Iloldoed with this ~
ntw Value. (Eater during the mission it, wats agreed that a truer estimiteo was nearer 23 kilometers. but +4e
viulue wee not chaonged since the difiereace then wag too small to be or. onnorrii,) rollowing the horizon calibre- ' ,* .

tion. tne first inidoourss correction if aimost 25 ft/sea wae performeod. Th* larli aie.. of thit. oorreention was
due to urajectory porturtations, resulting fromi the maneuvers performed in g'ntting the opmaeoeraft jafnly away
from the third stage of Wne launch vehicle.

After the aidouonuan correction, the CMC ttste vector wus made to agree with the nalue obtninMa from 'iroutid %~.
tracking, The Important parameter, predicted parilune oltitudo, was (19.17 nitutical milus - very olose to the
true value estimated latter to be OR.,S. The neat SI navigution mcasurumento werg node iiiing 0,q earths horizon.
modeltd at 18.2 kilometers eltitUrie, Doing sufficientl1y far fror~i bioth earth and moon during tOils time, it is
not surprising that thu initially good state vvctor was degradted, At thle end of th's Doelod, the kIndicatesd J9i.
perilous was 32 nautical miles belovi the iuoun' a surfanes, With Lhe next nine sightings, still uhing the earth' i
horison, the predicted Perilunec Incrusted to 52,.9 nautirnal miles -- about 22 nant ical mile#u too high, The exact ~ ,o, 1e,;,%
altitude of the earth'a horigov was untimptortant for theso aightings since the distance from saath was now ,\ a

approximately 150,0(00 nautical miles, so that the 10 are-second accuracy of the soxtant ewet thu predominantI
source of error.

The next group of 18 sightingS was wade using the moon horison at a distance of about 50,000 natoeical miles, .

As would be (expected, the first few of thins resulted it, fairly large changeea in the estimated atite vector,
while the remaining had a very emall effect. At the ei,d of this group of measrements, the indloett-d parilune

wats 67, 1 nautical miles, Thi, final set of 15 trannlunar sightings was made about 35O 000 autiunia miles from
the moon with little additional effect. on the porilune estimation. The fintal estimate was (11.5 natutioil miles
or about 1.3 nautical miles lower than the value later reconotruoted frca ground treN~ins data, At thih. time

the n-bardandgroud tackng ata erepraticlly entult an conideatin ws gien o ulli th
on-board state vector for lunar okbit insertion, Althoisgh the state vector update hardly obaingegni the on-board ~A~a
value. it was performed since there 'Aim uo overriding tegument to deviate from the flight plan. 9 'N. .*

The tranoseari flight, nf Apollo R after &0 lunar orbits also provided a good measure ofi the 6in-buard navigation ~ ~ PV a a

capability, Thy tiesaearth injection maneuver of the service propulsion system was tarhetted by grauiidi data and
executed in back of the moon by the on-board digital autopilot Land guidance myatees. Thin 3522.5 ft/mec uianvaver ~ *\. ~ '

was followed by a single midcourse correction of 4.8 It/sto 14.7 hours later, resultingj in entry conditions at S,.% sa

400,000 feet altitude above the earth Which eire 0,8 it/ceo faster and 0.10 shallower thsn planned, C~ a* a

Although the pr~msry navigation durins this period was again the ground trackinti network, 135 en-board naviga-
tion measurements wure perfora-d by Lovell as a monitor and back-up. In order to determine what would have
happened without ground assistance, the actual on-board awasmuroments were incorporated In mi simulation with the
comptitr initimlimed to the actual on-board state vsntor as it existed when thes upsoescraft omerged froa behind *

a ~~the moon. The single transeart~h midcourms correction was Wadcd appropriateily t,. this simulation, in sacordanos.'.
with that actually measured by the inertial guidance system, (in the actukl flight a new grounid detsrmtioed %Wtut ao~ a.'

vector won loaded into ths computer at the time of this maneuver.) '

The last of the 138 measurements was completed 10 hours before entry. 'nie Incorporation of these seasurumente s' , ~ ..

in the elmiulation left a hypothetical on-ociard estimate of entry flight path anglP at 400, 000h feet of -0.300, ug
compared with the ground tracking estimate of -8l*480. This 0.107 difference was well within the ittfet toleranoe ~ * ir a

of 1:0, 50. Anoither parameter of concern at the entry Interface is the error in knowledge of altitude rats. The.
simulated on-board estimate of this quantity differed from that estimated by around tracking by 230 ft/ee,

a ~However, tbe eoniservatve allowable toleratice Is M20 rt/seo,

a it should be Repiasised that, in the event ground data were not available, the plan was to oo~ntnue the on-
board measurements to optimize the final midcourse correction and state vector for infe earth atmospheric entry, a,
In the bstienue of actual flight. data, a continuation of the itiralation using thA plannod sighting program was
made with standard deviation "rrors in the sextant of 10 arc-saeeonds and Iii the horison of 3 kiloeeotsrs. In >a..q...

a * ~~addition, bias errors of 6 vac-seconds in the sextant and 4 kilomseters in the horizon were included, The rnault- a5 VA ~ ¶sl

Ing estiosation error in tite entry et~g'.o at the entry interface had a standard deaviation of 0.030 and a bias of
0.00W0. The oorreaponding altitude rate uncertainty had a standard deviation of 41.1 ft/atc and a bias of*. - a ,*a-,a-

26.8 ft/eec. The capability of the on-hoard navigation system to bring the spwaecraft safely back from the moon ~ 7 "
svew clearly to hait boon demonstrated.a

t. "1.
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CHAPTER 15 N OMW APPLICATIONE OF KALMAN FILTERING IN OPACK OI'0ANCK 1

I. byTODUbyO

spc avgtin tl prvdsa fruitful area, of egrilication of thim technique. Ivo of the applicatilons
desribd i ths captr daldima@tly with space navigation: lhe error anm~lyele of a mate) lite navigation

sytm n ndniidlandmark navigation, The third applicatio~n deals with initial alignmont of an Inertial ~ ~ '~~

giacsytmtaw iidicate vehicle position and velocity during boost into a free-fall trajectory.

1. AMO ANLVAI O A ATCLLITE NAVIOATION BSVTSM

a.I The Kalman Filter au a Tool in trror Anaiysis

On fteueu rprisof the linear rocursive optimal filter (Kalman filter) 4othtitgeeats t
own ehIror analysin in the process of estimating the state. In fact, the coatnsmatrix P(t) of erri
the estimate f~t) . upon which the error analysis rests. may be computed recurpively over the tiM of intorost %
without benefit of real data, This is of imprtanoe in the preliminary design stages of aircraft and spaeovraft %. .,~

guidance systems. since a prediction of system performance may be made knowing only the statistic, of the Instru rj.. ~ '
meat sur.or and the times of the observations, The basic equations are that, for the propagation of the oovszianot V

matrix between .eauuremont times, ~~'

- P(t) F (t)P(t) P(t)P
T(t) + oaturmtaalt) ,(I

where 5*,

covrinc o error In esatimate AMt

P(t) w system matrix In stat$ equation *,

a(t) x state vector, given by i~t) a F(t)x(t) + (t)w(t)

1(t) a Kalamai filter estimate of 1(t)

fl)(t) a _wt) (t)] (W~t) -5(t)]T

w(t) o white-noise driving state equation

0 . (t) a Iw(t) a0

3(t) aDirac delta function of t

0(t) 5Input matrix for w(t)
Ho aexpectation of C

*transpose of(

Nso that, for the covariance matrix P1after incorporation of data at time ti
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C' 'here e
.1 2,

H w observation matrix at time *

tj ti* a times, Just before and Just after observation at ti , 1'%.

An altornate form of Cquatian (2.1), useful when the @tat* tranaition matrix 4(Att.ti.1) is known or MaY be ** "

BPProxiLated, is''**~**

where ,S

Ii(tit 1 -1 ) J t,)()'rQ~i~ t t)dr - (2.3) '~f
A1.1

If approximations, adequate for the purposes of error analysisý are available for and Q ,then Equation
(2. 1)' In superior to Equation (2. 1) in thait it avoias the. Integration implitit In Equation (2.1). S.,

The assumptions underlying this type of error anlssimpose lmtiosthat ma roulits Use in 50ome% d

sopliuat iona. The mAJor assumptions arc ~ aayi iiaios sypeld S

(1) The state vector X(t) Is aodequately dedcribed by a linear differential equation driven by white-noiset

where 10(t) and O(t) are known. *

(2) Thu observations Z~ti) are linearly rolated to the stats x(tt) by

Z(ti) a H(t1)m(t1 ) + v~t1) ,(23.)

where H(t1)(WH 1 ) is known and v(ti) is white-noise.

(3) The Olan and variance of w(t) and v(t) are known,

(4) The miaimum variance linear filter 91in used to improve the state estimate, an follows: "~

IiH Thu lert assumption M4 is not essential. if the filter is linear, but not necessarily minimum varituos,
Equation (3.2) may be' replaced by the more general expression.

P*a (I - tH)P"'(I - K HI' + E.jRIKi (2.7)L \ T

where KI , a general linear filter, hun been used in Equation (2.6) instead of R1 .A smiple derivation of '.

Equation (2.'7) is liven in Appendix A. It in easy to show that Equation (2,7) reduaes to Equation (2.2) when ., ,
1a11,where

Equation (3.7) In of use in analyzing the error of a linear, sub-optimal filter, In particular, the sub-
optimal filter being analysed may be a KAlmon filter biised on (1) an approximate state transition matrix, or
(2) astate containing only esoe nf the variables of the problem, or (3) st00 aproximation in the filter ý'e'N
aesigned to save computation time or spmace,''

The choice of state vector, and the ahoine of models for the variables contained therein, 'determine the state*'~
'U ~~~~tramjition matrix. ;6 and the noise covariance Q in Equation (2, 1)' 1, Fr error analysis purposes It is often ,,..*.~

possible to make enough Kpurohimatione in the error models to allow use of thki integrated form Equation (2, 1)' .,
rather than Equation (2. 1). The integrated form will be used exclusively in the remainder of this section. '.. ~

The Mhoine of senurement types determines the observation matrix N and the covariance A of obser'vat ion '.s

Pcissi In Xquation(l). Alonu with the assumed obuervation times And ths initial value Po for P , the
four matrices *,-

completely determine the comtputattor, of the state ooveriarnce matrix P and heas uharsatcrias the error analysi

~1 1

okS
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2.2 the 11atellite Navigation Problem

The position and velocity of a vehicle in earth orbit av'e usually calculated from a series of measurementsL '

sade by ground radar stations and instruments, such as horiz~on trdickers, star trackers and landmark telescopes,',located on board tho vei tle. In order to compare the merits of various combinations of Instruments, it is
necessary to estimate the net accuracy witi, which any particular combination predicts Vosition and velocity ."*.

end, in some c'nses, vehicle attitude. If it is Assuimed that a minimum variance filter is employed to procees %
the data, then Equlations (2. 1) or (2. 1)' and (2. 3) give the second-order statialiWe nf the nosition and velocity,
and of any other variables inoluided In ýho stato vector. If tho filter is linear, but not necessarily minimum .( y
variance, then Equation (2.2) is to be replaced by Equation (2.7) to achieve the saome results._______

The scoops of the .Qrror analysis is eswsentiall~y determined by the chuibs of (a) tho state vector, (b) the
.1 une'rmamnt types, and 10) the realism desired in determining when the measurements occur, The last conmidera-

tion should not be overlooked as a faotot in the complexity uf a digital computer program.."~' 'J -

The most convenient plane to start the analysils of a practical filter prol-lem such am this hpe been found to ''~P

be with (b), the measurement types, rather than with the state vector, Vie reason is that mniay of the variables
iii the stats vectbor are nnises or biases originaliJng in the measuring inntrument3, In addition, a deft defini..
tion of the state variables, suggested by the measurement matrix, often rerluocs the complexity of the state
tranilition matrix. Hence, the observation types will be.disouseed in Section 2.3 and the choice of state vanl- O
ables In Section 2.4. ~. I.')A

The inertial coordinates X1, Y , Z derbn the vehicle psto are shown n Figure sand the vehicle
vertical coordinmt', o re shown in rigure 2. ''\..

3.3 Observation Types ' .'J '
'the purpose of this section is to describe some of the obeervationa that are commonly used ic satellite orbit

determinatiukt, Table I liets the H-eatrives correspondiing to these obiservations,.....~

* Ground Based Raidar

Figure 3 shows the geometry of a tracking station. The four observations are

,9 ~~ range '(2.9)

dbu pm range rate '(2.10)

A U tan" XPSP~l m iisuth(2ii

R it sin', a~~p elevation, (.2 ,P

wnhere thle systiole used ate defined in rivires 1, 2 and V. Each of these observations is affected by thel vehicle
position and,'ir velocity And can bw vxpoitod to give partial orbit detersination infor~ation, However, the -
uneertaintion As , An . Ah of the stations& own location are a maJor source of error, comparable to the ~~.
noise level wii rafte, and must be considered as variables in the state vector in any realistic error analysis. -.

Table 1, thers~ore, shows the H-matrices corresponding to station location errors as well as to vehicle position
and velocity. Finally, tihe biases ou range and range rate and in azimuth and elevation are often important and I ,'*..l
are also shown in Table 1. These biases are denoted by &p , AA . 6A and At

Inertial Yscsuroment (Iif

mcst emeriments carried on a satollite require knowledge~of the vehicle's orientation in inertial apace in '.*.

order to produce uucful data, since It is often impractical to control the vehicle'sa attitude precisely, a i...
wrosconically rtabilised platform is often required, Esperimebtal observations are then made (perhapa using '. .. \.~'Y
the vehicle itself as an intermediate coordinate frame) relative to the gyroscopically stabilizeud axes, The .. '. *\'
st.~bIlti~d coordinate frame itself may b" referenced to inertial space by a star tracker vhat makes observations
of two or more stars. It will be assumed that the gyroscopically stabilised xei~ are maintained coincident
either with the inerti1al ates XYZ of Figure I or with local vertical ase 1 olf Figure 2. Where necessary,
the two eases %ill be distinguished.

Observations sado relative to the sgyiosoopi~ally stabilized (IRV) #Asus will contain errors due to the die- %2V. .

Grepiancy brexeiiu the true and the indicated orientations of the IMU. This discrepancy rybe represented a
small rotations 0 ~ ,O about the IMU gyroscopic axes, i.e. along the XYZ or of.0 axes. These gyro
angles* we,,.3  ill be needed In the state vector, not only because they are Important errors In many of the
cobeirvations to bedescribed, but because they are a large Part of the attitude error ofthe vehicle., I many ,..'."/ .i
@issions, attitude has an importance equivalent to that of position and velocity, A suitable model for B
0 and e mill be described in the section dealing with the state variables. it should be aoted that only
I~. mtituue Indication of the IMtl is of interest, since Its accelerometers, if any, give practically no output
In the absence of thrust, the case under consideration. .

%~ V
- *~*'; ,'.**~' ' ~ ~ **'~ ~ ** *.- . ~ ,N.
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Hlorison Tracker

A horizon tracker may be pictured, for the sake of error Analysis, its four Independent sighting telescopes, ,,,

two pointing to the forward and backward horizons in the orbital plane, and two pointing to the left and right Ii
horizons In a Plano normal to the orbit (ate Pliture 4). The tracker measures the four angles 01 . it - ,0

6, of the telescopes relative to the coordinate frame at the vehicle. These angles are combined to
give an average stadimctric angle

and two angles. arid that indicate the direction of the local vertical relative to the coordinate ,

One of the major errors in threse obeervationm is in the deviations h1, h2  h3 hý of the sensible horizon 61
heights from their assumed value. 141 ., . Ila llI Correevondinsi to the errors 0 , . 0, in the

observations of Equations (2.13), (2.14) and (2.15), thereo are three combhined horizon deviations,

J (h, +h, +h,+ h,) '(t -
1
(Rt-RX) 8J,*11

-4-

where R lis the distance froe the menter of the earth to the ve'hicle and R.. in the distance from the center %of the earth to the apssumetl horizon altitude, It Is possible to take these combined horimon deviations ae three ., , 1* ~~independent state variables. A convenient model for them, consist ing of time correlated zero-mean noises, will .. %%
be discussed in the next section. In addition, it to often necessary to consider the bias errors In the 1%~

b obsin vatibnt nrot ucen by andonstanHenceoi in othen reaisthriczon hinhtrouc auc statervariable produor
a bia onbsevtionsroducedby an co etnt e ero ins othen realstima c ton hinhtsouc %ucstane vaiberr ill or

horizon bias affecting the stadimetric angle 41

A second major error in the combined obeervations is in the tracking instrument itself. lnatiuaenlt errors N
appear In the angles 41L$ 0 and hence in , To describe them one may postulate comn-
blood Instrument errors , , These errors my be Introduced as time-correlated variables In the -h

state vector, If a suitable model Is found. A rather Complete model mould include biases Aii, Ai, and 64,.
and purely white-noise components, In general, the time Constant of the time Correlated error is small enough I~,'

to allow this error to be considered as white-noise,

A third error that appears in the horizon tracker observations is that due to the 11Wu error angles ....... 8
. I Here the tee CASeN of jUorientation suit be distinguished. Moreover, errors in IMU orientation do V.¾

not affect the stadilmetric nl but do add directly to the observations and of the vertical. P ;

ID summary, Table I lists the matrices relating the effective horizon tracker observations t'e% -' 4

the following variables in the state vector: vehicle position wrrors z y ,a effective horizon eSviat ions n . %y'
S, , i 3 IMU error angles 03 : effective tracker errors , . effective horizon

tracker blues At, , A,, A43 horizon deviation bin AN,.

Star Trackir

A star tracker provides highly accurate attitude Information to the IMU Axes sand, thryby~ to other instnu- .'X-,..'
oeats. The observations are train angle (TR) and elevation angle (EL), relative to the reference frame,-
of the unit vector from the vehicle towards the star, Figure 5 shows these observations. Note that here IR %-
and n are measured relative to the vehicle vertioal coordinates, even if the IMW axon are along XIZ , Purir-
Simplicity, the sase geometry is assumed for star and landmark observations.

The errors in the TII and RL observations are theme. In the Instrument Itself and in the IMtl orientation,
because star direction, are known with high precision. ~'

LIN

I~4The instrument errors Bar divided, as usual, into two correlated eqrrors 11, , nl5 , bias errors ATII , A 191,
and pure white-noise. The total Instrument error is often of the order of arc-seconds. . N

Ths Iii orientation errors 0 , 6 01 1 usuAlly doeinjto the total ert-or if more than a few minutes have
elapsedr since the last star observations. N

', .06.

0..
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4. wuchaark Senior

Observation of a landmark of known location on then earth may be made with a telescope by a crew member.

The isometry of a landmark observation is assumod to bc similar to that of a star obnoryation (see Fisure 5).' :

But, sines the landmark is not at infinity, an in a star, the ohnervation Is affeuted by, and hence yields *

inormation about, the vehicle's position Rio well as its attitude. The errors involved may be modelled an tinem,%*
correlated errors I?1, II bias errors A~TW . APT. , and pure white-noise, just as in the came- of the star

Radar Altimeter'
This instrument measures RA ,the distance 19 -181 between the vehicle and the sub-satellite point

(see Pigure 0), It involves only the position variables of the state, as shown in Table 1. **

The major errors In the observation are in knowledge of the altitude of the sub-oatellite terrain, in tidalRI-
heights, and in the Instrument itself. The obarecteri~ntion of the terrain uncertainty am a tice-correlut
f trot -order. Mukcov -process in valid only as a first apprroximation, since this error is highly orbit dependoi,t.

The radar altimeter Information im restricted to thu radial direcition, an may be seen in Table 1. Nonce
cross-track and down-tracok errors cannot bu removed by thin observation.

1,4 state veotarl the q0 and q mtttriceeq .

2.4, 1 Partitioning /or Ridoes

The variables Introduced In #ection 2.3 from @%aminatici, of the observations will be included in the state.
Table 11 llqts those state varimbles that are not bineesi Table III lists the bias variables. The total numibe r *

* ~~~~of variables ia seen to be close to 50,. i only' one ground radar in usedl if a oomputer program were constructed -*-,. **

to calculate the basic eoverianoe equationa, Equations (2. I)' and (2.2) as they stand. approximately 2500 bom- ..
puter locations would be required for teach of the PI , . P, and Q matrioes. Moreover, 0.26xo 106 opera- .4/ 4 ,'"*'e

W.ticas (multiplies and adds) are required for a single matrix product much as h~P . At 10 microseconds per ¶e,% ,4

operation, tquat inn (9,0 &) lone would require about 5 &econds of computer time, When six or more ground stations 44 % 44

usaneesloyed simultaneously, the number of state variables is about 83. each matrix requtres about 7200 locations, *t
and Equation (2.1)'1 requires about 25 seconds. It is, then, clearly Impoxaible to simulate a one or two day
mispton, in which thousands of observatilons are made, without consnuminp large amounts of comiputer time and space,

It s possible to alleviate conie::::ly;:the computer stores# and ties problem by (1) processing only one

Oulu) b servaio at a time and (2) partitioning Equations (2,.1)' and (2,2) Into sub-matriucs for the bitas

(1) It the noise o~varience R In Equation (2.2) is diagonal, it is possibcle to process one row of the H matrix ws x
at a ti,(As pone u nRfrne4, Eti laspsibet rnfr Quation (3.9) so that A Is

dignl)This avoids matrix cneso n aves on storage space for PV . Equation (1.2) in then

II M P* - (-Iq)(P-H;)'/(HkPrHT+%) ,(2.10) '~ ' ~ '

% %

()Whare Rkin the ktk diagonal element of a ndHk is the ktb row of H .Equa~tion (2.01) is still
tioi+ (quatio (all)gie

(2) ure itsstates hae" Identity elementm; in the state traneition matrix and (0] in the q matrix. Pac'ti.-

8 01

Here 4 stands for bias, a for mouething else. . ,

The equations them beooemm

[;ScW) Pcmt) P. (t.)47 +~(t O. ** *

(232
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17 (2.2,S*)

P *H (t)P') ++ 5 tt~(t 2 4

0 5 tP'(t)I-() 4 tIm tp"( 
T

(t)0 + 2 3 tPROPAGTIONt)

(2.27)

(2.28 .. 5

1- ) ? t A I (2.20) ..

*POWt) UPawt) A *V (232

where

t a H (t) P (t) + Ham( et) %t)(3)..''~'*S

ems~tP ' + a() s(

0 * 2J4(t) + #HT t) +% 2.5

The above time and data equatilons are forms that may be programmed. thq formqr are used to extrapolate the
Jerror metricos P, P3  P8  from t0  to t in the absence of wa&x,.!.9ntgj the latter are used to reealaeo SA

F P at tin t ,once for each measurement. It will be notlac4 that o. and are row maitrioes, . '

I,2.4.2 Equations for 46 and Q

The state transition matrix 0, for the error vector of Table It is obtained from the deterministio demorip-
tiom of the error procesms. in the integrated form

where I is the error, qb, its state transition matrix and fiCc') the driving nioise,

The% Q.mti notie nteUw~inoo-h nerlo h right side of the Cquation (2.36):

wher the1(vs intoate su-mtics soorittt hetion.'X..

natural groupings of variables n the state. For the errors shown in Table 11, the partitioning of Pigures 'I

an Iar aprpratfo (. ndQ4, eseaivly Nt*tht hedynamic bias.: SASMM& 4

Teea*the error quantitiev of primary Interest In moist applic~ations. A tloseed fain fo tetw-od
state transition matrix avIs given Uy Kohl$i,4. A realirtio picture of error propagation, however, inoludee

I'S %

% S
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the effects of unc'ertaintiaot in the earth' a gravitational paramqter p ,in the snocl harmonica of the goo-
Potential C1  I r 3.,4,.. aric, for low altitude satellites, the uncertainties in air drag, A method U
for treating these three classes of unceirtainties no biases (constant errors) Is given In Appendix B. A more
sophisticated treatment for air drag is wavranted in many oases'_it and extensilve models have been developed
for the errors in the geopotentiall 2 ". The equations of Appendix B, however, are adequatm to predict the
correct order of Pagnittele of drag and potential errors for earth orbit* from about 50 to 500 miles altitude.
In particular. the comparatively large errors peroduced by the uncertainty in C, can he accurately predicted ,KK*,

by theme equationts.

The state transition eub-naitrix 1. may be onoulauIted by numerical integration and filled Into P se ehown,
in Figure 1, The portion of % corrempondligi to position and velocity Is mero, as shown in P'ijure 8, if drag e~",
is treated as a bias in DThis portion of q, would be non-zero if a stochastic drag model wore used. ~

Gyro Rrrora

The model of gyro drift is taken on a fixed drift rate plus drift rate noisci

0(t) =0, ~, 1 .stO/Ol + CO(t - to) + i: rD(j.I 0"1(t 1G).~,7 (a) r ,a(.8

where 83t) total sangulr error about input axis of gyro

uj initial gyro drift rats

z;gyro drift noise tine oonottant ,

n unoorrelated drift noiase

Thea dr f o o gro drift rats bias.

Tegyro ditrate proceses itself is taken to be white-noise through in RC filter:

dt0

The gyro drifts about each of the three orthogonal IMU axse are assused to be mutually independent and each
.1 ,ifollows the model of tquations (2.38) and (2. 39), A sore refined model involving tin-dependent drift rate

would be needed for long periods of gyro operation without roaet: such a cuse would ocuur it reantry or maneuver
bad to be made long after star tracker failure. The present model, however, i6 adequate for nion-failure mode
operation.

When the covariancon of 0(t) and w.(t) are taken for the three gyros, the comebined state transition matrix
for gyro atigles,'drift rate noise and drift rate biasee is

0 0 Ir i-X) I t-t 0 0

0 1 01 0 (1 -1X) 0 1 0 t to 0 , K K 4~

o a 0 1 X 0 0 1 0 a 0.

~GU 0 0 a01 0 X 0 1 0 0 0 * (3,40)

0 o u 0 0 0 X 0 0

o%0a01 0 0 0 1 0 0

0 0 01 0 0 0 1 0 0 1

where XI'ee~t)/GIK

Z.~

- ~~~ - --- -
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The covaraince matrix of the accumulated noise in

A 0 0 B 0 0 0 0 0

O A 010 0 0 0 0 , '

o 0 A 0 o R 0 0 0

a 0 0C 0 B 0 o 0- - -.- -- ", - -" -- "- \\ "

0 a 0 0 C 0 0 0 (2.41) A 9  *r

0 0 0 0 0 C 0 0 0

wre0 0 aI ýO 0 0 0 0 Z

0 0 0 0 0

A O12t-t)+ 'OO(l ~XI) 4,r00(l -X))

end % .

0 trito of gyro drift noloo

Hobrison Iviuat ions

Thecomine hoinln dviaion h1  ...J are dependent on the actual horizon deviationsh h

,hat the points of tangency of the telelcoi linex of bight And the seined horizon. For a reasoniable approxi- .

muationoemyasal that hi , h, .h,,hh4  are correlated in time and location with an sautocorrelation

""' ")" 'a"" (2.42)

j
4  

* .. ~ ".- .. ,

where r Is the time between measurements of deviations h in height of horiucjn Points asporated by a distance
Raid S.are oonatrtant determined by observatinn. lier 11 in the variance of h h h or h, ~ h~r~

This pr" t i ble to the 002 14-1 micron spectral and. Using this tocor .,.1att . -. ,-1
and taking into account the vehicle velouity but ignoring the correlations due to the Adjaceonoy of suocesaive *:

orbits. Wilcox" hits calculated tho variance of the position error along the vertical axis as .**.

RC 4 WDf

and the varianc, of the Position errors along the horizontal axesi and itas

RI I .. b)*

•n~ ~ ~~~(I -- R#r)no 1•ir rf o

where

b e~~~*u"m) s 'I (1 e

R, radius of earth

, variance of h, h, h3  o, or h,.

In term, of the errors in the combined tracker observations, the vertical Position aer.r is OP,4 ,, . U

(R2 -RhS6(2.45)
S""

da'4'

-R % r uoe ' "h
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and the horizontal position errors aro ~ .(.6

.2 Combining laustions (2.45). (2.43) and (2. 16) gives the veriance of

var(1i 1) aDI40 (2.47)

and the variances of 9, F.
a''6

var6.) - (1..bHD (2.49)

The throe combined horizon deviations may thus be considered as the outputs of three first-order linear systems .
driven by three independent white-noise sources. The model for each Is *

I (t -t- /10 I -1ftt =.~oe )r1+7(r o (2.50)
C%

The and Q for the three deviations are

46 1 t- )1, (2.51)
= ~ ~ ~ .LIttot/¶DI C (.52

0 0

0 y g

and ashw in Reference IS,

'H8M(SH 2"HTo)(9.54)

Where To is the orbita' period of the satellite.

Horison TrackerP

The combined instrument errors , are illustratod in Figure 4. 'The deterministic model for e~oh -

Is that of white-noise through an R.C filter, the three noise components be ng assumed uncurroelated with each
other. The model for ea.jh error isn'

(t/THT + 9 H 11 7.(01) do' (2.55) *.*

[,1tt/H10 0 2.: .\.'N ~
a l(t4@O)/~I 0 (2.56) N .

[ole5~~t)iHI~ 0 0 A~

-0(1 0C T 0 a~8)*

o%
4.%
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A where

CIT variance of ý

"NT 9 ariance of ~

9? variance of `41

time constant for the horimon tracker errores.'- U*

If a four-teltocoive tracker ife employed, as described in Meation 2.3,

"M = - 0T/4 (2.58) r *4 *

Q'T "HT3 ~O'T2/2 ,(2.59)

where O'Tin the actuail variance of a single teleeunpe angle. ~.-

Star- Truaker

N The thie corrvlatod errors in the star tracker train and elevation angle are shown in Figure 8. The error
4process for each is assumed to be white-noise through an RU filter, the two comeponents being unc.,rrelated with , \ ,. ..

1;Veach other; %lt W. WIN)eIto)tt +%~(~d' 2.0

The state transition matrix and noise matrix ore % 'e%

0 a .) 'rT

[oiile3ItO/ .,~. (t -to)/verTl (2.82)V

where,

_1T variance of star tracker train eangle error S.

,$r variance of star tracker elevation an .gle error

The time correlated nieinthe lnmrdesrtrainaniqla and elevationl ngle (Fig. 5), are state variableS. k

Theerrr pocss or achIsassumed to he white noise through an Rr filter, the two components being unoor-
related with each other:

ff(t) a m oe tt)r, .1( W % 17Lc)d,(-3

The state transition matrix and noise matrix ore

00
* ~ i [;~~t~tO/l1L

(2.64)%

%...
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we~re ,"," ?
S.! .

variance -if landmark sensor train angle

0~l • t - variance of landmark sensor elevation angle .'. "

* 
T

- --L - correlation time of landmark sensor errors. ' .

The geometry chosen for landmrk sensor and star tracker is not ideal from a mechanization point of view. ' 4*

since it requires Infinite train rates when the star or landmark in along the vertical, Neveitheless, it was .. -r. r'. ,,
chosen because it As simpler to oompute Ard because It should give results representative of the revoral practical '..•. ' •
configurat ions porasible. .. *.' , , .

Gravity, Obinieness and Dreg Biasse8

'! The state transition matrix rolkting fixed unoertaintles ii. the gravity, oblateness and drag parameters to .. ",. ,.
.position and velo•ity in.siven by 9o , desoribed in Appendix Rl. This matrix in obtained most conveniently by ' -'
numerical integration of the ditferential equntions. The state transition matrix relatin- the biases at times
t to the svae biases at time, t in just the identity watrix I . The 0, matrix for these blues is zero,

"1,5 Interpritims tgie Covariame Matrix

2,5,1 YehAWe# Position Error CGoarionc•sa

The vehicle position error covarianess contained in P a are in Inertial coordinates, They say be converted
to local vertical Coordinates, If T indicates transpose,

00-2 (2. M)

where TLv is the position error vector in local vertical coordnastes, Yt the same vector in inertial '.',.\ :,'.V
coordinates. Pa is the upper left 3 x 3 of Ps , and B is an orthogonsl transformation from local • ..
vertical to ilnertill ooordi.atee:

al 0 cosy confl - sina sinr cosi = ooB ($.o1) I "

aa -ginQu~oell -cooT Sinn Ceti a-GinI3  (2608)

a * g nsi niO 0 (3.69)1

8I1 Z'0" in5 5fL ~s'5In TsClOS i n 00 sInI3 (2.70)

4'. *, 41. 4
, a -sin Bill 1 + cooP VCos110i an I cos1 (2.71) '

-#inI Ciox = 0 (32.7) " '.

n31 sino Gini 0 (2.73) ,L.,. ., ,

a3 cooY T irl1 0 (2.74)

0143 a ce I 1 (2,78) *.. .. . .•
where amnd I given in Fliure 9(al are used if the inclination le not eern, and g given i'l eisure (b).
Is used It th Loollar.tion is %ero,

2.5.2 Vehiole Velocity Error Cowariaae..

The velocity error covarlancea contained in Pa say be transformd from inertial to local vertical coordinates,
The computation is 6 .

4 'Nu 8 T% s , . , 1 8 , ( 2 , .1 8 ) .-4 ,,• ' '' " : - *!. , . 4

where V,,v Is the velocity error in local vertical Coordinates, V, Is the velocity error in Inertial ooordin- Wit,
rat~ and P i Pi ,) for 1 :4,.,6 and J J 4..5.. The matrix 8 is that given above for position

• -.: '.4.4:..,, ::..,, .,. : . 4,.-

%,..



2.S Gyro Misal ignment Covuriances

The element 2 of P for ,.J 7,8,0 are tii. covariances of the gyro miiealigninento Klong platform
axel 1, 2, S. If the platorm axes coincide with the local vertical no tranusformat~ion is needed. If the platform
axon coicinode with the inertial coordinate frame a tranwforiration to local vertical axes Is needed. The calcula-

tinIsa flows: O 0 cv

2.2.77

The vehicle attitude error is tho sumi of gyro .iselignment 0 and the rotatijn erro 1 due to position

and velocity orrorm:

+ (2,78)

whore are the local vertical uivetrof igure 2 and St 8V are position and velocity error.
reactoting out 11% and RY gives

.+ J. V-------

g+ ~ where X ( (2.80)

and [0 is known in tersn of Kand V in Inertial coordinates. If 9is in a local vertical system, the

atti"ul covarianoe, in local vertical coordinates. Is

Gov{6(e (g + [LgAlX)(VT+ IT [9,1T) 8)

= ST Ooyf{l~ + (OA)rl, + #Iqj1+ (t6jfIEJT( }A]Tj

= 8T P.(00) + (6A] P.(.0) " P.(0.)(B6A]i '] [OA P.C l(..) lf (2.81)I

whore %R 4 I<;,

Ps (ry) m Ps(t'j) for I = - -

PM(sv) oPs(,,j) for I = -8 J 7-9 _____

P " P ,J for I. n 7-0 J 1-8 fkývt 4

=,xz ra s(Zjl for I - 1-6 J 1-.0
% ' *

If 6 is in en inertial frome, the attitude coyariance lu local vertical coordinates is f '~

OO{LVv) + BS[9.~] 0ov(3tgLv) + QooV{V,jtTj1[6]TS + sjTej)qooVtjrV}[0]TS

vs(7 0ýO S( ) + P a(Iz I[A] o+S s(611P.(11 A)TS (2.82)

Therl;gic n sac of cdue tha mustP be prgawo to 9Z~ niult r itranl.fcrth tie at which obeerva-
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2.6.1 Ground Based Radar

Most radar observations taken with the antenna at a low elevation angle are unreliable and are dircarded.
As a result shy one radar ca: taku readings only when the vehicle in within a cone extending out from the radar -V

sataion and with its axsi along the loa~a vertical of the satiolcn. Typically, the half-cane angle i3 betweenu?'-.
A ~~600 and 850, The maximum range of the radar puts a spherical Cap On thia Cone Of Vi3ibility. A search procedure .*V..

munt determine, for each radar in the tracking net, whether the vehicle 'aIla within this cnre of visibility.
The rotation af the earth complicates the picture in a minor way. A variable sasrch step is found to be India-
penmible, In many eoases, to avoid excessive computation time.

2,6.2 Morison Tracker 0

This Instrument is limited In operation only by the power and dpta processing cspacity of the vehicle,

The. Staro Trsieras' n in determining the times of observation for a star tracker are (a) stellar magnitude,

Mobscuration ot the star by the earth, and (c) adequate angular separation of stars.

2.6.4 Landmark Sensor abeue lad rkas rarwtdifen

The considerations here aer very similar to theme for the ground-based radar observations. Indeed, the af m
search procedure (coding) i-yb sdfor Ii-da sfar raas ihsuitably dfentparsastern..

2.,6.5 Radar Altimotsr "

It Is usually desired tn investigate the effect of operating the altimeter only aver water, since the tidal
Lneartainty Is much loes than the torra'n uncertainty and easier to'determine, Storing a facsimile of the land-
sea configuration may be avoided, for error asnlyuls purposes, by allowing altimetric readings for a frabtion
of the time corresponding to the percentage of eSter underlying the orbit. ."K .\ .3

3,7 Results af Typical Coueiltor Nuns

Tbe results of a typical computer program for on-board measurements alone are recorded and discussed In ~ ~ "'
Reference 18. The instrumeints employed are horizon tracker, sta~r tracker, radar altimeter. The computer rums
Iindicate, among other things, the oscillatory nature of cross-trixok error. the value of a radar altimeter in
ywakrssibkig 4hei -acmul~aution of'down-track errors, and the futility of Increasing the horizon tracker data rate ' --.

beyond Ohe limit set by the horizon deviation time comintant. ~~..,
The results of a typical 6omputer purogram that combines both on-board and ground-based data are shown in

Figure 10, This computer run assumed three radar stations tracking a satellite in a 250) nautical mie irua
orbit. Ground radar range readings mere taken at 10, 22 and 24 hours. They have a bias af 35 ft. white noise ~ 'y.,
of 10 ft. station location biase of At = A = 75 ft , and &h 25 ft ,. The on-board horizon tracker was 0
assumed to have a-bias of 0.015 dog and a noise variance of 0.25 doeg5 with a 1 second time constant. The
horizon deviations were maimeed to have 818H = 2500 nauticaL miles, sand a variance o-M = 1.4(nauticsl miles '.a AA

A star tracker with 0.16e dog bias, I siecond time constant and 4 x 10'6(deg) I variance wse assumed, along with: ' *~

radar altimeter of 0.01 nautical sile white-noise and 0.005 nautical mile bias. These results are not realistic ~ .*.."e. .

beyond about one day of orbital time, because no drag or uncertainties in the gravity model were included. *.*".

When drag bias SD /Do and gravitational bias *SA~p but not biases in Cm , are accounted for. an error W::.~ . ~
anlsis of ground r.a ar tracking yields results such as shown in figure 11. The radar location biasels of

200 ft in each of Am , Ain , dh were estimated during the run and at 13. 2 hours mere, on the avsrage, 141 ft.i M
Raar range readings were taken at times Indicated by a solid trianlle in Figure 11. The program also attempted-

-, ~~to estimate 8/4 , act , sc, , Scs and ace , but no significsant changes In their oovariancen vmere observed ~~'
because or the brevity of the rup.

3. 5gLP-CnN4TAlNLD ALIGNMENT OF AN INERTIAL GUIDANCE 5STSM. .,-

3.1 Description of Probelem

As the accuracy and sensitivity of gyroscopes and accelerometers Inursiuse, so will the importance of self-
%contained alignment of Inertial navigators. Thin section describes the application of the Kcalman filter to the .*y' ~;

problem of estimating the orientat~on of an Inertial sensor coordinate frame using only the signals from the A-

limited, translations and rotations. such as a launch vehicle before lift-of f, or an aircraft being loaded

prei2rutory to take-off, h procedure tbedescribed applies )soth to Sensors stabilized by means ofgimbals
and to sensors mounted directly on the vehIcle body. Far simplicity it is amuumd that one gyro Input axis sand

One anceleromoter input axis Is along each of three mutually orthogonal directions. These directions define
the sensor coordinate frame.

At the time that the fine nAighaient procedure ýonmences. the sensor ecoordinsto frame will have a small vector
misalignment I relative to some intohded inertiall'- fixed alignment frame (asue Figure 12). The vector I iso

Pei

% r C.~~



*1318
arandom variable wit), known moon &0~ covoriance &L. to determined by the orrorr in so-ne coarse alignment
scheme that has boon completed before to and that need not conceorn us. Then orientation of the Intended align-_

motfaci ouaeykonin inertial space; changem In orientation of the sonsor frane relativa to its 4 l*a 4

vectr I romthe a&celoromoter readingsi. Tl'e data are the vectors 1(t1) (1 1 2.... NO:

faI---01 tj) v if + (3.1) 4,'.

where 1(t1) As the local gravity vector at the alignment site at time f,> t and V(ti) is tile sum of ,

vehicle acceleration and accelerometer notes. In tirdeo to :implify the fi t',r equations, V(t1) Is taken to
be sevo inean noise.. It should be noted that 1(y1  Iis known in any gl:eon inertial lloordinate system berause o
the geodetic latitude, longltudc and altit ude of the alignmttlit site woe. preci~ely known for all L. , to 4 t V. to. A '"''

4' ~3.8 Recursive Filter for the Problem '

*If one denotes by 6- and i4 thle filter's estimate of a Just bajfore and Just after the incoorporation of
the ditta i(t 1 ) ,then the data incorporation equations are A4

S+ + K, (g(tjQ- 2(t1) (3 '3

I V

2' ~where 4

Kalman filter ma~trix at tins t1 , %' 4

estimated observat ion at t1  % %.'K Y

a44$moti matrix corresponding (3o6

croon product by 1(t 1 )toh..

ftI Covarilloro of 74t1) ., 
4  

*

= I((tiVmt ?)). (3.7)

Tile time propagation equations are particularly simple In inertial space:,

0; 0 (3.8) ".r.. .

P- P+ P" (4 (3.9) 4 4

-The observation matrix H ,however, to time-varying if viewed in an inertial friqme, because 1(t) is
rotating at the earth's rate:

whop*re~ it) Is A matrix representing thin earth's rotation from t,, to ti To be specific, let us expreasa... .'.4

all vectors and matrices in an inertial coordinate system haigone axis (u aon heerh. pi xin
the other two pointing to points fixed en the celistial equator ('ig. 13). In this coordinnte frame, with u
directed to the vorn~l equinox, one has, .

to (t Ito)) = sin 0 cont 0 31)''* ' -

4.
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3.79

_1212

where0 tt)II(.1)

masgnitude of earth' a spin

g, -11 Co h co -L*(3. ID)

(b) he beevoto,~ atrx His aluistuedo lcal3 when dataiosl reciedarind edntb trdbtendt

tiX aoandoei lttd

(The nuelecionofsate inacriableis in trodie sipnn problsn tem resutsto inatie-varying obsetrev atio atrixe,bu
3.2ia ktihe prilgtir on eut ion fro rle th tt*n t oaig arx ngnrlmc opoiei

desrabe hi uaping nture ofteKaluan filter leadse isl om lgmn rcdr htsyhx ob emn

(a)e ath coan ime. tuhimte cupaato hequa Qikration isa atrxqabiont, rqirineeg, interetoe lornthes rcuato whe

t(b)athe alignenvti paroceur ?t file alue eonlt tiebhoen laaunh At teceivd oud nedntr~ the sopo ertioen oat a
tiaes aeutindeialadgcsti dfiute 1 2

(0o ncemfericthilaccutc is receivdo batc propeagaing forule sare more is popriatie bthaen recursimeoes. n- . .

Tercurie satur ofemi the datman filte lei itel 2 o ant alsignmlen prcdure vetha a aerob o

adequately discussed elsewhere In, this publication, tha ::eiscriiudue of dubious value. .~

calclatoneafe the estimte onreeivated, usich ponlcteestimatedrmtate ate tor aprpit then 4 reusvoe.I

-1(t1) - e(t1 .a:

-3(t2)-3t)* N 8

canculatpl the estimate observqations. uing they fore esiae tttt

-9t, - In' N 6

4* 8 +P 'Al , , 9
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When the matrix multiplicatlonam are corried out it isI lound that no motre than 3x3 matrices Kar involved for '* ~ .t,\

uand ~8 it; ' (Z ,. -2[)Zi; n (z t1  1(t i) + W(t1) 9*1 \ *{ 7

117i~ja~~ H A Iq~' (3.24)

These formulas reduce to a weighted leasnt squarý!* eatimatt, as expected", when 44 0 and (F4)" 0

3,4 Physical Mignificance and Accuracy of riltoring*

aTh physical: significance of the Llignment fleigmealysninFgue13. The ru grav ity v ct ora

thragh thq misaligned inertial sensor*Is eeutimabcd to be Itu1(t) + 1(t) i: I,. wheirc0is the esi maWte 4%

et and ita rotate at the smae rate as &about the earth'a spin axis and swoolo out parts of canoes from % .. 40 .

I.to to t" I*~ function of the filter is t bring teetwo partial con*& into near coincidence by bringing%
11 claosr to IF , In the came of the repursive form, an adjustment is made at each data poinU, while in the 4...
batch form the estimate cone piece is adJubted to VAt the data (and 44) in a single stop. This picture of
adjusting a portion of A eane to fit the observations explains why, for given tl , t, .* tN and given

V~j the alignment process is inset socurabo aL the equator and inaperative at the polmml the ocaon surface
* generated by I in a siv~n time is givsteat at the equator and nil at the polse, Analytically, the obuerva-

bility matrix for the problem is just Equation (3,21), which may ')e written% %

My j I"
N"1, Myt5 o W 3 8

ead this is seen to be singular if g(j (t8) a . 1(t1 ) w hich ocourm at the poles of the earth.

if a general measure of the accuracy of the alignment to desired, one way employ the ratio of the determinant
af P+ to the deterwilnant of P" . POWte and Pranro~2 3 hava shown that this ratio is, in the present came. ,

11,./P20) _,/__,+_ I 3-26

Promf this, it in seen that a large value of If OH7  will result In a targo reduction of Initial alignment
error. rain matrix, however, is compooed of N1  3m ~ u-arioss, of which the (i,j)tb sub-matrix isI%

(3.27)

shae Ig Indicates xetto.Iih earth were ntraig,1t) (t = Y for i eN
Inti w ninitial miainet6eaalltoI )wudwk l ~ ub-matrices zero. Henes one
m cocuea*expected, that the earth'& rotation Is nmeLssmary to remove initimi misalignmenta about the

4. UNlIDENTIFIED LADAKNAVIGAfION

4.1 1miradmot lem
Unidentified landmark navigation'" am obtlnvgtntehnique that relies heavily upon the recursive *

proprtin o th Kamanfilter. The method producee Improvemen of vehicle pomit ion and velocity information

41,

%.. a
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1. 4i, using only passive, on-board mouenurwneintms. Since the essential informistion roquired is the dirertioin Iroru the
vehicle to An unidentified ground point, relative to inertial space. the typical instrumontatiun comlprimes a
landmark tele'soIpe. a& star tracker, and a computer. It. io not necossary to store An extenisive lint of landmark
-locations and iduntifioatiton aide. Moreover, the complete elimlinationi of the astronlaut's paurticipation in also t-

a possibility, beuciian it io necessary only to track patterns anid not to identify them. ~ .

The methods availahle fail into two groups! (1) those such as Reference '24, in which the Iundntark location %S*C
biasom ars Intruduced as state variables, resulting in a nine-dininnaional staute Vootor; and (2) thone hsiefir.,
to Reference 2n), in which the landmark biases do not app'iur axplicitly in tire sutet vector, which In then the

0usual aix-vector of position and velocity deviations. Z4~A

The first type, comprising what sill he termed the one-sight and the two-night methods will ho dincuased hers -
because they clearly Illustrate the role of the Kalmon filtnr. A discussion of' both types of rifthods is given .

in Rleference 26.

* 
4

j . ~Assuming that a computer on the orbiting vahi~le is available and that a Kulmnan filter is employedi to prtou
5.. navigational data from other than landmarks, the following additional cumputations must he performed in ordor

to implement thin unidenitified isodmeirk mothod under ooinsiderstion: (1) a largur transition matrix of thin mtate .

vector; (2) the estimated value of the landimark ohmervaLiuni tuitinu tho true valuei; (3) the nunoureront, matrix.
relating the landaUrk Aobsrvation to thes mtate; t4) the best Init ial estimate of tire landmarksn liumition; and
(5) the initial coivarisilce of the state when A now landmark is located. These five required calculations will JAF

be discussed in turn. .d .'\% .s

4.8 Mtats Transition Natine*xA h*

The nine state variables I' T representing deviations from nominal inn position. velcity, and land-
'snmark location, have a state transition anatrix~froa to to t Wivan by

r [ ir 
O r 1%a'tt r v A (4A A

5
1) ~

share the foul, upper left sub-matrices constitute the usual error propagation matrix for vehicle position amnd
-velocity, and -the lower right sub-matrix 'gives the transition between landmark hilsses Tu at timae to and 4*A A

their value T at time t .If toi in a planet-fixed coordinate synstm, then 01 Is the identity matrix I %'" .A~.6

if T in in inertial space, then A ~~A

whore (n)) is the rotational traznsformnutlon representing planetary rotation from time to to t . The most ~
convenient coordinate system for TIis one fixed in the planet, at least from the point of view of the state
transition matrix computation.

4.3 Estimated Oliservat.ionnsm

A.4The oboservation is *tnne function of vehicle position R , velocity V.and landmark location 1. determined A
b'' y the instrumentation The computer naloulatas the observation Y5  using estimated ifV And E And sub. % *

tracts it from the actual observat ion YT~ supplied by tile instninmenta The difference YT - T5 . wnighted by ~ ,

the linear filter matrix, is used to corroct the deviations P . V . T . In practice, it is often computation-Ims
5 ~ally expedient to consider the "observation" to be some function of the actual instrument readouts.

In Table IV the first, column gives the instrument roeaduts, the second column given the computation of the. %~A'~-~
observation YTin termcs of these readouts, and the third column gives the computation of the obnorvation Y, A~vA.%!

froem imdtilatondI and 1 It will ha noticed that the landmark sensor angles T (train anle1) and D(
(depression Angle) nmsy be processed together to yield the unit vector measurement P or processed separately AA.' 

4
,

to give tea mcalar measurements. Alit',, thu omloulation of (S)m , since it does not concerti landmark navigation A64A-esolusively, In niot given in detail. ,1~5!AA.

4. Mcsunre'esat AlatricesA

A' .~The third calculation required for the linear filter is the matrix M relating the state 11 to the observe- %~AA A
tion deviation., 3'.In the presunit case, I includes deviations T of the estimated landmark location fromoA~:~~AA.A
the nominal location. The moasurermont matrix sany be obtained by different tatiozi of the estimated observation '

A' ~~~fumotioit, shown in column 3 of Tabine IV, with respect to if.V, AThe results for the two choices of landmark
* A ohserv..tion Y. are given In Tabie V.

4.5 Iintial Estimatis of Landmark Ponition

Freeic the ee~tiiunted ,1.00 pd~ osto AA A nd AA observed direction un inertial space from vehicue toladrk
the tis n-board n~m~puter must exirruot A first estimate off landmark iccatiun. Two says of doing this sill be

* ~ described.

'4 ~ J 4 " * ~ A , : A ~ A V l . % ' n , A ~ 6 4 A A A . . -

A .A.

AAL AA AiA



Die-might meho

If'~ the:oonr planet in assumed spherical oft radius Re5 near the landmark, then the obsorved line of night
Smay be extrapolated trant the vehicle Positltin ftto where It intersocte the spere. Thim is the estimatedI

position Cof the landmark. It is computod as LOO &

*here

The maJor inaccuracy of this method is In Ri E~ven if an ellipsoidal formula is used to computo Ric for
the earth, or a table stored, the terai IN hh to' ln arisittdmydertfn hse pproximations
by a significant dinatnce.

41% %

Tta-sight method.
If two aightings and are taken at times tj and t2  and the oetimated vehlicle pomitin a i an 14
noraorded, thena the on-Ijoard computitr hiay ostimate thl lonation of the landmark with sit error V roportional

to the average rmightIng dititanuae timett the ninwtruinentatloal angular uncertainty. In titlls oease. Referenoce 24
Nives the foimulas ror L lor- a non-rotating 1Ilslst. In vector form,. they are m

where h~''~

.1. u Wo-eight eStimat of Lat. t

N and 0 At-AN% ', 1 V

-It the ploaoit is roetating with constant aingular velocity 0l then, .m shown in Appendix 0, It is necessary only

t eow b Wiland A., by where (0\i the matriz ropresentingt planetary rotation from a

Use of the twa-eight method introduce& a slight sequencing problem. It is obvious f roe the geometry that 1

the two eights upon which the initial landmark estimate is based should be well-separated, preferably with 900 ~&a .

between A~and B ut the linear filter ocannot process readings until the initial landmark estimate isto~/ ~
made. Henue, An this method. it is necessary to collect all the readings on a given landmark, select two well- "A

separated for the two-sight estimation, and then process the rest in order. if twelve T' and 0 readings and
their times are taken in the prot~jss, then about 36 storage locations are-required. The sequence of operation.
is ase fullowss

(1) Wtares I

.1(2) M~llet and stare A, and ti I L ...,N

(4) Calculate El from equaution (4.3), using RN and A, in place of ,.A .

(5) Process thei data A , .tj for I = 2... N- I as though they occurred in real time*. The result is .- .

sN1 and VN- , thes best estimates, at t

4.6 Initial Covarianee Rbtrix

The Initialization of the covarianoc matrix of landmark and vehicle errors when a now landmark is planed can
be a critical on-beard computation, an the computer runs to be discussed later will shoe. The extent of the m a".4 ri
on-board nomputatican depends on the method employed to estimate the landmark location when It Ic first sighteId,.,..
The two methods just described lead to different covariance matrices, For the first, the one-sight method, the . .

proper uoivarianae is

OOV P F (4,11)1

ov) rv ~vV 44

ri! V1i -'I

IIr

. L4'_JVt

Ck
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Sri I PreU T  F v Pvuy

p UprrUT + jplorU( I AAT] tI ( /L

U A -L /'.~ -~~~ (4.0)

cj variance of Instrumentation angular1 ntoise %1**

'I, variance at terrain uncertainty.

wheebr t~he secondi method. the twol-alght method, the proper covaria11oe is thoaomeo form to E~quationi (4.4). but

P, (Mr, +81'? 5r+O r~ (A,+~

Mr, T + Mr+ , 11  + v vv' + y 1r D , + 0~, KK?

A W + 4'),,

X, V Ma)c, II IaT)

In the Preceding,~ is written for (fl)', , and the subsoripts 1 and 2 refer to the times of the first

end last aightingn. The quantities I , P J . U , and (fl) hay* the &mie meanings sa previously. Note "c
that al the variance of terrain roughness, does not appear in the second method, as to be expected. TheL .

derivatlose at these initial covarianoee are rather involved and will not be presented here,

4.1 Computer Simulation

because the one-eight method appears to requir* less computation than other methods, a program we" call" ~
* ~~strucotd'' to try it out, The program calculated the oovariance of tho mine-variable state by the lintear filter '* * "

ecuationa. It simulated white-notise on the readling and the terrain error in estimating the landmark.. The '

error in the optimal estimate of the state wasn calculated and compared to the covarianoe mtrix as an approximate h

check.~

The first significant result obtained is that the one-might method dois not work unless the covariance matrix
to properly initialised tar each new landmark. Thisi result was ohtianed in ievefal computer rune, a typical *~-.

pair of which In shown In Pigures 14 and 15. The conditions tor thene runs are listed in Table V1. ~* ; 1

Pligure 14 shoes the reduction in the magnitude of the actual position error and tite square root of the traceN
of the position covariance when the covarianco matrix was Initialized for each landmark as:N

Go(! rr 8r 0

*where "'r r v , arv the 3O x3Pub-matrices of the vehicle position and velocity at the time of sighting
th lndmark, and D is a diagunal matrix at elements each equal to the trace of P LAlthough this Initial-

ization procedure seems conservative. the results are disappointing: while the coainee matrix gradually
approaches mero, the actual error, which it 6upposedly represents, goes to infinity. "A1

In contrast, risure 15 sthoes tho identical computer run (Case instrument noise, sALSs terrain error, etc.),~.'.
but with the oovarimnce matrix initialized given by Eq~uations (4.4), (4.51) and (4. 6). T.he actual orror here '-'

.5.S*(I~ ~ %



be calculated corcltahwodakN teoengh ehd

Fk

With the run ehown in r'iture 10 as a nominal case, the' following pmarmeeters were perturbed, sensjor noise, *

orbital altitude (a r 0, terrain error. The results art' showne In Figures 17-. These curves relereewent the P_________
square root of the' trace of the covariunnc matrix Immediactely after, and one-half hour after, the laent landmark
ubiaervat ion.

5. CONCiIIIINU REMFARIKS

The faoility with which the Kalmane filter dimpatched the comeplicated entfitiation prnblseue descrihod ine*. ~
"Sotiurem 2, 3 and 4 coleuld not obscure two surioupt difficulties in its utec, of which only a very brief discus- F

sion will be given here:

i~j(1) The need to linearize the problem without losa of accurme..cy

(2) The presence of computational difficulties.

5.i Nonlinearity

The linearity problem enters, generally, through the approximation made In the state transition matrix or
that made in the observation matrix, These two matrices represent linear approximations tn what may be nonlinear
relations.

V1 -~-
in the case of orbital navigation, the measurement nonlinearity often produces a more serious error than doesn

thee stats transition matrix aPproximation. This is usually true for radar rangeg readings", The problem of *F,
9 ~~~~measurement nonlinearity may be overcome in ane error analysis, such as described in Section 2, by using data ~ ~ %~F,

simulated from a linear model, rather than real data or data generated by a nonlinear model. An error analysis
thus constructed wili hot have nonlinearity errors, but will not be a reliable guide to the nonlinearity effects ___

-to he.,snooueetered in a progrAm that processmes real data.

In the csase of inertial system alignment, Section 3, nonlinearity can enter only in the measurement matrix,
minces the state transition matrix Is exactly the identity. The extent of the nonlinearity error depends on the
mise tit the estimatesa

Nlonlinearity errors can be expected to occur in unidentified landsark navigation, both because of the measure- ~ :.~

sent model and because of the state equation. The simulations described in Section 4, however, were based on a w~. .x' .
nonlinear measurement process, Ifor this )reason it would seem that messursimfint nonlinearity does not seriously *
affect the landmark navigation methods of Section 4..

A. l c uthreaplctionai Df isculied in thscatrar ucpil to the numerical inaccuracies caused by: it

N fiitecomuterwor legth.Thee eter n mny ays nd avevaried mehnsm nourest"2l, tedsuso
ofwihi ae pesweei hspbiain nytoaesof difficulty, which have appeared in the -A

and th~~~te calculation of the mti rdc

F-H?

The first of these leads to an inaccurate result if P* and KIP" are almost equal. Thl-e is because thee
magnitude of the error (which is determined by the number of digits employed in the computer), divided by the
magnitude of the answer (which may be extremely small if P" and KHIIP are almost eujual), yields a, large

% ~ fractional error in the new P+ matrix. This situation arises, as it did in the simulations of gentian 2,
when a series of highly accurate range readings arm taken by a ground radar on a satellite whose position
unnertainty in approaching thin statinn is very larse. The initially large-covarianos matrix is reduced by a

5' series of subtractions of the form -'KHP to one that is smaller by several orders of magnitude, at least, in
the direction of the line of right from the station to the vehicle. If these orders of magnitude equal or
exceed the number of digits In the computer word, all numerical significance is lost.

- '9
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The ascend type of computation, PUT~ causes numerical rinaccuracios inth same circumstances a: thIn first.%
Infact it ca ema ta h ovariance cluaino Equation (2J.2), frthe case ofR 0 .loads to a

3new covarisnce matrix P' such that PH=0.But neither P' nor HT is zeor; each zero in teproduct.
must be the result of a computation of the form

Ifteelements or Pý and of HTare large, the Piero result otcani abl.sout only by thes subtraction of eqjual,
large numbers with the attendant loss of numerical significance. Iii the name of radar ralnge readin~s, HT In
just ~A. the unit veictor from ground station to vehicle; after manny highly accurate rang'o roadings tho vehicle':
position uncertainty, as represented by P ,may still be large, hut is distributed almost exclusively !n a ~
plans normal to Aa Hence the product Pil, is ulacist curo, even though the individual elements of P may
be large. This situation in t~ypic'al of many in which highly accurate, oloecoly-sipnced ob~servations are mado.
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* APPLNOIX A

Derivation~ of frq~umon (2.7)

If the linear filter K is u""d to update %nA state stste . ",what in the covarianee Pr of the error

in the resulting estimate, Lot %Al
2+ = t' + K(z-H-)-

where 0 ~*A:
z Hx + T

K(V) 0

(WT) -R -known

i~e-f*)& = v(x-r), 0

A direct calculation of P" from its definition gives *.
P*

=• I ,9 - K," -I,"-.) I-," - K - (e- HV T  
%

= o -iMe" -KV] (e Mie-v' -. , -. .

(I-KH.lt (e-)(e')
T

) (I - Kl)rT KS Ig(V)l(V)TKT] - E(v)(e0)1 (1 -.U4)
T 

- (I-I)If(e'I(v)
T

]K, .'...

"= (1-1H)P (I-an)T + K" 
" "-

where a has been used for -I- and P for 9(',e?)

APPFINDIX 9 .~* i.

Statlei Tramnitiou tri for Air Drig, gravity sd Oblatenesm Coeffiohesta

This Appendix derives the differectial equations for vehicle poeition and velocity errors produced by constant , . "
errors in the dreg peaemeter. obletenesa coefficients and gravitatloozi parameter of su earth satellite.

The vehicle Pe
4
,tion nd velocity V are given by

d V

.*re ..

"'., -- u ,/j
++D

05+ +005-.,-,o j.•L •

sad ~~~oo A C6(4/FP*)Pcs/a) .:. -be . . . 5.o ,. . -

PI KO R* drag oonstent"

o raeus of earth corresponding to C. * .

Do drag parameter .' ', .\\ .

% - -- .



S-Coefficient of nth tonal harmonic In geopotsntial'

P1(A) = R" Legendre polynomial

JA = gravitational parameter of earth,

It is esiely shown that

P' -- ((/• c,/l/ dk - (n + l)P1 (,)R - X (N.2)-
do do . : .. " .,••,,

where

K unit veotor normal to equator.

The deviations 81 and BY in position and velocity corresponding to biases 8, 31 boD in gravi-

tational parameter AL, oblateness cottffioents C1  and drag parameter D, folios the differential equations

""..z,.i..l.(B..3) ,,

'C,",.._ *.•-...'I' .' ; -..,,i

at 89 M M V +SP , .,'. . • , . .' - ,
:.4..R I

where

+ + ,

S4 •.<

16 M,,a
%~ %

[I -- A.K.V,3.,

= (Do/V)[V+ V111 °••°,','•..s 0"

+ ...-1 ,...'.,-: . A'e,.:

Po. (n • + , , +.R - [C+.v, ,. ,

-. g- 0 a,•~.•:

".• F ?lsa~Th state transition matrix. it, ' is obtained by Integrating from t, to t the matrix differential '• •"'--•
,,.< ~ ~~equation corresponding to Equation (5. 3): ' .. :'

35 yD0 (1.o(1 •..,D0

* dt

SI'.odt : [o '1 0, ",to]'..+.(A .} . '__ ".__________

sLhare , , , , , : : - S2:...'

• "• 0 I 0 I0 t0 IO t0 a' ••-••
".4u esg• - - I- - . ... :o.. Ia..t. . I' ' '

4 F•(A]. :----.-----.---." ..

.Se_._ _. _.. 5-.C. I 8.00



,_ .T ,i

.,,, V (a) %,.-- :

•_:1 P+n' (2 -+- PT•'. " I a)V1

!P, I, Pik (a ,- ,, ,,,

and,

S do d / ..

wht.I ] • J:.•, •,, ."-

Cg at on (VA.) will• yield the tr ansit on matrilx relating position and velocity errors to thei normlisL ed b ioamus • . ,-."""'
8ju' L•' Be ACJ ,k SC a0 nd 60/010 . The choice of l J ,k I depenldsi on which oblateinesn coefficientsi • ••

Aare s Intersit.,

dP~+(a) 3f4 I l' 5) -n """(s a "' a.::
der N +x Pca~ n•,. ~a..• _..

"Tihe problem Is to obilin d n estrate iti stf llndark position andt tielosit riven obterwtion a nod vehbiale,

po i of i , , a o,•t, it tl I and To 1t diime tw-,b n s o i e.-.. --lhe lddmakkpoitio at t waybe etimaed a

where p, is unknown. Thi landmark location at time t, may be estima~ed as ,.

Et 1, +p, (C.2)

Swhere t , is unknown. Since 4h (fl)r slere (Q?) is the rotational transformation of the planet from t1  .-

* Ito tt , the last equtlon becomes

, a -( )' ,+ P ,(, "• , . (C.3). :.

,: Equations (C. 1) and (C. 3) are six scalar equai'ons In five unknowns, and hence two sol'iti,•5n, El and El.l ' ,
may be obtained by straightforward algebra: .. ¶

Ell i + (I*-.R,).(AA -i•p•)/(-C'), (CA4)

where

C. ..A'

These solutinns are not Identical benause 'of nuise on the daktn A4 s ! . Their avers#@ is a better
estimte than either ooe alone. Thus,A :::-' -' .-. ,..

+ .(C.7) * ~'
It it Pewn that the only effect of t1e plineti' rotation is to introduce (f)-, in front of i, and
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• ,•,; 30o . a-. .... +. .

.4 I~~~ABLE I - ..

0basrvftton _e ....

Observation vtariabls Observation matrix

p ______, ,_ _ _ _ _ _ -, ' ,

a pn, yA AA 404)

Ap 4

Ca• a' -- '
As. An, Az f-Q i%

A X y,Y , (0ooNA - NinA)/pa l- ,C.os. L

AN, An, , , + fi(K,.P .+pJ.1p:.) + Aoxbr•p , + (ipn-4.p,),/ p,.L}
*•AA I iiiih " u

, y , I (- minA -sin - CosA sinl + oso"u )/p a I ' *,.

A. An, Ah (ip./Ra + fiP,/RQ - A. p+A )/p., .

i~s /V(.I RIC.,)

X,+. Y. ,.z+_.•.

o, 02, 03 (M,o,-I) or• o IMU on. u'et, ,- ..
61. 0• 63 -. t, for tI on XYZ axes- .. . .. .

49 , 61. 83 (0 10, ,0) for IWJ on axesx
.l' - ,-

1

1, 7, "
(fO -) ar IU n xs *.. , e. ,., °



- ~~~TABLE I (continued)____ __________

StaObserv.ation varia61,10 Obuervatioun matrix '

THSTAt 01, 92 63 p~gp- , + ps far IMU on XYZ axe.

EL 91. , -p 5e o 5 ,/l'. ~1 p~/, IMU atnY axes *

A~TAK I

00A 1, a, 693 PL(Pj +~v8 PL 114Uo n XYZ axes

-PfL16 0 03 (V. ,.,. IM1Joo

fl 20 -PCV8 PL V"IIM n R

RA XI yI 9 ,

ARaAe

N=:AIuxiir X, nitv for Tal I ar iai iue - n sflos

1 P.,

1~~P, +S. -. ."*

3,PL AL~*\.

'P. %sS

pR I + p L

- ' - _. _ + *- .*,./* .

It.E Au4ir u~tte o al r iai iue - n sflos .

%t ElR itow rmcntro ath**'
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"U' TABLE 11

List of State Variables

X vehicle X Inertial position error . * .'*

Y vehicle Y inertial position error

Z vehicle Z inertial position error

A vehicle inertial velocity error alonr X axis

* .. , tvehicle inertlal velocity error' along Y axi

± ~~vehic~le inertial veluoity errcur along Z axis~ .

gyro 1 angular error,. due to drift
*, :

6, gyro 2 angular error, due to drift

gyro 3 angular error, due to drift I~~c .

gyo1rnomditrte0ie4rrltd.

Cd ~ gyro I random drift rate, time correlatedL

(A) gyro 3 random drift rate, time correlat.ed
w yr ano.ritrae.im oreae

'.**'gyro 1 drift rate bias

% I "w uo 2 drift rate bias

1043 gyro 3 drift rate bias

horizon phtnomenological deviation affecting altitude P.. .A

5, ~~~ ~ ~ ~ ~ ~ 111 horo Ihmnooia deitoP.eoigvria

hrznphenomenological deviation affecting vertical

horizon sensor time correlated error in 9

horizon sensor time correlated error in 9

fl1  ~~star tracker time coarrelated error in TR5 * '.

fit star tracker time correlated error in Ei,5

1landmark sensor time correlated error in TRL .,C

landmark sensor time correlated error in ELL

biais in earth's gravity, A~

biases. in, senll harmonics of gravitational potential, ft.

/Dbias In drag Parsaeetr, D~

%d 3D' 0

% s'
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TABLE ill

List of Sian Sltat Variables

A* ground radar station location error, easterly

tgoud rada er ratg basiitl geba

AA round tradaer rane raticas nl imo~i

&A goundrada aziuthbias

AcL groundradarkI elevation basieba

hrisan taltmeer staiaa i angl bia

hoizntrckrvetia rIi bi a vign axio s EI':td
N, 1A J I ,'

Isiasr homr etobsraizon trce vria ageUu n ai

Laaiark devetir bier, afetn 'dmercattd

AIL star-l) alvtinaB, ba

AIL,: elmhandmrIM eevailevaion ~ ear,1 reaietovilerav

AR uni column vlietor bi thatas eaiet neta pc

SV Obsevatins or Lidvtifid Ln~ma't avigtio

Zmat ume t Tr e o sorv tiot, Y Is imat d o serv tio , Y

Star trake (Y)T (a (Y), ( ** 4S* * 4 *\~4*4 44 ~44.*4 .'. m'*'*



TABLE V

Igeamuremciit Matrices for Unidend ned landmark Navigation

P~ P

Norm ta M- P~~P, +=I"I

uunit vectors %long vehicle axes 1.2,3

restimated landmark location veotorI

Restimated vehicle position vector #%

=jP2P components Orf along Vehicle aU.e 1.2,3

Coniton fr omute Nw f igre 14 and 15.6

Gravitational parameter l.q3i3x 10'Nft*fAeol

Smei-major mAim 1038.5 nautical milesIi 1iznation tu lunar equatijr 0.0 dog
5tarr times, t0  0.0 hr .

Mesauroments: Unit vector from vehicle to landmark. '5 *.I . i1ma of first measurement 0. 256 hr

Time between eassurements 0.003 hr
Times of last measurement 0.999 hr
Landmark aensor white-noise 0.001 rad. ru.,~. actual

0.001 razd, ru. *s. a priori ~

Landsark estimation method: on;e-ight

Terrain altitude varietion 0.250 nautical mile, rue~., actual -

0.250 nautical mile, re.m.s. upriori A

.N.

%'• : :~ » ~ ~ *. ~ ''____________
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ACTUAL ALIGNMENT FRAME AT to

op*~
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rig. 13 Initial alignment frames of an inertial navigator
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CHAPTER I;

SECTION I - APPLICATION OF KAILMAN FILTERING FOR THEI-
ALIGNMIENT OF CARRIER AIRCRAFT

INERTIAL NAVIATiON SYSTEMS 1-. -*, .

James T. Kouba

1, INTRODUCTION

Because misnions generally flown by military aircraft require covertnees in a hostile environmont, the need for ."
a Olf-oountainsd passive navigation system has long beent recognized. Being self-contained and passive means •,, ",

respeotively that the system does not have to rely on any external equipment such as LORAN, Oeas, etc., nor r-dite ,----
to perform the navigation function, Since covertness is not necessarily required for all phases of a mission, the L" ,
mliltary navyigationl systoeh generally• comprises of a multii;ude of subsystems, includingl active and non-self-contained . . %,-
elements, so that maximum use is made of all available information. However the system invariably has and requires "' "

the inherent capability of performing the navigation function In a selfocontained, passive manner, ,

This requirement is emphatic for sircraft operating from an aircraft carrier. The military functions performed * '"
by these airbraft require flight over eater for -extended periods of time without the benefit of external aids to
navigation and often in a hostile environment. Additionally these aircraft are required to return to the aircraft
carrier, which may be concealed by weather and electromagnetic silence, Withnut a self-contained, passive naviga. '. 4*,*

tion system these naval tactics would be impossible,

The only navigation system satisfying these requirements is the inertial navigation system. It provides in a
ielf-contained, passive mannor all the required cruise navigation information, It is, however, recognized that ' ,
certain functions to be performod will require contact In one form or another with tas outside world, so that the
inertial navigator cannot be the only element of the navigation system.

Mince the performance of in inertial navigator is highly correlated with the initialization accuracy, it is ,.4 -.,.

Imperative that a highly reliable and accurate initialization process be devised, The reoognition of this problem %
and the need for its solution as applied to carrier aircraft has, in the past few years, led to intensive research ,- *-".
and snalysis to resolve the multitude of operational and performance problems associated with it. MTe following lPj ' 'Ž ,'..
sections discuss and analyze the carrier aircraft initialization process and logically develop the requirements. (' ,. .. - i
because of the classified nature of the problem, the material will be limited to a qualitative description of the "•'". ',,Mprocesses involved. The actual quantitative performance requirements and the details of the solutions are omitted. +

Section 2 iI a brief review of the essential features of inertial navigation and includes a generalized mechani-
zation diagram for four different local level mechanizations. An essential ingredient In the design of a Kalman
filter is the error model of the system being controlled. To this end Section 3 presents a generalized error model o

for the four mechanizations described in Section 2. Section 4 defines the initialization process and Sections •,
5, 6, and 7 discuss the multitude of problems encountered in carrier deck, catapult, and In-flight alignmAnt. • .. s,,

Finally the chapter concludes by illustrating the various features of a Kalman filter for carrier deck alignment. k P. %

3. INN INERTIAL NAVIGATION SYSTEM .~

The essential elements of the inertial navigation system are the instrument cluster (platform) (onnisting of
gyros and accelsrometers) that is gimbalad to the iri'frame and a digital computer, The instrument cluster's %
geolraphic orientation in controlled by torquing signals supplied by the computer, which in turn accepts the ,
outputs of the accelerometers and copute, velocity and position.

More specifically consider a right-handed orthogonal coordinate system (x, y, x) associated with, and rigidly ' b
attached to, the Instrument cluster. The accelerometers and gyros are arranged so that .- ,,...

C() the positive sensitive axes of the accelerometers coincide with the x , y , 9 axes,

(it) torquing signals applied to the gyros will selectively produce angular rates of the platform about the . ."" "
x y.I axes. -%

For aircraft inertial navigation systems a local-level mechanization is gcnerally employed. In this mechanize- %, . .'., ,
tion the platform Is controlled, ideally, via its'gyros so that its m axis is always coilinear with the local
perpendicular of the reference gIold, independent of the motion of the aircraft, There ar four different types ._

of local-level mechanization# that can be considered, One of these, called north-pointing, Is such that the y ,
axis of the platform Ideally always points north (z axis points east and z up), for the remaining three meochaniza-
tions, called wander azimuth, the y axis is not constrained to remain north but is permitted to "wander" at ....-. ,-
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•'ontrolled rate relative to north. The computer in turn computes the wander angle by essentially (not directly)
integrating the wander angle rate. Actually thle wander angle), latitude, nnd longitude are all Implicitly computed ,

by solving a set df differential equations for a met of direction eominee..

tLeomparativvly Wth north-pointing moehnnirntion is considerably simpler than the wander azimuth nn.chnnipttios,,

" However It doee have the dimadvantage of lnt having a polar Capability. This results from the fact that, ap the

navigation system approaches the pole, the azimuth gyro (z gyro) torquing rWte required to maintain tie platform

north-pointing becroeme excestively large, Such Is not the ceae for the wander azimuth meohaniratiol since tile

platform is not constrained geogrnphically. '._ .. .

In the sequel It will be shown that the wander azimuth muchnaisatiolt is particularly advantageous for the solution " ' ' -

* "-# , of the alignment problem while the aircraft Ia on the flight dock of the aircraft carrier, This reauits principally , , . ,,

because the wander azimuth platform can initially be at any angle relative to north iaid the computer' a wander anigle

adjusted to agree with it.

-. A complete, detailed derivation of these four local-level mchanizations call be found eniewhlre'. ror future

"reference Pigure I diagranuwatinally pre'elnta a generalized michnlllationl block diagram for local-level freo-ilerti ml
navigation systems. Although it theoretically reprexentp all four local-level mechnniVAstions, ill artul practiCe
.many variations are umed|, Thin is especially true for the north-pointting{ mechani-intho wherulao many Himplificuti ,ullft i i,,.:'',!••i
Arise and, instead of computing direction cosines, latitude and longitude are obtained directly. ror simplicity

* •~ * the vertical channel mechnllization has been emitted, Table I lists the definitions of the symbols used in rigirlt 1, 01. ',',,%' .*•

1, sald Table I1 lists the vertical platform angular rates for the various mchahniaetions, It should be noticed ý, . -

that for any of the wander azimuth mechanizations the explicit reduction of the direction cosines to latitude, .7. 47 4., % - q. .W.'

longitude, and wander angle in required for display purposes only. *"-.14•.4,4•. ' ".5,. '.. ..• ....

The next section presents an error model for these mechanization., i.

41 3. TIlE INERTIAL ERROR MODEL , % 4..'

The object of the inlitializationl process is to remove, insofar &as possible, the deviation of the actual syotent ~
free an ideal, error-free system. In general the estimation of the deviation in made by Comparing (subtraoting)

a net of reference variables with (from) a set of coemensurate variables computed by the actual syatm and inferring . ". , ' .% ,-

froe these all deviations of knterest. The Inference process requires a model relating the quantities that are l,%-, .-

observed with all quantities of Interest, 
J6.

Adequate estimate and control oe the lnitialization process must take into aocoun• both the deviation of .. '..... 4%. *..

referenco variables and the system variables from the error-free eysteln variables, Thus a neoessary requirement

afor the design of an alignment technique is a model of the error propagations of both the inertial system and the - A .\,. .. 4•

reference system, i.e. the differential and algebraic equations governing the deviations of the actual systems

from the ideal, error-free systems. '.4 41 . * 4

The reference syftem will vary, depending upon what is available and desirable to use at the time the initialize-

tien process Is being invoked, For example, if the initialisation process is carried out while the aircraft is on

the ground, no external information is required except initial position, and the initialization process is Carried , * .,,• 4 ..

out in a completely self-contained manner. This is the cage beoause the a priori knowledge that the airoraft is ' . . , , .

stationary on the ground implies that the velocity is zero (to within the small oscillations caused by wind
buffeting) so that the reference variables are chosen to be the initial manually innerted position and zero velocity,

In contrast, if the initialization process is carried out on the deck of an aircraft carrier, the velunity andt

position of the aircraft will vary as a function of time beceuce of the ship's motion, In this case a system
external to the aircraft is rsquired so that adequate information is available to describe the motion of the aircraft

system. 1i

I t Of singular interest here is -the error model for the alocraft inertial system, since it in required In all oases,

Figure 2 displays a generalized error block diagram for the local-level free-inertial navigation system. It is

a linear error model durivud by easentially subtracting the nrror-frne dystem equations from the actual system

I equation and retining only first-order terms, For simplicity the vertical Channel has been omitted, As can be"sean, all four local-level mellhanigat 1011 are included In this figure, And, as might be expected, various simplica- n.o ,,. .

tions can result by choosing one particular mechanization of interest; e.g., for the free azimuth meohanizatIon,
P 0 . Also It should be noted that Spap can be eliminated from the error model, since the errors 0, and

',,•,•a ~~alwa~ys appear in the form qS, "s i•= n put la,= into the various nodes. ..- .- ',--, -

"A At times it may be of interest to know the latitud., i•w.itude, and sander angle errors theeselvee. For nonpolar .'.. '. : *.'.

•' r,,io they are given by

4.-.

S 4 *"gt A Boyinot - 9CSOma (3.2)

k~ , a •. ".,in4i. (3.3)

4- . g 4- .

4.'., ' i" " ' . " '4

.*,u. ' ,.,'{'l.1 v,.t.',.....,.,.t 4.,'4
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shen the subscript C means computed mud the muhsaript T means true (error free). Par polar regions theprelationehipiq become nonlinear functions of Sol . so and 80, because ýh nnd Bct do nut remain nnmmli.

In the derivation of this error model, which io not proeasrted here', three coordinate mystomst are used: "

(I) Trull, defined by the error-free system. N.
4~',

(it) Platform, defined by the actual instrument cluster, .,.'
(tit) Computer, defined by the actual rcomputed values of the direction cosines.

To maintain a linear etror model, the angular aeparation between theme coordinate systemse must remain emall (loea
thaui 10 degreem),

Theanglarsopraton etwon hetrue and the computer coordinate systems:I oiiclled the position rosx
s8al SOlt roThatiui to ''~, ,bu the comioprrr (n uter) ar th y ,tl angular nceatiryto brin thso pue axci 86,*"-

aottltre rao oeprtobiithtre&xainto coincidence anew. cmulraxs

The anelocit seaatindbtwe the pltfrm e andur~ rte errtom aoredeinaestmisled b the vcrdifenebtween tiltercorte
valuesy and h True isluws, tiltariatr tee.,agla oain h .9Y-adý, bu ietu

Table Y ax om l ne csay brn tho re e axon in to var niabe peain g with n p lagu r m axon N

The initialiseaation breeii ork the conuertianl avation platfori refuired bot the initlies io of wheimchn

Thgien byithe corioentationfr nhvcorthpfoientin ym0m r .uie That isthe y amisoftherplatfo rors aren nothe

fheorithe wander amnduth ey.t platform anur aeerrasdfndb h ordfeec ewith thle computed
vausaniuthe atgle orl vice.vrs,

prabeIIincipl the deinitiazton* potes couldn vccriableforpeadring, or aFteurte aica2. aaule rmte

Tlintaircaftio systes) rference snensrta naiatosse required, bihutay outhe thefinitionorrtiction on the mcavaile-
todifreferencequntion, eath case canpe aveloiy a pmultitudofdiffnereantgole soluthepyions deiendint pon the

pltfr toterqiegorpial referenced orir hsn lii h u isnussion, itais thereor nfecsaryzation limsitdthed choice reuie
U, (Ireferenc tatnsohe cplatform e. r alignmen oht wile onisconieswt the larrie depedckaro the referenceseircoeistehps

while cheatapulting orientalionhto anorhpintin the em reerneqouidred isa the yoppler roda vheploctyfenor. Aon noth
whdiscusio fofr aho thewadrset sytemnsuc ia given einsthe floingta shepltions. 4,,t mutarewthtecmue
wanfore eazminingl thesie tehrsea. sncesr odsus h uniaie enn fainmn.Snei

Iny picasepte ih nitialization process, after rctcal before, ofutine, o')reuti afe tearresdalt deviataion fromth

critr muto beac rofi thest whatsis atueallyroft isntmtinreltathee acuayof thearth subsetuet naigtomInen.l oru ixteria
(to posibe aicato suatittiely defirnce algnento impleqicitly bytou spciyin futher defniio rc oftesubsequent onavigation l
abieverthiof isfeencuseynetsors, eand cas reunant spvecifuliction of bofeet tosiblesolutioandenavigaiong acuracy ihe

Sreerede, sncorpsiit dhosen no lmt prsn rbebcuethe alu dsusin tignmhereoent cessary i o deivedfro the navigction
accurance sendsthere exists a high correletionhbetwen the two.ia doua the sysefeec iscnsidre thosben aignted when'
inetia haviettgqatitasytiem SN) Alignmeatno duictatedaby lthe g user, a ypoiinan eoitntalzto

ensufing naal n oeve rgsigGN bdauae ofd temploysship ofeadndling thaspner multitud tof airraftonm the figuht deckment

Ithise geneapltng Frecon-fizedtht alignment thie reernte cosde ed of the arrer il produce thelmosity accurAt

dicsino ah fteetunqesi ie ntefolwn.etos
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aevere restrictions are pieced on the acceptable eslutions to the alignment procedure and technique, Thus, In
the design of an alignment teuhniquo while the aircraft Is on the carrier deck, full accouat must be taken of -
the operational, environmental, And control constraints imposed, ,

Before the strict imposition of the operational constraints two techniques had been proposed that, for historical %
reasons, ore worth mentioning. The first technique, called trunsfer alignrentO employs a portable master Inertial
system physically and electrically mated with the aircraft systnni. The close proximity of the two platformis and
the angular precision of the mating permit accurate gimbal matching for azimuth alignment and acceleration matching -
for level alignment. The second technique, salled insortion',, employs a portable aircraft inertial navigator
(PINS) that is prealigned at a shipboard console. By including a battery and sufficient computational capabilityin the portable unit. it can be removed from the alignment console, carried to.s. waiting aircraft, and Inserted, .•,.•, ,, .. ,,.

ready for operation, . 6•.- " -

As will be seen, the operational constraints imposed rule out theec techniques an ponaible solutions and impli-
citly require that the alignment take place with the inertial navigator in the aircraft, The combination of the ,
three aforementioned construinte determines the form and size of the error controller employed in the alignment " "
technique. A discussion u•f each nf thosle conatratnta and their ramifications follows.".'...".-".• -.

3.1OpeatinalConstralints

To avoid interference with any of the normal deck-handling procedures such as fueling, anming, and taxiing, the h.

slignmtot is to be initiated and completed without any manual intervention or restriction on the location and ,.,-...o.#
movement of aircraft. This succinctly summarizes the operational conatrainta. Two immediately obvious ramifications '° . -',".
are that no power cable and no data cable nan be used for the alignment technique.. In turn, the lack of the power ., ....... j

cable requires that the Alignment be achieved during the epoch of engine turn-an to catapulting. Also, solutions
Involving• special alignment stations on-the carrier dock to afford sufficient time with engines on for the alignmente

Without an additional specification the time allotted for alignment is ambiguous, Therefore. after considoration
of the normal movements of an aircraft subsequent to engine turn-on, an alignment time is specified (by the user) %, *,- "
excluding any taxiing periods, -.

The imposition of a specific alignment time results in an instrument performance problem"C. &oth the aocelero- .,, ..- .
meters and gyros will function within specification if they are operated within a relatively narrow range about a
design, tbmaporture, This normal operating temperature is, for present day Inatruments, considerably above expectedambient temperatures, Thus, when the platform is initially turned an (energizing the heaters), the Instruments will ,1%,..:•" • -•'•. '",,,

.0 cycle through a thermal transient until equilibrium is achieved, During this thermal transient, the instruments *. . ,
will exhibit transient drift and bias charactertics that ar ge enough and last long enough to degrade the
alignment process. ,

"Additionally other portions of the system will exhibit undesirable characteristics during this thermal transient , i..., -h phase. The cluster structure may exhibit excessive warpage due to thermal gradients and this may result in inmtru-
sent non-orthosonalities and consequently degrade alignment. Also the multitude of electronic packages required
to perform such functions as pulse shaping and scaling for gyro torquing, acoelerrou.ter proof mass restoration, . ' -., .,.
and formation of the velocity output pulses, may exhibit abnormal behavior during the thermal transient. ,

The solution to these problems requires a careful mechanical and thermal design of the various instruments,
structures and electronic packages involved so that the resulting undesirable thermal transient behavior, if not ...
reduced to a negligible value, is repeatablo and predictable as a function of suitably measured temperatures, , . - . -,

o neoincethe aircraft system requires the SING data to Accomplish alignment and no data cable is permitted, it is
necestary to resort to a telmetering system to obtain the required information. This leads to a problem relating
to the existence of an electromagnetic radiator on the aircraft carrier, It is obvious that at times it would be
deemed necessary to maintain the carrier electromasetically silent. If these times of silence coincide with the - .
times that alignment is to be performed, an Incompatibility arises. The solution to this problem is one of more A ll.
specifically defining what is meant by electromagnetic silence, Electrosagnetic silence is desirable to avoid the .' ",, .
possibility of the carrier revealing its presence to an enemy, Certainly, if the radiation pattern and power are ' "
so designed that. fcr all practical purposes, it is detectable only on the carrier deck, use of an electromagnet ic
radiator during a period of silence will not endanger the carrier. Thus appropriate achievable design constraints
on the telemetering system will Increase its utility to cover all timee.

Additional ramifications do result because of Lhe operational constraints imposed. Howsever, they result because
of the coupling of the operational, environmental and control constraints and will therefore be discussed as they • *" .. .•
arise,

5.2 Snvircoementai Constraints , ,

Carrier deck alignment is to be performed while the carrier is pitching. rolling, yawing, heaving, surging, and
swaying. In addition to these motions the carrier may be making heading changes to perform evasive maneuvers or to
head into the wind in anticipation of launchins or receiving asioraft. Additionally the aircraft itself will be
buffeted by winds over the flight deck, thus causing motion that is not sensed by SINS. The deqign of the alignment
technique requires that each of these environmental conditions be taken into account.

e. . -
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The principal effect of these motions Is rolated to the reference data used for the alignment process. The
reference data supplied by the SINS to the aircraft system via the data link consist in part of position and
velocity, as muaourr~f by the SINS Itself, Since the aircraft may be situated anywhere on the flight dock, the 'A'S e*
SINS reference data mUS' be compensated for the relative motion bWore they can be adequately used as alignment
reference data. The data required to perform this compensation consist of the vector distance between the SINS

*.and the aircraft plus the carrier'q pitch, roll and heading, and their rates. (See Figure .1. ) Since the SINS
Inherently provides these angles and angulat rates it Is reasonable to rvquire that thsmn be included in the dWte
telemetered to the aircraft, On the other hand tite distance between the SINS and the aircraft will vary from •.~.*

aircraft to aircraft and even change for a given aircraft if, during alignment, it taxies to a new deck position.%
Prohibition of the@ manual insertion of lever arm components, a restriction Imposed by the operational constraints, .O.*L *.A..

means that the alignment technique must include a method for the estimation of the lever arm comntononts, ,.,~ .

5.3 Control Conatraintas'

The control constraints are concerned with the physical limitations of the instrumonts Involved and the limita
tions imposed by the present state of developnment of the control the'ory to be need to perform the aligelmnen. '\. .

The primary physical limitation of the Instruments that affects the alignment probleom in the maximurm torqucing
rate that can be applied to the gyros, In reality at dual phenomenon is of concern, First there exists an absolute f~~q~ x~

-maximum torquing rate that, if exceeded, will essentially destroy the gyro torquing coils. Second, as this maximum '

%is approached from the lower side, the accuracy with which the desired angular rate is achieved decreases, i.e., %
torquing nontlinearities become significant.

.1 In the application of modern control theory to the carrier deck alignment p~roblem the limitation that signifi-
11cantly affecta the solution Is the Imposition of linearity, The reason for this will become apparent in the follow-
*4mIg discussion. ~*

The gyro torquing limitation coupled with the htands-off operational requirement and the fact that the instiumentP
cluster'sa azimuth is initially completely unknown leads to a nonlinear estimation problem, To understand hoe this W- -*~ .**

results it is necessary to review the technique of 6&oarsn alignment of the instrument cluster,..,

In order to apply linear control processes to align the platform, it is necessary to bring the platform close to
the desired orientation, so that linearization of the angular deviatiuns can he assumed, Thsoi-etically linearity %.., % .,

can be assumed for angular deviations up to 10 degeres. From a practical point of view it is desirable to achieve .

a considerably smaller deviation, sines then the required angular rates to align have sore reasonable magnitudes.
-Por aircraft systems the platform can be approxmiately leveled by nulling cut the pitch and roll gimbal readouts,
This process is carried out while the gyros are being brought up to speed by simply torquing the gimbals with their e

own syncbro readout signals, This technique is sufficiently accurate to justify linverizAtion of the control
problem, since it results in a deviation of approximately 1 degree from level for aircraft oil the ground and 2 to*:,..*etS
3 degrees for aircraft on the deck of a carrier, The larger level coarse alignment errors on the earrier result
from the pitching and rolling of the ship. .*. *I d '

The asimuth of the platform is usually slewed to approximately north (and for wander azimuth mechanizations the L ''~

computer wander angle is initialized at zero) by torquing the azimeuth gimbal synebro with the difference between the
output of the azimuth gimbal synobro and a synohro signal obtained from a magnetic compass indicating the magnetic ,,,,,

oorth heading of the aircraft, Additionally the magnetic heading can be compensated for magnetic variation to make ', *. .

the coarse azimuth alignment more aecurate.,

After the coarse alignment phase has been completed and the gyros are brought up to speed, the platform is placed
under the control of the gyros. At this time the fine alignment phase can begin, or alternatively additional coarse
aligneent in level can be achieved by simply torquing the gyros with the output of the accelerometers. The addi-
tinnal coarse level alignment reduces the design proble, for the fine alignmsent phase, since it reduces the dynamic

-- ~~range over which it must operate,. *.*

The application of this technique for shipboard coarse alignmunt unfortunately fails, This is because the0
'4 ~magnetic heading device does not function with sufficient accuracy while in the vicinity of the massive steel

dock end superstructure of the aircraft carrier. Thus, although the platform can be brought to at reasonably emaill*~
comra@ level alignment, no direct information is available to slew its asimuth to an approximate geograph~c
referenced direction. If manual insertion of data were permitted the problem could be easily solved by visually
estiiastieg (to within 10 degreest) the angle between the* ship'sa heading and the aircraft's heading (the spotting,,
angle nee Figuire 3), This angle, along with the ship's heading from SINS. would suffice for coarse amimuth

* ~~alignment by either slaving the azimuth gimbal to FL pre-sasigned direction (such as north) cr by Initializing the *,

computer wander azimuth angle, %
'4 ~

It should be pointed out that if the mechanisation is sucab that the platform is required to hays a specific vo. ,

asinuth direction (as, for instance, in the north-pointins mechanization) then the platfor, must be close to that
desired azimuth before the gyros have assumed control. The reason for this Is that, because of the restriction , *.

on mtaximus gyro torqmjing, an excessive awunut of time would be conseumed if It were required to torque tile platform
through a large angle.

The solution to this problem Is achieved by choosing on# of the wander sasmutli meohanisations and employing,
after the gyros have assumed control, a nonlinear estimation process to esttimate thes platform'sA wander angle and
initialize the computer.



For the ground alignment case (soer referenco velooity) the wander aniile of the plattform lIn vmtinhnted from the
residual velocity error after loveling line achieved steady state?. A similar procedure van he umod for carrier
dock alsignment, but. it must be dynamicoal, mince the aircraft will bo accelerating bencause of the carrillrlI motionv .

4This section haa oxaoilned carrier duck aligniment, dtiptaling the multitude of ramificintionm of the op*'raticnnil, .,~

environmontal, and control constraintm limposed. In surminry, carrier deock alignment must take place to a speccified *- .' *

accuracy and within a specified time wuider the following conuditions: * ' "'

(I) No power cable.

(it) No data cable,

(tii) No manual insertion of spotting angle.

(iv) 4o mannual insertion of lover arm compononts.

(YI) No loitering for the expriusm purpose of alignment.

(vi) Nc restriction on l~ootion.

(vil) Taxiing permitted.

In Section 8 the filtering techniquies employed tin the ,uolutiouu J thin prublointire diactimsod,

*6. CATAPULT ALIIINMfl

The most timecnamn phs fteiitialization process is the &Mttuuth alignment of the platform, principally ~
because of the rate at which the azimuth information proposatoa into measurabjle observables. In an unaccelerated
environment the acinuth miaalignment propagates Into the level channel at a rate proportional to either earth rate .* .

or spatial rate. Thia represents a relatively weak coupling; and if the majesurable observai'iee are contaminated a. .o.n
with extraneous information, consideprable time must be spent extracting the misalignment, In an accelerated environ-
sent, the asimuth misalignment propagat"n into the level channel propo~rtional to the level aocceleration which, if .

large enough, provides a mu'.h stronger ou pling and reduces the azimuth alignment time. This line of reasoning
leada to the concept of pet .ormilie the aztimuth alignment portion of tile initialization process while the aircraft ,,.

is being catapulted from the carrier, *,,

.'0
4sveral different approaches have been devised to perform catapult alignment, one approach, developed by NADO?

Jahnsviile, compaires the velocity Increment direction as comiputed by the aircraft system with the catapult direction 6  :*~*
as obtained from the S~INN-comiputed Ahipl a heading plus the angle between the ship' a heading line and the catapult,
-A second spprinacheetplunr 'two transponders siouiitid on Lthe uarrier and compares the aircraft computed and tranmponder-

* ae~mssurod relative position to estimate the azimuth mimialtigtmenet. Various mudificmntione and weernliitaticnwt of these
two techniques are obviously possible,

%IBfore catapulting the aircraft both techniques require the same'aauount of preparation, i.e. alignment up to and
including fine leveling, If possible It is desirable to adhere to all the previous operational connstraints, However, r.
at its present state of dlevelopment, the velocity incremant approach requires o~ne manually inwerted piece of date:
the catapult from which the aircraft Is to be launched, This resuits because the technique requires the angle
between the ship' a heading lime siuJ the catapult. Since there are four catapult&, a simple manual switch selection ýJgi

* ~is necessary so that the computer can noelct thne occrroct pre-wtored angie.' Other than this exncption the twohnicues
are encumbered with the same tasks am carrier deck alignment, 1.5, lever arm estimation, automatic coarse azimuth
alignment, relative velocity compoents ion, permiesion of airciraft movement, anid fine level alignment. It should be *.

pointed cut that, sinceo the azimuthi alignmenit Is delayed until catapnult ing occurs, the thermal transient problem is
,., ' .somewhat relieved In that the platform will have more timt, to reach thermal equilibrium.

The transptonder technique, albeit requiring additional equipment both on the aircraft and on the aircraft carrier,
does not require any manuial Intervention. In fact the problem of lever arm estimation is reduced to simply vocep-
tins the aircraft' a location from the transpoinder data received, thus relieving the alignasnut technique of the

%*, burden of impiliit estimation tif Lthe lever arm.,

44*1~~~ With respeot to the velocity increment appro~ach, there are several signiflicnt. @flouts that take place during * .*

catapulting, ehich mumut be considered in the design of the techniquo sod in assessing the accuracy of the process, .

The sore significant of these will iicw be discussed.

While being catapultad the aircraft Is forcibly constrained to the dick and tc follow the catapult track. ., *, ,

However, because the track silt not precisely conetrain the lateral motion of the aircraft, an error In the reference
direction arises. This Is because the precise of tho technique In thatithe aircraft (actually its platform) moves
Malon a precisely defined line reslative to the ship. Inherently the technique has no method for compensating or
measuring this motion. Thu problem is additionally complicated by the fact that the lateral motion of the wheel in
the track can possibly cause an amplifiedh lateral wutlon of the platform hependlig upon Its location in the aircraft.
Without a technique for cotipenwatins or measuring this motion it represents an Irremovable error,.

Superimposed on the lateral track motion is the motion of the aircraft's inertial system due to the ship's
pitching, rolling and yawing (during the launching of aircraft the heading of the ship Is wilfully untintainedt

4~~, * t( Needl P10 flNvilopsinnt Ceniter, ,Johnsviiie, Ihnrsninwsr, Pennsylvania,~
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*constanit). Since the ii *rtiol system mieasures tarth-referonced velocities, it will be son~tive to thL velocities

lastlly it Mhould be recognized that the accuracy of the shill' a heading and the surveyed angie (if tho cataplult .L .

r .,vr prominently and direttly into the Accuracy of the azimuth aligniment schigivablo. Senility of the Phip a
,ivading data is elso of concern. Any ln&a induced because ot the finite datea rate of tio telemct.erlog myston

* sill Inuce. errors piropiortional to the angular rate. Senility can be compensatedl for by increasing the data rate
* or introducing prediction tuchiniuiuu before using the data.

The t rafaporiduir tuichilurmIe similaurly hum tuypui'lu efforts Loi lip considorud. 5inci, It Ia oiltzIn ic inc lmrat ionl
at thu. posit ion level to oatimute the' azimuth ml.4uigiinmont. it is not plagued thy t-he I rrinovniui cata puilt oirur...........*
nor the nec.essiity tor ruuirut Ivv velocity correctloi. Howeveor. mince the Vonit ion ani mveunmor by thy, transmpoinder............
is rilat ive to the mh ip m body coourdiinates, it Is neevamuory to resoulve thv mimamor,! pos it ion into tiau liucu I lve I
coordinate systemn. This oif uourmii. rvujuuuirlyu the pittch. umiI nd hondinlg vuf thll nhip.

Because of the relatively short baen line nva~lnlle for the tranaponding system, smail-distance errors call lead *

to relatively large azimuth errors, Thus it Is important to obitain an accurate survey of thin traiieiiuiudiri relative
to the 80.9. Mouthier signi ficant rnoaiible moerce of error airisus iuecuuumi tim tranisucoiier' a measured luouitior in not
precisely the positioiu(of the plantform, liow-ýver. this displacement error, to a large extent, can be coempenseteui
for by using the inertial system data. cj

The single most significant drawboik of the transponder technique Is the need to add additional equipment to the
already overcrowded aircraft avionic oystem and to require an additional radiator to the aircraft carrier. nesign

*constraints, similatr to those imposed on th eeheein ytem, arerequird tominansaey n ecrty: I.

* ~~~~~under electromiagnetic sileros. tetlueeig,~.,ae... t unan .,adwort

7. IN-MLIOT AbIGNitENT-

Appreciat ing the nuomerous difficulties associated with carrier deck and catapult alignment it in worthwhile to . - .

* ~~~consider that alignment be delayed until aftetr the Aircraft has left the carrier, Ibis delay would eliminate the .' *.-

problem of interference with thn deck handling procedures and significantly redune the problem assnciated with 1;hs ., ,

platform thermal transienta, Hlowever it Is encumbered with problems not heretofore considered, The disimusslon .***

will be limited to performing in-flight Alignment using a Doppler radar Fis the reference system, The details .

'Iof the synergistic Doppler- inertial system have been adequately discussed in Chapter i1, go that only problems %
peculiar to the earrier aircraft application will be considered here.. -

To establish the state of the navigation function and the inertial platform at the time in-flight Alignment
begins, it is necessary to discase the sequence of events relative to the navigation process from engine turn-on

until the start of alignment. It is Apparent that this epoch should be kept as small As possible since rslatively .' .--
poor, if Any, navigation would be available and would Introduce position errors tha' are irreumiovable without

additionally complicating the navigation function by requiring position updating,

At the time in-fl~ight alignment begins two conditions must be- met. Pinst, since it in used as the reference
system during alignment, the Doppler must be funintioning properly. This is specifically pointed out becauee a . ~ ~ ' 9
commun, although not necessary, chatracteristic of a Doppler radar is that it will not track the aircraft velocity, . -'.*

until it has exceeded some specified minimum alttude, Thus, until the aircraft has attained this altitude and the
Doppler begins to track the velocity, alignment cannot begin. Second, the platform most be coarsely aligned so that %
the Doppler data can he transformed, at least approximiately, into the navigation coordinate system and also to
permit linearization of the alignment process, .*

One technique for Achieving these two conditions is to require the aircraft, after leaving the carrier and climbing _____

to a safe altitude, to fly straight and level. This flight condition is maintained long enough to achileve coars
Platform alignment and set the platform under gyro control. Coarse alignment is performed by nulling the pitch s J
and roll gimbals and slaving the azimuth gimbal tm) magnetic north. This procedure has several disadvnatages. it
increases the time before the begfinning of alignment and thus the time during which relatively poor navigation isn..*
performesd. Also it places a constraint on the maneuvers that the aircraft can perform after takeoff from the ,

carrier. lastly for the pilot to fly straight anid level he must have some reference of the vertical, This could .

be the hortigon, if visibility permits, or some ancillary device.

A second technique would be to perform a coarse alignment on the carrier deck and, After the gyros have Assumed r.** ot.
control of the platform, to maintain the Coarse alignment by pendulous erection Find magnetic heading slaving. This

* procedure avoids the necessity of raetrictina the aircraft's maneuvers and permits Alignment to begin as soon as
the Doppler begins tracking the velocity. Careful oionsidoration must be given to the nechaniuzation of this
technique, since the pendulously emooted platform will tilt exorbitantly during lerge horizontal accelerations-
(catapulting and turning) and the magnietic, heading device, as mentioned previocisly, will have large errors while
on the carrier dock.

giceseive platform tilting can be avoided by inhibiting erection when the level accelerometer outnute exceed
scm specified value. The specifin value would be Ascertained by an analysis of the error dynamics. The coarse

%4%
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azimuth alignment. problem is handled as follows. Slince an erroneous magnetic north will be indicated on the
dock of the carrnal, .zoeplet~ioin of coarse aziouth alignment must wait until the aircraft hra left the sh~ip.
However, at this time large azimuth changi,s of the pIatfire cannot take place within a reasonable amiount of timer
because of tie limit on gyru torquiing. It Is therefore necessary to emjploy a wander azimuth mechanization andh
pjerform coarse azimuth alignimunt by proper adjum'ment. of the computtr wonder angle and not tne platform. Thug.
while on the carrier duck, the platform io at first coawcely aligned to the aircraft; heamding; and, after the gyro0 ..

'rtuueimm control. thq computed wander angle 14 slaved to the differenlce between the platform heading and
-,iLcated magnetic heading (a". Figure 4). Since large alterations in the computed wander angle can easily be

sade, no particular difficulty ariuse than the indicated magnetic heading changes significantly as the aircraft
leaves the aircraft carrier. ~

The foregoilng 'li-.cuaption istabliahee the state of the navigation function and tht inortial platform at thin time
in-flight alignment begiins. The problems associated with the over-water alignment proc-.1 have been adequately *. %
diacussed in Chapter 11 and will be briefly reiterated here:

a' ~~(1) Distortion of Doppler sgpcctrue return over water. '-

(ii) tNos5 of Doppler return over very smooth water Burface.

(III) Doppler radar measures velocity relative to water current rather than earth. ý W

*(iv) Alignment process eq'ivalent in form to ground alignment and therefore requires a relatively long time. d~.

(y) During al,4dwmnt, t. ývip .Canc is degraded relative to a pre-aligned system.

loeanie of the unpredictability of the sea conditions and the length of time required for in-flight alignment.
% there is a prefi -.va- to perform the alignment on the carrier deck,

S. VARCYRA DECK ALIGNMENT FILTSK

As po .ntod out tn Sectiou 5, thý application of Ka1*1man filter to the carrier deck aligonment problem must be .~ '
preceded by an estimation of the wander azimuth angle. Because of complete lack of knowledge of the azimuth .

orientation of the platform, the initial wander azimuth angle Is uniformly distributed between -vr and 1? 7 *.

An extensiou o: the error model presented In Section 2 to Include the unknown wander angle results in a complex .. ~
nonlinear model involving sines and casines of the wander angle. Thus a direct application of a Ktalman filter Is
not possible.

Roas theKama filter requirca a linear error model. it is necessary to estimate the large-single azimuth
offsot by some other mears. since the linear range of the filter (sin 6 ' 0) extends to 100, a gross estimate canor
be obtained using a minimum variance estimator1 I comprising a three-stats model (azimuth offset, two platform tilts) \ . .,' .
which relates commensurate aircraft and SINS velocities. The scheme is invoked after pendulous leveling has
occurred and the gyros have taken control of the platform. For convenience the vortical platform axis in torqued

sotht h careazimuth offset remains cosat neteetmt faiuhofe sobtained, h alignment
procesa is linear. dud the standard form of Kalman filter is used to perform the fine alignment.

One cf the sajor considerations in the app~lication of a Kalman filter is the number of states to be modeled. ~-
An the number of states is increased the performance of the system will improve, However, a point of diminishing NKX>..kp .

* ~~~~returna In soon reached, since the inclusion of relatively insignificant error processes Improve the performance .\,\ * -

slightly but increase the computer requirements enormously. The choice of the number of states for the application .?cA>'\-:,

umder consideration is actually based an a dual use of the filter. The tilter is required not only to perform the :f
carrier deck alignment but also to provide the guboptimal error control for Doppler-inertial navigation. The
esie of the filter is therefore dictated by the mode requiring the most number of states.

Consideration of the significant error processes leads to a choice of 13 states. For the carrier deck alignment
process they are e C~ *

Position errors 2
* ~~~Velocity errors 2 4*,.~ 4

Platfdor tilts 2
Azimuth error I
Level gyro drifts 2

* I Iorisental lever arms 2
1,eference velocity error 2 ,* .,

Tae miodel for the first seven errors is obtained directly from Figure 2. The level gyro drifts and reference .,

velncity cry era are so-doled as first-order corre latser noise processes. Only the horizontal lever arm components
are modeled, since during alignment the aircraft Is always on the carrier deck and the vertical lover arm (relative
to the body axem) is known. While the aircraft Im stationary on the flight deck the body-axis lever arm components .____

* are time-invariant, so that the model chosen to represent the. is simply a constant. This type of molel is the
same sit firut-oidor correlated noise process with'infinits correlation time.
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Although level giro bias Is included in th o carrier align filter, practically no gyro biasing will occur. . •,u" -e'
Because of the high quality of the gyros required and the short time of alignment, the oilier errors of the system .

will dominate and not permit biasing to occur. However they are included for two reasons, First. they are required
for Doppler-inertial navigation. Second, they can be used for periodic gyro biasing to remove the lona-term
(order of months) drifts. This per 'odic gyro blaming would be employed at scheduled mainitenance time. tinder theme
conditions sufficient time is available to reduce the erro,'s of the system to such an extent that the biasing will .e.. .. , .

Periods of taxiing are handled as follows: while the aircraft Is atationary on the carrier deck its wheel brakes . "
are on. If the aircraft taxis the wheel brakes are released, Thus a simple switch indicating the state of the
brakes provides the computer with a discrete, Using this discrete the computer will temporarily suispend alignmunt S . .- .
whenever the brakes are released and the system reverts to free-inertial navigation. During thin time the lever
srm estimates are altered by integrating the difference between the aircraft computed velocity and the SINS
telemetered velocity compensated for" lever arm effects, This process will be in error because complete altinment ,.'

bas not occurred. Therefore during the taxiing the filter covarlance matrix Is propagated to reflect the fact that
the errors in the lever arm estlmates are changing. once the brake is reapplied the system reverts to the alignment-process.

The observation process consists of comparing the aircraft oomputed velocity with the SINSBtelemeterd velocity "

eoepenslted for lever arm effects. The errors associated with this process are the errors in aireraft-computed .' -,-*1

velocity and azimuth, the errors in the SINS velocity, the errors in the lever anr estimates, and the errors in the % ".' -,..,+.+ 8~~~~INS pitch. roll, heading and their rates. Since the filter statis do not model the errors In1 the SINS pitch, roll, .. % .. • . .+heading, and their rates. these errors are approximated as a white noise in the observation process..• .

The task of filter synthesis and performance estimation requires an extensive digital computer simulation. Th
basic computational modules of the simulation program consist of ' -

(I) the filter, V;

(ii) the real-world system error model.

(iii) dynamics,

The filter modulo is a replies of the filter to be programmed on the aircraft' a digital computer. As such it will C C - C •
be manipulated to obtain a compromised suboptimal performance. The basic objective is to obtain adequate control I-. -A
of ';he real world syltelt error model and at the same time minimize the computational complexity, The real-world -N-" L
sysaim error model module consists of the error models of all the various subsystems involved in the alignment
prisems, i.e. Jthe 'aircroft inertial system, the 'BIN, the toelemtering system, eta. If Monti Carlo tochniqueo are * ". .,
employed it is not necessary that these error models be linear, The dynamics module simulates all the various .,-\ ..

9motions of the ship and the aircraft. For the carrier deck alignment problem it is important to include the
dynam.ic of the ship's acourse and its pitching, rolling, and yawing". Additionally it is required to simulate the
aircraft's motion on the carrier deck, while it is catapulting and after catapulting,

The simulation process for filter synthesis and parformance eatiation consists of controlling the real-world . .
system error model with the gains generated by the filter under'test for a particular set of dynamics. The
literature contains many examples of such studies for problems similar to the one under consideration here1""'4,

9. CONCLUSION 
"" '""""

This chapter has considered the application of Kalman filtering to the problem of alignment of carrier aircraft " " .. "

nsystems. Considerable detail has been presented to establish the constraints under which the -. -

fleistbedesigned..

- ; In view of its usage in the solution of the problem, the local-leval wander azimuth uehanizstion and error model ,
were presented. Per carrier deok.alLgnment the interplay between the operational, environmental, and control
constraints were used to define the conditions under which the filter must perform.

Catapult and In-flight alignment were examined am alternative or supplementary techniques. Problems similar to , '- '
those eancountered In carrier deck alignment were fotuid, and the have or alternative solutions were discussed.

Finally a brief discussion of the filter for carrier deck alignment was given.

S-:-....:..:.'...:,.
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Definition of ariles for rligure I "., ""* * "

z, 7. a Navigation oy.te" coordinate axes

A1 A7 Accelerometer outputs

V1 , V3. Vs Velooity components relative to Earth . ,

P1 . P1. Ps Platform angular rate components relative to Earth %

flu. •, •• Earth rate components

b Geodetic altitude V-

a M ean equatorial radius of the Earth '•N

P lattening of the Earth %~~'~

* ~Geodetic latitude

Longitude

Asi•uth wander angle

Oi Direction cosines deflaing latitude, longitude %
and Ulsuth wander anale, Spuicfioally

iIa * a Csrcox h - $in a odin sin XS0W •t -4 0 01 Cos 00- al s in s in X.. . .. .. .

q" a sijnOa os• - ,ein...-.2 coct . ,s'

Ova sinno
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leader Angle Ratt and Vertical Platform Angular *

Rate for Local.Level Nochanizationn

North-.pointing (CL*0) cyt+0 pI I

(no polar capability) 0 1

Pree-azinuth 4~C1

Foucault 'I-fcy,

Aaimuth Unipolar _________

(polar Upper sign
(Polar Northerna

capability) Hemisphere crp + CvP
z.,w alma (O'ta 1) P J4Is* outhern :::%

* kileitims of Variables for Isertial Mrrr Model

b/a 1(1approximation to the

IaEl-h/a - f (I 3 C;, - C1.1)) radius of curvature

A.' vertical acceleration minus gravity

g gravity *

77 V accelerometer errors -** *4.

w .+.a inertial sanular rate %MM

..............



UA,

I . '. k.

"0 A ft '

'.4

*ý JA tp gu

I I 0.,

UA VA up "-

uU UP UP`'~

II

+ UI
w~' A\Qt*~

AkIK*~ %

OL4. 

A A



/ A, A' 

.4 4.

Ap *.-A.*, ,& .. &G

MECHANIZAbyO bp1  .

A~~~~~ `ZtHP0~lIC\..

rR11.AZLMUTY P.P, bell h~

MECHANIZATIO

IN CA P OB L ARY CA A IA V Tal #hp pK lo *to *

.4 NO~~11CCAMUTHSP cT I he, 01j he CA 7  
.~*

AZMTH4, *y '-.4 .k+,

*A A I U Y p* Q Paul S O Ia e y AC, C a a y 1NO M A - t pY s,- 45Y CYy YHMMIP1111i #4C
* P~~~~~~~L40W CnRm MON ro lc dsisfrlcllee reieta nvgto ytm

y"A

(p~~ +31ah , m~?
a % &GY .e. a 'Y I'

+~a. Al. 1.V.r

"k 4

.j Ir VP bk



m 1 1~ 1 421

4~.

41N D.IRITO ON POSIO OF

S OMAULINSERINO EE R

*NO MANSALICIN ETON POSITOTTN O NGF
A tIRCRAFT MAN FLGH MOECKFERAIGM

5. DES TAE OPRATPOWAR CHABLETRST

NOICTE MAGNUAICNOERTIO rSOTHONL

(MAY DEVIATE CONSIDERABLY ?~."

MASSIVE STEEL DECK OFr CARRIER)~
aAIRCRAFT HEADING e.

PLATFraiM V AxIS *.a'*

(AIRCRAFrT HEADING AT
TIME OT AZIMUTH GIMBAL CAGE) 'U

O OMPUTER WANDER ANGLE 'a

"' -PLATFORM HEADING (AZIMUTH GIMBAL. SYNCHRO RE~ADOUT)

a-I." ~41r l .. - ! *INDICATED MAGNETIC NORTH .

'a..' . ~ *a

Fig 4 W ant angl &lyn to*~*', magst. a*o.*a



%N ~ '*

'%-%

CHAPTER 16 ~.

SECTION It NAVIOATION AT SEA USING THE INVARIANTS .

FORM OI'PUKLMAN FILTERING

*Littm intems Inc..* Woodland Hills, California, VIA I. *.

16023 Ventura Blod
Union, California, UNA

"Met*"

PRECEDINGPAGE BLANI%
5% %



NOTATION 
*

X hstimates of state variables

@tat@ variable matrix 
-. '

P ~system dynamics matrix

0 system ioise matrix ,v~

Internal system noise

H ~~~observation matrix v*...~~.2Ir
m observation

Q.coeiewent of sytaeam novaisnee ti

Aij ~ tanposto-oendentte cvariable matrix eeet
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- ,platform i-axis component of earth rats

n platform v-axil compouent of earth rate -

piatfors vertial-ais component of earth rats (a - n,)
i'J, • ~ ~~~~~platform-t ilt vector ' . '." .' "."'.''

-1 tilt about platform x-axis

tilt about platform y-axis . *j. ,

5 Laplace operator

, X-ayro drift rate '•t.-'b" ,

CF. I Y-gyro drift rate •,, .. , , ?

* ~s' •:r error in x and v components of earth rats e,..- *.,..,, ,'

IR71 drift rate of azimuth wander angle

*:• • ' • platform spatial rats voctor , , . .
Ity:

a-aUls spatial ratseP ~ ~ -

al-axii spatial rate

61 , ,-sale spatial rats
P craft rate vector (VT/R) L . , ,

i-mis craft rate (-VVY/R) .

p1  v-Mai craft rate (+ V,.o .,",t

P, P.J correlation coefficient

Re mes earth radium

Vz, ly, platform a-sal velocity error .

AV 8y p platform -uais velocity error

CII acculerometer noise conutmt

a, g Iravity vectors ' "',.

Al, A, x- and y-ails acceleration components

DVIE, OV incremental a- and v-aiim platform velocities , .. **J -",

8sao, so a- and y-ails Voriolis errors

MD gyro-nolae-modei constant= ,...ta..,,, o~a.
DO unetlye reciprocal of gyro correlation time .. ,/ .* ..

.. ..4,,.., ., ..

CIA Dopplsr noise model constant

a negative reciprocal of Doppler noise model correlation time

white nolse P .,.

wtite-nocle components on state variables ... -'.* .

9, 9' observations .

b ~~~altitude .•.'.• """"%

,, ++Doppler latral-vlocit. error

a. . \a,. . a .. " . . a,,,.

low . . . , ! ,•+ ,o .

i '6 %+m i -q •+N

• • ' k'% '% •%uLA



I*D Doppler range-velocity error * ~ i

Vol V7  ground speed

total Doppler-drift-Manle error

platform heading (craft to X platform sale) %.

Iva. Ivy velocity difference of Intrtia1-Dboppier unitsZ

Iva error iW ground liseed (including conversiou) r

WDovole? scale facutr %

IV ~ fluctuation error

IV1? OR x-xi Mpola error
4;

AY 01  Y-Axis Doppler error ____'

As vertical acceleration . 7

Al Cij imoo~lartoett ban- orthiogonailIt too (I a I, S)

vs. V., accelerometer bias error* .~": 4
x-onoolerameter scale factor

WAS, y-anceiernmter scale factor

0reciprocal of saoclgrjmeter correlation time

M x-gjro torquing signl from filter

M v~Y-rc torquing signal from filter%

reciprocal at gyro correlation, time

amplitude of gire noise drift 6

amplitude of accelerometer noise 5

a-Lyro scaie-faotor error %
1-gyro saale-otmotr error ,tmr

eta a~~-Vro scale-eactor error ý-7

RAI .. X arto torquing rates

k, k, pro mon-ortbosonaiitiem

01 acceloraticum-eenaitive drift coefficients for pwrom

acoceloration-squalred drift coefficients for pros %~ %

p~rn-drift correlation time 0.>

* Inegraion lgoithmconsant ~%
71 Integration algorithm constant
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%. Inertalmeasremen t nt emaINUg exibtimelronr caterhistics whic: grow wpith time Aii mch and aization problzms

4. cntheinetia sfstime is lt. The p litt ensr and atthied byi seprvtes tRe tina f[tteoo i h aid sensor. ObsrY,'SU adds by the
Datale Are conaminated btyii theiso durta, drifts mines. th ope esrmnsae eaiet h ae as

shinertial easuremntiunidto diret) y e pphibit l e tor harashipiotrd hiherowa unith dimped Ay mhan imto uliN log or Doppler~'
adsoonor to daterth air/orn .'or hibodd' the largest- it error chara teristic or i t dehied y n a Doppler radavaio to. the
nohchurrents goodt logThehrwrm stbiasty cardanteisutico moeasremnt Aibonie wnhipbohas rd sonart-te lrm taireyth
reatveraly smute acumpraey io the se nismprvdoe htatanbe o ihrsesrid ne y

Thes isection systemins athref summary sensor mand fith olerin sheorye whch the og ai se ansormbsrationof variabyltes,
Isopxlernded contaminvrated b or the sea curntdifts, ince A othe oppler modelursmdnscuared r elative tor the lwatermastive

sonrar in eonith erathairorne ora shimpborantrdc e, the la srest ero colmntributor: in r the stoner t obser atiniste an
opeial c ilrent fori Tnehrdware baigatiensyshratemristice of mopadedrn mr airborne s(hp oard sonabrns o olemputr. Due
roela htive olumell costpaetowter selablt noises.aiit osrans t snti eerl eirbet

implement a fully-optimised system, Therefore, suboptimal filter sechanisations arti generally Influenced by the
above-sentioned constraints. In keeping with this thinking, the Invariant& technic'ue mnimises the number ofA, :.
differential equations to be progreoed in the covariance matrix, Also scaling requirements, for the covarianceA'A
setrix, are not as stringent because Of the bounded characteristics of subsets of the covariance matrix, Further,.j ::~ -

the theoretical accuracy rdalixable from the Invariants ford of the Waimn filter is Ad good as the classical A'

Kalman filter, However, the word-length requirements can be rola~ed somewhat for the invariants technique because *W AW1'IdW~

It is loes sensitive to truncation and round-off effects than'the .3lassical Kalman filter.

To illustrate the potential accuracy improvement Attainable from the Implementation of the optisal filter, Ae
saotian 5 shows the result of a simulation for which the filter was run an en (open-loop) estimator rather than A *

(closed-loop) controller. The degree of Predictability can be seen fromi the Illustration in Section 5. The A.AAconclusien is that the invariants fore of Kalman filtering one indeed predict the states of the system. .

1. KALMAN FILTER INHRYa FOR THE INVdARIANTS TECHNIQUE

2. 1 General

This Subsection contains the summry of galma"' a equation and the application of the Kalman filter based on the
Litton invariants technique. The general method is that employed by Kalmna, Certain modificat ions have been made :
to accommodate constraints imposed by the suboptimal characteristics of the mechanized filter. Also certainA
refinements, such as exponential torquing of the gyros andi Doppler, have beern incorporated to simulate the effect ,A

of exponentitally- correlated noise sources. The following discussion presents the general philosophy of the AA

Kalmasn f ilter,

The Inertial navigation element (INtl plus computer) provides the complete navigation function; however, by Ih
using redundant data, its performanc can be Improved, The primary aid saensor considered (the Doppler radar) *, ~ A

provides velocity information in the form of ground speed and Doppler drift angle, The Doppler radar also reqauires . .-
a heading reference such that combination of these sensors can also perform the navigation function, although it .. ~ -
is somewhat degraded. An alternative use of the Doppler velocity is to damp the inertial system. The aid sensors ~ ~
also provide intermittent position data.

"-A
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Thsi nse httevrosohe vua uasenpoiei ednatmn"rmn fpsto n

Ths inevai ou se mthethod voriutiizn o ther rvionic duant informtovid te i a u reun ty mdepentin heail ositin thd

accou tin for the many types. particular magnitudes alid spectra of error sources. Of prime concern are classical Z.' -
and Kalman mechani zat ions.- Since all mechanizations are Imperfect, the problem Is to extract signal from noise. :.~:> ~~-
The classical meouhanirmtion approach in to let the systeats do much of the filtering by utilizing foodhack.

This chapter considers Kalman filtering for airborne alignment and navigation, It is well known that such a ~ U~
filter technique reaults in a minimua variance error for the assumud-Mystem-error model, r

The error propagation of tile inertial unit and Ilopplar error are both strongly flight-Path-depcndent, hence%
time-varying. Since tile flight path is not fixed for aill possible cilisiunm, it Is clear that there should be
some onhoard accounting fur flight path In the filtering. as referred to later, to obtain best xynteam parformance.
Where intvrmittent or uonmccunal Information ins eiplled, suclh ae position data, the Kalman filter in cspecially
suited becaUSe Of its capabilIity of making largo corrections throughout thle inertial system. f'rovldnt thO systemt
error model is sufficiently realistic, improved n~stem performance is obtained by employing Kalman filtoring
techniques. The mechanizationl advantages of clsnhical foidback are obtnlnable in itrumanl riltering. With a digita 1
computer, it Is important to note that the selection of filtering methods is reduced to only two considerations, -'-''~

* (ii System performance

(ii) Computer requirements, %

This Implies a sophisticated model because there are many Important error sources and types of error propalation,
Any increase of sophistication of the error model typically implies Incresued Programming requirements. Utilization
of results of Investigations of comsputation techn iques closel) related to the deeper aspects of the Kalman filter
approach are evidently not only warranted, but should be given priority,

A frequently considered inspect of the lise of any filtering technique is the dependence on correctness of the ,- . *

'hypothesized error model. If a sophisticated error propagation model is used, then unrealism can stem only from h.~* ~
inaccuracy of statistical estimates of error source magnitudes, a. S. drift-rate characteristics of the particular .

gyro. If the aechanization of. the Kalman filter in a feedback system, as is the proposed system, than the
advantages of the relative insensitivity of that type of system to unexpectedly large errors are attained, In
all simulations of Kalman filters at Litton, it should be mentioned that error sources have particular oharao-,'"*
temistiem in-each run. randomly chosen from a distriulbtion with tho assumied oharacteristics, 4 V

The principal difficulty in applying Kalman filtering to airborne systems was the large computer capacity
required to mechanize the myriad equastions, Litton has managed, by transformation of variables, sequential
computation, soid approximations, to simplify Kalman'sa general mechanization equations,

The transformation of variables is one in which the majority of the elements of the system covariamee matrix '

are invariant to the position aid censor data. This transformation of variables is presented in more detail in at
later section.

3.8 Classical Kalman-Filter-Equation Summary and
Mathematical Preliminaries

The mathematical development of the classical Kalman-filter equations is formulated in myriad recent publications. ''..
including Kalman' s complete documentation 1; hence, these equations will not he derived here but merely summarized
Land described in general terms.

t able I summarizes ths Kalsan/Littee equations that 'would typically be imeohanized in an aided inertial navigation
21system for alignment and navigation. The notation employed is that used by Kalman:' Underlined capital letters

signify matrices, underlined lower-caue letters signify vector quantities (column matrices), A prime signifies the
transpose of, the "hat" sign signifies best estimate of, the + sign signifies the pseudo-inverse of, and E means .

the expected value of. The classical Kalman filter Is modified slightly in that the best estimates of state ."'"\, "

variables f are updated with information including the Nib increment of time. .

In setting up a Litton mechanization. the first step is to select a set of state variables, These sill normally
be any and every quantity which we wish to update snd sufficient states to adequately describe the dynamics of
the system.

The next step is to represent the system dynamics by a set of first-order linear differential equations of the '"
form of Equation (A. 1). These exist as a net of such equations by defining the state variables as error quantities. %..
For example, the state variables are not defined as "position' and "velocity", but as "esrror in position" and
"4error in velocity". The standard linearized error ,'iuations (neglecting second-and-higher-order terms In error
quantities) will then provide equations of the form of Equation (2. 1). Inspection of these equations yields the
Sand a matrices, where E is referenced PAs the syutem dynamics matrix,.555~"T~~

The Ow terms represent internally generated noise. Oyro drift noise is an example of internal noise represented *",~',.,'
by elements of as~~~\' h

% 'h *'
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TABLE I~~

Summry o Kaman ilteingEquaion

Itato variables: U +n 2i (2.1)

matrx F erro inestimates)

Between updatin~g poifltp:

()Propagate state variable estimates by LS (2.3) ~

(b) Propagate covarlance biy - + + go' ,(2.4) ~

where =cov(I Ef,' 5

Note: To use Eutos(S. 4) thro~sh Mli7) we assume t 0 1. i.e.'

(a) Correct state variables by A 1&unrelatd (2.5)

K+

where D j~i + ftis a scalar quant ity if updates are based on only one

(b) Correct covarianos matrix by 6L -DL . (2.7).. .

The observed or mesunred quantities used to update the state variables must also be specified. These are
position checkpoints and Duppler velocity measurements. These "ohservables" must be expressed as a linear function

~*of the state variables, as In Equation (2. 2). The linearized error equations expressing errors in observations a

as functions of orrc'rs in the at&%;* variables provide Equation (2, 2) and the observation matrix j

The I vector represents measurement errors. In most practical applications, the measurement errors v are
uncorrellted with (statistically independent of) the internal noise w . To simplify the remainder of the equations,
"jacume that E(!' aO.

Equations (2.3) end (2.4) are the mechanization equations for real time computation of the estimated values .

of the state vertabiws and the expected variance in these estimates. Equations (2. 3) are essentially the navigation .a , .. .

equations which are already mechanized in the inertial navigation system. Equation (2. 4) is new to the mechanixa
tion. The covArisnce 2represents a running estimate of the accuracy or confidence in the system estimates of .. *, .~

each state variable. In effect, the system CL? is continually computed, implying that tht, covariance matrix isn . ,- .'
running error analysis.

Equations (2.3) and (2.4) are differential equations which are solved by integrating from some known starting
% ~ point. Initialization is a familiar problem for Equation (2.3) and corresponds to aligning the platfurm, and

setting in initial velocity and posit,'ons into the computer. To initialize Equation (2. 4), an estimate of plat
form aligment, gyrL. calibration and computer initialization accuracy must be made. Such estimates are based on
error analyses and actual test data. These estimates are not critical to the process if they are not grossly
underestimated. Studies show that it is better to overestimate the error for the self-correlated tarms (variances)
rather than to underestimate, whereas It is better to underestimate the cross-correlated terms (covarlances).
Upon initializing Equations (22.3) and (1. 4) the computer continuously tracks the state variables and updates the
covariance matrix by Integrating Equations M3 3) end (3 4) in real time.______

% hea aid information is obtained from separate'mesaurementn or observations, the present estimates of the state \\
variables and cuovarlance matrix are upuatvd according to E~quations (2.3) and (2.7). Equation (2.5) states that *

a comarison of the measured value z with the present estimate be made, and this difference signal multiplied
by a feedback gain5
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One of the simplifications instituted by Litton is to serially updtat after a measurement. Even if data from
two or more measurementm are available simultaneously, the data can still be processed serially as sever1al sIngle *

measurements and the system sequentially updated. Thin procedure reduces each af the M matrices to a single%
row matrix. This in turn makes the quantity HUZ' + a a scalar quantity, and the inverse of a scalar 0 ia
simply its reciprocal D*1

%
Once the filter gain h and the scalar D from Equation (2.6) are enmliuted, the corrections to the elements

of the cover' * matrix become almost trivial, as seen In Equation (2.7). Fol~lowing the update corrections, the
Systems ccMPUtL ions revert back to Equations (2.3) and (2.4) in order to propagate tho system estimates forwardA
In real time until the next system updating occui

In addition to the above. the development of the cor rection Invariant formulas requires a cursory knowledge of
tensor notation, specifically, the concept of the summation convention. In tennors. to deoedfeen uniis
superscript indices are employed. In the development which follows, subscripts are used throughout except on the
Kroaecker delta terms.

In writing hcmogeneous linear and quadratic functions summed aver some index, the following types of formulas,
respectively, result: ax 1 1 +ax

andJ~x a a1 x" + a"2I + .. + a xe

+ a 2 1 1 + ILIX1x1 + .. + aImxi x +

+ + 51225 ix a. I Ia m +

These two equations are systems of the first order and systems of the second order, respectively. A system .
of order zero has no indices and thus is invariant.

In the course of the derivations that follow, the summation signs (1) would be used Quite frequently, To
present a more Compact appearance for the formulas, -the I sigm sill be dropped and 1. Implied whenever an Index
is repeated in the expression, e.g.,

and, since j is repeated, the summation over j is implied on the right-hand side of the expression above,
The convention applies in similar manner to the double summation, sines the indices j and ki are both repeated.

any dimension assigned. ,

The Eroneke delta (Pk) is a mixed tensor of the second order (rank two), because It employs both subscripts

2.3GeneralImpiain fCreto Invariant.e

Te error propagation of the inertial system can be shown to be computed by differential equations in the ,,,,

covariance mtiwihbyasealtransformation of variables, hais the form. .=

where R,8 are Invariant under Kalman corrections with respect to a chosen subset of observed state variables

aid sensors.

The A submatrix, which comprises the small portion of non-livariant. of the computation set, is functionally .*

the inverse Of A, partition of the error matrix and, as such, hus diagonal terms that vary proportionally to system
accuracy which, In turn, lies between zero and i sharply defined upper band. In contrast, the direct error
quAntities are relatively unbounded. Useful Information is beat mapped In terms of accuracy measure In statisticsMa
for combination with other Information. (Thus, defining accuracy A =1/cr2 ,shere o-2 is the variance of the0, p -
position data, It follows that the accuracy obtainable bymn bevtos atesmo .

4,.N



Defining Kalman's covariance matrix as 0, with subscripts x and y denoting the'position variables, the

h A submAtrix is functionally P"

.: m q 'vr, . t

,Y ., .. ,,,..

ayfz -~1Y. *%•q '.'.•

The Rt invariants, which appear in the Kalman weighting for inertial system trim-up, possess the functional %e

behavior of ration of related covariancea. The ratios have relatively limited range compared to related corrola- .
tions. Funotionally, the R submatrix Is

where r>k. s'k, and r and a reoor to the members of the R. submat , x.,

The S invariants (comprising the larger part of modified matrix equations), which correspond to correlations.-
of non-obeervablem, are the most Insensitivo to the aid data profile. This offers a potential memory reduction
by using approximations which do not materially compromise performace optimality. The 8 submatrix elements have % Ir N.
the same units as the corresponding members of the classical covarianco matrix (a) and functionally are . '

Ore 're - Arkc-ks° *:' ""''

where r, > k

The choice of correction Invariant& with respect to position observations leads to error propagation differential %. %
eouations Jn which latitude error effects in level and vertical components of earth rate and Coriolis computation
are largil.y eliminated from the R and 8 submatrix elmneets, This presents a memory saving and removes problem. %'
of computation of very small terms whole Integrated magnitude over 10 hours may, neverthelesa, be substantial.

The correction invariants tend to retain the simple crosa-channel characteristics of the pure inertial syseme, e

otherwise disturbed by the aiding process. These characteristics are principally the result of azimuth error
and, usually to a lesser degree, latitude error entering earth rate estimates, With computation in Invariant form,
.it ka beendemonstrated .hat areduotion in diteirential equstiou .prograsming is feasible, the obviated equations
being replaced with a few closed form azimuthal correlation rslatiops which enable azimuth correction bsed on
accelerative effect. (important at high latitudes'. The computation techniques proposed for the invariants Bra
presented In the subsequent paragraphs, "

The A submatrix in restricted to contain only position variables: the R submatrix contains the covariance . • . , .

of one position variable with one non-position variable. The s subeatris contain the covariance of all qon-
"position variables with non-Docition variables. . .

2.4 Algebruic Form of Correctioa Invariants ,

An observation Involving a given subset of system error ek, k z I. K of form - -..-. •' .

is utilized for Kalman corrections (analogous to Kalman' a expression, =x + Lq) of each system variable, where
it may be shown that the change upon correction implies that , ' -'

-;--;h= - uu•/y , (~e ,%.~ ...--... , ..e

where are I the observation error variance, r and s refer to variable labels, the + and - superscripts
refer to after and before system correation, and

r or ka ~~kk*'*
r'•- . ./ .• ,. .,..

Purtherlmre, Ape .s defined " '.,"...-

An$ (2. a)

...:.¾ ,.,..->.,,-

i •'•-"." . ".'*'..'-.AN

C L~.:*4~' %

% - . 4 S . ,11 *. , . ' * * *' 4
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I t may be proven, from the form of the Kalman correction formulas presented above, that ,.**

Rra '7ArkAk I .4

Br or - Iý k a

alnde.g Thanes uanden system corrections 6Av weight a ht s tr at r oreto nvrat o

whercoe n invarian A soP-t (p aseto) where thet coreto Inv ariants are o dfuciones ofithe respetrova stion wgtype0
thpaa I a eshow tha

aobnervaTheKlmo sstmcrrcinshvwih

KALAn - A1Kr

%

whe) UT Y~~1 P! tecs hr he correction formulast forre defined with respect to a slete oberatontype aeotindfo
obevtheondis, yK a oml o htosraintp fertkn h is ifrneo h dniy

A

0' an ~j , -AlI

(it Tbnohe correction formula, fo sdfndwt epc oaslctdosraintp r bandfo

th rinvarisy KlaformP. ldefioe wthart ett aslce observation type isfstwn taking the first difrec of the idntty

Aifrec ofted Pin r eqato fokr zP p r,

,ZK Akk *puuv

wuh tiutnce the oriayKla correction anftermuleprason

AA 15  a -uU4 K (2. 14)

ed uiffrnce ofa n(2 2 the de finitionuaofon for R

subese tlituting the ordindanty Ksalma corecion and th re6 z exoprerpsitionis ivlead a 1 *I~A .

+ %'

A..-U; k"A ~ IA 4 +~ 0jA~ k.J V* A



Hence Ar is invariant '5

(aTe invorianue f816dfne ih epctt selected observation tyei hw ytaking the first

46rs Aa~re - Rrk Aask r (2.17
k 4 K, 2 7

and then substituting the ordinary KalnAn expressions to obtain

Are rk " +'-r

U; -ii + atku~l

using Rts R; -

Substituting the defining expression fnr Rrk

Hence Aar 0 that is, $to In correction invatriant relative to the associated type of observation..

2. Correction Formulas for Disparate Observationsa..

Utcractd IdnvaiaU nt ofset oinfosus for dbevtos ivisnaat fbor etionls, pohic io errhown) tore nlosel invaiant
Tder corrections winvarifntrset fors o observations (suihvolvingv orvieg velositi on ermthsrors). aenThieri

undermIIRd~i'iaio o correction fowithsta diffeentkiasto observatione, (such asiolngvoiyore asithont be losely The~~
to ordinary Kalman formulasi but in the variables of the correction Invariant set, The algebraic derivation differs Ž

for unaseociated observations as a result, In Equation, (2.8) the term Us U5 wheret ~' t

Ur ait~ s(KQ a~ 4 K

That in, q is not In the set of variables for which Agis defined, Consequently. UrArs A Or and Equation (2.14) d
does not hold, Indeed, for the unassociated observatione U At 8  C a o~~ A m 0q~u R% s where Rt is the .r

correcton invaant setof the omputatonrocess and denottn 1 5  for L9 disparate type of observation
The Equaition (2. 10) is reaplaced with k

whc safruaQW~~iV~Ysmlrto th oriayKla oruaecp o sg ftecrecin h -1

correction Rrs for unassociated observation type is obtained from the fl-matrix defining Equation (3, 13) and

r0k 1 (2.20) I
tb%

Further manipulation yields the correction formula for Rfa with unassooiated observation: 10-

4
eaRe r > K 2.1

The Implied computation Is directly analogous to the ordinary Kalman correction formulas.

Theco~rrections of $. for :nsaesociated iype:. is obtained In the same manner.

%,, '
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The corriction formula for unasmuciated types of oboervations is m--c-¶-*,.V

An's' where r~m k a k

Tahe imlied computatiuns art) again direvttly alousto the ordihary Kalman corroctiun formula*.

2.' Cowatational Features ef Correction Invariants

Tae KAlman filtering computations relating to error growth, when executed In correction invariant variables, r
have a number of markedly different characteristics from the direct form with Impact on computer cost, Including
effects of the following:

(i) Obviation of the bulk of the error-catrix update computations following Inertial systemn corrections with L.., 4.ý

aid data, this being tiie consequence of the invarisnce propert ies. This feature makes a wired Incremental- .*' *

C ~~~computation program of diuitnaldifferential analyzer program attractive becasue Of substantial reduction ~ . '~ ..
to a lessor degree. mmrhwvr en nrme a \

(ii) Reduced word-length requirements and/or decreased computation error sensitivity.

(a) The bulk of the variable, in the correot ion invariants computations have readily determined variation ~*
ruges& which change little fro disparate flight and aid data profiles. In contrast, variances which hay *

the range of the square of errors which themsclves have wide range tire unwidely computationally and can ~ ~
require monitoring to prevent overflow under varying operational conditions, * '' : 5'

Mb The A matrix, which comprises the small portion of non-invariants ojf the computation net. In functionally
the inverse of a partition, of the error matrix and as, such has diagonal terms which very proportionately w .,
to system accuracy, whioh lice between zero and a sharply defined upper band. In contrast the direct
error quantities are relatively unbounded. Useful information is beat mapped in terms of accuracy massure ,.~

in statistics for combination with other information. (Thus, defining accuracy A x Ilao' , where at is ;A,
the varianos, it follows that the accuracy obtainable by man obscr-vations in the sum of accuracy. )

(o) The R Inveriants, which appear in the KAlman weighting for inertial system trim-up, have functional *: I--... S

behavior of ratios of related variances, The ratios have relatively limited range compared to related

correlations. V

.(d) The I Invariants (comprising the larger part of modified matrix equations), whioh correspond to correal
tions of non-obagrvablem, are the most Insensitive to aid data profile, offering a potential of extensive
memory reduction by approximations which do not materially compromlise performance optimality. *'

(Ili) Memory saving by reduced computation program relating to crose-channel inertial variable correlations.,

The correction Invariants tend to retain the simple cross-channel cha~raoteristics of the pure inertial system." ' ' '

otherwise disturbed by the aiding procens, which are principally the result of azimuth error (and latitude error
entering earth rate estimates to a usually smaller degree). With computation in invariants form, it has beenLa.
demonstrated that a 20-40% reduction In dtfferenciil equations pragramiatnX is feasible, the obviated equations
being replaced with a few closed form azimuthal correlation relations which enable capability for asinuth correc- ýN
tion based on accelerative effects (Important at high latitudes). Vu .

The bela error sourcest considered are characteristic of the inertial sensors (gyros and aucelercimeterm) and
-. I isaligcmnsts of these seteors, Random errors which are described by statistical autooorrelation functions were...........

considered for the sensors. Theme error models are described in more detail in the nubsequent stctions, A north- I .- % ~,,,
seeking coordinate frame Is sassumed with the axes orientation shown in Figure 1. (The inertial-system error-model b-,* ~ *S'* *~.

block diagram is shown later in Figure 5,)

TaInertial sensor-error modelsae contained In the general WIM error model; however, a brief description i

presnte hee t claifythemodlsIn the description of the various sensors, the noise function considered

Is exponentially correlated with an autocorroeation function of the form

where A'is the noise-amplitude function and Y' is the reciprocal of the correlation time characteristics of
the noise. Non-white noise drivin; Aucotions of this nature are generated by driving a shaping filter with white
inoise having an autocorreist ion Cunction

'Li.

.....................-.. * -- %w....



The sh~api filter In sMown In Pisure 2. ,

No thermal modolo are considered for the Inertial instruments.

3,.1.2 Accelerometers '.\sbq ''

bros wicharecharacteristic of the accelerometers in this siialycis are bias, random, scale factor and
son-orthogonaliitse. Bias is defined as day-to-day or long-term rapeatahility and is assumed constant over any
mission, Scale-factor error refors to :alibration- errors and long-tamnstability ofthe accelerometersein

term chungs due to shifts in the acceloramstor bias and scale factor errors. Noai-orthogonalitisosit*e composed
of two basic *rrors - mechanical disalighments In mounting the accelerometer and mechanical misaliggnments Internal
to the accelerometer. *"ýt I-

*3.1.3 aGyos

The gyro terminolocy employed Is In general consistent with the standard gyro terminoloiy prepared by the Oyro
-and Aaoelavwctor Panel of the Clsotror~ic parts Comnittie, Aerospace Industries Association. The error sources
considered are acceleration- insensitive bism end random drifts, acceleration- sen It ive drifts (mass unbalance and
coeplisasc or anisoooiastioity), torquer scale-factor errors and mechanical misalignments,.h~ u u

The bias error is assumed constant over any mission, since it is dWined as the day-to-day or turn-on%
-. , 5repeatability, The rando, drift is described by an exponentisl autocorrelation function and does change over any K.

given mission, Torquer scale-facotor errors Are due primarily to electronics and calibration errors and remain
constant over the mission, Mechanical misalisnments are composed of gyro-mountina errora and internal gyro
non-orthogonalities.

The differential equation describing the gyro-noise model to be used in the kalman filter is:

where ~i ~

DD.

To correlation time of gyro noise

i gyro rendom-dri ft- rate amplitude

3. 1.4 Dapp ler- Errer Mods I S

The Doppler-error model simulated is composed of several error types, which are shown In Figure 3. The errors:,,,considered are bore-sight, scale factor, high frequency electronics noiso, low-frequsncy terrain (overWater) noise
conversion biases and flexure errors. The basic differential equation describing the Doppler noise model ins

,Y "
IS X 8V 5  

S f

{Ov

1To Dopple correlation time. i.
Also, shoen in Figure 4 in the resolution of the Doppler velocity through platform heeding and drift angle ,%~'~:>'Y

into platform axis components. The symbols ZVI and SYVY represent the differences between platform velocities
(Vri V) and the respective Doppler velocities.

3.3 INp £rror Modeli

The IMtl error model Is shown in Figure 5 with each axis decoupled pictorially but functionally coupled. The
level channels are completely shown in the figure with only the vertical gyro, rho vertical loop is not presented 0~'. .

* because a conventional third-arder baro-inertial loop is assumed; hence,. the vertical- velocity errors are small.~

%~~~5 . . -W % s
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,unOtions describing each of the errors are presented and discuseed below, and terminology In consistent with

that employed in most guidance texts and that specified by the Oyro and Accelerometer Panel of the Electronic
Parts Comittee, Aerospace Induetrtna Asnociation.

Cooriolie Errors ., , %. . , "

sex -8(p - + 2n,)V,, - (p, + 30,)Vy

Bev 
8
(Pl+2fl3 )Yx + (pl÷2fl)V,

Cross.Coupling Acc.lerati•n Errors L9.',il, ." "

t1 (X)x OVAg + A•=y "

t (MYv + OXAZ - O=x .L,.''AI''•" '". .~~ ~- .,',_ ,.- .. ', .. ,.

AectwelrmoIeer Non-orthogonIlt ties

f,.(I) X .LlAy + .,.
.ft(X Uy ) ,Ax - ovA ,%

Actitloroaseer Not## anid Rise
, ,• "II+ %, •

Acts l tromqt#r & d le-Iractor Error . ,.' .. , -AAX a X aocelerometer scale-factor error

WA? Y accelerometer acale-tactor error

Ax AV are true acceleratlon.-

Computatianal-Irror Ratesc

= +='" - - -'+ " KIaT +an$tor errn ro

"TIM a gro torquig ton from filter.

a 
L*

mI

•,,";[,~~~~ oo " SO,.T..•.•./,.1
.+.•,,~ ~ ~ yr Notes an Dias• + s ."J% .•J .

ev)ma - +-%q•

•,•~ ~ ~ ~yo&18rco Errori-tte rori ~o p•.++,.,•.•u

g, x A. + 
o- ' - +.

-% gtA '•() S= Ox• + XTO' "" '" "
++ ',•. i t• I 1
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Gyro Nere-Orthogonclie Lea

Ii,,II -.Hy~ -~ ,"I

hj V2k1Rg - kgRX %

h()5  k.1R k5Rv :

Gyro Act@ lerut ion-Serisit ive Error& 4

4,, V 1 1 I

-~ AxC, + A1C, AxA5C,2  ' ~ ~ ,J

3,3 Covironrantal Mondulo

Observations made by the airborne. Doappler actimor are relativo to the seit, wh1'nh contaminates the observation
with three basic error components. Those components fail ini three categorium: coits noise, short-term end
lans-taro correlated noise with autocurrolatirin tundtionii of the form described in Section 3. 1 (Figure 3). Thes
white-noise component results from white amps. The ahort-term correlated sea current can be characterized by 04
corrtlation distances of 18-20 nautical miles with nominal amplitudes of 0. 4 to 1. 0 kno~ts The long-term
correlated noise has nominal amplitude# uf 3 knots with correlation distances on the order of 800 nautical silas

4. 11TATE VARIABLI*SELIO'fION-AND-COVARIANCE-MATRIX
PRO PAUSATION

Due to physical constraints, such as computer program sixe and procesuing times, a fully optimized Kalman filter dV

sechanisation is virtually imposstible for an airborne computer, Hence, several trade-offa, must be made in R .

aelecting a suboptimal filter which will offer the advantages available from so optimal filter and, yet minimize c"
the drawbacks, The selection of the state variables which adequately describe the system is the most prominent ,44'

area for trade studies with computer restrictions in mind. The state variables should Include all the quantities WI
required to describe the condition of the system and. when possible, its significant error contributors, since .. .
theme error contributors can be reduced with the aid of the optimal filter, The degree of op~isslity, is dependent 4
on several factors such PAs accuracy in the desoription of the error model, procoasming tecbniques and selection of .
the state variables. The states of the inertial system which improve tho performance accuracy when accurately ~ -,- ',~
modeled arei position, velocity, platform tilts, and platform heading, System performance accuracy is improved \,'.*'v:

considerably, also, if the principal contributors to the errors in each of thin above states can be modeled. The
Inertial system as presently modeled for the alignment and navigation modes has 41 dominant-errur sources not OF, -
including the effects due to aid senmors, computer or environmesnt. Because many of these errors contribute onlym ,
second-order effects (even In a convintionaiiy-damped system); It is meaningless to Include these PAs state
variables. This reduces the number of significant error sources to basically the bias &And random error components -*,,.-.4

of the gyros and accelerometers, .

'1Prior to the final selection of the states, one milst also examine the aid sonsorrm available to the system,
If the errors induced by utilization of the aid mensors are Lignificant as compared to the state variable
candidates mentioned, then the aid-sensor contributions most also be considered as possible candidates, For the
present application, the Doppler performance specificationo are assumed sufficiently large, such that the Doppler 0.W\

error in one of the primary error contributorm to the system performance accuracy and must be considered along

- with the gyros and accelerometers,
Inr performing the -final system-trade studies for state variables selection, the inertial sensor and aid-sensor-
errsources were weighed aqainat each other. Although the lovelI-sceatleromete'r bias and random errors are 4

primary contributors in system accuracy, tits level accelerometers were eliminated as state variables since the -*-,'-....,-I ~ ~~~~reference velocity error was so large in comparison to the inertial system error attributable to the accelero- ''~,' '.."

* ~~~~meters. In fact, in the present sechanisation, the Inertial system is used to trim the Doppler. As a result .4',*'*,
of the trade studies, the level-gyro drifts and two Doppler-velocity states were added. .__-.

Several other errors were considered as possible mstat variables. Theo* were vertical gyro drift, gyro torquer
scale, factors, accelerometer scale factors, and vertical accelerometer bias. In the vertical channel, the
accelerometer is not compensated by the filtering te~hnique; however, the vertical-channel error Is minisaimed by
the baro- inert ial- loop mechanization. The azimuth-gyro drift is a large contributor to the system position error-,
however, to explicitly model this .&as a state did not improve system accuracy to the extent to warrant mechanizing k *.-*

an additional state. Instead, the asimutht gyro is modeled as a '4pasudo- state"' by incorporating its appz'ozimate o *

effects as a noise on the platform heading error equation. Similar rationale was employed in eliminating tbe
level accelerometer errors am states. In the interest of maintaining the oosputational-losd minimal and in the
traes-off of computer capacity required versus improvement In navigation accuracy, the remainder of the error
sources were eliminated.,',,~X

'1. e,'A



Formally, Litton has selected @liven state variables to model the systen o * w~,

* c os#v latitude and vsat position errors, respectively

* s platform North and east axis velc~ity errors, respectively (V,,V,)

00 angular errors in platform tilt (0, and ON arid azimuth angle, respectively

Tb. state-yariable-de fining equations corresponding to these states for the north-seeking coordinate system

A V 5.K
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fl1  fl• • vertical component .f earth rAtu ( s . n L€)

i• V a rplattfrm romponent of craft vloc.ty ,

AN Ao north and east componients of platform acnalaration, e . .' ..'
respect ively. %*

NNotu , this can ulso be com-puted

by , *l, for small Aitat At

AN u M radii fromi center of earth. . 9

* . ~~Suerscripts H and 8 refer to hardware and its& components, resevctivuly, and the wi terms are iha elements ~ .2 .

of the Internally generated noise matrix, The last four defining equations define the Doppler slid gyro states. 4.. *

Note that a first order lag siulmuition model is used. Prom tile above equa~lonm thle r , 0 and w mutrices
referred to In Kailnen' a works can be written,

iTh und u atrices or hownuin Table 11 The stats variable matrix is comprised of the eleven %states and a nd I matrioee cali be written by inspection of the state variable defining equations,%

TABLE I I

3' fand w Ilatrives

a a 1 0 0 0 00 10 0

go& .... ...an 0 1 0 0.0 00.0.0 .age4 0
AN

0 0 0 I/it - As,0 0 0 0 CKS, V.6'

-'-

V1 4 1 RI% .. , • a.. .

Itl 0 0 - i 0 0 N0 v0 0*' • '.-.-- "...., A
Vo o -o o ,

f1L i+ ! a', So eq 0 tan~ qý )Wz 0 0 000 a i (0 IN77 x
AN. %".

,0 0 0 aoaoa ou s o o a DR

6 1 o 0 0 o a . Bo oi x#•0"

0 C D; I Lj. ii kIt .i
II -' I o'+ o o

S0 0 0 0 0000 00 9 ,.'.ax S'

0 a 0 0 0 00 0 DD dy XK5
1.. .i', 'a..

Note that Doppler-error components are chosen rather than groud- d and drift-angle errors. This was done ". -'
so that the cross-channe I-orr.a.tion computation formula could be used to full Advantage. Also, X- and Y '-axis
position errors are state variables but system latitulde and loniitode ore updated in the inertial corrections.

*. , ,,•
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4.3 Ccvarsr~m. weiiris Computation

The ct riance matrix and Kalman gain computations form the bulk of the computer program to be mechanized,.
This section addresses the computations required to propagate the covarianat matrix. As previously stated,
the coviviance matrix Is a running estimate of the system performance and hence the ability to predict and
correct the system in totally dependent on the exactnoss of this matrix, Regarding one aspect In programming
the DOVariance matrix. the technique employed in propagating the matrix over time and computational emictness A. '. %
ujust be investigated. %"

Litton has chosen to unao direct integration of the covariasice matrix which was derived an aL continuous basis, *'

In keeping with the accuracy requirements, a higher-order- integration alsorithim wats found necessary, Litton is *'i- *
currntl usng prouctof erible-typo algorithm. This algorithm is preaunted in more detail in the

ifollowing section.

V In the interest of minimizing computer requirements and maintaining good performance accuracy, tradeo-offs
* ~performed om the vario~use lements of the covariance matrix resulted in segmenting the matrix into two majur

computational parte. These major subdivisions were based on the rate of change of the covariance matrix elements.
* ~~~s a result, the covariance matr~x is composed of "fast" loops and "slow" loops. The significance of those - ~ A

looips are that the fast loop component3 very quite rnpidly aiid possess a wide dynamic range compared to the
sloe loop comiputat ionx. Henco, direet Integration of the slow loops at the same rate am the fast loops would " V .
result in a more coarse estimation in that round-off effects would be more pronounced. Therefore. to maintain
eamputationaliprecision, the slow loop processing interval is approximately 00 times the fast loop processing
interval, ~% '.%

Figure 6 illustrates the notational convention and the members of the covariance matrix that are comuputed.
Where blanks appear, the matriA elements are computed by their clos~d forim approximations if these elomentm are
needed. The motation used is a capital letter A , R or 6 to indicate that the element is a member of that '_ _

submstrix. The subscripts on these elements define the state variables which are statistically correlated by
that function, e~s, 81,, is the A-matrix covariano* of x-axiS Velocity (i) and y-axis platform tilt .(95. '~

The covariauuce-satrix elements which are left blank in Figure 6 are not computed explicitly, If they are L'h' ,'.'I'

needed In propagatins other elements, they are computed from closed form, cross-channeal correlation formuloast
This allows computing of only 42 of the 66 elements of the covarianoe matrix,

4.3 Integration Algorithm (for Filter) ,

The progremmed Integration algorithm is one designed to correctly integrate a product of two variables with
doostuet rates of change.

The algorithm should compute, from t a 0 to t x At,

&J rtyn dtn at(yo + y't) (no + it) dt

ýYos~nc + 0024u '"OYD) (At/2) + Yi0~ (At'/3 At . *

* Consider an algorithm which utilizes the computer value for the preceding increment An the computation of the
present Increment. Assume the algorithm is correct for variables with nonstant rate, so that the a.-nputed value ~ n'*
of the preceding increment is equal tob

Ajold ' nYoo - (Joic +*0y,)(At/2) +. in (6t'/3)]At

Let the algorithm hi. 'the form

A:=77Ajold + (I - 1) 1Yald '+A&Y) (Sold MAAK) &t .s ,

where 7) , (1-7)) weights are implied by the necessity of coomputing correctly for moem rate variables expressing.
W3 in term of YO 8 .ce ie

Il'Lysbo - coo~ +d ior) (At/ 2) + jni,(At 1/3) ht 4. (1 - T)) (y. + 4,At) (a 0 +Mic,1t) At

+. (s(l-71) - 7y)'2(Joei +ioy0) + {~+ 0- V1)Me1$i'Ati6t 1 d A \

Lso+ 01oi()e f 60yo) + C,j0*0At]At

9The slose form relatiunships utilize invariant prnducts. A

dA %A~ I A A



441

"or correctness, the linear and quadratic coefficients cl and C, must be 1/2 and 1/3, reopoctively, Hence
take

71/3 vý (I- 7))M 1/3

which given

Akt 1//3 0.617'

2 - V
7r;- -/ r- 0.0718,

An approxima~te solution %*.,'
2" (2 + 2")

which might be adequate if de -1~.?. re.i+ )]
The general form of orror-propagation equations, including the invariant form, involves the summation of,.

disparate terms to obtain eaoh integral increment of a basic variable during a program cycle,

The computation scheme as stated implies the storage of 42 quantities each foi old values of integral
Increments, 'for Interpolated values, anti for integrated state variables. This totals 126 words of storage for

* ~~~the integration algorithm. This is 84 words mere thu -the aimplodt natural algorithm,.hr h

Clonsider algorithm computational requirements for initialimstion and inertial system corrictionwhrte
old ostimates of the Integral Increments may not be uvul table. Ibne approach in to add a cycle of the Increment ,c '

com.Imtitption where there Is no accumulation of the integral, and thereafter return to the normitl program for the
first iteration, using ;A x 1/4 .~ 77% 2/3 .System corrections with the Doppler radar are programmed as A .yJ
quasi -contlInuous process in which their offsets in error estimation are part of tha steady-state Integration .... m2½A?
process, The position fixes, however, roquire an initilisatiun provisiont to account for step changes In the
ddrivativss of A and Rt matrix variables. This may he accomplished with the pheudo-cyole computation with !~i
;A 1/4 ,~ 17I 2/3 or, if it Is found that Initialization after dead reckoning with Doppler can be tolerated ' ,..'""'

without a posudo-cyale, Ihe pseudo-c~oie can be obviated altogether provided the steps In a. pueudo-old-incromell ~ ' ~., *, *of A , ft for position fix are computed. These Increments are computed by formulas derived by incrementing the * \'
difference equationa for error growth of 6 ,for Increments of A oin fixing. the additional computations
involve 16 .ultiplicationc,

4.4 Imlem~entation of Invariangg.Ucaling Technique

tn implementing a scaling algorithm, "real-world" constraints didtate several uf the limiting conditions o
sechanized, For instance, separate scales are needed for various mission phases; however, to fix a distinct
set of soale factors obviously Impose% system ounstraints and thtso ocostrainto lead to the developmetit of antýN
adaptive reseliling module. The remcalins module would be exercised at the beginning of each filter-updating N. *4
cycle. The successful implementation of this reecalint teulinique relies on the regular beha~ br of the elements . 'u "9.

of the covariance matrix. A large chnang could occur in these elements it, for instance, a polUsltnioubservation -4

is made. If the* incremental change in these elements is too large to he scoommodated In one filter cycle, a,
"se@pentad" fix can be easily mechanized iso as to avoid register overflow or constrain mAximam infortAntiun by
left-shiftinu if the quantity being updated is rapidly decreasing,

In Implementing the rescaling module, the philosophy 14 to test the diagonal elements of the cuvariance matrix '

and to constrain the scaled quantities to Ies within a sputtified range of the register by controlling the soale.
factors, With the aohuan constraints seohanised, the remsalini loop, shifts left or right by one bit if the
resaclingl tests fail., 4 *~..'9,

rrthe scaling of the program parsasters, all of the cAlegi factors are formed from basically mix factors,
VF( I through VF(5). The nuserical value in parentheses refoer to the type of parameter being scaled, e~.

IF (1) position *':. * ~ *~
V1S (2) ve locityN

SF~) tilt

JW (4) gyro drift

MF (3) Doppler

UP() Auimuth 'n,.*

IV %I. N. qN
%n
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At time more, VALUEs for ench of the scale factors tire selected.

The elements of the oovariance matrix can be sealed by implementing the equivalotit to the following rOKTKAN 00 ~.

DO044 1 z1, 44**,5

Scaling of special functions at time zero im performedl aeparately.

All parametetrs must have ait assigned sualing before their insertion into tile program: however, this is not a
drawback, sinice the clhosntr parameters in the filter program usa be resarled lit will befurre tile sotual filter

are rescaling factors for Changen Ini thle On~avriancl ma, rix lemionti X(I.J) ,Y(l.J) and fur the quantities m

DX(1,J) and DY(I.J),whr Xl)an YIJ arth rpd loinrmnst nailemtixlabs

minimize computer instructions, This doos result in Aonhe processing tiun penalty,

.1. ~ 4. 4. Resettling Afridul.

The Litton adejitive reecaling module is to be tested at the beginning of statih complete pass throulth the ?.

filter. The philosophy is to scale both chaannels itistticallyi therefore, the maximum values of the currosii'nding ,'. .e.,.~..

diagonal elements (designated by AMM(J)) of thle iiuvarianos matrix must be determined, goaling constraints on
the elements are set so that all stats varliablos lie between 1/26 and 1/4 of full soale except for sasimth. whic
is scaled between 1/4 and 1/2, slined division by asimuth Lis necessary In the closed form crose-channol correlations, 44 6h,
With thems ounatraints eouhanilsed, the remainder of the seailing loop is necessary to scatle the qiuantities indioated 'A '.-

by shifting either left ur right one bit, dopending on the shifting parameter. Figure I is it flow chmet of the
resealing program.

5, gMIIATIN IIULU 0 a A

NThis seututtu contains simulation results for a test mission. The assluePtions are that the gystem was ground4
aligned using ountentional tochniquou and Lth# filter was Iinitialised at the Instant the vehicle began moving.
in order to illustrate the poteontial accuracy improvesetit by using a filter, the system and filter were run
"lopen-loopll, is.e. the filter was run ats An estimator, not a controller, such that normalimed rather than -'.-..4

dependtlnt errors could be compared, .('.

to the sytsplomnecurves (Figures g through 11) the net reslting error is the dif~ference between the
estimated and actual yaytes errors. The carvois presented Iin Figures I throllih 11 are based on a profile which
4ontains meyeral velocity fluctua.ions; starting and stopping; duiring the profile: 451 latitudei anti error '. .

sources similar to an 14N-15 type platform (the system rorter are larger than that expected fiens an actual LN1-15 4

for a similar Application; however, for the msiulated miesion, the full knowledge of error-eouruc correlations ~4
4 ~ wa 110 esployed),

A.4

116101111n, A.M. Now Molhode and Naeuidi in Linotir Prvial cion and Pi Itering Maery, IhIAA Technical . %4
Report 61-i.

. 2. Seabrook, H, UWfN DInertiui Naviluiion System Intogrution. Litton Publicamtion AQ22O09MO5
at &I. (Air Force contract No.AY-33(ti51)-109l, .January 19118
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CHAPTER 17 - ARINE APP'LICATIONS OF ICALHAN FILTERING ~ J~V4

J.Holdsworth-and JStolsOW

1. INTRODUCOTION AND DESCRIP'TIONS 0r Till PROILMM

Ths:hate i: conc:erndwith thepplcation of Kalman filtering :e:hniq:::to:::;i::ti:: ::eeqa:on of
motion of submerged objects In the ocean. Applications can be made to monitor the movement of submarines to well '

controe mofemenbod schoolsunication, so submarine Mammals, Another interesting opplicutian is the optimal

device's takwould be useful to evaluate if ia device has sufficiently searched a particular topographical area,
ofInterest. Also of Interest Is the situation where &'single command and control ship monitors and controls the ~-... ..

operation of some activity in the ocean area of its immediate vicinity. The Kalmsan filter cani be used to track ,~P .4 5

the activity of all objects in a predetermined area. Thus the Kalman filter cno be used to guide the movement
of scuba divers im undersea exploration or in the harvesting of food on the ocela floor. ~ "

The ocean Is the medium in which the Kalman filter'sa estimation process has to operate. Communicatioms between %
two objects separated by several thousand yards in obtained by sound. The epeed of sound In water is nominally
U4100 Wt/ec and it is primarily a function of water temperature, Pressure, aLd salinity and is liven by the

emiiclfdml a 4422 + l1,2t - 0.045t0 + 0.0182d + 4. 3 (as- 3)

where a0 velocity of sound (ft/oec)
d m water depth (ft)%

t a temperature of water at d. (Fp)
aasalinity (parts per thousand).pThe propagation path of sound In water is quite different from the paths of electromagnetic radiations used

by radar tracking systems, The Propagation Path of sound is quite non-linear mud its general nature can be
described by rsy theory'. The different modes of propagation are various combinations of direct path, surface '

channel, bottom bounce and convergence zone. The direct path mode is where the sound path that connects two "4

objects in not reflected by any acoustical boundary. The surfsce channel mode is where the sound path connecting ,

two objects is reflected at least ones by the physical boundary between the water and the atmosphere. The ~.
bottom bounce mode Is where the sound Path connecting two objects Is reflected at least once by the boundary
between the water and the ocean floor, The oonvergence none mode Is where the sound path connecting two objectsIs refracted due to the sound icy I"vertexing", This occurs when the ray path attains a horisuntal tangency at *.,
"I"'a certain oeans depth'. ;dt

Thus, the total transit time of sound from one object to another is a function of the propagation path andNthe velocity of mound in the water. The different propagation modes are illustrated In Figure 1,

The underwater systems that either coomunicate by mound or wunitor sound sources are called sonare. The sonarL
sysetm of interest to u~s is the eche-ranging sonars, which operate by monitoring sound reflected by an underwater
object that was originally an iuput to the water by the receiving ship.* The msesuremnwrts taken by the echo-ranging
sonar are range, bearing and sometimes range-rate. The tangse information (a is calculated Wy

'4.1

where t is the total travel time of wound Land V, is the average speed of round In water, The bearing informas"____tion (3) is obtained by measuring the direction of the reflecting uzqdorwater object. Tho range-rate (4) informatico
is obtained from the relationship

f M 0.69 fsA (1.2)

where fe is the frequency of the transmitting source (kc/s), f (c/o/) is the observed change in flequency when
the sound signal, is returned and 0.69 is a Doppler constant for echo transmission (c/kt he). The measured obsorva-tions (B,ftA) are corrupted by several types of noise sources. The structuro of the noise in very complex' and *

will not be dealt with here. The accuracies to which the observattons B , R., can be measured are a function .'- * '

of bees-width, pula~e-iength, frequency discrimination, and signal-to-noise ratio measuring characteristics of each
&oeasr, For the purposes of this asnlynis, the additive noise on bearins information can be thought of am a
stationary zero memao, gaussian process where the standard deviation of the error is shout 0.5 degrees. The rang . -

information can also be thought of en a gtussian process whore the variance changes linearly with relative rang;'J %
(ii) (distance between one object and another), The time difference between consecutive samples Is long enough ,..

PRECEDING PACE BLANK ,



ouh that autocerrelatlon of bearing and ranges is insignificant, Also the aroas correlation between ranges snd
bearings Is ninainifioseit. The accuracies ot the range-rnte Information are aboti't 6 kinots.

13 APPLICATION OP KALMAN PILTERINO TO 'Ceii MARINE

3 we ::::l now briefly desrb the aiceutoswihaerqietopv mtetakngrcs.Te

tracking process is basically a Kalman filter olperating on the observations of range, uanring, fknd Doppler. r

isonrmde sre different and will not be considered here. The observations have first, to be corrected to givo ,* ~
* ~~~true bearing, horizontal rangen end rengs rate. This involves pre-proisesing the observationa Lo account for the ... ,

sound propagation mode, The observation pre-procossleg own be accounted for directly in the Kalman filter Itself, -,*

but. this would orently coie~licate tho formulation, Our trUenl10ent Will be brief w,&d desuriptive Instead of

detailed and rigorous. Derivations uf the equations from a minimum inean square prediction error criterion are
well known' and are detailed In previous seotiors of this publination.

3.3 Kalavi Pillar Equations Z'~.4

The basic component of the estimation process is -a state vector whose value at some time tk is given by L

The components of the target's state vector ase the components of the relative position with respect to our

traaking vessel and the absolute components of the velocity of the tiarget. The state equation whioh describes

2(k) - owl)1( - 1I. (2.2)

- whaere, for our ease*, the state transition matrix is given by - g

/1 0 0 0

06(k) 1*(213)

\U0 0 At k I
The quantity 6tk is the time be.-meen receipt of the (k- 1)th and the kth pivee of data (report). If the
data, rate is constant. then titk xAt in constant and the transition matrix ON)l described by Equation (2.3) ~ :' *

does not depend upon tins. The value of 6it is determined a priori by a range setting that Is sell beyond the
rauge of the target. The actual procsessing of the data will be divided into two parts. The first involves range

(1)and bearing (1k) only. The second involves, in addition to range (Rk) and bearing (6k), range-rats (K) as
well. The data vector Z' for the first set of observations may be written as follows:

Zk k @051  W, M(k)j(k) + .., (2.4) .......

In Equation (2. 4), l'(k) is called the measurement matrix, which related the observed data vector Z'to the'

target state vector 1(k) .In our case the measurement matrix does not depend upon the time tkand may be
explicitly written out as .%

M'(k) mM1 )(1)41 .. .

The toer tj denotes the 2 e 1 noiese vector due to the notis perturbations on the measured bearing angle k*

and range Rx Assuming that the measurement noise on the range and bearing is uncorrelated sand moroea it. v..
follows that the covariance matrix of uur noite* vector is approximately given by

11 Wk Ck'601 sin Ikeos Ak (a' -RkF`'~) 00oBP + Rk' sin'lol (2.4)

The target state vector N() Is unknown to us and msut be estimated from the observed data ventor Z n
whatever knowledge we have of the measurement noised added to the observed ranges and bearings. Let ~k-1
donate the estimate of the target state Yvator based upon ehatevar a prior& knowledge we have, together with all 'WS

the observed dot& obtained up toi and Including time tk. . At time tk a now data vector Z' is observed. ,. ~."44~
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* In the Kalman filter model, the new updated estimate of the target state vectar is renturbively determinedi
according to the following equation: C)k-)+Kk(Z -M'k11.I)(.)

f,.." =.'* (O N -1 4.(l-M',k!k. ) 27
'sIn Rquation (2. 7), the term O(k)A( - 1) is the udatetd prediction of the target state trom the dynamic *. 4'"~

IN tquation (2.2), based just on the data available at stage k -~ I and before. Likewiie the term ** 444.

Is ur redctin o th mesurmen vetorZk'based on the (k - ) th setag data, so that
isnu pedctonofte eaurset eco - M'O(k)k(k .. 1) -(2.0)

Is the observed dhiscrepancy between the measured data vector at stage It and the predicted data vector based .:'.:2.:y.
upon prior Inforumation.

K(k) in Equation (2.7) In the Ktalman gain matrix whioh weights thie ohserved maesurement diacroeancy. it

* is chosen to miliimisu the mean square orrur in the uhtimatek ot' th compo~nuntni or the target istato vuet-or, it ~

P(k) a (1(k) - RWA(k) - OWh) MID)

where iL denotes the expected value operation. then It may he ohuwng that the Kalman gain matrix may be '

written as '."

K(k) a 0(k)P(k- l)~Tk)Mlt(Mlck(k)P(k- l)Ot(k)M'T +. WO]1 
. 2 1i) .

beginning with an initial covorisnom matrix P(D) af an estimated state vector. it may be shuwn that the
development "~the target state covarietnce matrix a function of O~'ms is obtained from the following recursive

*eq~uation! ) 1 0,

P(k) m ()~ i~()-K(k)M'O(k)P(k - I)'O'(k) to (2.12)"l

omuaiaieuaoete cndstfobrvtn. hstttrniinmtiWhen Doppler data is available the procedure, whij combined weith~ the forngoing process, in as follows. The S,4 '0i1,h
becomes \'%

I~ * 0

0 0. 4..

e4 nd the data vector may be written asto..

Zkl M(k)MR + ~f. . . . . 4. .

It 089k k0tin0i

Ul(k) Ul (1 a j 02I) ~ ~ ~ .2
Equtio (9. 145)a2 Inos etrde ot~ os

and, siailar to tquation (2.4), tho term ell in Eqaton 02 14 isa0/ Inievctrdet h os
perturbations on the measured bearing eangle It6 , ran:e Ak range-rate Ak and the support obiervatiori 1k t.JJLJik .

Since In ine not en explicit observation, It can be snthesized by either of two methods. The term I con be
ch~loulated by h-" 4 (21)

fik4 ,.1k -4 l41)/4

or by ^I%.0

aY(O)r X(kt 1 (, 7
. ~~~ T(k)' + X(k) .'.~.

The components Y(k) end X(Ic. in Equation (2.17) are obtained from Mquation (2.1). The terms Ar and tr s ...... ;
are obtained by

whene to is the motion of the observation vessel in the X-direction and tois the motion of the observation
Vessel in th@ t'-diredt ion. lo the range-rate information In tedata vector given by liquation (2. 14) Js

'a' ~~~~relative range-rate, which wse obtained by * ET O.(1)

The term A. eI the actual observation obtained from the sonar. The term Ao, Is obtained from the oilnuerva-
timoal vessel' s sensors. The covariance matrix of the noise vector given by1 Equation (2. 14) may be written as

JIM,\.*~~44
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* ~~The saim* process is repeated for Equations (2.7), (2.11i) and (2.12), replacing Z' MI and W by ;'' 11 ' ~
* 1U" and Ms'.

The ihmginniiig of the Kalman filtering process In given by

5000 D 0( 0 5000 0 0 kA21
0 G 5000 / 0

where the quantity 5000 is somewhat arbitrary. the important thing being that the diagonal elements of PM
51 ~~~~be large so that the 111Wc will forget the initial values as more data arrive, and *''*., ~'*

1(0 a (2.22)

The ariale in guatone(2.6 an
The process can be carried out Iteratively for each now set of observational reports. ,''*v '*

The arialesa . ' Gk in191ult odSM 0)and(2. 20) are determined a pr (orl and can be readj usted
adaptively if datireld. The variable q~ In Equat ion (2, 20) is calculated by

3. ?HE NANSUVEBIN TABOET FRObLEM

2.1 general '4 "S .

In thQ typical tracking problem the target (submarine object of Interest) will not, in general. maintsun a
policy of a constant courme and speed, It the target is a submarine, it.. will usually perform a meqloence of ,'~.,." a.u'

short straight-line maneuvers. If the target is a cabled communication, wire-guided submarine device, the
movements are oonstrikinod by the topography of the ocean floor. Etna* the mission usually require$ that the ,~..'4"aC.\
target operates in 01one proximity to cocea floor the mution could be hishly nonlinear. In this case, the .%'"~.%

ulassigal estimation of the target.'s action will be corrupted by the nonlinear movement of the target. Thus L " ~ "
the Problem Indicates a need to model directly the uncertainties of the target's motion In the estimation process,
The Kalman filter cnbe adapted to reflect explicitly the uncertainty of the target's state estimates at VnV ~..&........
tins due to the voandom nonlinearity of the tairget. This has led to the devolopment of an uncertainty gain
matrix Ue

2.3 Tbe Derivation of the Uncertaiaty Gain bt~riz (Us) a'

The state vector of a target with random mmneuvpring capability io given by ." ''''

where o1 K re 4 xl column vectors. At1

In Equation (3. 1). Is Is given by S

j~~u ~~jj (2.2) ' ~ ~ ,, '

a,%

%~

% S



and EI is #Ivan by

K5! ~. (13)

In Equation (3.2) the catepontahts ruitrucant thu true motion of the target for the non-maneuvoring colle and the
senietod mation for the randomie maneuvering case. Ini Equatiuil (3.3) till compionent& represenit tile deviations about . .

the expected stAtu veuo.or for the saineuvoring case, Thun tile error covarianoo stetrix P is given by .k4',V

In the non-maneauvering cave, thlt utieert~aiity gain nikt-rx i(Ull) is saro in IWuut ion (3, 5) and I ' 4' wl
M Vi

* ~~The d1ompotinta Are derived mas folluwe ~i

44e sibC a 0 + tuna cu 0

'at ads 20o) il

thare A a target speed, 0 target course and At im times between consecutive data reports. .*..* .*.~.

All the components of a~mre assumed to be unoorralatod, an cell as the o quanttitieg. Thus Iid in a
diagronal matrix obtained by ohlulatlorthe tearlanacs oV'squatinas (3?,) (3P.9) (3. I0) a"d (3.11),.,,

0 0 0 0' '

The cowpnents of Equation (M 12) arm
'7 0", Bala' + il" A, ONIC (3.13)

001 + a5 ~4 ,n *I in'0 (3. 14) 1 1 4~~ ~~

414 In Equations (0,11). (83.14), (r is the speed change capability in the time Interval At alid (o' is the courise .) .4.-
change capability in the time interval .-tt 4 The variables u-s and a,* are cobtaned by b ."

A *o, - &At (3-1)

I. There *In Equat ion (3. 15) and in Equat ion (3. 10) are input qutantitias that describe the target's speeod
and Course change capability.

* ~4. AUAPI'TVK PK'IEMINATION OF MISAIVAREMNrT NOISE % 4

OARACTKITICA

Thus far in our treatment we have assumed that we possessed total statistical knoowledge uf the noise which
is assumed to additi1vely corrupt our range mand bearing measurements. An can be seen from several of the foregoing
equations, for example. Equation (3,03). the values of the bearing and range arror measuremnent ntoise variances 44I:

are necessary to calculate the gain matrix, A porfent knowledge of the defining parametiors of thle nllies
statistics could permit us to utilize theme quantities in the most efficient mannter in the design of the filter *..'.

4! s~~ad to Construct a theoretically optimal filter. .
A % a



Unfortlllltituy one rarely hexi compihtst kniuswiedgsa titLu stattlitical "truc.turtio tho measurement noiae. more-

assignmenht of fixed nlumerical Woosii to sutih tinB'll 1! 1- as hloawilrtulllll varatli~ons is likely to be Urps will)tuoull
at baet. This Prautioe of aelaleing valuies foir s,esuvurlent louse variances and buildinog them into the ftilter ~,

eel could result in the eonetf~litloll of tile hent filter for the wrong jirubiem.

Itutiltivelly, what eone would like Is to dewligo d fite11r whittil hod at Minimal 0ieil11iiielii ipflltl nuser ital vialitem
of piaramottril which were ktiovn with inilertoot confidlence. Wmee knowledge of itehurevelit nioi~ Vifahrtueles Lit . *~,~C':

hotieonsary, haowver, in ordur to allow the tutour to apply lila applroprif ate weighting to the input dat~a. Thin , ' ~
suggests the Postibility of doltl'stilng tile filter to that it call estimaifte, or fil least monitor, the value Uf the
messuremsent Colasn variallies to eninure that the proper wenightinu wait being given to the data. if this could 9
be done, it would release the filter desiglnor from tile IecessIty of sup~plyling mnomoical values fur measurement
noins vilrltniano where the vidiithly of these vililo' *1CC quite UnverOtakli.,C

one manner in whichl this adaptive variance c~iatmatiun Mllit; ho performed in ats follows. Lett us donote

-* I) 
(k :

'Then based upon our (k - 1) th stago esitimate, we say prodiat the value of the bearInga to be observed at tiftiv

X W,

t - I4n

wher if is the atal measured value of the hearing itit time ti Fo Pr 1111 tiee pronessing Nquattiun (4.3) 'e *," 'C

saY be wrItten in tile following very simple rellurmivil furs: . A

CIA, wi, (4.4) ." * **

* gimilarly, if wet define our predicted range Rt to bea given by ., '

"M (X*whi)NYwuiL) (4.6) . . C C

then equationa anlalogous to E411stlonix 14. :1) Andl (.1.4) may be written to adaptively estimate tile varianoe on the*-
rainge measurementt errol's.

Ottei It# ulae ise uorousi mighilt 110110w iwabty 1)" iion.-statlonary. In particular, in mally situationsi It seems
tha th rlig flealll*lhCnt 141rol* earlallo is iteelt dependent upon11 range. lin MiLs Cysilt we cuultl aotiollnit for

tilt 11011. 11tstiollari. ill3 IRtylls illjit vaf 15111 by Iiniitilai tile "Illotoy" ot our alialitty range varieties estimator *.

to tile must recenlt en oleos oIf hiluts, (i this 0555 tile "eImoiltiod" estimated ra511gw varianceo at time Ll woulId
4e give11 by

Thu trick iln uslig- iClhattiitl (4.64) is Ii chooseu ml to be sinfficietntly largo au that samp11in1g flutattiotlls ares
smoonthed out Inl tile nuilpiutR~tin, hot suffilcitntly small so that tile actual variationtI it Lthe true Varialtil with
the rantle is refleutetd. Lijustituli (.10 uan 0011 t~sattly manipulirted slid written Ill the folloinslg recursive form
fur real Liss cusputattoil. .'

n/ in - I ) W 'I~n* n (n a *l in-.1-s
1 i 41

We JIlappli111 ed his adlalit inn Utohiilllle Just disor ibitl III tle lIame of it Ilinvarly mlivigii mud a manallivsii'lng; target.
Thes roiuultltg root. mileai alilerti sliiili efflirs, bittedi uponl 10 Mounte Carlo fulls arv mholwn Iill rigure ý. 'nisl shows ,.

thlat the results lit tile Adaptive vartantia Uiltluhlti 11111 Quvi lIll~iiillornlui otniioveflmilt uovr tie ilon-itdahltlvw ontimtatlis, ...

Wharf, tiot tiil iiIll'5adupti I utcime. thin Input. mollilurtlilalilt ALtliilirfl dihllC tat 1111 wuti III 141101 by a foetliru 3 tI
Kruii iitiljelilgi of Iniput, inwiiolCuvliilt vIIIthilUiiv oili urttei be this large iisotUnit. we f'*lltillith thim figure

ruproneetllt a rea tilixiv 5111151io and 111 111 t itt.ufolrtm ii, Ciltuntl Clith 51(1111 lye tulluitlultlililC hula be pursoutll.

ILI %. .
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The potentiality fur an adaptive measurement nolise variance estimation capability to hi tinlullded within the
filter is especially promising for tracking situations where the tracking extends over an appreciable period of i
time. For vary short term tracking engagements the times Involved are likely to be too short for the adapt ive
variance estimates to stabilize. Thus, for short tracking encounters, one ill probably have to be content with
utilization of whatever a priori knowledge ho hus of the mensurenent; noise varlancen in the data weighiting. . - -

%However, for long time period tracking, this techniqUe looks very promi-sing. % .'''

,I~m,1%. EXAMPLES

We will consider 1four typical steering patterns for submarines: constant course and Sneed (Pig.3). fast 900 es- . 9 t
turn (Fig.4), slow 9H0 turn (P'ia 5), and a sequence of maneuvers that will maintain in average spood in a
preferrod direction (Fig 61. The constant coors. and spocd geometry will test how well the Kalman filter can
traok A cooperative submarine, For this case the Kalmani filter will have a Zero uncertainty gain function and%
this will demonstrate its heavy smoothing capability. The fast 90o turn maneuver will test two important factors.5 ~
The first factor is the maneuver recognition time and the second is theo tr&Cker rocovery timo. The nunouver
recognitioni time is tho time from the beginning of a sharp maneuver to the time tlhe Kalman filter is definitely )~i

correcting to the now heading. The tracker recovery time is the tire from the termination of the sharp miuclip rA
to the timo that the Kalman filter Is estimat ing the now course and speed with in scene predetermined error bouunds
The slow 90 tarn manouver will test the Kalnman filter's steady-state risponwe to A constant rate course change
The seqiuence of font 900 maneuvers will test the Wilman filter' a ji~lity to track a rapidly maneuvering suihmarine..
The Kalmmn filter will never be able to estimate, to a hiah degree of accurncy, the target course and speed,
but It will be able to given an Indication of the 'agility of the tracker for difforent unjortainty gain functions. '.1 -.

In this care the posit~on errors and velocity errors become the Important evaluation factors. For the experi-
monts we sill consider A North-East coordinate system, where Nor~h Is the 'f-axis and East is the X-axis. We will
also have the tracking platform (our ship) standing still at X =0 and Y = 0

Geofhtr'y 1. Constant Course and Speed

The gecretry Is illusteated in Pigure 3. Initially the target starts at X =2000 yards and Y 10, 000 yards. s'\L\, '

The target will maintain a constant speed of 25 knots on a course of 135 degrees.

Ceosmetry 11. fast 90-Degree Turn

The geometry Is il,estrated in Figure 4. Initially the target starts at X 2000 yards and Y 10,000
yards an a course of 'IAO degrees -asintaining -a speed of 2.5 knots. After 204 seconds the -submarine performs a..
45-second maneuver to a new course of 90 degrees and a speed of 15 knots. At the time of the maneuver the I . * ,*5

target was approximately 7000 yards from our own ship,

* Geometry III. Slow 90-De~re-i Turn

The geometry is illustrated in Figure 5. Initially the target starts at X = 2000 yards and Y 10,000 yards. *

on a course ol 180 degrees maintaining a spend of 25 knots. After 10 seconds the submarine performs a 450-second
maneuver to a now course of 90 degrees at the sawes speed of 25 knots.

Geoesetry IV. Sequence of Fast 90-Dge -ur4

onThe geometry is illustrated in Figure 8. Initially the target starts at XC 3000 yards and Y 10, 000 yards
ona course of 18D degrees maintaining a speed of 25 knots. The submarine will perform A sequence of 90-degree .¶

turns so that it #ill still have a preferred direction of 180 degrees. The speed in the preferred direction wVAs % . ,.''.

to be 90% of the actual speed of the submarine. The time duration of each maneuver wos 80 seconds, so thAt the . -

final range will be approximately 4000 yards.

S. ArEALT11X OF RESULTS

The purpose of this section in to present a description of the graphical results. All the computer runs oere,
made with 10 different Monte Carlo runs to obtain the root sean square (r.m.s.) error statistics associated with
each geometry. The results presented are for rnm.s. course, speed, velocity and position errors. Ths error in
course is found by calculating the r. m. a. difference between the estimated and true course. The error in speed
Is found b3- taking the rae,.R difference between the true and estimated Speed. The velocity erior is the r.m.a.
magnitude of the velocity error vector. The position error is the r.d~s. magnitude of the position error vectors.

The result of the adaptive estimation process Is presented by Figure 4. In the weighting of the observational
dtAs it was assumed (guessed) that the noise signs on the range infoisation was one percent of range and one ~'
degree in the bearing observations. Actually the noise sigma was three percent of range and three dettrues on

¶1 the bu.e.a~g observation. Two effects Are immediately apparent. First the adaptive noise estimation proceia is
worthwhile in thalt it has smaller associated error statistics. Second it gives a significantly more stable
estimate of tine target' aState vector. Both techniques used the same bad guess sigmas values for the first nine
data :,sports. From the teach report n., the adaptive Kalman filter used its own estimate of the noise uigmas,
while the other continued on with tile bad gueas.
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The results of the constant course and speed target are presented In Figure 3.

This geometry was run with the Kalman filter processing range and bearing information (K?) and with the Kalman /
filter with Doppler processing range, bearing and range-rate information d(PWD). The only significant difference
is the smaller initial errors of the Kill) tracking system.

The results of the fast 90-degree turn target are presen~ted in Figur 4. As in the previous case, both
tracking systems (K?, KM~f) were employed. Due to the rapid closing rate of the target, the Initial convergenoe
of the Kill) tracker is very significant. Also the use of Doppler information greatly aided the response of the
Kaliman filter during the maneuver that occurred at 204 seconds Into the run. The timts difference between the
two trackers to return to the new track in significant. ' ,~'' ~W

The results of the slow 90-dgestr agtaepeetdi iue5 The geometry indicates thn
difference between the steady-state respunse of the K? and KIVW trac'ers. The steady-state response to the
constant turn rate (0. 2 rlngreea/second) of the KF tracker was 2.65 knots speed error, 9. 0 degrees course error

V. and 80 yards position error. The steady-state response of the KFll) tracker was 1.7 knots speed~ error. 4. 5
degrees courme error nod 70 yardm position error. " *

The results of the seqtience of the fast 90-degree maneuvering target are presented in Figure 6. This geometry
indicates the Kalman filter's response to a sequence of consecutive 90-degree turns of the target. It to apparen1l .*'-

that the KFWD tracker benefits from the Doppler Information. The speed error of the KFiVD tracker, throughout -.

the ent ire sequence of maneuver, Is one-half the K? tracker' s speed errors..
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NOTATI ON

Veotors: Loser usas letters (Latin or Oreek, with arrows) .*,

Matricea: Capital letters (Latin or Greek, underlined)

Functions and Constants: Capital or lower case letters (Latin or Greek) •. ', q.. ,

thrust acceleration vector q 9i,

total acceleration vector ,b. . ..* ,* ,,

7 position vector

S ~~~~~~~velocity vector.,.•. .• ,,.-

rate vector of navigational coordinate system with respect to inertial space

earth rate vector with respect to inertial space
S• " •e , ~~~~rate vebtor of the navigation al coordinate frame with respect to an -,, '. • -- . .

earth-fixed frame %

•ector of mass attraction

Zg x x " 7') , 'gravity vector

Value of th..ravity vtor st the surface of the trth.
rl ensth of th e rad us of th* spe . ,ri ai earth - ',•] •

S•~~t ro dzift vxotor mm z

error sng•. vector between navigational and platform coordinate frame

error angle vector between computer end platform coordinate fraxe P. .

position error vector of the inertial systesm~ 9
•V'•v •~~r ,.velcitty error vector of the Inertial system•{.,.

V referenc velocity error vector

V. velocity vector computed in th, inertial system

' •r reference velocity vector

Cý (V" 1, 2,3) control signals to updating nechsaniations

0V(V ,1,2,) gain constants ,

,la huler frequency *., .,\. ,,

To Blhuler period

t "time variables

Laplace operator ,-,

0(t) input signal of a linear system

Y(t) output signal of a linear systm ":""" "

variance j

Ov) Lmpulse response of a linear system

G(O) transfer function of a linear system

correlation time of the input signal :-% . : .

Nft.9-...



d , i~~'a, ... s ,

.. .he' '. *

S T) Dires 8-distribution
p(71 autoconrelation function .

power spectral donsity

C'. ,'. *.* • .

•'(-i), imasinary unit vector

direction cosine matrix " " '
-.- state vector V

N. xcontrollable part of the stats vector

"unicontrollable part of the state vector , .

YKiqissurnmont viector

A Ut state coefficient matrix%

11(t), •nmeasurement matrix * .,, ,

n 4 rasystem white noise'veotors V...

4 , hI• white noise driving functions of the controllable and uncontrollable states

q~t mesurement white noise vector

u C tp control vector t .. 1 VJ..h.

" a posteriori estimate of the state vector

XT the controllsbla and uncontrollable states of x~

a priorit vt metate of the state vector

Zia controllable and uncontrollable states of

y4x a priori estimate of the measurement t

weighting matrix (gain matrix)

cova/riano matrix of the a priori estimation error

~ onysnislice matrix ofthe a posteriori est~imation error

' appropriate parts of r.t•/Z o e l s

identity matrix

covartsnt e matrix of the synstem white noise vector' 0.

covariance matrix of the measurement white noise vector '

distribution matrix of the control vector ~C

___appropriate part of for thecotlabests

WMt auiyvracwhtno se ource 6a he,

1//3 correlation time h"

fit) output function of a ohaping filter ' L
random walk pa r Cwte

frequency in rind/sec

IC[,..,] expeotation operator "-o..%p

covariance matrix of the white noise vector n(t) .'..'%'..",.

IL Kroneoker symbol . ."

%4'
, . - . , • ' '.',

I I u
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CHAPTER IS OPTIMAL USE~ OF REDUINDJANT INFORMATION ______

IN AN INERTIAL NAVIGATION &ISTEAI e'~
P.G,Uiisor and N.Ott

* I,1 INTRODUJCTION *

Accurate and reliable navigationi Is a very strinuent requirement, especilally fur military missions. tesired

ot~tputs from a navigation syntem are position, velocity and orienitation of the sensors and the vehicle with

but the errors of an inertial eystem are not hounded, ise. they marcuss with time, Therefore, with large.
mlission timese, the errors can become intolerably large. other methods of navigation, like Doppler dead reckon-

9 1mgc radio, stallar etc., can provide only part of the Informeation required, but with bounded errors in velocity
* ~~or position. A navigation system that fulfils a wide variety of requirements for relatively long mission times ",,)

will therefore be a combination of an inertial system with other navigational side. Such at system dan provded
all the Information required and, At the susme time, control the system errors. Out In order to ume all tho
available Information in the host possible way the statistics of the error sources must be known, In addition
a heavy load is placed on the digital computer,,

This chapter upresents the different methods (i.e. conventional versus modern, or deterministic versus ... *.~

statistical) of stiding a pure inertial systema witb additional or redundant navigation information. out, beofre *''

the basic problem of updating is treated, the available sonnor outputs are categorised and at general block . ..

diagram for aided inertial navigation systems is derived, The pure Inertial system in a Schuler-tuned mods is
included in this block dissrom as a epecial cume.

2. *AMa DI~dMhI 'or *100 TINrU IAL NA4VIGATION MITNNS
.54N ,,

The central unit of a navigation system is the navigation computer. Its inputs are available data from

sensors, such as inertial acceleration, ground speed, air speed, heading, position itiformation, stellar angles, .~
etc. These date may be continuous lit analogue or digital form, or intermittent like ground fix Points, The.,,..
computer has to calculate the desired navigation outputat Position, velocity and orientation of the sensors \V.~
sAid the vehticle with respect to a navigational coordinate system. lit addition the computer msut also compensate , a1i~::
.for sensor bisaosesnd calculate torquing commands for platford gyros or positional servos for stellar or radar

*4equipment.

rigure I sbows the possible inputs sand required outputs of a navigation system, .

The available sensor information, as well as the computed output data, can be classified into three levels! or v~4~ %

Level 1; Acceleration -'-

Level 21 Velocity .

Level 31 Position and orientation.

Orientation belongs to the same level as powition, because angular measurements lead to position Information %'..* . .

and both data complement each other, Purthereors, in a rotating coordinate frame orientation angles ceo be ,- .'.

derived by integration tif the angular rate vector Just as Position is derived by integration of the
velocity vector V

Figure 2 shoes the three levels and the equivalent Inputs.

information for a higher level can be derived from a loser level by integration; but it is generally not
possible to derive lower level information from higher levels by differentiation. , '.~

The Information in each level is a vector In the navigation, cuordinate frame, except for orientation, where ..

the information Is in the form of three angles or the direction canine matrix (1) for posuible coordinate
traaaformstions,

If Ill, navigation frame is rotating with respect to inertial space, corrections for acceleration must be A'&~*

Included. Thils can be recognized by writing the basic eqvitilons

(d) + PRECEDING PAGE BLANK (2.1) 1 P
4. %

A %

%,

C. k5, X5
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S + wi xr + 2Z!l x V + x Oaxv) ,(2,3)

* whre *Position vector

tr.d) time derivative of with respect to inertial space W--4 tt*~.~e

W(dibdtm V - derivative of -rwith resevct. to the navigation coordinate trame.*

rate of change of navigatiolisl coordinates system with respect to inertial sapsce

thrust acceleration vectorV

vector of miaui Attraction

h (6v ,/dt)N total acceleration in navigation coordinate'i.

*Substitution of Squa~ion (2.3) into Equation (2.1) yields

Iquation (2-4) shows that the following corrections are required t~o the acceleration level, in addition to
measurable thrust acceleration:

()Acceleration due to mum Attraction:

00) Coricls accelerationi 2~( x

(III) Tangential acceleration: wihteaeftenvgtoa ~tm h

(iv) Cientripetal acceleration: &I x (iJ x?)
If the sensitive sitze of the sensors do not coincidewihteueotenagtoalvrdaosyem h
sensor outputs oust be transformed with the orientation matrix (M).

Figure 3 shows a general block diagram of navigation systems, inoludin, the oorrectiona just mentioned for a V-
rotating frame, Rsdundant data may enter the system at levels 2, 3a snd 3b. These input data cohaist of the%
correct values and errors. The errors can be bias yalitas or stochastic processes or a combination of both, .. --
Consequently the navigation information in erroneous too.t-~:

The following two problems sust be solved in order to use the available redundant Information in the best
possible Way!

(a) Determine the desired output information with minimum errors (minimum variwtoce). This is a filteringW6
f or estimation problem,

(b) Control the system error states. This teask is a system control problem.

Both tasks are accomplished with a minimum variance or Kalman filter. Twnk (a) requires valid mathemtatical ."*' ****

models of the different error sources, Task Mh is Accomplished by feedb'owk loops (inside the computer) as X . .-

Indicated In figure 2 by dotted lines. d

Befors these two tasks are discussed in wore detail in Section 6, the error behaviour of pure inertial'f'.% . -

systems and the conventional methods of updating aeconsidered,..~

3. OITERKINIBTIO ERROR ANALYSIS AND ERROR BEHAVIOURI %'.V ...

OF PURE INCRTIAL SV511N1 Z.%.:

tn a pure inertial system thrust acceleration represents the only Input formation measured at the first ,

qlevel. In mset cuss the input axes of thes sensors are parallel to the axes of the navigational coordinate .

f rse. If this is cot the case, a coordinate transformation In neoessary. .~' f~%f

Figure 4 shows the block diagram of a pure Inertial system used for navigation over the surfac~e of the earth. ",C
In this case the velocity -4 of a vehicle is dWined as the rate of change of the vector 1 with respect to the ~ 'Y*.,..

erh(x f/t,.Therefore, instead of Eqution (2.4), wenow have the fol111n relation fo Acceleration ~
corrections: I~ 31

(!: +g* Z X 03 ) -(9~ X A) X (. 1

where ,.

uearth rate vector
- rate vector of tha navistitional coordinate frame with respect to an earth-tixed frame.
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As shown in Figure 4, a feedback loop existv owing to the gravity vector ,i.e. the synton inq oupuble of .td'" ..

oscillating. The oscillation occurs with the Mchtulir period K ,',4 W

The error behaviour of a pure inertial system in a Onhulor.tuied modu wilt now he discuwAed,,-

Figure 5 shows the error block diagram for one horizontal channel of such a system, Thn errors considured

are accelerometer bias, lyro drift, and azimuth misalignnment. i., ",

The following notation is used in Figure a:,*. .yv . .. ,

S= computed ve oice ty .sy r i x -direction ,, , .
Sr, om puted position error in ".ircto
17 = x-aacnlerometer bias

Cy fixed drift of the y-gyro • '4..

*y a y-campoeant of the error Angle vector between the navigational .
and platform ocoordinate frame.

4 e a-component of the error angle vector between the platform and
computer coordinate frane (azcimuth misalignment),

The velocity and position errors, u derived from IPigure B, are

•i~ go --y +-X

The characteriatic equation (denominator of Iguation (3.2)) is that of an undamped ogcillation with schulor
frequency, For constant • acensor errors the steady-state value of the velocity error in

,, ... * ,, =• * L "

0. ((7Ig S 5 + (3.4) .,,.Ab,, 
.,,,O

The position error is zonstantly increasing with time,

sa ti none wn ogr rel,, - =,(3, 3) •_'• .*.,J.: 7 ..

and It is unbounded owing to .ra drift and azsiuth miaaligsnent; accelerometer bias does not cause an unbounded
position error,." R. " "

4. DOTERMINlSTIC UPDATING METHIODS

X AAlthough Schuler tuning Is of great importance In navigation over the. surface of the earth, it has been shown
that for long~er mission times the position errors can become intolerably large, especiall•y because of g.yro drift• m i • • t•iim "

and aimuth error. To avoid this, the pure inertial system con be aided with additional or redund,•cu navigation .. , i,,,, .

information from other sources, Available oontinuous or discrete dati for the navigation computer may be of i .

mlevtlo o, e und 3b a No dditional on level I in avilable, because wo do not know my other
method of measuring acceleration except by inertial means.

Accordingly we distinguish different kinds of aided systems: =_. • ' ..

lee All. .k

(I eoiyaie ytm (redundant data at level 2), .J.]-J•• l(/

!i~~~~t ~~(ii) Position aided systemm (redundant data at level 30. ,,''..,, ,''''''

(iWi) Stellar monitored system (redudt data at level 3b). ,
('iv) itellar monitored and velocity damped systems (redundant data at levels 2 and 3b). . ,' -

The additional or redundant data can be intermittent and used to replace the computed data at certain time .... v "

periods. If It is always available, it can be continuously compared with the computed information: the differ-
"ece signal, multiplied with various gains Kv, can he added to the ancelerometer output ign1als or the gyro
torquing oommands either directly or over additional integrators. If the difference or drror signal is Intro-
duced at the next lower level It is used to damp the oscillations of the system. If it is Introduced at the .. ., . , *

saae level inside the Schuler loop, then the frequency end amplitude can be changed. If additional integrators . ., . " , .,
are used, sensor biesee can be obmpenstad,

I,. ". .'. .'" " -, ~ . " :•

......................... ... '...'........"., ....



414 *4*

-ahiuinol ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~- of itUk Scue-uesytmadtesaaianothdifrnuptngehd

Figure~. 8*sow te

AsFigure 6 inho ates thu hnel oiff an s ighu lr-u c ytman b sd tohroie me haisat o h different oure vd sgatln s, hda (:

Thefise me nl ,.thodar w diacus ed nmore sietal, muthlere with vhelogtyin favailablet asdredunodan e inforition,. 14i'a
mtor iouput.l Teloity snigna dampngnot te h ele Sculer tosreactin The inertinl ve gnloct C,,te ifrignal drcl eas f*~,' '

itshigh inoise lee, prvies drctmrensattiongfo smetedisnta verryrusefu vloand ity by allplicable sit angula otr maue 'I

Integraor woithgion hea re vilbe

Assuming that both the conmputed Inertial and thes ioamutred rnference velocity are subjected toeros t
three corrections Corresponding to the x-channel error block diagram Lan be written ats followst

~ (v1  vr) K, (A- gv1 )

Is , ! f VCR " yr1
1s i e !L f(0 r - 8vs ) dt.2

* hr r ad 8
1 rpesn h ror fteoeptdietaladtessardDplr refrnevooiy

wher trandsfer fuctio seo t the vel rrsoi f and ositiut ierrors c an d thdeied rom Fiured Dope as folosu vsol

aepciey % ~ i' 1 ws+Kc

~ -a Ce.wp~ (w(K~sK1)a'%
Flu*7sosthK-h clero lo iasoo h ope inertioa l system described. %

Te u tionsfe (4.) undct.io cns beuofo vl t the velocity and position errors fo edrvdf om r differenta valuews

K1~~~~~~~ ~M + KK and + a or tootiKpia vle ftethe anfcoa. Th tay-tt eoct zo

ago (opesae b+ t2e )diioa +inte(srato)r B

qutos(4)and (4ct the vbueoftee factor thevsalvaes this meansit tatd thpcosetin values forifethegant valutes aotfb
conidered asd 1 rtooti optimal values ute soe an eaths dhreiniti n ofacors.l The notbeaysten ivenloct fa ,r bosue."
nonl one~n erro r eircenis taenocinty ro r SYccounttin4.). The prbf fotmlgis isxised gyodifan d aec ion t e.rror'

have beennste biyssd tht idiioa maynaesteerrrgaenoatort bt ~ ~
rath rer stowhsti prcesanempes thera ýisd by nthirn o a toherveloctyo ferrorn duo ? t ogro ditheir spect ura e %en

ineForalineatemnon-time-ava3ying)systems the dfetatitc ofethed ofutpuatsingna (t, folloK s a d ir0ectl K,,a theK vf -).
Inthime-imdpledenly tat istn f lheinpufinot .Tema au of the veosgiturskntheroutr saaignal iR nro if Itheret

ea~dno vale ofueo ipthesifalct ero. thems averaghsean value the scuarenvle of the ou gtaignathe time ot be

dependentonatanterrors (bcanses hoapued beeyicsebti e ae the erprrsirn ar oIcn~n u .
rathr sochsti prceses caratersedby hei auocorelaionfuntius p(,r or hei spctrl dutt 1,

fucin "W

For~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~V lier no-ie-ayn sytm h ttsso h upt inl* olw ietyfo h

I .
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where

a(s) =system triansfer function

P, Or It) =inpult signal autocorrelation function.

If the input signal it' whit, noise, the sutocorrolittion function is sivon by .4 4

p,( I T,-',I) =AS(Ir,-rJ2 ) A =constant .(5.2)

Iq'lstion (5, 2) substituted Into E~quation (5. 1) yields

t. It g(r,)g(r,)A5(j',- -r,I) dr,dr, 7
ay(t) J0 0

-A ItgeT r,) f g('r2) (It-,-.r2 D dr2
0

The ir'*.er integ..d can be evaluated by using the distribution property of the 8-function %4.N W~ 4

0 f~i for r no in (Otl 1
With Eauation (5.3) the expression for o' becomes -j-

Ifthe input signal Is bnadwidth limited white noise with 1 au oorlt in function

Px Wr _11(5.5)

,Msin(5. -' can also -be- used if r. is small compared with th. system time constants. Equation (5.5) can
then be approximated by

sead the cmftvut varisnce yields, in this cram.- 4

ory.t 2,-o-,, '(r 57

A' other method of determining the steady-state value of the variance ;(1() if It is convergent, Is given by' .

'4 ~limit Q. :~O)tc,(5.8)
%The output spectral density function is given by4. 4 4

IFor bandwidth limited white noise. 0. cen be evaluated from the approximated autocorrelation function PO(I7I . 44 4-

of Rqat'atn (51.6),

laulitions (5.9) and (5.10) substituted into Equation (5.8) yield ..

4%, tI-i 
0

(t) xd1 0~ -~i o W)Id . (5.1j) ***~. *4 ' M

It should be noted that. Squrtions (5.8) end (5.11) csn only be used if a(s) Itss no poles on the imaginpry axis;
or in the right half-plane. A pure inertial system in a Schulsr-tuned mode is undamped, i.e. it has poles on *. 4.

the isaainsry axis. This means that the effect of noise Inputs must be calculated according to Equations (5.1) ~
or (5.7).

% ~ As sn exaimple the variance of the velocity snd position errors due to a white noise Doppler input error Sv,
for a dsamod *.yctem are nw calclated. .4 . 4 '

LIM

.44~4 %q %**** . M*444I . . . - - 4
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0 Using Equations (4.4) and (4.5) Lhe transfer functions for X, K3 20 are

52 s+ Ks+c.

At first Equation (5.11) is used:

% 7Aix 2 2r',y ý71 CAi t Jo I.IIdeJ

K2 1A) 2~K

11 27s2 2 )1 + KM

'r 8 Wj KK(a,'-K

% /

ga(t) =~ 2~T(\ one, ml - 2W? s+ ~~ 1 t ~ 6

K .*Kit
Kt) co Not al sin Wo 4rt (b. 17) ~ ~ .

where

The desired time-dependent variatioes are obtained am foilows:

(71i Mt 2-,Oj, SA; I .(T) r

V~'8v J~W - -Kt ( w"KI + l&.4 + K,4-

- u~ w + K _2 _ o~

4w1a+ K2,X1 +$ 4cuIKI
- j--sin 2wo t 2. 6w, 1  (5.19)

4 OWGK. 0

cTIr (t) 271 yojy, Jt SL1(T~) d'r

'U sini (4 ~ , + ~ Icc' 2w~t . (5.20) k ' 4

0(4,.,,' + 0, K 2,a

If K, IS smaLl1 comparod with we , the following approximations for oa.(t) and11.t result;

1 s t 
T

O, as,,K 2 (j~I t -(5.21)

.0, I~~~quat ions (5,21) Laid (5. 22) show that~ the "filtering" of the Dboppler notese through the inertial system depends- *4.

Ilargely on the gain factor K, . Also, the time constant for the variatioe of the velocity end the position

2..
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error are inversely proportional to K. These facts give additional criteria for K, If K2  and K, are
" also 0O it is diff•'ult to obtain a eloeed.form solution of FEquation (5,'). In this cue i computer progra

may be necessary to evaluate the integral and to obtain oriteria for the valueL of KI and K,

S. STATISTICAL FILTERING AND UPDATING

' The updating meohanism described in Section 4 used a deterministic approach. The advent of very powerful
navigation computers made it possible to retrieve more of the information contained in the navigation monmure- .,

menta by applying atatistiral filtering techniques.

In this section the problem of optimal estimation and control of aided inertial system stats variablos In

diacusaed. Although the problem of optimal estimation and filtering Is actually a faixly old one, it has only •''"
recently yielded a decisive breakthrough by Kalman ad others, The classical theory of Wiener and Kologorofff
hbu, u an essentia

1 disadvantage, operation with the difficult formalism of integral equations. Tho Kalman
discrete filter equations are purely algebraic; hence they are particularly well suited for processing on modern
digital computers. Common to both theories in the fact that they are applicable only to linear systems and that .'
they make use of the same criterion of beine uptimal, namely the smallest moan square error. - Moreover, there
exists an interesting connection between the two theorieo: if the Miener-Ilopf equation is extended to non-station- ._- . _ !

,ry processes and presented in matrix form, it is an exuct analogy to tim ortiogonality toreor, of the opt.iial
Kalmaa, filter equations'. This orthogonality theorem states that tire mean square estimation error beromes a
"minimum if, and only if, the measurement error and the estimation error of the system state are orthogonal to S%.
each other. \:n' .

Inertial navigation systems can be expressed mathematically by nonlinear differential equations, But the
navigation errors are well describable by linear differential equations using only the first terms in the series
expansion about the nominal values. The error sources, for example gyro drift, accelerometsr bias etc,, appear l ,

as forcing functions. If these error sources, u well as the error source of the reference measurements, are--
co•sidered's statistical variables with xero mes and known jecond-order moments, then the modern Kalman theory
of optimal filtering applies very well to aided inertial systems. In this way optimum dLe is made of the external .".,. ,. .

measurements as additional informatJon and of the known statistics of the error sources, to obtain the optimal , .
Ssystem gain factors ior every time instant and to keep the navigation errors as small as possible. It is import- -,. • ...

"ant to recognise that, contrary to the conventional updating m6thoda described in Section 4, the gain factors are I .,

not constant. They are recoeputed in every Kalman cycle in order to use the redundant information Wii the optimal " "
way within the ,system.

The Kalman filtering theory and the derivation of the equations is fully discussed elsewhere (References 8,
13, 4, 14, etc.) and can therefore be deleted,

The most important properties of a Kalman filter can be summarised as follows: . .

"The filter estimates are all variables of the state vector in the least mean square error sense, , • ,,,,.. .

The estimation is based upon statistical data of all error sources and is completely carried .
out in the time domain, - .

The filter formulae satisfy minimum variance criteria for all problem parameters,

The formulae implemented are recursive. This means that the optimum estimate for the time ,. ' • • , ",
being can be computed from the previous estimate and the current observation without recourse .- "

to earlier estimates or obsorvuations.-- •,- - ,%

The recursive formulae are sell suited to digital computers. .. . ',_

The basic method of using a linear optimal filter within an aided inertial system is shown in Figure 9. r . . . -

"The two upper blocks in Figure 9 represent a pure inertial system., The navigation equations are mechan.sed
in the navigation computer in the oonventional vlay. Compensation for sensor biases may be included in the
navigation equations.

The information available In the navigation computer is compared with redundant external data. The differ- '

eaces are the masurement .data used in the filter to improve the estimate of the system states. .- " ?' .,"=

These error estimstes of the filter mav he used either for updating the navigation information, and thus for
correction of IIVU orrnr. (closed loop operation), or only for improvement of the error states (open loop
operation)

2
, The block "controller" regulates this operation.

If an Inertial navigation system is mechLnised in the open loop operation, all errors and their external

measurements can be represented by a set of two linear vector equations

x(t) = 1.•)x(t) + nat) (6.1) .'0... ).,-- -- -- 5i,,'. ,
y(t) = Vt.x(t) + q(t) . (6.2)

. . .d q •a•*

• VW . "• •~ ,J . _',I ,'-&

0. .

Z.44 4 ' ~ , . . .. *"4~ - 4.*~44 ,4 1
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tquation (6.1) is the system equation. it describes thle propagation of all errors occurring in an aided naviga-
tion system, The elements of the n xn matrix Ejtj are known functions of time. The components of tile white
noise vector n(t) represent the forcing functions. Equation (0-2) is tile measurement equation. It relatomNce" A
the values of tile error state vector to the measurement data. Thes vector 753~ represents the disturbing %

hite nois of the external measurements..

It is essential supposition of the Kalmn filter theory that the vector differential equation (01 can.. a..

be solved by the smeo method used for deterministic differential equationn, nikmoly the conventional Picard
iteration'', The so-called transition matrix Oit/t , which plays a fundamental role in the whole theory, appears
in thls st~lution. Using this fact and dividingý'ýis ~time axis into equally spaced discrete Intervals (the sampling
tines of the computer) the dynamics of the linear system under consideration can be described in the form

•k+h (0.3)

" "" OK (0.4) 
% %

, where .

XK=system error state vector at time tK
n=•o n state transition matrix. relating the state vectors and d

in the noise-free caue KI K

h e dditive white noiose sequence representing the forcing function in the o

Ceee(Noteo: If ,oQuttion (0.3) were presented in the continuous fore, then the vector

si the response of the system to the white noese input n(t) would be a:1correlated random process. but in the discrete form the values of the integrals

for different K are Independent of each other; therefore the vector e Ca n.
e be represented as a white noise sequence with the property

a observation vector of measurement data at time tp linearly related to t p -.

t , o U ameasurement matrix at time tk relating to X in the noise-frevanhe .m.

.4 additive white noise sequence corrupting measurement data at time tr h

The following five basic equations represent the Kalema filter!

""'~ . %"A . ''•-

L a (6.9)

where

-- r " ,." '..,.g'•

a priori estimate of the system state v sctor predicted at time K"before using redundant measuremen ti data

dyomio .item ' a* .. \.' *.%

posteriori estimate of the system s vor 1 it ti , after,
using redundeant measured data

o.

z n xa covariance matrix of the u posteriori estimation error -

a awe covariance matrix of the a priori estimation error - 4

"= difer
t e = nan oovareinoe metric of the system white noise vector

N Q& = ME '-'] = a m covariance matrix of the measurement whit e noise vector

,..,.....-.A.....- ,,, ..- , A-A,,

• The followS°| fiv ~ ~ebsighquting(an) matrese at time Klafiter '• . . _ .
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Those equations are processed on, an iterative basis to dotermiane consecutively the optimum estimate x~of the
system state a~t time tK . The mochaniestion of an aided inertial navigation system in an open loop oporaticli

sytmcould bo corrected by subtracting the estimated errors; but. sic som error~st i th nrilsse are ~
not bounded, the linear error .ýodel or the navigator would become invalid, The requirement of smail errors and
linear ervor Propagation can only be achieved by controlling the state vector in the closed loop operation. ,
Forsud controlled system some of the above equations must be modified slightly. Instead of Equations (6.1) - ~ ..

an .)the following equations are valid*: .(

W t) .&.x 0 + adu ()i? + natl0.0

dimension no n,

The modification of the filter Equations (6.5) to (6.9) results in a slight chang of quatn (6.6). This -

result is oiebe ic h original equatio~ns given fur the uncontrolled system are derived in the literature

under the important amsumption that the mean values of the Input forcing functions sre zero, i.e. that always the L'.
cadiiu i ald H7 )= ad XI 0, epetiel.In the conto-rlled sysem he onition o zer

mean value inputs is not achieved, because now the forcing functions consist not only of the white noise vectors '"
or ,but also of control signals which are treated as known determinist~o functions, based upon the .t.,.

is not valid for the control signals, becauee the estimator maIs unbiased and the initial value x~l docs

not need to be zero (Sectioin DI of Reference 13). Nevertheless it is obvious (and can be shown by minimising
the mean square oetimstick error (Section C of Referenice 13), that the modified Equation (6.6) now becomes

Equations (6.10) to (6.12) would be valid if all components of testate vector were cnrlal.Ufruaey*
the ideal case of complete controllability is not possible In an inertial navigation system. The controllable . i

states are in most cOsma restricted to errors in position, velocity, and platform orientation. The effects of
teohrvariables can also bermvdb nluigcmesto sgasi h otrlsgas ae upon the

Kalan filter estimates, but nevertheless these variables are not controllable in a strict saense, because they
are -not accessible to -direct. measurements -and corrections.

In eA inertial nvgtosytmtesaevralsaeuulyepaedinto two Parte, the first one
containing the controllatfle states, the other oine the uncontrollable states. Thus the dynamics of such a ,-
sysiem can be described In the following formu

:~LJ x I h t

The control signals for the time interval from tX to tK, 1  should bebsdupon the best estimate of the
sate vector jr. Available at time 15 . But, since ttiponin imanwmesretisadadth%
computation of the weighting matrix 0 by Enuatioiis (0.7) to (0.9) requires some time, the a posteriori'
estimate xý cannot be avaiable at s time instant ty, . Therefore, the control signals FK,1/ must be *.\,, .-

computed from the o prioriestimat

Considering the fact mentioned aoendthe so-called separation thoe"5tefollowingreaina b
derived:

Subetituting Equation (6.14) it uaon(.2thaprriand a posteriori estimates of the separated 'state
vector in the Kalman equations are represented by the following equations:

*Note: It in permissibie, In order to sake the transition fros Xnuatlon (6. 10) to (WILL) to ocrolsdr the vector UM
a KosatZT;) oe the Kalmao cycle Interval. The asr V Ithn gien byte expressio

OK



game remarks ar. now misdo with'regard to the state vector, the computation of the transition matrix fand tho

computrrorn in thesitioi,

Tihe btaehaviour oftVlttr e must Inlu e descmpribabne erthors byd ierrr hourcseinteous oyse linearh inuocatcou
difrenthial siatios breesentedt thy whitbe ninsuedI contan the nysemvfigation e8.1)ors (0.10). eroany pof %h

uncontrolableplatfor oriabentareon merronts of the snetiate sentors andcaywe thei respciemslgment l ror thpourc-
fore, anot derosribe by thte rdnoint sequnsos.Tesenorosmyoiiaei hesno tef nteevr

setorithe mo aueetatnile ti important erro moesae rcsernote whatk and erornstt rhcando biasepes.nted borrelated

tidme behaeiour ofn the laternerae frmus whte decisabeete by linear ytmsshapiong filters). ina nhmge

diheent~ialk eqrtoes.so that theye sctanbcludedsityha the syormofEutns(.1or(,0)Mayfth

ucontbeoescrbled int aibe rsplmnst the stite voctirbyetheslinearedifferesntialvequationsource

whre not desriablte drwitin fnction, reprenesen. auiyvre ht os ore

Arandom wl processe ian obb ie ugheotunoen nerated frominuti white noise. bts liifrsyterentialfltrs.

TeqUation prces ofn ue pcta est a the form

Acotantb dsrabede in chn alsome d esma ibe by ah lin ear differential equation ,ifatbthmotsmlon

f ft) t M = V(0. (6.t)

whtr soltion, asuple drwithna rundc nta odtion, represents auiyvrncwhthe deisied sucntne ba. ror .

A rnosm bel preen s thttis prtacied ofsupentn the stpt f anitegvetor hoeis pu a s whiteenmhodife Ithe dferror ia

numbertaof vardmiabls (apoximatlyo by thes third b owal nea disfteenta constrioned to fcotie b ny the most sml n

Ietsoltion, ofppthed sithat vector bypaingithvaia blodton res to b he e dim iraed inonestante band terremanin

important error sources: this means to '"auboptimise' the system, Another method of suboptimising, which
results in a procedure sisilar to that described above for the controllable and uncontrollable states, is the '. - V

variables in one or acre Additional subsystems. By this means the correlation between the variables in differ-
-. nt subsystems is, in fact, ignored And the estimate is somewhat deteriorated as compared to the optimal case,

9)~ ~ ~ ~ u pthisa reduction of the matrix dimensions results in some savings In computing tine for the approximate '**, .

otmlweighting matrix"0. in every case of designing such a suboptimal system, the performance deterioration
du oelimination or partitioning of some state variables should be predetermined by digital computer simula-

tieadcompared with optimal results. For sxampleo, using the method of partitioning the state vector, the . % -" %4'~'

Mbest' partitioning depends~ also on the system conditions. P. 0

Tecomputation of the transition matrix ' twill now be disoussed. it lis known that ,,,,,, can be

dt ~.~t/t . .(6.21)

where 4 1

is the initial condition. -I iett arx

series can be derived, which converges uniformly in t for every matrix A Ut) This solution is given as %.
fnothewseeacaeaeplctcoesouinothsdfeetleuainino oihehuanifnt" ,. .* '

i ,(*."
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OrL+.J d + Rr, A(-r rd-~r,- + A( A ~ Z2!'Mrdr dr dr +. (0. 22)

In the mawe of constant coefficients, constant, Equation (6. 22) can be transformed into the form )%

(6 - Mt-to)
O/a + h(t -to) + A' ''+ , . a (8. 23)

This result can also be derived directly from the differential Equation (0.21). However. in most cases the
matrix A is not constant, at least some of the elements aik are functions of time. In theme cases the A

computation of the terms in Equation (6.22) in laborious, and it in better to subdivide the whole Interval .

(t -to) and to consider ý as a constant matrix during themn partial intervals. The time-dependent elements %,..

of the matrix A are now approximated by a staircasee function, By thin means Equation (0.23) can be used to .-

compute the partial transient matrices a~- nd it can bo shown"i that the matrix Ot over the whole %N
inlterval (t-t.ý is simply the product ofhn tL matr Ices, ý 'tt.i :.aA 4 ...-

Ot /t it *** /t (6,24) ....

It is important to nete that by this method the Iteration ties for the computation of the Kalsen equations does
*sot need to agree with the iteration time for computing the partial matrices Ot /t Thus essentially longer % "

cycle times for the computation of the Kalman equations can be chosen, dspen~dIiiiidS -s peed of the available

computer and the tine when additional redundant measurements are available, The matrix 4~~1  over the whole
Kalman cycle interval must In these cases be computed using Equation (6.24). It is of grvil'Ilrtancs to peay
attention to the number af partial intervals into which the Kalman cycle interval is divided. It it is sub- % a

divied oo fnel. te lieartermin ho erie exansin (.23 is uffcien tocomuto he artil mtri
g& 1/eI, but then the aomputation of the total matrix @t/t, may consus a too great portion of the available %~A
coipuiilR time because of the great number of multipliostfoiiiind additions contained in Equation (6.24). This Ja'~
Is especially true, when the state vector contains many variables, It Is often better, with regard to computing C'
time sod also with regard to accuracy, to subdivide the Kalman cycle for computation of the partial matrices ' .A¶mJn

S less finely and, instead, to take the quadratic term of Equation (6. 23) into account. The matrix
lwte i interval tp .,~ to tp can then be approximated by the equation

3~I +____(v p.)+ ,( (to ..- t.--. (6.25)

For every system it is necessary to deteraine which of the two methods is better In a practical aems Probably

~~~a ~~the first method (finer subdividing and consideration of only the linear term) Is to be preferred in a real .* .,4;a

system, In which -the matrix A~t) seky change very quickly, whereas the second method is to be preferred for
system performance error analysis, where comparatively slow cangses af the matrix MW cecur,

T.he~ computation of the matrix !Lcan be derived from the vector hK as follows:

1C eF? +1 'k(t,,1 .7),n(r,) dr dr~

Warerhamngin the order of averaging a&W intearatiou, and defining the covariance matrix of the white nois a* %-:><-
vedtor W~) an ..-

B ~ 1)~ 1-, Mt 62'7)

one aen write further

X 0t ,+,,, r N(Tr)O(tx,.1 r)T di- (6.28)

In general gEquation (6,28) suet be approximated by numerioal methods. For example. if Is considered as ' .
a constant matrix N over the whole Kcalman interval CtX, 1 .- tK) and If, according to Equation (6.24). this
interval is dividedinto an even number p of sub-intervals of equal length A~t to.1~t to then Equation
(6.28) can very well be approximated by Bismpon;-s rule: *,.
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41 +

+~ Ot

/t) 5,ý1: +

+U NKO

of course, this solution can only be of theoretical interest if p > 2 .because the computation of Equation

(6.20) becomes too laborious, In most auto., it will be sufficient to approximate Equation (0,2's) by the

No general expression cman be derived for the meassurement matrix ~ bcuei eed pntemnaie
inystem and the mode of operation, bcueI eed pntemcaie

In Seotion 5 of this chapter the conventional statistlical error analysis of aided inertial systems wasn
described. With the mid of the Kalman filter equatilons a statistical performance analysis with minimum error
variancox can be accomplished very effeotlvely, I'or such an analysis only the liset three of the five Kalmani %%
equations, nesely (01 o(6.0), are required. It is anx advantage that, in an ideal controlled system, the

trx!*gvstevracso h ttsthemmelvem, either directly or ater simple transformations, fo .4
Mil much a system the error state varianncns will be reduced to a level equal to ths variance with which each
state is estimated, Therefore the LolluQYI,idefimitiouc are valid for the matrixI

Lhiontrilled systes Mdeet ocnirolled syctes %
(open loop operation) (closed) loop operation) r

r u''s - ) I

As pointed out earlier, no Ideal controllable system exists in reality. But a relation can alto be derived forI the covmrisnces of the controllable states of a real system, in which the state vector Is separated into conl-
trollable end uncontrollable states, as shown toi Equation (6 13), fly mubst ituting Equatiton (6. 14) into Equation '~ ~
(4.10) with negative sign (oorrosponding to the may In which the control signals outer the system) tli. following x\~

A ~relation is yielded:

K +r 1 /19A L
P'rom Equxation (6.32), finally,

9+ "'K I__ 4/K I_4:iixI + 11 tlhth , (d.33)

If a short Kalman cycle time is considered, @As compared to the time constants of the navigator and the
* , ~~associated error procensew, the matrix /Joem not differ such from the identity matrix and the matrix ~' ~

oil~ is near taro, Besides, the Ye~t'1 
lis ie ro in all practical cases, because the random forcing*,y .

1w~iatons of the controllable states cons ilt of correlated error sources. Therefore the approrriate part of
10 :an be used as a good description of the actual covariancee of the controlled states, Us ins these facts k-tV04''f'

isntnecessary to carry out the solution of Equation (6.33), and the computational burden during perform-
smoc analysis can be reduced substanxtially. [A

The error behaviour of sn aided navigation system will cow be investigated, using the method described for
system performance analysis, it should be noted that, by this method, optimal values for tho elements of thle ,..

weighting matrix Bj, are automatically computed, In contrast to the conventionalI, determiniatic method %

described in Bectiin 4, the effects of these gai factors will certainly be wore complex, since they do not k
enter the system at a single definite place, but because they influence in mix optimal way every system state,Accordingly they are, of course, not exactly equivalent to the formerly used diterminlutic gain factorn K, , K,
or K, , for It is easily possible to include tnesse'factors also in the matrix _A of tho nysten Equation(6.1) or (.10), respect ively, and, in addition, to carry out a Kalmsn filtering. The Meaning of the matrix

L o iore comprehensive and sore prnofound. Motbomaticfally !1 hee the tusk of weighting the estimsats with ' ,

th redundant measurements and, i2.Lho optimal case, of entabl'Ishij4 an orthogonal relation betwoen the linearpw ~
independent random vectors -x (estimation error) anid 4 y (measurement error), anid thus to accomplish .*"'.-.'

the orthogonality theorem monflonedI earlier,.' .~ - '

1v* ~s
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Figures 10 and 11 show the propagation of the position andc velocity errors of an inertial navigiation, system 'g, (

In different modes used to navigate over the surface of the earth, It can he aeen that here also considerable
Imeprovement of the accuracy can be obtained by additional redundant informastions, an compared to pure inertial
niavigatlioi, The velocoity error in the pure Inzertial maode allows the charactaristic Schuler period and the
24 hour period, In contrast to F'igure 8, hot only the influence of a single error source but the entire influence,
of all error sources is oanaidered. rhe inflaeno. of any sinale error source could also be investigated by a. - "-

change of the method described for the mstaten performance error analysia, but, since this is an objective of ,. ..

suboptimal studies, it will not be discussed further.___________

In this example the state vector rK cornsists of 24 variables. The first. 7 states are the well-known
controllable inertial navigation errors whess propagaition equatians are derived in several textbooks (References ', ,**. ¾ *

1, 11, etc.a. The other variables are the uncontrollable error sources which cannot he represented by white ~
noise,
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Input Output%
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Ground Speed(Doppier) Navigation
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Ground Fix) Position

Altitude (Radar, Barom.)
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Angles. Stellar, Horizon,

Sun etc.)Velocity

Via, I Inputs and outputs of navization systow )-

Angie mneasurementrts

Level 3b%

Acceleration
rneasufoments Level I Lvl2Lvl3
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Fis. 2 Levels of navigation information
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Velocity error/ kts.

Pure Inertial mode

Velocity aided mode

Velocity aided mode
with 2 Position Fixes

5 10 Is 20 is 3'0 TIme/h

Fig.,11 Velocity error of an inertial systS!m used for earth navigation
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Velocity aided mode
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PIX. 10 MW position error of an Inertial system used for earth navigation .
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CHAPTER 19 APPLICATION OF KALMAN FILTERING TEHIiINQU9I
TO BTRAPOOWN SYSTEM INITIAL ALIGNMENT

Iqrle BOrocker and Leonard Rabiesb ~ t

k. 1. INTRODUCTION

Initial -attit~ude alignment of systems involving Inertial Instruments Is a requirement caused by the fact that "%

sensors commonly used In inertial guidance, navigation, or attitude reference systems measure angular rates or
Integral& of angular rates Wgro outputs), or linear acceleration or integrals of linear accelerations (arcelero-
meter outputs), When the used exists for continuous knowledge at absolute angular orientation of the frame or
platform to which the sensors are mounted, then (just is Initial values for integral@) the Initial attitude must .

be established, This is the alignment problem which Is considered in this cbapter*. l'h" basic objective is the
investigation of digital methods for the determination of the initial alignment of a rapidown Inertial nuvigation
system from vibration and away corrupted data on the launch pad.

The inertial components may be mounted on at stabilized platform or direotly 2rupjted down to an uncontrulled %V%
swyn oy In either cose the essential mathematics of establishing alignment frcm outputs of th: inertial %-t.' %

omrcsthemselves toidentical, In astrapdown Inertial system, temeasurements are made Intevehicle o
body coordinate system. Angular Information obtained from three single-axis platforms or three puloo-torqued ' ~ 'n

gyros it ueed to update a coordinate transformation matrix relating a set of analytical or computing axes to the ,.*

body masee. This 'coordinate transformation matrix is, then used to transform the accelerometer outputs from the
body eases to the computing axes. The initial alignment problem is concerned with determining the proper initial
values for the elemente of this coordinate transformation matrix. '"~

Itthe imitial computing axes are earth-fixed at the launch site, the problem is reduced to one of determining ".
the orie1tatitton of these axes with respect to local vertical and an asimauth reference.

The azimuth sanlei can be determined from an optical measurement, as shown In Reference 1, The determination of . ,-.'..

vertical involves using the accelerometer outputs which have been resolved through the coordinate transformation *i
matrix into a reference coordinate system. This system io maintained nominally earth-fixed at the launch site by %

wsimg the gyro outputs to oompenaste for rotations caused by vehicle sway. This reference system will deviate from .,

ma earth-fixed System due to gyro drift because proper compensation for the earth'sa rate cannot be provided until ) ~ ''

Ifvhcemotions are sero, the determination Of the orientation of the reference system with respect to vertical
Is tiilsnethe accelerometer outputs in the reference system are a simple function of the orientatkion and%
the acceleration of gravity. When there in vehicle motion, the output of the accelerometers due to gravity must ~,
be separated from the output due to vehicle notion by filtering.

Filtering methods investigated under this ctudy were all based on the criterion of a minimum mean square error., ,.

and differ mainly in the mechanization technique and the amount of a priori knowledge of the statistics which is
assumed. A prime effort of the stuidy Is to Investigate the accuracy of a Kalman filter In which both the state
equations and noise are modeled differently from the "true" characterisotIcs. A useful filter msut exhibit little
sensitivity to these modeling errors since the "true", characteristics, particularly the noise sources, are never
known.

Methods considered Included %n optimal filter of the Ralsa type, a simplified Kalman filter in which the effects '

of gyro drift and improper earth'sa rate oomitnwatLon were neglected, a maxieum likelihood approach, and a least-
squares curve fit technique with and without preconditIoning of the data. This chapter will emphasize the resulte
and analysis of the Kalmam filter, since the recommended appjroach was use of the simplified Kalman filter. The
details af the analysis of the other techniques can he found in Reference 2.

3. ANALVAII ~

Aligmentof coordinate:ystem defining a strsaidown or platform system implies knowledge Of a basic reference
system relative to which the allignment is performed. The referenice system used here is earth fixed, with one axis -t.

along the local vertical corresponding to the average position of the swaying strapdown system. One horizontal_____

This need obviously occurs for Inertial guidance end other systems. see the book Inertial Gaidmne* by u..lma~w n.
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axis 'is assigned an arbitrary azimuth, This coordinate system is designated CS(O). The atrapdown reference '

analytic system Is CSCI) and in the coordinate system in which all measuromente by the strapdown instrument
system CB(2) aer referred. Alignmont establishes the relationship between CS(O) and C8(l). The strapdown

sytm opte uthrcntisinformation expressing th elto between CS5l) and CS(2). In the following 9 ' .

At the initial time CS(l) is misuligned from CS(O) by the small angle (nA~=8*as shown in Figure 1.

While CB(O) rotates exactly at the earth's rotational rates, CS(l) cannot he correctly "torqued" since the T

miasligninent angles oL , 73 are not known. This causes these angles to vary with time due to "earth'se rate ________
coupling", The angles, additionally, change due to error drift rate of the gyros,......

proortona tothe misalignment angles; thus,

In the strapdown system, the acceleration sensing instruments are actually located along axes of CS(2) (or someV
:(l)in he traldnwcom::er mesurd inluds te efectof ando hoizotal cceeraionother aies whose relationship to CS(2) ts known by physical alignment), but the uieuuremsnts arp transaformed into . '*, -*

cached by the missile sway, This is the prinoipaci noise Input to which the filtering methods are applied, ,

2. ietinCsneRlton ewe Rttn Codn'I-ytm

Certain basic direction actosne matrix equations ace of importance in understanding relatiouships between . ..
'rotating coordinate systems, Let 10 denote tha direction cosaine mertcis which transforms components (V,,,V,,.V5 ,)
of &'vector V in coordinate system to its components in coordinate system 1. Then. . *,.

or, In detail,

V cy 0  y1 z 0, g (3b)

The individual components of the 1C, matrix denote the cosine of the angle between the two subscripted axes.

Ltcoordinate isyatem I be fied in Inertial spacewhilesystem 2kttea a rate wTM, , where the angulftr

rotation rate is measured or given as components along the axso of coordinate system 2. Then* TM T

d 1ec,

dt aN 4

Since c, * W2c

0 IL
TM~~~~~~ cc, CMT ~. ., . MT'..

TM A~ * *'~~ A * . T M. M. *M.TTMTM TM M T

dM 4C, T *T * .*'T M
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3.3~~~ $yem4ynaic

The quaion desribng he srapownerecionproess re eried i ths sctio. TeseInclde he

* The equations. mi esrhisIsg the fomappraowpriaectior thoe a redertived in the is acretiome Thesen ficltder eutheions.y

Certain assumptions made in this analysia are as follows: .. ,

".1(1) The initial misalignment angles rer small enough so that the small angle aIyproximations
(sin 0 6, cam 0 1) are valid.

(ii) Inertial cocmponent sensing axes Kar orthogonal to each other. .2:Jz *-

(iii) The gyro drift rates are constant,

(iv) Gyro torquing errors and accelerometer instrument errors are small and not considered. -:

Mv The sway velocity is adequately represented by a narrow-band noise process having zero mean value,I

The inertial instruments which measure linear acceloration are Integrating devices, so that their outputs are
prop.ormioal tothed Aneivalr of~ acelrtiuon over fixed time Intervals, in particular, the outputs along y, and . .

I mes are given by

P3(t1) g/3 6,(r) dr + (1 t1  1( 1. 1

tj~

* where PIt Isth ouptaogz at time t

P~jt) s te utpt aongyjat tin' t

VIt steaa eoiyalong a,~

V,(t) to the sway velocity along yl %*.* .

The horizontal eccolerationa caused by missile away are mein to be included In the system measurements, While
the msieaacasssuiu oacclerations (noise) to be measured, the sway In limited to finite values whose
average scceleration is zero. This allows the noise to be modeled as a zero mean process, In certain practical .
situations (hparlnsinwchthe net aversge motion is not zero, mdditiouial Inputs are required to '

describe the mot ion, -

2.39 Equations Governing the Angls 3,y Describing the At ignment Between
* the Earth-fixed Launch-Site Coordinate Sysem~ and the Strapdows

Reference (bordinate System ..

-- The three coordinate systems of concern in this analysis are

LCOM - Barth-fixed launch-site CS

LCi) - Strapdown reference CS I

?hetras formaEu~tio equation solved by the strapdoen coptn ytmrelates CS(2) to CO(l). This equation

d IC

dt,

.9;where ca I Is the matrix of angular rates measured by the gyros.

weis the matri Of earthsa rate in cCOM). F

In squation (0). the value of earth,'s rate in LCO) Is used rather than the proper values corresponding to the.
rate In LClI. since there is as yet no information relating the alignment of LU(l) to LCRO). * "

The gyro moasured rates are In error by the gyro drifts. Thus (0

WiJ 8+ dt ,,

%~I '

21 1 4"
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where • represents the true angular rates of the swaying body and d2 represents the gyro drift rates In the
instrument ases,.

The Inverse equation to Equation (9) is

d1C
dt C 0 l,

Bubsitutins for the measured rate 4o2 from Equation (10),

dt
d 0 1e0 -~ • C (12) • ,'."'*';l''

In the same manner an for Equation (9), "
0. c, 0 0 1) .•••.,:.,.,

dt (13)

and, with
aC, t 00, '• 

.we find, using Equations (12) and (13) that

d ~ ~ 11 -(d"l•o"o °00 °. dg t10, (14) N, % .• %5
dt%%

..".•., . .••
This is the basic equation which relates the strardown reference CB(l) to the earth-fixed system CO(O), , '

The equation Is simplified by first noting that the drift term can be written an .. .

aCg d, C, a c IC ctid '0, * C, di (1d) to CCd

Components of the drift will be assumed constant in CU(i) rather than C8(2). b. X -

Since C8(l) diffsr& from CO(O) bY small angles, ao shown In is•ure 1, cc can be written snm

Substituting Equation (16) in Equation (14) then causes Equation (14) to simlify to " '

d~ a'

"dt ' 0 " 8 ." .. '

d .A.

%,, .a _ __ ,1 i4( _

- -0 . ".
S"~d-t" "0 % 0 " y F. : . ..

' Y

The equation for the full sAris d °C,/dt reduces to only three equations, since the aniles 8 , a A re-
"nmall. The w0 matrix contains the values of earth's rate in C0(O), and the unknown drifts appear in the d
matrix. Filtering will produce estimates for both the Nieelignsott angles and the drifts.

2.3.3 EquatCons Dlecribing -the Noeis Inputs to the Syotes Velocity Metauroftente

The veloctty equations (7) and (8) indicate the presence of noise terms. This noise is predosizantly caused
by missile sesy, The noise cannot be represented as white, but rather a correlated velocity noise model Is a 0,

better representation, due to the dynamics of the missile sewa. The correlation function to be used is

To generate this random variable from white noise inputs, lot" ..

v M n-(t) Cosn ost + n,(t) in nt , (19) , . ...

4 'Probability, Amadoe Veriablos, eAd SIOClrdaLtC Frotesse. tr AIavoulia, MOaraw-HIl1, 1065, P.3.73

%.W. ,,

,k
-- _' . .',% .. .' •, p



where o,(t) and n,(t) are independ~ent random variables with the autocorrelation function___________

(A R,~ ~c IA/ (90) *W

Noise with this autooorreiation function oan be considered so being the solution to the stochastic differential .

equations

U (-1/r)ns(t) + we(t) *(221 ~.I
where w1(t) end w3(t) are white noive random variables with autocorrelat ion function V~~i~~~

21~

6(t -t1  is the Dirao delta function,1

v t)1% the sway velocity along the a axis, P'or the easay velocity along the Y alis vl(t) ,we have
V,(t) aln(t) Cog &ýt 0 16(t) sin 4.t (24) ',

*+ v3/~3()4w(t) (Rb)

where 
h

% 3w 5(t2)w3(t1 )3 1 Iw'(tJ)w.'(t,) a (t. ICt - t* , (27)

.34 Conuers~ion of the Systen Equations to the Kalsian State Equation form *

'The system equations are described by Equations ('7), (8), (17), (10). (21), (22), (24), (35) and (20). These \.
will he changed to a difference or state equation form directly recognizable an the comao fore for Application -4-'.
-of the Kalman filter equations. The process is fairly direct though tedious sod intermediate results will not be
shown*. All the differpntial etauktions in the met are linearl they are of the form,

dt x(t) + W(t) (28) ./.'

sad have the general solution .*'~ *~

q61 u.(t 1,tI.1)w(tJ51) + (ti.?1~fCr) dr (10)

which is of the proper state equation form. In m~uation (30) the state transition matrix io the matrix exponential "M' . "

* ~~~~The full state equation Is finally obtained In the following form: ~~~ 5

+Lti u3(ti. 1...* * ,)

Ati) Oi Oi 0 0 n3Cti-1) 0

n~t.) n(ti*1)
d .00 0(.a 0 d24a))0 Ut)

*~drI aotiA detal Ageaim e eerne2

S *5~+

4.'tj

0,1 5.9(i ) C~) u(I

2 1 1 11 0 1 1 
44.. 

. . .
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or X(ti) *4S(t 1,t1  j)x(t11 ) + G(t1 )u(t 1 ) (32b)

eiwr. *II1~in (ti ti. 1) 1 - one it 1 t 1  *(3

+- +

I is the 3 03 unit matrix,

0" + ~~ C Cj (37)

.1 0

q6 1 oil (38)

0 (t i ) +6 t.I sht i

461 0 0 c

u7 0 6 1% (t. 1) (37) .w ...

u1(t). IV (38) ~ .
4

.'
4

,

I uin the 4 xi 4,) unt ati

(t 1t) M rr)

0 0n have the $in anne

The naoisetearemt whchappear in the stteo eutransared rceleater toutputs There niseo addiational n(21 tof the

* Ut)Xt) rt) (1

whereti ttocedaNt)*[ :~ ~0 00000(2

andhaereA the qu anisn a t o l l

aTherr whtic mesuremenl cnito the l woeling error abcut e lerometeor outpthe L nTher hois adiinal noase ofuitiled
m~teasuemesnt ofe the qulntiation aofe thes when a the~erouitpt.Te maesurement equatioen the giv etni by

H~t1) * (itan 4in ) HtarXt +~o rC,o.,)~ ,,,,],~4

where is thu angl de btweeun tizatoeion .It ovarihe maSInthehrix ta ilsn give bhe fifti

'-H
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3. OPTINAL FILTER nQUATION1I .____,_..____.__

In section 2, the sytem equations were derived. They r repeated r for convenience.. - ...

INt) U 0t 1.ti1j)x(tj.0 + 0(tL) u~1jr (45)

Ylti) a H(ti) x~t1) t r~tp . (40) 1%~,V 1 *

The well-known Kaluan filter Equntions oan be applied to systems with this description. These equations give ''".
an estimate of the state vector x(ti). based on the measurements {y(t 1 ) ,,. y(ti)} , which is optimal in the
mean-square sense. The filter is described by the following difference equations:

*(tjtjtlj) 0 (tj,tj.t)1(ti.j) (41) .¢ ,.-.-*.• !

141|) 2 •(ti,tl.,) + K(tA)[Y(ti) - H(tji)(ti~tI.,)] (48) "..',"•"''"' ". .. ..-- '% ,

The optimal filter gains K(t 1 ) are calculated from the following set of difference equations: !

2~itlt + O(ltilptQl•t~ll (ti)Q(ti)O•(ti) (49)

' ~ ~~~Kitj) "- P(tioti.L)H'(ti)[Hlti)P(ti,tt.,lH'(tl) + I~tie)]"• (150) %,.,.,.,.,d

PN Yt a [I - K~tt)H(tt)] P(ti~ti.1) (51):! : ." •

• .4k.•,• ,

where I(tN) is the optimal estimate of X(ti) g given the measureomnts Y(tI), V(t1),.*,, •(t 1 ) 73

10(3t1 .t1  Is the optimal estimate of a(t)', given the mahurecsnts (y(t 1),y(t 1) .... Y(ti.,)}

P(t 1) is the covariance matrix of the error In the estimate 1(t1) , .

P~titi-) )Atheoovarisnce matrix of the error in the estimate i(tj~tý.1 )

These equations describe the optimal fl~ter. It is desirable, however, to simplify and decouple the equations -

to reduce the computational requirements, The performance of the optimal filter is described in sotaion 5. It
is Also demonstrated that the degradation caused by certain almpliflutIons is negligible.

These simplifications will be Investigated in the following section.

4. MIIOPTIMAL FILTER E,..ATION,

4, 1 introduotion

The filter equations presented in the previous section are rather complex. They Involve 12 simultaneoue
difference equations arnd hence multiplication of 13 x 12 satricee. It Is desirable, then, to investigate the /.
possibility of simplifying these e4uatlons. In order to determine if the simplifloations are acceptable, one *.

* .. ~ must calculate the degradetion in filter performance caused by then, In addition, the seneitivity of the Y.'. ,.
filter to errors in the noise should be investigated. The equations required to evaluate the suboptimal filter "' '.. r. 44 ,

performauce are derived in this section. The approximations to the system dynamics which are used in the ,,,. ,.
suboptimal filter are also presented. y ' .'

The suboptimal filter is obtained by simplifying the etaW equition such that the state transition matrix
0(tt,tI. 1) of Equation (45) i. replaced by an approxziate and "iJplor form %a5(t 1,t 1.) . , . . '

A fairly gemeral model for the suboptisal filter equatio-e is then given by

(t I(tc.4.c) + K,(t 1 )[Y(ti) -X(tA);e(t1.tL 1 )] . (53) -'

SThe suhbaript a denotes suboptimal quantitiee. The gain ýo(ti) In obtained from

t) [ - Ee(ti)+(ti)] Ps(t 11t 1 .) , (54)

These equations are identical with the usual Kalman set except that they Involve suboptimal quantities. To
determine the true covariance matrix of the estimate errors, we first define the quantities

4.. .. .. .... ',...,... . .. ...

L . . . ...' . . . . . ,U
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Ut~j, 3t95(t1 , ti. 1 6R(ti-ti. 0)

9-' coa c marxo etmt errors for thesuotmlfteisgvhb

Sqltiion (57) uatibe writtbnthn termnsose ath cquatio(4ande m triesdined ixeted naluu, ils,'.~

the quaionforP1(1) otaine byti mul(tpling EIation+ P(53) b 't) I . b

Bymultiplying Equation (452) by its transpose and taking expected Values atbti sdeonemmdatl

M~ ~ ~ ~~~bti~ ~ ultiplyingtuto 5)b h rasoeo qain(5 Eqatind( tain expecttaoed value yiegdna % %t

4jtJ K5~j)p(t1 )Ht 1~) + 11(t1 1 Pt1 .. )P 1 t]Ht)K() V,

+ E5 t1)t~t 1 Ej( 1) (62) %~mi

Tbsc~ss he derivafo ', tio) of Otaied eua'tionsia aearytion() boyut the trvanspose andtakingo espetimtondh

vaue. Afsosmtierstom algeb yraic s manpuaton one obtains

+(it±u U (t1 -~t1 5 )'P~jt~)-P~j]1t).(j

+4 1 t1 1 ,,t)~jKj (63)

errors.

0i1 1 0 0

[0 0 01
'

Ths result at this simplification ts that the equations for a and -v become uncoupled. If the drifts
wue neglected, a further Oipplitiostion results. The equations dosaribinig 13 are SLiven by

is
5

, *1%
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S0 0 0 .(t.1 ) 0 0

1(ti~~~~I' _111 1.1* 1e 00 tqt. i l t

ft 1 mo 00 03 0 11[i1 1 0' U: (t[ ti 0 0~2 1 0 uC 1

whr oil a •4 n1 4xp,(t ,,i ;/T

Oikl. , " C, :

alle•i " Gas oa IX[(•t.••

al, = sin coti . ";' . "' ,' 4' -

The equations desoribing -v(ti) are of ,lmost the identical form with a sign difference. i

The equation for ot is simply % ~ '

, The filter oorresponding to them@ unco•oled dynamics is also uncoupled. A summary of the suboptimal four-
stat filter equations follows.

", ' ( t i l t s .,) . 0 * 4 0( t i . It ,( t i .L ) ( e6 7 )

•,*.4 .,j•,. A ,.,

A.'A

,*(t i) * w*(toti.,) + e*(t )q-pi(tt) - X*(ti)1,Ctjtti.tj) ('70) %.. ,

K*(ti) * Pctj~tj.1)N*(tj)(H*I(tj)P(tjtii*l(tj) * R*(t 1)11  
) .•J ,,,. ,AA

P~(t1 ) u (I - K*(ti)i*(ti)JP*Cti,tt. 1 ),A (73)

* ~~~~where ~A.'~4 "

.[ (t:iti.i) 1 03 I,, . A .. , .0

0. Oil N.IA • .j ..,.., -,,'.',"

0LL4*() O l ,(t -t .. )/. . ...

)(t 1) ,'.

Lf u ,O 1 0,Rt 1  LU '(t,, . ,....'. .- ... ':.
130A ;, ,'.- ..4',A.....-10(tt) 10 1o 0 o 3 o*(ti) • 1/12 .,,

4.3 Wla Errors in the luboptimal Filter

The approxiationh to the slytem dynamics can cause a bias to sppear in the suboptimal estimate, and no direct A A ."A *.
method has Yet appearod to determine this bias u readily as the determination of the oovariance estimate of the A% \ , " ',

suboptimal errors given by Iquatlon (58), In general, a bias will occur it the non-noise associated part of the %

dynmico equations Ls approximated, or It th measurement equations are changud. % . .

:. ,'? : . :'..:: :.. '. .

,.,-,,.....:.. ,,,...,.•,.•• ,",.,.. % .. ,,;,...,.•,. .... •,.. . ....... ,...A
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An appoxiat expoxio fo hlecnb acltdb elcigaa os.I hscmteagei

vring tessniallyiatioa lincsear iun ction of .2medu th evarihsation rosstime of the angle ever, th ciused byglt the

;%time variation of the angle and assumes the angle to be & constant, It oan be shown that the error in the estimate ~ ".

which minimizess the mean-square error is eqsual to one-half the change in angle over the measurement time, 1Ibis
4' . ~fact can be used to write expressions for the measured angles in terms of earth'sa rate, the goonotry of the ..

optical measurement of azimuth and the actual angles. Then equations can be solved to yield a better estimate
of the actual angles. Details are shown in Reference 2. ,,

B. RESULTS SUMMARY

4' Figures 2 through 0 show the results of the analysis of the Kalman filter. These results are obtained from *

computer Simulation Of the appropriate equations. Figure 2 is the la erection error for the optimal 12-state ~.*
filter. This filter Is described by Equations (47)-(5l). Thu conditions used for this baseline case are given by z

Initial integrated velocity uncerta~inty p .

Initial erection uncertainty 0- 1/2 degree ,

Oyro drift uncertainty 01d 0.1 morn (I meru 0,0150/hr)

LUE.. sway velocity 0  .v*05 s/s
4Accelerometer quantization level 6 x 0.02 s/0

Center frequency of away velocity power spectrum fe u 0.25 H2 ... P~

Correlation time (reciprocal of bandwidth)
of sawa velocity power spectrum 7r 2 200 a V *

[empling rate I sempla/s m.

Figure 3 shows the performance of the suboptimal 4-state filter for various Initial erection angles. This -' .,,.''¶ k-
filter Is described by 9quations (67)-(73), The main si~mplifioetlon employed in reducing the 12-mstat optimal *4.,4.'...

4
h:\

filter to two identical 4-state filters was the neglect of earth' a rate ordes-coupling termse in the system - -

dyainio used in the filter equations. In addition, gyro drifts were neglected In the simplified dynamics. The

difference in errors for verioun Initial angles in attributable to the earth's rate coupling. For initiml angles 4

4~ ~ ~ ~~esta 0.5 degrees the increase in error over the optimal. filter is less than I second of arc at an seconds., -.-. ''

time. If the initial angle uncertainty is large, the 12-state optimal filter performance can be approached by .-

updating the computer' coordinate system after about 20 seconds to reduce the cross-coupling effects, Another - 4 4.

approach to removing the crosa-coupling terms is to use the correction matrix derived in Reference 2. ,,

0,.C'
Figure 4 shoes the degradation in performance due to the neglect of gyro drift. In Figure 4, the gyro drift '.'"' .- ".' m

numbers shown as paremeters are tie I10' uncertainties in the true gyro drift, The filter equations massume zero
.4, w~~~ro drift. It is seen that the drift uncertainty must he quite large (20. moe u 0.0,3 deg/hr) before the filter fs' V\\ '

perfcr#Anot is degraded appreciably. .. ~. A

Figure 5 shoes the erection error versus time for varioun &.ampling timse. A sampling time of 1 second aeemss .

to provide a Cood trade-off between computational requirements and erection accuracy. The worst case oonurs alien ~.
4 ~~the sampling time is 4 seconds, This Is because the center frequency of the sway velocity power spectrum is 0. 25 .' . x

hertz. since the power spectrum Is very narrow, the sway velocity Is almost sinusoidal, with a period of 4 seconds. .

The sampling is thus at the asam part of the aine wave, and it becomsa quite difficult to filter out the noise.so

.4 The correlation time (reciprocal of the bandwidth) of the carrow band noise has a significfant effect on the
estimation accuracy, This Is demonstrated in Figure 6, where the correlation times assumed in the filter equations .'

athobs the correlation time of the actual noise, It was found that the filter wass Insensitive to errors In the 4.,4\,.,'.*"
amaimed correlation time. When the assumed correlation time was 20 seconds rather than the tell. ou'relation :.-

time of 200 seconds, the degradation in filter performance was negligible, The Important parameter Is the actual
nots crrlatontime and, not the correlation tim assumed fur the filter calculations.

Simos the frequency of the missile sway say not be known exactly, It is of interest to determine the sensitivity
of the filter to that parameter. This is shown in Figure 7. In this ca"*, the actual frequency is 0. 25 hertz,
while the number used in the filter caleulations is 0.2 hertz, it is peen that the accuracy of the estimate is., .
somewhat poorer, but still acceptable. The performance for an assumed frequency of 0.3 hertz Is almost identical , 4.'

4 ~to the curve shown In Figure 7 sad, therefore, has not been presented. %

An alternative method of erecting the analytic coordinate system is to use a lemet-mquares filter. The.4 S*,

computational requirements of this method are such less than thome of the optimal filtering technique, The estimate.,-
of course, takes longer to converse to within acceptable limits, Pigure a compares the performance of the least .

psquares and the optimal 4-state filters of the case when r a 1.100 a. The optical filter Is significantly hetterj -ý
than the least-squares filter for this case. Figures 9 and 10 show the same onspairison fur .0 a and 5 a
respectiv..ly. It is &seen that, as 'r lecreameem, the least-squares filter performance approaches that of the .,.,~,

optimal fliter. This Is to be expected slces, for white noise (,r n o). the least-squaris filter is optimal.
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1The preceding curves ware calculated by determining the covarianoc matrices for the estinttlr. errors, In si',
addition, a simulation of the filter equations with input noise derived free a random number gen.rator ween .w

performed, tilgire 11 showa the resultm of onn run of tkis simulation with the sway velocity noise spectrum lying , . . .
. in a narrow band around a center frequency. The la value obtained from the covariance matrix colculation is

shown for comparison. Figure 12 shows the resolts of a run in which the input nolis is assumed to consie t of
three narrow bind uoitos at different center frequenoies, The filter still assumes that the noise is centered
in a narrow band around a single frequency. The threo-frequnnoy noise im considered to be a more realistic
"representation of the velocity of a swaying missile with several bending modes on the launch pad. The center . ,, ,

frequencies used were 1.2 rad/a, 2,14 rid/a, and 2.32 rid/s, with a correlation time of 200 seconds for each
bind, The total r.m,m. swiy velocity was 0,5 in/a. -..-..- ,.

Certain "rules of thumb" which have bean doveloped to allow extrapolation of the results given in this
chapter to different noise 0harsoterlstios and filtering times are as follows:

0() The r.ms, filtering error is proportional to the r.m.s. value of the away velocity nuise.,

(b) If earth's rate oross-couplingn are removed, by updating or by using the correction matrix, the filtering
error is not a strong function of the initial angle error.

(a) The filtering error Is approximately inversely proportional to the noise center frequency, " '"' " '"

(d) For short correlation times, the filtering error for both the optimal 4-state and loast-squares f~ltsr is N .
approximately inversely proportional to the three-halves power of the filtering time (Irror u K/1T, 1), This 

1 "..•%
is shown by plotting the results of Figure 9 on log-lol paper in Figure 13. For longer correlation times, .C.".. , 4.*.

the leut-nquares filter has a filtering error which is more nearly inversely proportional to the square of the "'*..'-'. -, -

filtering time, while the 4-state optimal remains inversely proportional to the throee.halves power of ths N -" , .

filtering time, This in shown by plotting the results of Figure 8 on log-log paper in Fleure 14. It must be i

remembered, however, that the curves for the two filters can never intersect, so that the least-squares filter

error must approach being inversely proportional to the three-halves power of filtering time as the time increases ,, ,. .,

(a) The filtering error for the optimal 4-state filter is approximately inversely proportional to the square root

of the away velocity correlation time (Frror -_K/r I/'), The least-squares filter error only approaches being ' ~*
inversely proportional to the square root of the oorreiation time at loe corrslation times, however, For -' ..

higher correlation time the improvement in performance with Increasing correlation time is such loss then
that of the optimal 4-stats filtei. This is shown by plotting the results of Figures 5, 0 and 10 at
60.5seconds tin on log-log paper in Figure 15. This rule obviously cannot be used as r- approaches Moro, but
It dooe bold at least down to r a Is,,.oK,,o o- .. ,o .. .
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NOTATION

p1 , Ti satellite positions and time at the I" Interval

ground roferano oscillator frequency

ft stable frequency transmitted fromi Satellilte

f user received ftequency

Af ~ frequency difference (satellite)W

Ni'iDoppler count for satellite Interval I j

t time

ttime At satellite ith ilteiVal

inoremental time P11

* , slant range at ith interval 42f%
atincremental slant range in I , 1interval

C speed of light PI

* Cspeed of sound in water

gravity harmonic (i) and order M

K ~~~frequency scale consistantV ~ .

St. EH 150 MHz and 400 WMz frequency distortions

y sonar Dopplsr-beaa transmitting sngle

steady state attitude error

dylissic attitu~de error ,

3V velocity error

T temperature (water)

Ssalinity % t*,

D depth of transducer ,Y

state varteble vector

A ~system dynsuics matrix

4 state transition matrix

I system noise

V1  velocity components along ith axiis

T, coordinate transformation matrix

am. earth radii

is perturbation quantities . *

A1~ ~ "t Iim acceleration r
earth rats

latitude

I. %
% % S

4
*N **



A longitude • 9 v' i

10 gravity , - .

"gyro drift . *

-, CA' internal gyro angles

'Igyro time constant

%. uý KO gyro damping gain

t6f1  sonar Doppler frequency difference along It axias

"fi h axis frequency for sonar Doppler , .

"" ships a pitch angle
shiP' s roll anile ,

ship's heading

SKroneckr delta ...0 %,

QMi variance of white noise

ail variance of stochastic process ~."

reciprocal of stochastio procesas correlation time r 1

• •covarlance matrdix ,.

mti of Kalman ,eti

R nois covaiancematrixV

esi ate of s ate vectors
N observat topro s etalomgte of obsev atns resmpetivel-. - ,-

'S..••- , .,..

nesrdaem ranom matrix k. k

Sintimatan e and i~grate veot r@. . . .•,"•.

S,5,.,t *toe* 9 . *;::..,:• '. •, • unit vetoer& along x .y ad z axes roespectvely" .'."

,.'.•Ti noordinate transformation mtr.rx

SIi 62, satellite olock errors - "

_*,, .SC. ,,.- ,.I

D down__
I. , ,•

U -. 'UP

"1' ase track . \, '

so sea current

.aI mstarboard axis p. .

*,f fore/aft axis ..

a aft axiis %

.. p port "xis

.' '-"".... 'IN
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AKALMAN FILTER AUGOMENTED MARINE NAVIGATION BYSTEN

H. Nalauandarin and D.Ozdes W-

1. INTRODUJCTION

With the technical horizons expanding very rapidly in recent years. new demands have been imposed on the
performance indices of marine navigation BYatema. Typical indices are performan'ne accuracy, reliability, ' ~ ."

maintainability, cost, etc, Reliability and matintainability are enhanced by utilizing r'roven technology and -.

hardeare while retaining a simple system phy-,lcally. Performance accuracy of hardware connensurate with the
reliability and maintainability constrainits can be improved by completely integrating the navigation sensors **

via:a digital interface with primary control in a general purpose computer with the controller being a Kalman

Th ytsdescribed and analysed heroin employs a classical dead-reckoning navigation system to provide

Instantaneous position. Chsracteristic of all deed-reckoning systeLs is the monotonically growing error function;
iseused to naigtionaid i resetisad cairtethestreed-rekonig-tr oiinlsaiiyo h system. Thie convin
Navigation Satellite System (NNWS) provides sm Independent measure of positional information, end this Information

(i) A Doppler sonar to measure ship's Velocity. *b.

(i)Agyrocompass to proyide a measure of ship'sa heading.
(I)A velocimeter to provide a measure of the speed of mound in water,

(1y) Aninclinometer to provide a meauure of ship's pitch and roll.

general purpose digital computer in which &Al the aechanization equations are implemented is thes centralcontroller. '
Section 2 contains a description of the operation for each Of the four basic sensors and the NNSS. A

generalization from the basic implementation to the format compatible with a Weamn filter implementation is ,.'"' ". '

a 4 presented In Section 3, Also contaiiued is a development of the pertinent filter mechanization equations end -'

rea:-tim asbctt constraints. A performance summary for various environmental end dynamic onditions is .. ~
preentd i Sctin 4 whchillustrates the feasibility of utilizing a Kalman filter to improve the integrated

@yetem performemos scouracoy. !)e. .

3. SWS~f I DESCRIPTION.

3. 1 Iutegrated System Concepts
A....,

The primary objective for the Integrated systes as configured is to automatically provide continuous, accurate. w .",'.'A'R

real-time geodestic pocition while in no way compromising system operation. As a result, an Improved self-
contained,. shiphorne navigation system is synthesized. employing several 'discretea navigation subsystems. Pigure 1
is a functional block diagram of the system which contains the basic coontituentd In solid blocks and optional
navigational systems are shown in the dashed blocks. Xcstsnteaeous position velocity and heeding are derived %
from the outputs of the Doppler sonar, gyrocompass and veiocolmter with long-term position accuracy stability

% preserved via the satellite fixes. The nucleuu of the systex is the interface unit/computer complex. Within
the cocmuter/interface all signal transmission. oonditiooing. mixing. snd optimal filtering is implemented.

The computer receives ship' s fore/aft and port/starboard velocity (frequienoy) components from the Doppler
Usonar and corrects them for speed of mound anomalies derived from the velocimeter data. The compo1nent velocities
are corrected for the ship's pitch and roll by the vertical reference unit sand are resolved about the gyrocompass
heading Input to produce ship' s North end East velocity components, A numerical Integration is continuously
performed to compute ship' a latitude mod longitude. 1A independent absolute position is oal~julated at the end ,
of every satellite pass. sand a system position update is automatically obtained. This update Is derived using ',

the optimal (Kalmin) filter and the satellite position observat ion data. ' '

The optional features which onm be incorporated in the system to alicw complete system automation are as 2,.~" '"

folloeis:

SbIp's steering ciomands can be generated in the computer end sent to the autopilot. .-- *,p

Point-to-point navigation optiona can be provided.



~big

Automatic timing sequence controls as a function at distance traveled along course or elapsed time are ,*

generated for-data acquisition systems.
"%

Real-time data logging for post-misasion ainalysis can be implemented through the use of a magnetic tape recorder. *,.%
%S %

Ship'sa track may be plotted through the use of an incremental plotter,~ '

Eatch primary sensor' s operation and theory is delineated below. *'.'A

.2System Description anid Theory of operationr

2.2. 1 Navy Navigation Satellite System

The Navy Navigation Satellite (NI4SS) is a world-wide, all-weather system from which accurate navigational '

position fixes ca eobtained fro, the data transmitted from the orbiting satellite. The NNSS consists of
t.. four near-earth orbiting satellites, four tracktng stations. two injection stations, the US Naval Observatory,.

and a computing center, Any number of shipboard navigational installations, such as that summarized abuve, can

The navigation stliearpacdir a circla polar orbit at an altitude ofapproximatoly 00nautical '

miles. The orbital planes of the satellites have a common point along the earth's rotational axis. The ' "'~

seemetrical placement of the orbiting satellites allows an earth bound observer to cross directly under the -,-

satellite twice daily. The observer receives data from the satellite twice seaen time he is niear the orbit ',e\r-,
because the satellites appear to traverse longitudinally as the earth rotates. A maximum of 10 fixes is possible ' "' .' S

at the equator. Realistically, about 12 fixes daily can be realired. The number of fixes available varies as
a function of user latitude, as cen be seven in Figure 2.,~~?~ '.'

Each satellite orbitsi the earth In approximately 108 minutes, which is 90 minutes between passes plus roughly
18 minutes of tracking, Through its useful life, each satellite continuously transmits the following phase-
modulated data as twu-minute messages on two radio frequency carriers: two-minute mark synchronization Signal%,
a 400 Hs reference signal, fixed and variable parameters describing the satellite'sa polar orbit.

The classical utilization of the satellite data to cosepute a position fix is similar in concept to soy hyper-belie positioning system where the satellite simulates the multiple transmitting stations by its inherent mution
relative to the user. Figure 3 Illustrates the relative geometry of the user and the satellite. P1 ,P2 and Ps
wae thrse distinct -posit ions of the satelite during -one -orbital pasns. If saok of then P 'Is differ by two

hypebolc rdiopostioingsysems Th eathbundnavgatr les n te srfae o a ypebolid eneate
minutes in time, the distance between points is about 960 km. This separation is cospar;ahe to hasulints on the '.*,

hyperoli thratelite poinomtionin frotms ahe teartsuccessiveigator Thes inthersection of twarsr hyperboloidsgnrtd1

uniquely locates the earthbound user's position.'N -
Additional data points can be used to establish the user's position more accurately. A maximum of P data .

Interference, et., can camuse data to be mssaed or he Invalid.,

¶1 In detersining the P11 s and establishing the user'sa position. satellite orbital data is required, as well
at some measure of relative distance between user and satellite. The satellite transmits both fixed and variable
orbital parameters.

The fixed parameters describe the satellite' a nostual orbits and Pite accurate only for a 12 to 16 hour interval. '

The variable parameters describe the fine structure in the satellite's nominal orbit as a function of times and _____

are correct only for the time at which they are transmitted by the satellite. Thus the satellite's memo~ry stores
sufficient varisble parameters to describe its orbit at too-minute intervals between subsequent inj mtions of

* data into its memory. All data transmitted which do not change are permanently wired into the satellite' a memory.

The satellite transmits a stable froequency f wbich is received by the user end designated as f r The user -

is turn compares the received frequency to a atahl. oscillator output frequenicy f5  to produce a frequency i-,

difference

of bet cycles are cuuntetd or, essentially, an integration of the beat cycles ii accomplished. ,

Thsinformation oan be directly related to changes in slant range from the satellite to the user in that one : e
-,frequency count is equivalent to one wavielength of distanics traveled by the satellite. Reception of three two--
minute satellite messages during an orbital pass, along with the related Doppler shift seasured by the user'sa

it' receiver, defines hyperbolic conies of differential slant range$, intersecting at the usor' a ship'sa position. -

Taking data over a minimum of three intervals yields two uiqustions In the two unknowns, and hence a position
solution can be reslized.

%i .. .
' %:: ;

% N.,
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From ligUre 4, mand using the first two Intervals,.:J.~~." ... ~J

M3 ' 'nM (f0 -f,~) dt =(fO'-ft)(ts-t,) + fc (6t, *.At 1) ,(2,1)

*using the assum~ption that ft = f. Also At# - Atl Is related to the slant rang* between satellite and I,%~ j
* ~~~receiver at P, sand pg. %,,.~

At 5 -t 1  I(2,2)

4, where C is the speed of light, and 52 end I, are the slant ranges from the uiser to the satellite at P,
and P , reapeotivel). Bubstituting Equation (2.2) Into Equation (2. 1) and solvnog for the difference In .'

distance from, the earth-bound observer to too satellite positions, ini effect, determines the baseline, e.g., %'e '.~

as, at t4 f C (t,-t) .(2.3) 1,7

* ~imilarly, .

An, .5 No.$ I - f t3 -to) .(2.4) b-4

Noting that. ti~1 - t1  where I a 1,1, ... a , multiplied by a Is the distance traveled by a particle of light
* ~~~in two minutes allows somne simplifying assumpt ions to be made. However, to I ft~ + At Land Aftoi very small .. *-,.

ILI compared to ft thus, to preserve computational accuracy, the above equations must be rearranged to avoid
computations of the form At/fo . This cns be easil~y accomplished by using en additional point, oisnipulatiag

a third equation which Is similar to the above yields % .

431 + 28 -5. 3%N, 1 N1  ) ~ ~
t, U g- e (Mi.a -miN, 3)~

where the Si are functions of the satellite posit ion at each point I , where 1 1. 12... a and the observer *.

position. Hence, two equations In two unknown* allow the determination of the user's two unknown coordinates,
latitude and longitude. An alternate i.Wlementation is to use a direot ranging approach Which ob7iatea, the %. %' . ~
requirement to compute position from the slant range data. This approach tends to presoeys, accuracy, am the N!'
equivalent of GOW (Geometric Dilution of Position) is not experienced.

The posi'tion determination accuracy warn sean to be greatly affected hy the earth' a atmosphere and gravity. 4
Gravity model refinements have continued since IND. In 1964 the elighth harmonic #And order term 0J*, in the ''

gravity expansion model was incorporated, and an I January 1966, the terms J * 'I Land J , i''.~.*4.
wore added to the mechanization; a substantial reduction in position detcrsination inaccutracy reasulted. Thels'l
Information carried in the navigation messages. which are phame-modulated, Is distorted by the troposphere and %

* ~~~~Ionosphere. Thus, the ofifth' s atmospheric effects were determined to be functions of frequency. The_______
tropoopheric refraction is proportional to frequency, as Is the Doppler shift which contains the usable informa
Upsm, and can not be isolated, However, the ionospheric refraction was observed to be Inversely proportional N V,

to frequency and ~auli easily be determined. To enhance the systum performance, the satellites transmit two .. . ".
coherent carrier frequencies (150 MOi and 400 Wjt). These two frequencies areo coatrolind by a reference
oscillator and one frequency is an exact multiple 13/8) of the other. The ac..ual transaidelon frequencies are
400 ii. offset by 32 ti~s ( 309.968 WNt) and 150 M1z offset by 12 Kits (140.986 MM). This allows a more preniso
Doppler count. Lest fu and fl, he the respective high and low frequencies transmitted by the iritellite; then '

toa kfL (2.7)

sha mre It l8/. The frequencies rocelyod on the high and low channels respectively are IL %

tH~ + 6 ',a + a, N2)W

+a U l 'L.4 (2.0) / *'"

ft loying tthe observed results of frequency distort ion allow& A -i.

t o. 
. , 

k I +, 

4 4 
+O F
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Solving for 8. from Equations (2.8) and (2.9) yields ~~~"

(2. .' &11..' .S.4S

which Is the Doppler refraction correction, %,.. ~
Since the satellite transmits circularly polarised signals, either circularly or linearly, poinrized raLsiviflK

antennas can be used. However. if highly direotional, niarrow-band antennas are used. two antennas ore required,
cone for each operating frequency, or a single broadband antenna designod for dual frequency operation may be L
used. The antennas used are larger and sore difficult to bandle than the simplest antenna arruzuwunent which is
composed of two whip antennas, one for ebuth frequency; however, this should be avoided, if poriaible, atncs the
whip has an overhead null, and satellite data would, therofore, be lost for satellite Passes of more than 700
elevation angle. The elevation Angle limits on satellite coverage do exceed this value.74 The satellite signals are received by the user from the time the approaching satellite risen above the radio
-horimon 'until the time It sets. The ruo@Jving antenna patterns should, therofore, provide complete overhead

* coverage.

9.3 Velecity Pleasuring Subsystems

2.3.1 .SamariDoppler %\4

The sonar Dop'ier provides a Precise measurement of ships fore/aft, port/starboard, and up/down velocity
relative to the earth for water depths up to 000 feet, Tha sonar Doppler Is a two-axiim. bottom referenced w~ /%

speedometer which derives Its information from high frgquency sonar signals emitted from a transmitter on the
boat. The basic operation in delinaotod below,

The Dopieor system employs beans of ultrasonic energy, directed obliquely at tae ocean floor at an angle of J ' V
Vdegrees relative to the vertical, to obtain true Velocity measurements In the toreo-aft and port-starboard **4

directions And the up-down uxis. Because the pitch, roll and heAve of the ship add other apparent motions *

relative to the ocean bottom, the Doppler system should employ pairs of beam. (one pair 'angled fore and aft, the
other angled to port and starboard, see F~igure 5) to compensate for these motions, Bly Averaging the frequency
difference between fore and aft, And port aud starboard, tUe true velocities are determined. The concept of
four beams is an application of the Janus configuration which is coma In airborne Doppler radars, A primary
wmees~onfr aming thisi monfiguration is for the cancellation.of errors which results from averaging the return ,i'w.- ,a
signals in the signal processing.

Typical sonar Doppler sensors utilise a 100 Ifs sonar signal In & ;ulsed transsission mode of operation.
Signal fsedthrough from transmitter to receiver is eliminated and exoellent signal-to-noise ratio characteristics
are obtained with receiving circuit gatiug mad time varied gain, The pulsed operating mode provides a signal '% .V ~ .

amlitude sufficient to supply accurate signal data at vessel over-the-bottom operating heights up to Soo feet b
Beyond 600 to coo feet the system automatically locks on to the eater scatter return; the sonar energy is
reflected from small scatterers present in all oceans. The electronic satting Is met to observe this reverberation
return only from the undisturbed winter below the ship, thus excluding the effect& of turbulence and boundary-.-
layers. The result is a highly accurate And reliable indi~cation of the ship's true velocity relative to the r..
ocean bottom up to Co0 feet and relative to the water sass at all greater depths.

Thus. the water wass return represents vehicle motion relative to the sea and the expected accuracy is
degraded by the unknown soa currents which are typically on the order of 0.5 to 1.0 knots for short-term
correlated noiese. The sonar Accuracies are tabulated below.

Wnter Depth (ft) Mode Týypical (1a') Accurocy ()'~". *.

1' 1-400 Bottom 0.2

45 ~~400 - 00 Bottom 0.5 Z ".Y'S*'
Oreater than 600 Volume reverberation 0. B4

Am error source which is additive to the one Above is the reoeiver/troansitter electronics noise, which Is
oprozisately 0.02 knots. The primary contributor is the crystal controlled oscillator which is stable toI ~ ~~~within 0. 01%. The biggest concern in sonar performance Is that in the reverberation mode the asea current motion .'." ..

must be statistically' added to the nonar error. Tyrical random mse current drifts are on the order of 0.5 knots .

to 1.0 knots, depending on the aesw, with typical correlation distances of 18-20 nautical miles$, "assuing a
Gaussian distribution with exponential autooorrelation function. *'* -

masswro relative to sea currants.

ON.....
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Majr ontibtin erorsorce i a onentonl naumetedDople mchaiztio. hic at limnaed .. .. ... ..- ...'

Molajoulr reoltiutiong error bores nacnetoa numne pe mechanize n ilyilxalgbl ros ftiereon, io w I sh nre elmina ted

the following velocity errors per axis result;

wher 69 n th pith orroll angle in do~roe.s

(ii) Due to dynamicpitch and roll (iuadl

reove oesetalycraea tblfe.locally-level coordinate front in which the system velocities are ' '.'4.

expressed. h b siSensors In the vertical reference unit are two single-axis fluid-damped pendulums .,

(incinomter) whch otpu thedeflctin oftheship f romw h oa otdl hi upt r hl'nl
indicat ions oshpspthadrl.Tseangles are then ue ognrt h uo rnfrainmti
consistenlt wtthroainldnmcofheship.%

2.3.3 Veiocimeter

The velocimeter is a precision instrument for aseuring the velocity of sound In water on an accuracy of one
part in ten thousand. Its Output Is used to we~ght the sonar Doppler output pulses, '

The operation of the velocimetor is based upon the sing-around principle. A pair of piezoelectric ceramic4 t.

apulse of acoustic energy Is transmitted through the water, received, amplified and used to generate another
pulse of acoustic energy. The repetition frequency of this regenerative Action is dependent upon the transit %. "

time of the signal pulse and is therefore a measure of the propagation velocity. Erors resulting from the flow
of sstsralcng 'the sound path length-are'vionihied by folding the sound path. -- *~- 'it

The basic parameters which cause a variation in the speed of sound are eaer temperature, pressure and ,~

salinitu'. A typical expression for C. is

Cy 4422 + 11, 26T - 9. 04 5T' + 0.0 5183 + 4.3 (S -34) *(2.12) \~ 4

where 0. is in-ft/sec, T Is temperature In degrees Fshreiiheit, d Is depth in feet and 8 is salinity
in parts per thousand. The primary Items of concern in this expression are u follows: .,, ,4

(a) Temperature - a 20 - 25 degree F variation can be expected between low latitudes to polar areas. 4 .

(b) Salinity - large variations can occur If the vehicle is In cosbining salt water currents, or near river
outlets.

2.3.4 Gyrocompinass

U ~~~The gyrocoompsass, with its integral gyroscope, is *iontrollod such that it continually Aligns itself with the., . .

seridian end tracks true north. Hence, its natural output is ship's banding. goner Doppler velocity conponents ...

in the stahilimed, locally-levol plane are resolved about heading to provide ship's velocity components in north .' \*".
apd east components, Figure A indicates a feedback torquing sigual from the computer to compensate for the ship's .*'.\'

instantaneous position and spatial rate, In the gyroscompa&s error model which is presented in the following 4

section. all gyro drifts, are assumed to be either deterministic or to possess exponentially autnoorrelated noise ''

fuctions.

3. SYSTEM ANALYTICAL MODEL. 4*4

Theintgraed ult~sosormariasnavgatonsystem defined in'section 2 employs optimal signal processing

and ultplyrodndan naigaiondata, In the form of range and/or range-rate or range-difference and/or
.as-aodfoece nsnhszn inimu.-varimanc state vector estimates.- '4 "''

Th tt aibe ftesaevector consist of position, velocity, heading and the stochastic models of .<.,',.

th esrerr ore.Teopia siaeof the navigation variables are employed in updating (i.e.. servoing .4 ,.n..''" '"
orcretn)tenviainsse;teprediction of the sensor error characteristics leads to oross-oalihration .'. 4 -4'

of _ _ sensors thu th naiato pefrac is. fute enhanced,



AA

The physical dynauics Involved In optimally implemenltinlg the inultisosnor navigation system require a precise
definition of the propagation of linearized error differential equations oharacteristic to the Doppler-Sonar
gyrocompass system augmented by the iatellite data processor.~.

In the optimum linear continuous estimators the system error state vector in defined by the relationship .. '. 1'.

A+U(3.1) ,

where X Is the n-dimensional error state vector, A is an no xn coefficient matrix and a is state noise . .O'

vector. The corresponding discrete equation is

I here:0is the well known state trsnsitioni matrix characotrlsint the error transition fromn t to (k+It

Teprimary system sensor (i.e. ,Doppler-Sonar (D/5), gyrocompass end satellite receiver) error wide*,a are
usually obtained by a first-order Perturbation of mechanization equations.

Th (D/5) mechanization equations are

where ~ ( (V) V IVV5 5 is the velocity vector defined In the ship's static coordinate ayatem, (Vst)' [Vt'YV/#V

i& the velocity vector defined in the ship'is dynamic Ui.ea., pitched and rolled) coordinate system' and the " .

matrix CT~] provides transformation from ship' a dynsamic to state coordinate systems.

The ship's velocities in the navigation coordinate syste ar obandb%

where EVIJI a tVVlIs the ship' a sea-track velocity vector defined in a Ceast, north. up) coordinate system

sharing the same origin of the ship' a coordinate systesu. The matrix LT,l Provides transformation from ship' a ~-
static to navigation coordinate systems. The ship' s velocities are resolved through the sea-track heading
Angle 4is tomart~horly .end -outer l coeponerite.

Combining Equations (3,S) mand (S.4) yields % : bi'

share T T]Ll

However, If the Ta/8 system Is operated In the volume reverberation mods, a sea current vector, ( [~ V' Vsga]ml ~must t be subtracted from Equation (3.5). flence
-Ml -Yg [ T,]tv.11 - [YJ50x (3.7 )

where K a I (i =0. 1) in the bottom and sea volume reverberation modes, respectively.

The latitude and longitude rate* of the system are obtained by dividing sea-ti .wk velocity components b~y the

radii of curvature of the earth. irsrt-order perturbation of these rates, neglecting second-order terse

yields 
-K .-

aX _ -s(3.8)

as %

% A+ 5(3.9)

ft 05 Go B om

where ft1 (I1 .1,1N) are the radii of curvature of the oarth1  ,

- . All coordinstp system used are Cartesian, right head oriented,

assa current velocity vector is defined in the navigation coordinate system and Is resolved thrugeh the sea current heading %.
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The velocity error rate euations obtained frum Equation (3.7) In scalar form ire l

coog 005 sin BV 00 -ift t sift 00 -40 sin 00

- 0,vf 00M 00 -B81 sin P0  8V14P o 005 , - I ,

- cPv5  oo00 " e0 - 4 1,Cos 001' + aoavsI*o sipa -

-BY0 coos0" SV 'P s in 0"M - 450voc in 05

-0os s'. in. MId -PU £'P0@%0ý5  coo05 P0) (M 10)
(o gin On." ' *"M 'a, 4,.C 0 G

o + , 0oo, •0n , -. + c..', . . . ,i

"&- 4v. sin + 80'.4 • C• n 'P• - cV5 oo MII 'P -

"- 8to. iat ,0 + av50 'P50 005 o + 8ý.,0vo co .0 4. . ,

9~~ 8000051*0 008 'P6s - 3'P*0v10'P* ginI 'Pool (3. 11)

so1 an aV., ore modtlsd u ti11e-oorrelsted noise source, The :ado Sld t/om;ei have seconld-order-
@foatsl which are neglected. Thee 80,1 (LI,f,0) use modele as tn!e-MrreIetod noise sources and SVi
(I x a, f, 0) terms are presented In Section 3.2.2,

•3.2.1 Gyrocompass Raid Error Equations
typicaol reo-doltiC-of-triodon syroo mpue in shown in VigurR 5. -b se ene p•he gyvrocmpass &to

contained in thle bracketed term. In theory the compensation of the bracketed torns in im~plemented by ap~plying ••.'•',
sinls~•l of the lelle magnitude but of opposilte sip13 to the correspondingl summing O func•tions, In practice, however, , .:.t.. 1
t;he inaccesibility of the nlulmmng functions requirml comensating terms tn be applied to the level und u/iout'h...

or'to level (only) torgairs of the gyrocompass. In the analysis below a theoretical compensaiton meathod is ',,••' %
allwlid; this deviation from the practice simplifies the coo•uter simulation of error equations and, most "''••_.•~
imprtantl, yields an universal error model compatible wih most ,rooompaase. available.,+-_ .••''.•

T he error performance lu each case, with few exceptions, yiLelds the same results. N''., '''"'%.•

Refterrng; to Ficurs 0, the first-order perturbation of thell llooba1ztt~on equatlons, aed asunumsl SRIt di£-.'••x

(I (tl, N) V• 0 ,x 2fO• 0 bm0 0 , KKIV' 0 , &r WO , Au&k>>48Ae . 188>> konSA . yields 1+

S.,v *) +" .4' - ',

++.- • men+ ,,' + _- ton +,gme +,,, IV,'
co k '+ Lit set + }3
ga. + K$.. ) A'k N 4 9. 3, 14)

ai

r tE a m ar c't (3d. o e T .her

Tedi tem In qae lion (3.l14) id the residual torquing error. The it (1 =0,7) are the totu l Instrnment . ' . 1'.

drift errors due eo b elas tosed (ihort Leodor 3 ong correlated), wrm-up noisescalefactor error, non-•,
ortho.onality• mass Rnal an eor (E-eonst ive) isollwiticty U . hert he orthen oneld ty error a re le

aind the b011, fator etorsdr mte ultiplin d bry the corprespodiono total rated (tie., vehislem entd o brth rtu), The MI.N.
Equtions (3o 3) ath (3,i)gde aut oalid wosether i tthe gyrocoas corrnsidintl toal snglfuc-dtiron -O,-nracdo, hogever ... .
th noe-doe l-oit-frddof tyro . Thu i fumber of elements to be itlemnegterm tn he a-pld tt tuter le dcltated bysimu"'"otheo louelr requirole)tr , memof alotementas d the typo of boenlathon m onedthd."" "

.us.2.2 thisdeviatng Errom tE patc ~pi~steciue iuaino ro quations ~d ot ~

The Doppler/yold output Is the calsbrlted velocity a obte r defwith d I the ahip' a lyneo coordinate fre,. '

(I l (fv r it ) so W
Referridn to sietso n, t - t nhd i

'1 (3.i, -- -lq qu

dnBastLoue3.1) throuhis 0, noi the (short andr lnglecorrelated) ta .meas led f t erot erl ndown- d

%rhsnlt eroJnge,



.4f

'~ft 6ifc

a-.I! ((Efa - )f
3 f~ (3 lea pot'i

V/S V3 \2ft 21.

a ~~ ~+f)~ *f+ 9  (3. 28b)

wh~ere ft f, fe and 0are the- fore. &at, starboard and port transducer frequency outputs of the
transducer; a, to the velocott of propagation of sound in the sea medium. The ft in the transmitting\ 'f

* ~~~~frequency. ., '.

Combining Equations (3. 16) through (3.18bh) with (3.3) and first-order perturbation of the result, with the ~
sassumptions S(Aft) 0 S(6f,) 0, yiel1ds

/0.. Is {(t cob a,- ff +~ Its~ - R 'A J0

-(89) fn ine6- ff 4.r I u - U~]

+ If + If, 48(3, 19)

cj (/go, A~ af e ine ling + at aces aff U +

+I,- 4ft uid~ Cos +8 04 1e a sinr + uiny Tnine x

3ve %~23 L f f

+ i.t, - 4841 . (3.20) '-

Eq atos (3. 19) and (3. 20) contain the SV4' term., ede*o h riooerotresow nts.. %~%

equations, are the roll and pitch "glee, respectively, The corresponding pitch and roll error* (iLo, SO and S(F) e%,~

are due to attitude readout or inclinometeir readout errors and pitch and roll swolitude* and frequecy errors,

.80 A 89, *80* einut * &.)fi cosc 40 + an(0)(321

-~ +y a B 0 *B sin (Y4~ +7)4 + lc.Jf% 0011 (f. +ýY) + n(yP) (3.23)

Ii I he (1.9 yA) a 2wraf1J Is a function of the Ohio'sa dynmsios; y, is anarbitrary phase angle. The noise terms
am(1) R (f)y are defined by . * ,"'

S kJQ(I) (03,3) % .f

where Ijis the Iroisiechr dolts and 4(l) is the so-called white-noise van'ianoet

3.2.3 Velotimeter Error Equatiou N

Raferring to Section 2.3.3, the velocimeter output is defined by ?:
C (4422 11-2T - 0. 45T' + .o018 + 4.3(8-34)) (3. 24)

A amastsAt plus siusoid is usumad.

* i1al values for t, Ne to 10) 6ec63 .

A..4 ftlkf



where
02, s speed of sound In water (ft/sea)

T 2 water temperature (OP) 
%4

0 sdepth of transduoer (ft) i.
5 2 salnity Of water (Parts Per thiousand).

The firrtt-order perturbation of Equation (3.24) yields

80, a 11-25ST -0. OffiT + 0.0118280 + 43583 (8. 25)
The errorip due to messuremont of the depth of the traseducer and salinity of water are 11l ad hene ma Is e0neglected. Hence a am a a ayb

8C,a (I1125.00T8 . (3.28)
The rate of changae or the temperature error is modeled " an exponentially consisated noise process.
3.2.4 Modelui for grepanentally Correlated Noise Sources

The expcnedtially correlated noise sources ki stated .10 previous sections, are modeled by

3Eklkj3 100 0 . (3127)
where cri to variance of the procems ad 01 is the Inverse correlation time. Nat@ thu~t raustionl (3.27) IN
obtained 1# Pasuing a white-noise praisess through a first-order filter.

J. 2.3 77w 4ettx State Treasdgion Matixi(
* AsThe equations preasented In leotione S.1 end 3. 1. 1 throug~h S. 1. 3 aire In the form of

*1~ .A +W (3.28)
The 'itake transiti~on matrix 0 io defined by* 

Ok

e ( a AM~ or i .+,I( dr) . (c'.v.+ *1 + (ncr &Y .. (
t~snuion of each term yields

A(Tr) 0 * +r,+ A . (3,30) .. ~ ..

00A. dv a Aou+A. L + x

A(r) y f (aW) + (AA + AA, Le (3.33)

6xv ~A(r) d~r) u{Z 4t~tt. + A0(Ac +A*,) + L!X, +I (AA, + AcAe) + A~J + (3.24

Such expasuion, however, has dine rastrictions', Assuming At to be small sand A(t) oonatent during theInterval, Equation (3. 34) reduces to a dimlD Taylor series expansion. The computation of Equation (3. 34)contains onW a sufficient nusber of terms so that additional terms are negligible by comparison with the parthaltam to that point'. Por this marine navigation system, the state trnsnition matrix is 2omputed by? truncating 7the series after the third term*.A

gains the above approaiaatiiom allows writing the discrete form 
.

;:-L 0I,(3. J5) j

It is noted, however. that truncation beyond two term for up to 4 boars of navisetios. with At 8 0 sec, yields lessthem It error. Stub a sethad is equivalent to simple reoateeular Istssrktioe. ~% %~%



526

The tat trasiton stri obtine in n te fom o

The stit-btransiio m eaiation ofailared isithte fecor, of peetdi abe1 ncntate ymmr n

the computational speed of the computer. Judicious selection of state variables through the use of a sophisticated . 9...
simulation program will (arnd indeed does) reduce the size of the state vooLur to less than one half of the hize ~ ''',

3.3 Kalman Mechamization .

The Doppler/Sonar-&yrocompaas navigation system is augmented by the MNNW generated Doppler signals received 4. C '~
and processed by the receiver, Optimal mixing of sensor 'signals are implmmented by the Kalman filter (Ref. 4. ,I
Val.1l, pp.223-280). The Kalman equations are 0.Ayb...

* (a) Citrapolato
Fk 41 PI 41? + nh-I (3.37) . 4

(b) rilter %'4
Kh k PtNk (Y01kH+40.1' (3.38) L%_4

Pk (1I-kHh~p (3,39)

J ~ 410k + Kk (nk 6k) , (3,40) Y ~ ~~
SAm~P 33)ad(.9 r h oeinso errors in the stiate before ad after the updating process,4 44

rspoivl4 The esatimate vector is stto maro following acretoafr wiupdae

Z33.1 "W. Sid*ames.C .crim

The state noise covarience matrix Q is in the fore of A

(341

The 411 matrix consists of diagons.l elements

where a', is the variance of the process and .81 is the inverse correlation time, If the correlation Is
defined spatially, It is mormalized by the ship' a**%-track velocity. g

3.3. 2 Vias Kalman Extraction Matrix I/

The satellite dynamic signal processing will yield range Land rneatmaseet.lupocsigof the *

signals io a characteristic of the receiver used. Correspondingly, the user hes the options of available optimal
data-aversaing techniques and imslementina range and/cr rangue-rate or range-difference and/or range-rate-differanef6Z.
methods.

4Let 2 uf(s) define the actual observation, where x is the dmnamaictt o h satellite and. the navigatur.'

if ;X 90) Isezomad In:a Taylor series ma Thehe processingnegeced

1Z c a HEN +Y V (8.43) ____

weeaith aueeterrvector and vi is the observation noise. The NI matrix shows bow the ~.- .

44 4,. 4 4 6

Let the dyniassi measurement consist of range and range-rats vector, I.e.,

A, ,q ZV or
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S*(X 5 1-z)t + (Ysi-y)s * (Z1 1 -s)i (3.40)

~ C6 1 t dt* *6 -i)y + (t6 1 -i)4. (3.47)

Us ,S are twit vectors in the geocentric, right-hae C tsa ordinate frame'. - .

Correspondingly, the absolute range Is

*IIuP VWAx1+y'+tAu) ,(3.45)

where . 4

and the absjolut, rulge rate in

* Let the state vector consist of the ship's and satellite' s position and velocity errors, i.e., a total of 12
state variables. Hence

D\.Y ) \ P P P/ (2.M561)

weeI Is the Index of the observed satellite. *~'.\a.

Hit 0(3.52)

Hence L. %N~

14 t4, P

so Hsi *~ (3.56)%

Y* , .
4

-*Z**zo F iz -X ~ H3t Hi -H3 9,.5

V. N. A*

H,4 Hjg 3.30

TRhe satellite led navigator position (velocity) aedefined In term of orbital and geodetic Vexefleterm, respectivly,e in. n .,' '
order to oowq$i runge and range-rate vectors, all positicnas nd T0lccitfes are tisnaforsed to the geocentric ooordioate fraee. .~...'



Thease universal models are applicable to any navigationi satellite system, For example, when the !N1BS is
used, nly one satellite per observation is available; thus the user may prefer to process range only, or ringe- I '

rhere each or (ia1,2 and rane t models.,3) ar ionsthellareo of sqatelioesIs(av.iabl) a sd (3.0) theeetiNvel.
syotemtha the Hnumber of satelites aretcompuned the pumer oateroits fofrh extamptiof mthrix. sfateditfesren

.14N

1H1at (H1 HH), ((0 1.') (3)dII( 1 3 r ntefr f qain 35)ad(.0,rsetvl.6)2

The differnolnein scheme, with slight modifications in the transition matrix, is also applicable to the 11N68
I?(single satellite per observation), i.e.,

H pi~t t5  - H,~(t t b) (3.063) ~ ~ J

la in(3.56o), i.e0. mu ,sut be computed to evaluate its numerical significance: for exaMple, for hg

altitude satellites it my be neglected, .

lid

For the MIRS. the satellite errors are not carried in the extraction matrix H hence H1~, III, Hg3 and

a, tre deleted, i.e.,

H Ld, (3.64)
rLHi I Hit 

N
1J

The satellite errors which are not lumped to the observation noise, v ,are added to the observation vector, iLe., '

m a HSI +L(oi) + v ,(5.63)

weeLm)is defined by two is-de indfu biasRo atc:it'+proese:. 36)

Ths. aemde led un time-oorrelated noise sequences. 'y..q..

Utm1nal Ji - olies"~ (3.87)

Iwhere a, 82B and a are approximated identically for all NN58 satellites* end are added aw state variables
q46, 47, 46 to the state vector presunted in Tfable 1. ,*

Recall that the state transition matrix was derived in terms, of the geodetic coordinate parameters; thus the % ' d.

covarisnce of errors and the corresponding error vector are defined In the geodetic coordinate system, On the . .".,

other hand, the extraction matrix H is derived In terms of geocentric coordinates: consequently, the observation*.-
vector for a six-element system Is modified as

a H*81 +LWei) + v 0 (.68) N

11* H fl a] 1 (369

where T. Is a seodetic to geocentric transformat ion matrix and is defined by

in A (-&in X coosA) (cosX cos A) 0xe 0xA Ca]'"~~

LcaA (-sink hitnA) (osXý ainh) I Y u(.0

To this point all H elements corresponding to the position end veloc'ities are defined, The partial derive-
tiiee of the range and range-rate with respect to the remaining variables are aero. Referring to Table 1, the
a , y position errors are defined In term of longitude and latitude, and in units of radians, respectively.

4,After converting thi pertinent variables to teet, the eystem H matrix in defined by

H1 e Zathbh. L coJ h (3.71)

Is tUe sea-bar" mechsanizationa t, ~Lead the motes procesms are modesled.

% I 
*

%~



.4. 529

Pk

Hl 4 t (3,75)

H1 s (3,70)'..

Mi.4

mi's u bhof 1 (3.33)%

-0 0

mi 2 It (3364) .

whore) it A. as shw I afsosI

lbbb L p 7 (XAZ (.3,7)

--I
LAk . p- 04A___ p
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3.3.3 77wi Obarval.on Error Covnrionce Matrix R K

lhe Ti tert presented In Equation (3. 43), the observation noise vector, Is an additive random sequence with A *.. .
known statistics, I.e_ .r

sc vil V, 0 (3.01)

E iJ 0 (3.03)

where unuis the Kronecker delta and 9. ~1 is a non-negative definite matrix. The R matrix, for non-
difersolo cates isa dagoal atrx. f.however, the satellite system provides more than one satellite

and a differencir.g scheme is used, the R. matrix contains off-diagonal elements as wlull. V.

In our model the R. matrix in defined by -

3.4 Real Time Processing Considerations

5ince Kalman mechanizations consist of sets of matrix operations, it can readily be msea that if the number ~ C

of state variables In X Is large, the matrix manipulations can become unwieldy. Hence, by judicious choice
of state variables, the system dimension can be minimized: however, the degree of suboptimality can be constrained
rather than explicitly modeling all noise futictionsias states; for example, in the form of : :K :

exrplto ftenoise trsis incorpcrated in the Qmatrix truha I oefcin matrix. Obviously,
such modeling eliminates the capability of estimating the subject nwise processes. The inversion required in
the Kalman gain matrix can be sigplifibd if the P. matrix is a diagonal matrix. Under such circumstances the
Inversion in performed serially (I.e._ row by row); this reduces each row to a ssalar (I x1) value or simply to 44
a constant nr fraction. If, however, the Z matrix has sore then 3 rows, the serial processing become a tim "'%

consuming process* . The extrapout ion routine requires a x n matrix multJ ply operations, which consume. large
computer memory. The collapsible-matriz-sultiply routine I, based on element indexing, however, reduces memory ~
requirements more thin one half.

Each of the above simplifications aids in reducing the digital computer memory requiremerte for real time e
operation.

Still soother scheme to aid In preserving accuracy in a fixed-point mechanization is a real time rescaling.4-
module. This can be used to keep the covariance and related computations optimally scaled by periodically*,checking the elements of the covariance matrix and shifting if necessary. A typical situation where a resealing e V
module would be useful is postulated below. Assume that unfavorable geometric conditions prevail and three
suc~cessive satellite pagses& are missed: near the equator this would mean ahout six to eight hours without a "-*
position fix. If positions (latitude error and longitude error) are state variables and assuming a linear e
degradation of position, a ratio of 64 to I on the respective covariance matrix elements would result if the ..Abufix occurred at 8 hours Instead of one hour. If the covariance matrix were scaled to accommodate the worst case WW
condition, then, when the system is operating at optimum accuracy, significance is lost since the data are % o.~.~
shifted to the right In the "register". Essentially the scheme described above is a "pseudo-floating-point" k *'ýmechanization. A true floating point mechanization could be implemented if system processing time Land memory t**4 .. .4
constraints were not severe. Computational precision can still be a problem In floating Point if sufficient i' ''"'

* ~~data bits are aot carvied. ,v
.1%

-4 Another concept to coneider in the efftect of the finite word length of the on-board computer on the Kalman
filter-estimator mechanization, ." .. ..

All these Problems may be evaluated through use of a sophisticated simulation program which includes the
folloiuing; :>-.

.4Simulation of filter/sensor mismatches sod their effects on system navigation performance. ,%* 4

* ~~~~Simulation of the suboptimal filter Land of its effects on system navigation Performance (i.e., the effects .~* 4

of neglecting some of the state variables).

Th lsasto-iniert routim. is the optimal solution for or' to 3 x3 matrices. The concept mao be extended to multiples of
3 or modified for 20x2 and Its multiples. 4

tThe collapsible-matrixo-ultiply routine has been simulated and used in numeroak occasions in air/mesborne Kalman filtser.s."

bechsaisaions
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Simulation of the finite word length of the on-board computer and its effects on system navigation performance. "

The problems presented above may be rigorously analyzed through the use ot the REAL- WORLD-COVARIANCE concept* . "
,ad addition of word length masking instructions to each arithmetical statement.

",In order to evaluate the etem performance, several configurations were simulated. The mission profilesi• ~ ~~~and perfor~mance results are presented below," "•"\" -"-

d, 1 Mission Profile I'"" . ,.,

Two missions were simulated. The first mission assumed in described by a course originating near the equator. , ,
which is consistent with about ninety minutes between satellite pusesd, The ship's n peed is 10 knots at a - . " -
heading of 450. Pitching and rolling motions of the ship were assumed to be 30 and 50, respectively.

A variable water profile was assumed to illustrate the degradation in water depths of 0-400 ft and 400-00 ft.
Depths greater then 600 ft were not considered in the error analyses described in the following section because
the sea current drift& swamp the remaining system error sources. However, under such conditions, a local sea
current biasing can be realized by implementing corres.ionding states in the state vector.

The second mission originated at 30 degrees North latitude and 118 degreae West longitude. Ship's speed was ,.. "
initially Sc, and it aocolsrated to 5 knots while simultaneously turning from a heading of 309 degrees to . ,
315 degrees., For the remainder of the five and oue half hour mission, the ship remained on a straight course. ,.A

sThe hlp's dynamics are as desoribed above. % "he.,:. . :>.. ,

* 4.8 Error Analysis Results

Basic assumptions relating to the system mechanization in the first mission simulated are U follows: . .

(i) Ship's attitude compensation is implemented. Inclinometer errors are about 0. 0 degrees per axis. .

(ii) Gyro cotion compensation is included. A standard beading error of 0.5 degrees for the non-Kalman
filtered meohenixations is shown. The same tyro duped with Kalmen filter corrections results in a . . .
heading error of less than 0. 15 dedress. 4

(iII) A one sigma position error of 300 ft/axis is assumed for the static satellite receiver subsystem error.

(iv) The sonar Doppler errors are a function of water depth and are described in section 2,

(1) satellite elevation angles at closest approach are between 20 end 0O degrees. r,

Figure 7 is a plot Illustrating the radial position time history for throe configurations in the first mission. - , .'
The initial error is assumed to be zero. This is Justifiable sines the satellite yields position fixes which 0
aes zero-mean processes. Hence, by taking many files at the same static location, the position error in the %

limit approaches zero. In the first ninety minutes the radial error grows monotonically, at which point the
satellite assumed overhead. At this point the system is reset. Note that the Kalman filtered :oohanizathon
is reset to a lower value and, in the subsequent ninety minutes, the error growth is at a reduced rate relative
to the non-filtered systems. This results from the cross-calibration of the navigation sensors upon receipt of .
satellite fix. As shown in Figure 7, the residual position error at each fix gets progressively better, from the
increased knowledge of the system errors.

The error profile for the second mission is shown in Figure S. These curves were generated using a dynamic 11
simulation with the 48 state variables described in Section 3. The obscrvation vectors employed were range and
renge-rste, a" indicated on the figure. The range error is 170 feet per observation and the range-rate error is
0. 1ft/sec per observation. A gradual update is indicated, wince a range and/or range-rate observation is made
every one minute. Passes of variable duration and spacing wore simulated to approximate a real-world environment.
As cited above, the general Improvements in accuracy are also present in this plot with one explainable exception -
the fix at five hours. The roe;idual for this fix is higher than the previous fix residual, due to the satellite/ . . .

-' ' .ouser geometry. ''

The dead reckoning error is larger for the second mission, due to the additional errors relating to the
equipment that were implemented. For instance, frequency offset errors were assumed for the sonar Doppler and '__.__

"A-- welocimeter. Scale factor errors, non-orthogonalities, mass unbalance and anisoelasticity were initialized to
describe the gyrO compass as well as gyro drifts. The Initial heading error was set at 0.75 degrees and was
oorrected down to 0.08 degrees at the fix.

the concept is to simulate am optimal extrapolator lh parallel with the suboptimal one. The Kalman gain computed in the
suboptimal filter is spplied to the real-world (full-sise) oovsrissco matrix. Hane the scieltist conducting the study has Ye. ,
at his disposal ten (i.e., real-sorld and system) covariance matrices. Obviously, the rest-world cowariancs matrix

computation ls the sole Indication of the auboptisally computed KFAIN gain effects In real world.. , • . -

,.%
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TABLl I

The $tat* Vettor

Number SymbolI Name of Error State Varia~ble

I 8M4( North velocity p
,--2 -Us caut velocity
3 0P0  ayro heading

:•4 Sh bOnlittkde

4 8i. oflit~C ,. ,** 4.. .)• j,'1 SA Latitude
6 877 Gyro tilt

7 SOL Oyro gravity reference

8s 8ov Velooliutor

9 Off Roll bias

106 ST, Roll stnusoidal lh

11 88~ Pitch bius

126 ae Pitch sinosoidal
134 8& Pitch frequency

140 Roll frequency S

15 8VWA Sea current velocity

16 SOe current beading
17 bP OGro asimuth loop residual torquing

t1 405  Gyro bias A

W ' O1 OGro noise No.IA

30' coi g Wro noise No. 2A

21, kN goas factor A ' -,

922 0 l, Orthogonality A

93' l, Orthogonality A ~ 'V
24. ,,, M.a unbalaxes A
25 ^/Ne Mass unbalace A

20# IN Aniaoeluatlity A

27 Cot Gro bias, T
280 (ON& Ciro noises 1a. 1. T

2'* 'dCns N Oro noise No.2, T ,, G-ro-nis-,N.1,,
30* Orthosonality, T,. , ..

/l' Mass un~balance, T7
832' Y Mass unbalance, T .... ,... ... .

33'f . Anieoelastioity, T
34' k? Beale factor

"".' 350 80e Forward velocity rate

US' 8 Starboard velocity rmte
37 3V Vertical velocity
aM' 8• Vertical velocity rate

39 aft Sonar tranmitter frequency

40 MA, Cross axis frequency sum I

41 lSff Along axis frequency sun
42' ., Warm-up bias A J.

S423 M? WeM? -up bias T

44 OT Gyro tilt loop residual torquing

45 Sh altitude (pooldal)

Notes: 1. Ilement 44 to added for aro model modificattion. '. *

3., Asterisked numbers are not used In the sea-barne computer,

S . State variables due to satellite ,rrors are added and are shown in Section 3. 3. 3.

%" '

S ... . .. ... -..:,::.:%
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