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PREFACE

The thoory and applications of Kalman filtering have now been under development for over
~ten years, Thin genursl srea hes aohioved a levol of mnlurity and importanco to easily
justify a thorough treatment of the subject. Tn view of the particular importunce of Kalman

L ey .

":'.. NI
filtoring techniques to the field of guldance and contrul the Guidance and Control Panel of S A O Vloail
k"‘ﬁ.% ~W

NATO-AGARD recommended that such u text be developod under the auspices of NATO-AGARD. SIS
This textbook is the result of that recommendation. The text is organized into thrae
principa) parts. The first part exaninen the theory of Kalman filtering in depth. A uumber
of signifioant new results of fundamental importance sro included hers. For instance, such
questions as existenco of Kalman filters under very general couditions, Kalman filtering for

Gauss-Markov processes, nuboptimal Kalman filtering techniques, and other areas are ireated

The second part of the text deals with tho general area of related topics. Qiestions of
the comparison of Kulman filtering with other approwches such as Bayesian and maximum
1ikelihood estimation, nonlinear filtering, linear and nonlinear smoothing (post-flight data
analysis), and other topics are reviewed in depth iu this part.

The third part is a very comprehensive review of mmny of the important applications of
Kalaan filtering. Although many very specific areas of application are treated in this part,
‘many :genersl.principles and -dechniquos for a very-broad reage of applications of Kalman
filtering will be found here. As a result, the reader should also find this part quite
valuable no matter what particular application he might have in mind,

It 1s a great plousure to acknowledge the contributions of many individusls who mads this
text possible. First of sll, Professor W.¥rigley' s contributions as the first Panel Chairzan
pf the Quidance and Control Panel csnnot be praised too highly. His cutstending effurts in
guiding: this Panel during its formative stages cannot be praised enmough. This book is one
of the fruits of his efforts. All the members of the GQuidance and Control Pansl were solicited
for their sdvice and suggestions, and their help is also greatly appreciated. Colonel
L.Bugarwan and Nr.Frank Sullivan provided much important support. Mr O.H.Schuck made uany
iwportant suggestions. Colonel ¥.Studabaker and Major C.Mount provided invaluable assistance
in their roles as Guidance and Control Panel Executive Officars. MNrs Gladys Flynn provided
many invaluable services.

Cornelius T.Leondes
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r'.'-‘: ) NOTATIEN
.(' t the indepondent varimble, ununlly referred to as time
- t, initial time
E:& . L(t) the residunl or innovations procens and defined to he [(t/T) Q acty - H(LIE(t/T)
':i y(t) addit ive white-nolse proceas in the measurement data with mesn zero and covarisnce matrix
R(LIS(L -1
| (it} additive white-1oire process in the plant with menn zero and covariance matrix Q(t)S(t-T)
:‘\'_. x(t) the n-dimenaionnl state vector doscribed by s linear differential equatjion i = Pt)g+yw
. i_(t/‘r) estimate of the state z(t) glvon the measurement data Z(7)
gct/m error fn tho estimte, I(t/7) & x(t) -t/ RN
T3 the noise-fres measurement dats, y(t) & H(L)x(t) L\'Z!Cﬂ' -‘3‘7’w
’ ) the measurewent data, z(t) & H(t)z+x A .?
o the memsurement datm, Z(T) for sll t, €T <t
c(t) aross-correlation matrix for plant and meagursment noise, E[x(t)yT(r)] = O(t)s(t-7)
! F(t) plant matrix, X = P(t)x+¥ '
Het) observation matrix, g = H(t)x+y °
K(t) optimal gain matrix for unbiased minimum veriance filter
Nt T) observability matrix, M(t,7) £ I:W(U,t)ﬂ"(o)u"('r)}l(o)‘!’(a'.t) do
;: pL/T) covarimnce of the error in the eatimate, P(t/7) ém[i(t/r)x’(b/r)]
:;: act) covariance matrix for the plant noise w(i)
',;"’1 R(t) covariance matrix for the measurement noise y(t)
i . oem transition matrix associsted with the plant equation, &t,m = Ft)&(E,™) . &) =1
Cs Y, ;?mition matrix assoolated with the filter dynamics, Wt ™) = [F(t) -K(OHEI¥L, ™ |
i T
'::I 1 identity matrix of appropriste dimension
é ’ () the quantity ( ) is  vector (or column matrix)
l () the matrix transpose of ( )
A -
'z: ] ¢! the matrix inverse of ( )
'..! l (7! the watrix inverss of ( )T
\
i\i ' B(n) expected valus of the random varisble s
i 3 the Dirac delta funotion

g : (r»2() the quantity ( ) is defined to be equivalent to [ ]
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i H.¥. Sorenson and A.R,8tubberud
\5ﬂ 1. THE LINEAR ES M
L\V . 3 AR ESTIMATION PRORLEM
b
JJ:; ' 1.1 Introduction to the Linear Extimation Problen
MJk: A large clans of estimation problems is concerned with finding an optimal estimate of some quant ity (an unknown

'~ parameter, a random variable, ar a random salgnnl) when a linear fvnctjon of this quantity corrupted by ap ndditive

neise is available for gonorating the vstimate. One of the first studies of this closs of problems was performed
by Omuss’' in the early 1800's. 1In this work he studied least-aquures estimates of unknown parameters. R

In the early 1040's Wiener? and Kolmogorov? attacked the class of problems dealing with estimation of random
signnls, The key result from this work is sn integral equation canlled the Wiener-Hupt equation. The solution
of this squation is a weighting function which, when convolved with the corrupted linoar measurement, produces
an unbissed minimum variance estimate of the random signal. Since the Wiener-Hopf equation can only bo solved
explicitly for certsin specinl cases of the general problem, this work has only limited practical apblioation.
Nany generalizations of this work wers presented in the 1940's and 1050's but none of these {mproved its practical

' applicability*~?
\" 1
E‘-t In the §050's the idea of gonerating leant-sgudres estimates recuraively was introduced. Thia interest wrs
;f\y stinulated by the increased usage of digital computers, These estimaten are generated dynamically and the data
)1$¢ processing algorithm is either n differential or a difference oquation. Carlton® msserts that the first work on
;;:J this subject was done by Follin® about 1058. 1In 1988 Sworling published & Rand Corporation report (whioh received
oy wider distribution in 1989 in the Journal of the Astronautiosl Sciences'®) that presented a recuraive filtoring

procedure aimilar to that described shortly thereafter by Kaluwn'!, The latter work s generally considered to
bave sparked the widewpread intomast in the subject .and subssquent references to “Kalman filtering”,

The paper by Kalman!! {n 1960 introduced a different approsch to the problem of Wiener and Kolmogorov tor
random sequences. In 1961, Xalman and Buey'!'?! generalized the results to random processes. Basically, this
approach oirocumvents the problem of solving the Wiener-Hopf integrul equation, By recognizing that digital
computers are much more effective at solving differential equations than integral equations, Kelman and Bucy
transformed the integral equation into an equivalent differentiml equation. Then, rather than demand an analyti-
oal solution for this squation, ‘hey recognized that, from s practical standpoint, It is better to put the com-
putat ional burden on the computsr. These results are closely related to thowe obtained for sequontial least-squares.
estimation. The practicality of the Kalman approach tn the est imation problem has made it imwensely popular in
sorospace applications, such as in navigation and guidance

It is the intent {n this chapter to discuss the fundamentsl mspects of the unbiwr.ad, minimum variance, linear
eatimation problewm. The treatment of the problem as presented here has identifiabiv roots in the paper by Kalman
and Bucy'? and even more mo in the rewarkable trestise by Xalman that constitutes Reference 13. Howuver, the
presentation describes not only those early and basic results but attempts to present the developments in the
yoars since the seminal pupers appeared that either provide insights into the foundationa or which add signifi-
cantly to the throrstical structure. It oay be an overststement tn suggest that there sre as many derivations
of the Kaluan filter squations as there are workers in the field. On the other hand it oannot be denied that
there ara many approsches to the ‘problim and each has its vociferous supporters. 1t is not practiosl, nor {s it
desirable, to attempt to satisfy all tastes. The development here is demigned to appeal to intuition and to
provide insight that explaine those aspests ahich may not be obvious. In taklng this approach, mathematioal
rigor is sacrifioced or dotsils are omitted when it appears that greater clarity oan be uchieved by ignoring what
amounts to be a technioal detail that does not affeot the finel results.

The basic mathematical podel and a more precise definition of the linear estimation problem are given in
Ssotion f.2, Some variations and generalizations of this vodel and problem are cousidered in Bections 2 and 3.
A detailed summary of the more important results of Sections 2 and 3 is given in Section 4. 1t is suggested
that this section be read after completing Section 1,2 and befors going to the detailed discussions of Bections
2 and 3. In this way this summary can be used as a guide through the sesming morass of Kalwan-Buoy filter theory

1.3 The Mathematical Model and Problem Statement

Cunsider o dynamioal system whose state evolution is described by a linear, stoohastic, vector differentisl
equat jon.

s leey
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where
X i» sn n-dimensionnl state vector
F(t) is an nxn oattix whose elencnts are continuwous functions of the independent varlable t
Y {s an n-dimensional, gausmian white-noise process with the following statistios
Elwt)] = 0 for all ¢t
ElwrwTm] = auistt-r)

in &n nxn symmetrie, non-negative-cefinite matrix and 3¢t -7) f{m tho Dirac delta fuuctlon.

(it daa randon variahle with known statistica,

whiere Q)
The injtinl atate

Elxcty] = p,

Bllxtt) -l laty - 8J7Th  w, .

Also, !ty is independent of w(t) , that is,

Elre)sTe)) = 0 forall t.

The solution of Equation (1.1) im given by'*

.

. t
Bt = Qet.taity) + fc L, TINr) dr
) Q

where &(t,7) 1im the transition matrix and is the solution of the matrix differential equation

ddt,
' --(d—t-r—)- s PO, T

derory = 1 for all T .

The transition matrix has the property that
DBk, 9t 0) = ey b)) for mIl g tyty

This inplies that
¢—‘(th»t]) = ¢(tJ,tk) .

so that & s nonsingular for all the tk,e_' . ‘The solution snd its properties will be used in the succaeding

discunsion.
The only information available about the state are m pemsurements gz(t) that are reimted to x(t) accord-
ing to
Z(t) = HIR(L) + ¥(t) . (1.2) 4

The ¥(t) {s an m-dimennional, gaussisn white-nnise process with the atatistics

Elgct)] = 0 forall ¢

ElyctigTn] = ReL)Bes -y .

The plant noise w(t) and the memsurement noise y(t) &re assumed to be independent for most of the dim-
cunsion, although the generalizatiocn to correalated processes is discussed in Section 2.1.3. The symmetric mxm
patrix R(t) must be ansumed to be positive-definite for the straightforward development of the Kalman filter
equations. When R(t) 18 not positive-dufinite, it is necessary to introduce the specisl considerations relating
to the colored-nolse problem discussed in Seotion 2.2. Also, by a corruption of the langunge, the matrices Q(t:
and R(t) will often be referred to ms tho noise ocovarisnce matrices, although the covarianca matrloes actuelly
are of infinite magnitude tocmuse of the delta funotion.

The estimation problam assooisted witi the sywtem Equations (1.1) ~ (1.2) can now be defined.
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Inbiased, Mimmum Variance, linear Estimation Problen

8

aiven the linour system described by Eguntions (1.1) gnd (1.2), dotoermine an estimate £¢t17) of the state
x(t) that Is  lincar function of all meusurement dutn® 2({) , ty S < T, and sutisfion thn following

4

.} conditiona:

.i (1) 2t|7) s unblasod Ao that

“

:\} Blactln] = elyey) .
(i) 8(&!7) im “best” {n tho setise that the expected value of the square of the error nagnitude is minimized.

4 Thus, the estimate R(tlr) {is chuden so that

*!

«! E({gt) - 1IN [x¢t) - 2etIn]} = minimum .

$

~ The estimate that is ohtained depnnds upon the amount of data that s avallable (1., es dofined by ) snd can

) 56 deacribed in terms of three specinl problems

"

. Prediction: Suppose that the state ut o time t {8 to be estimated from dats Z(7) where 2 <t . Thua,
the stato x(t) is to be predicted frum data obtained at times prior to the time t . This shull be referred

' to here as the prediction problem

\.‘. [ .

.: Filtering: Consider Lhe problem ot eatimating the jz(t) from dutm G(t) (l.e. 7™ t), This shall be

}. referred to an the filtering problem.

Cy

.

Seoothing: Buppose that the state x(t) is to be estimsted from data &(7) where 7>t . In this cuase
2(t) in estimated {rom duta obtaihed at times prior tv, ooincident with, and subsequent to, the time of
interest, t . This shall be refurred to as the ¥moothing problen.

=

SR
-

. .
‘\x

Those three special cuses of tho eatimation problem arn alse reforred to as the extrapolation, smoothing and

interpolat ion prohlems (ses, for exumple, Refereuces 2 and 18). The problems have beon stnted {n the order of

inereasing complexity of solution. The emphasis here is upon the prediction and filtering problems, although

the smoothing problem is discusaed brisfly in Section 2.3. The so-called Kalman-Buoy filter is involved‘with
the first two canes

ity

o

2. ‘SOLUT'ION 'UF THE LINEAR ‘ESTIMATION PROBLEM

9
y .
i} 2.1 Linear Prediction and Filtering
ol
: 2.4.1 Heuriatic Derivation
p1 A derivat ion of the Kalman-Buoy equations is presented in this seotion that appeals primarily to i{ntuative

reasoning rather than mathematical rigor. Thin sppronch {s taken initially to provide insight into the character
of the solutivn which is shuwn more rigorously in the rollowing section to provide the unbiased, minimum varinnce
entimate of the state x(t) based vn the measurement data Z(t) .

x - R

o=

“5 Ty

Supposs that an estimate of the state z(t,) 1s available at some time t, that is based upon memsurement
data Z(t,) . Let this estimate be denoted as f(t.it,) . In Equation (1.1), it im seen that the strie changes
in acoordance with & linear diffarentiul equation with a white-noise foreing function. The process = (t) has
2zeT0 moan and the value at different times is uncorrelated, regardless of th: magnitude of the time difference

Thua, it is remsonable to expect, in the absence of additional data, that the behavior of the astinate would be
describad by

> AN 2Ty YT

2 8

f=rme, toe . @1

where i(t Ity) is known. But when mensurement data are availsble for time subsequent to t, one can cunsider

the rcltdua! (1 e. the di!roronoe batween the memsurement dats z(t) and that predicted by the eatimate
H(t)3ctle)),

L) = z(t) - HEH)8ctlt) . 2.2y

This residusl is referred to by Kailath'¢ as the innovations procass and wlll be examined {n more detail in
Bection 2.1.12.

The residunl can he considered to provide an indication of the error in the estimate R(tit) . Let us amsume
that this error will be usad to modify the eatimate provided by Lquation (2.1) by Introdueing an unknoun waighting

or gain matrix K(t) . Using this weighting wntrix, assume thut the estimate, including nll new measurcment data,
is to have the form

gty = Feadeelt) + Koo lzet) - HedRein) for t >t , (2.3)

a

* Menoeforth, the gollection of measurement dats Z(o) on an interval ty S o <r will be denoted aa Z(7)

« .
:‘ l‘l.l-
‘l .

-

s

.
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where in.q't,) is known. To aimplify novocion, the-argum nta of the estimate will Ye supprossed, wo thmt g

will be synonymous with §(tit)

will be chusen fo that the varinnce of the error

Using the form sssumnd in Enuation (2.3). the matrix K(t)
Note also that the solution

is minimized as required in the ntatement of the filtoring problem in Section 2. 1.
of Equution (2.1) yields the solutior uf the prediction problem for t >t .

First tiote that the cstamnte provided by Fquatson {2.3) s unbinsed if the fnitinl ennditions are selucted
in an appropriate manner.
Equation (2.3) ia on unbiased estimator if the initial condicion f(t,1ty) aatisfies the construint that

Blket, 1ty = Elaty) . (2.4)

To verify this, note from Rquation (1.1) that

ely) = roRly)

and from Equation (2.3) that
elsl = roE(E) + ke ezl - nendElE))

But from Equation (1.2) one seen that
Elz] = nveh) |

80 that .
elfl = POEM + KM El -ER]) .

hus, it follows that

:‘;(n[;-il) = {r) -kHIEZ-F) .

This is & homogencous, linear differential equation in the variable E(x-3] so0 its solution hes the general

fora
slxt) ~2t)] = Wit e Ex(ty) - Rtgity) .

The matrix ¥ is the transition matrix associated with the fi)ter dynamics and is the molution of the matrix
differential squation
ety = [Pty - KRBt by Yt .t = 1.

Thus, if Elxeey] = Elfee i) .

it follows that elzt)) E[gctity] |

80 that the estimate is unbiasud,

Using the forw for the eatiwate assumed in Equation (2.3), consider the reforsulated filtering problem. Deter-
nine the time-varying mtrix K(t) so that E{(z-$7T(z~2)) is minimized.

Let ey & xo - fieley (2.8)
83 that - Blg-a-pl = el

= trace E[§37) .
Detine reit) £ RlIringtein)] . {2.8)

Thus, it is desired that thy gain matriz K(t) be chosen to minimize the trace of the srror covariance matrix
pPstit) .
The rate of change of the error in the estimate is obtained by using Equations {1.1), (1.2), and (2.3).
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- But Rly(tX(t,lt,)]

d
(%) T e~ x- = R
a® 2 :

= Pg + ¥ - PO - Kt [z-He)E]
= [Pty ~KHNM)IE - Kty + w . 2.7

The rate of chauge of the serror covarinnce matrix Is given by
4 w47 T
T ® = e(z{") + elix") (2.8
whore
EIXET] = E((Pt) -Kemet) 587 - kee)pE® + 987} .

But {t follows from the msaumptions about the noise processes that

Ely®)ft1t)] = ~fRetRT(t)

and . Elwt)ETtit)) = fact .

For exumple, consider the first of these two relations, The solution of Equation ¢2.7) has the form
t t
‘ Lelt) = Bt b )ALty --]t Yt KT Y(T) dr 4+ ]'t Y, Tywery dr
o - [
Uaing this, one sces that .

- t t
CElp®X i) = Elyt)Ee, [tV et - [ Elxt)yT Ik ¥ e, dr + [ elytt (M I¥e,m dr .
bl e 0 to '0

0

and ' eyt )] 0.

from the basic sasumpt ions, so that

Ely )T ceity)

1

-f: R(rIB (L -TKE (T (L, 7y dr
[}

-tRKT(L) .

As a result, tho error covariance matrix is found to satisfy the differential equation.

d

A [Fet) =K(OIRIP + PIRE) ~KIH(EI]T + KOIREIKT () + Q(L) . (2.9)
It is important to realize that Equation (2.9) describes the behavior of the error covariance matrix for any
gain matrix K(t) . This relation is next used to derive the K(t) that yields the minimun error variance.
Also, note from the definition that P(tit) is symmtric.

Combine all terms that contsin the unknown gain matrix K(t) . Then

P o= pet)P + PRT(L) + Q) + (K(IR(EIKT¢) ~ (I H(EIP-PHT () KT (t) ) .

The terms outside the brackets camrnot be sffected direstly by the choice of the gain matrix K(t) , so they will
be ignorad for the moment. The matrix R(t) has been assumed to be symmetric and posit ive-definite so it can
be factored into the product of a nonsingular matrix S(t) and its transpose 8T(e) |

- R(t) - = S(t)eT(t) .

.

Assume the existence of a matrix A(t) such that

KRKT - KHP - PHTKT = [kS-A) (k5 -AlT - AAT .

r h 3




For ‘this to be valid, choose
A = PHTsT
where ( ]°7 denotes thu inverse of [ ]T . With this choice for A, the different wul equation for P hecomes

P o= PP+ PF '+ Q- PHTRIHP + [H—PHTR*VIRIK - PHTRY]T | (1.10)

Thus the gain patrix ontors the quadratic term alone. Fnr s proscribed initial value P(t,) and recognitlon
of the fact that

d (trace P) t d (P
el o = — \
dt ruon dt )

it follova that (trace P) is minimizad at each time by choosing K(t) so that P {x as small ay possihle. This
is accomplished by chovalng X mo that the gquadratic term in Eguntion (2.10) ia elimineted. Thus, the optimnl
gain is

K(t) = P(tItHT(L)R™I(L) 2.11)
and the error covariance mutrix for the nptimal gain is desoribed by

P o= PP 4+ PFT(t) = PHT(L)R-I(L)H(EIP + Q(t) (2.1

with prescribed initial condition P(t,) . The arguments lending to Equations (2.11) and (2.12) osn be made
. more precise by using variational luuuntn. as discussed by Athans'’. The error covarisnce matrix P(tit) {s
determined by solving Equation (2.12). This eguation is a matrix Ricatti equation'® and is discussed in more
detail in Section 3.2.

This compietes the heuristic derivation of the equations of the Kalmap-Bucy filter.

Summary of Principal Reaults

The unbissed, minimum varisnce estimate of the linear system described by Equations (1.1) ~ (1,2) 1» given
wsthe sviution of the wystwm

$etle) = peedfetle) + Koty [get) ~Hee Reel)] | (2.3)

where i(tolto) is selected sn that

ElRct,It)] = Elacty)] .

The optimal gain matrix is given by

o4
o
hj K(t) = P(tIt)HT ()R (t) (2.11)
\Vd i
\‘t and the error covariance is obtained as the solution of the matrix Ricatti squation
[
O a ; .
‘ — P(tIt) = pee)Peele) + PCIEIFT(E) + Qt) ~ PCEIBIHT (O R (BIHEIPEETE) | (2.12)
dt

it i
'\‘7 ' H 2.1.2 The Innovations Approach
.4
ot A more rigorous derivation of the solution of the linwar, unbiased, minimum variancs filtering problem is
,'_.;: presented in this section. The approsch follows that of Kailath'® and has a strong similarity to the derivation
f;: presented by Kalman and Bucy {n their original paper‘?,
iyl
| To begin, the proparties of tie residual [(t) defined in Equation (2.2) will be examined in more detail.
M ' Kailath refers to this prooess as the innovations procest becsuse the residual contains in essenco the “new"
.“-: i informtion contained in the messuremsnt dats z(t) .
g The process
" .
- L) = &t) - YLl

-
! (s a white-noiue process with the same statistics as the measurement noise proces: Yy't) when R(tit) is the
\:‘-, mninimum variance estimate of x(t) using Z(t) .
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The plausibility of this statement can be seen by direct calculation. First, verify that p(t) is a white-
noise process.

lat ) & moxey (2.13)
Then gty = Hwgcele . ' “(3.14)
and JeEit) = el (2.18)
s0 B = gty - faeley

= H(t)F(eit) + yt) . : (2.16)

Buppese t > 8 . Using Equation (2.16), form
Elp)rTm] = E(fltgTalm] + Elyw)fTeim] + BFele)Tml + elyt)yT ] .
8ince y(t) 1m a white-noise process, _
elyt)gTm) = o
and clyt)ytm) = o.
Consequent 1y
elpc)zto) = E{gelt) [Feste) +ym]T)
= B(getle) [aem) - o)) .

But it is we)l-known that the error §(tit) for tle minimum variance estimate mtist be orthogonal to the mensurs-
ments Z(s) in the sense that

c(ffititrzm) = o, 1¢t, (2.17)

This property ia proven in Section 2.1,3 and is essentially the Wisner-Hopf equation.

Assuming that R(t/t) s a linsar function of the memnurement data Z(t) and is the minimum varisnce esti-
mate, it follows from Equation (2.17) that

slptrct ) 0 for t>s.

A aimiler argument for t < s shows that

»

elztrgtes)) 0 for t<s,

p0 it only remains to consider t = s . It im necessary to demonstrate that E[:(c)x"(t)] is infinite in order
to conolude that [p(t) is e white-noise process.

elprTe] = ElyerTee)] + E[FeIngTelin] « Elycergieein] + Blpeiogte)]

But §(tit) 1s defined as the error in the estimate of y(t) for the duta g(s) , t; & s <t and y(t) {s.
vhite-noise, 50 : . )

Elyceing’ )] = 0 = Elyoyfeinl -
and Blrtdr®(t)) = R)S(t-t) + E(FI0¥Ttie)] |

But the covariance EF(tIt)§T(tIt)] is finite so it is negligible by compariscn with R(t)S(t-t) and one
concludes that )

elet)rTm) = RSt -8 .

The residunl [(t) represents the difference betwsen the new measurement z(t) nnd the prediction based on
sll previous data #/t!t) . Thus p(t) contains the information being contributed by the z(t) , so p(t) and
R(t) omn be used interchangeably. Suppose that the optimal astimste is a linear function of the innovations
process and has the form
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t .
geity = [F ez an (2.18)
. t, K NEA .
et e e e »
where W(t,s) 1ia Lo be chosen w0 that Equation (2.17) ia satisfied. Form wm\#M ,j
AL A

EgelorT@) = j:m.-m[m):‘(c)l ds .
9

Uning the orthogonnlity of the error in the estimate and the measurement data, ohe obtains

rlgtloT@] = mlxente) .

From the white-noise property of r(s) , it follows that

elatiT@)) = ¥ty . b, o<t . (3.19)

Bince R(7) {is positive-definite, the weighting oatrix can bo determined and the estimute is given by

t

Aty = I‘ Elg ()T (IR ()e(s) da . (2.20)
[}

The Kelmen-Bucy filter squations presented in tho preceding section are obtained from Equation (2.20) by difforen-

tiating with respect to t and by using Equation (1.1).

Different iate biquation (2.20) to obtain

d t d '
m geity, = Blx TR (IE) + I m Blx) T IR Lim)p(n) de
tﬂ

e Blut)eT e IR E(E + Feey ]': ela) T R (ayp(e) ds + ]‘:tlzmz’(u)lr*(-m-) ds .
-] 0

But -t wecond-beru-gs-equal to Betafitit) .and the plant noise and residual sre independent, so this reduces to

Rty = mHTEIL + Bl @I e
Latting Kty & mlxwT®IR e | (2.21)

the differentisl equation assuwed in Seotion 2.1.1 is nbtained:
fty = meftie) + k) gy -HoieIn] L 2.9

Consider E(x(t)gT(t)] and obaerve that
elxt)rTty) E{x(t) HH Lt1) + vty T}

= p{[Ftlt) + {1 )Tt 16)IHT (e

= PEIONT(EY . . (2.22)

since the estimate and error are orthogonal and Petlt) & E[g(eIt)XTctit)) .

The error coveriance matrix is specified by deriving the matrix differentis! equation that it must satiafy,
This 1s sccomplished by differentiating P(tit) and using the gain established by Equations (3.21) and (2.22). ,
These operations are aimllar to the discussion of Section 2.1.1 and, as expscted. yield the result obtained AR )
there. MNore specifionlly, P(t|t) is the solution of the matrix Riocetti equation "“"‘““"""‘*‘:‘

'y

1

k)

Bo= pe)P 4 FET(E) - PHT(ORTVEIHEP + Q) (2.1}

where it has been shown, usinr Equations (2.21) and (2.22), that

Kt) = PCeItHT(LR™!(t) . (3.11)
This complates the derivation of the Kalman-Bucy filter by the innovations approaech.
,,l'..‘ru'.'\..
[ ]
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2.1.3 Other Considerations

‘ There are many other aspects that conld he cunsidered {n conjunction with the problem discussed in the pre- 2
ceding sections. Some of theae will be troatsd in this smectfon. 1In Section 2.1.2 the orthogonality of the wzm' ‘{Q: l‘
optims] linear estimate and the associnted error wns used without proof amd this will now be supplied. Also, ’""*

Y8y
the generalization to the oase in which the plant and messurement noise processes are sorrelnted is discussed, L
as is the effect of a determiniatic forcing function in the plant model (e.g., arlsing from control system R

. considerations).

2.1.3.1 Orthogonal projections und the Wiener-lNopf equution

The orthogonnlity sondition (Egn (2.17)) used in Seotion 2.1.2 im n apouial case of the geometric property
of orthogonal projection. 8ince the estimate im u linomr function of the measurement date, it is contained in
the linear subspace spanned by those data. If the state veotor is not contnined in this subspnoe, it is clear
that the error in tho estimate will not vanish. In fact, the error will have ita smallest mugnitude when the
estimnte ia taken as the orthogonal projection of the atate on the subspnco spanhed by the measurement dato.
This idea will bo made more precise below and then npplied to derive the well-known Wienor-Hopf equation and
the orthogonality condit ions used in the prsceding section.

Consider a linear apace X mich that an inner product (1.y) in detinod for any two elemonts 3.y in X.
Define & norm by

., el = @pt.

Let M be a suhapace of X and consider the problem of finding a vector § in M whioh minimizes [|g-yll
with respect to any y«M . The solution of this problem, if it exists. s given by the following result.

Orthogonal Projection Lemma: [[x-§ll 18 » winfwum for all yeM,
. lllx-zll » llx=gll ~ for all yem,
1f and only if (5x-3) is orthogonal to all yeM
-3y =0 for all yeM. (2.23)

Thus, the yeM can be regarded an the linear combination of the uimenn spanning M (e .g. the measurement
.data). This estimate yields.an error that is-orthogonsl.to-all elements yeu

The proof of this result is straightforward., Assume that Equation (2.27) is valid., ‘Then, for any ypeN,
lg-yl? = llg=-9 + @~pl
= Hg-8lt + 2= 9-p +lg-gl*.
But (§-y) €N ; so, by Equation (2.23), the middle term venishes and
lg-gilt = fg-gI* +Ig-2If
? llz-gIt

x_: Py -t

-

N

'x

g ! .
SR e

§

>
=
X

with equality if and only if y = § .

3 b

To coaplete the proof, sssume that $ minimizes |[x-yll for a1l yeM and sssume that there exists some
L, ¢M such that

P
g,

.4
4

L

z
5
A

(;-z.h) s & £ 0.

.
-

ooy
- A

&

Then C la-g-Bgllt = llg-git - 2aB + By,

»
’
.

But, by appropriate choice of £, it is possible to make the last two terms negative, thereby contrasdicting
the minimmlity of

The orthogonal projection leems oan be used to derive the Wisner-Hopf equation and associated orthogonality
conditions for the estimation problem desoribed in Beciion 1.2. let X be the n-dimensionsl state space and
define the inner product of two elements in X to be

P :- o ]
- x .‘ .
PR oGl WP R

o« 2 4

rer al

cyp Y EGT . torall g, yex.

For convenience, it will be assumed that the varianbles all have zero mean. The nurm of xeX iw

IIxll? = w2 = ElTg] = trace E(xx" .

= e
L

14 -
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Frum the orthogonal projection lemma, the trace of the error covarlance matrix is minimized if

ety -getiy, gemy = BIETtiHzm] = 0, for t <mct . (2.24)

Similarly, this Jemma is usad to establish Equation (2.17) and the other orthogonality conditions used in
seotlon 3.1.3.

To derive the Wiener-Hopf equation for the nonstationary linear system of this presentation. suppose that an
oatimate of the state x(t) 18 to be a linear function of the measurement data g(t) having the form

t
ftle) = L WL, B)5(A) ds (3.38)
0
Since tho components of R(tlt) can bo chosen independently of each other, it suffices to chose R(tlt) o
that

E{lzct) -2tte))zT(m} = o, tpCa<t,
Using Equstion (2.28), one obtainc the Wiener-Hop? equation

elat)e®m)) = I: w(t,NEge) g ] do for t, Sa <t (2.28)
0

2.4.3.2 Correlarion betwsen plant and measurement noise processes

It bas been assumed heretnfors that

clyt)Fm] = o tor all t, 8.

1o this section, consider the more gensrsl case in which

clwt)y®m) = (st -m for all ¢, ». (.27

Relative to the developnent of ‘Sedtion 2.1.1, note that the effect of the correlstion nppears ‘first in the
derivation of Zguation (2.9). One sees, in this osse, that

Ely)gTceity) = FretxTeey + $cit)

and elnTeeiey] = faee) - FewxTeey |

Consequently., Equation (3.9) Is found to he modified and the differentisl equation describing the error covari-
ance matrix becomes

4 1 - T T T
;P =z (Pee) -R(EHEIIP = PIR(E) = KEIH(E)]T + Q(E) + KEOR(EIKT (1) = K(E)CT (B) = C(LIK(E)

= PP + PRT(E) + Q(t) + (R(EREIET(E) =Kty [P+ 0Tety] = (AT () + o))t} . (3. 18)

The optimal gain oatrix is found to be

Kty = [PEIOHTE) +C) 1Nty . (3. 20)

snd the optimal error covariance is described by

P on PEP + PET(t) - [PHTct) + oce)Int[ET (t) +H(LIP] + Qqt) . (3. 30)

The same result is obtained using the innovations approach where Equation (2.22) is modified to mooount for
the corralation.

2.4.3.3 Deterministic plant forcing function
Supposs that the plant model is altered to

i = MOEtdt)y+ 8, (3.91)

where ¢ is & knom function. The cnly modification required to the filter equations in this case is to note
that the prediction wust mocount for ¢(t) . Thus, the estimate is given by

...dlhm.z.&u.

it O

2 F,




. ' b= P+ dety + ke laee) -needl (3.92)

¢« - -

where K(t) ln& P(tit) are unnhanged from Equations (2.11) and (2.11).

. 2.1.3.4 Conditional mean and minimum varinnce estimates

The minimum variance estimate has an intereating interpretation in terms of the conditional donaity of the
stats x(t) glven the measursment data Z(r) . This relntion i» described in tha following lemmn.

T e

Lemma: Buppose that n random variable 3 1s to bo estimatod from mossurement data g and suppome that g and

'ﬂ Eo :::: the joint probability density funotion p(x.Z) . An ostimate £ im to be determined from the dnta 2
.g . Blx-0Tx-2) = minimum .
":‘t . Thon, the minimum variance estimate R is
q 2 = el . (2.3
?;‘ e Proof: write €[(x-DTx-2)] in torms of the conditionul donsity, using the identity .
F‘ Ela-9T-8) = EE[G-DTG-DI1) .
A But Ria-0Ta-Dizl = §72 - 2f"elyig) + ely"yi2]
' = (R-elxiZh™(R-elsig) + 07 - £ liZelag) | (2.34)

By definition this quuntity i¥ powitive; sa, to minimize E[(x-R)7(z- )] . It is suffiolent to minimize
Bquut ion (2.34). Only the first tern involves £ wand it is quadratic mo that the smallast value it cnn assume
is xero, This obtains when

g = e3lg)

so Equation (2,33) is proven.

Note also thut the conditionsl mean provides mn unbissed estimate of x . This follows essily by recognizing
that

plf) = n{!:[xlz]'} = Elx) .

For the linear system (Kqns (1.1) - (1.2)) and the gausaian chartoter of the initial state and the noise
processes, it follows that x(t) is gaussian for any time t . Further, it can be shown that the conditional
density of the state x(t) , given the data Z(t) . {s gausaimn with mean value and covarimnce described by
Equations (2.3), (2.11), snd (2.12). Thus, the Kalmn-Buoy estimate desoribes the behavior of the memn »nd
sovariance of the conditiona] density function. As a result of this fact and the lemma proved abova, the linear
Kalnan-Bucy equations provide the test estimmte, even when nonlinesr estimators are considered. Probabilistio

! aspects of the estimation problem are considered in depth in Chapter 6.

2.4 4 The Time-Discrete Problem

g

¢ The time-discrete linsar filtoring and prediction problem'! is inoluded for the sske of completeness end
' results are stated without proof. More details can be found in References 19 and 20 or Chapter 8 of this book.

4 One can use urguments that mre very similar to those umed in the preceding sections and the rerults contain few

& surprises. The prinoipal difference resides in the faot thut the sessursment noise covarisnce matrix doss not

'.'1 . have to be positive-definite, although a related matrix must have this property., No attempt will be made herv

Y to treat the time-disorete problem sxhaustively. Most results for the time-cont inuous case oan be modified
without diffioculty to apply to this problem,

:, Consider & systen whose state is described by » linear difference equation

1 ]

X B o® Sl Pl 2L (2.38)

and which is observed through weasirament data L, obtained st discrete instants of tims t, . These data are
assumad o be linearly relatad to the state according to

a4

& * PR (2.36)

The noise sequences cie assumed to be gaussian and uncorrelated bstween sampling instants (i.e. white-noise
ssquences) with zerc msans and covarimnoes:

X B R e w
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' elyyy) = Qéy,
Elyy]) = w3,

Elwyfl = ¢35, . o

kY ] kY _.‘.."

The Yy and ¥y Aro ansuned to be uncorrelated with the initial state 8, + ¥hich {s a gauwssinn random varinble :'-':

vith RN

Blx,) = n,
El(xg-8 :o. %) = #,.

For this system one cah prove that the unhinsed, min. - varinnce eatimate of 2, « &iven tho data Z(ky s
desorlhed by the following system. The watimute of the state x, ia

& = Yoo b A lae R R (2.37

before the measuremont g, Is processed. The estimnte when gy im inoluded is ohitained by modifying the pre-
L dicted eutinate §! sccording to

b= 6 R -mED 2.3

The optimel gains A, , and K, are given by
Moy = Cuil PLLHEL, + By (2.300)
K = RMONRIRE + RyDCE, (2,300

vhere the predicted error covariance matrix {s desoribad by

L O R L R L. L
= O g K 8 s = Ay (e PLHE + R DAL (240
and the current error covariance matrix is
Po= Pl - KWPL. (2.41)

When the plant and measuremsnt nolwe are uncorrelated, the matriz C, vanishes and causes A, to vanish
and the covariance matrices reduce to

" T
B G P W Qe (2.42)
tnd Py = P - KHEF @
Note that the gain mmtrix requires the inversion of [HkP{HI+ ] instead of the meamurement covariance matrix
, as ooours in the timm-continuous oase. However, one can derive a form for that ia more similur to

- Section 3.1:1 when Pl' ad R, are positive-definite by msking use of the following lemma.

' MNatrix Inversion Lemma: Supposs the nxn matrix B and the mx@ matrix R ars positive-definite and let

H ba an arbitrary wmxn matrix. If A is given by ' :r’" _
. A = B - BHT(HEHT +R)'HB (2.4 AN

then the inverss of A s , : t-:'-—ﬁ—'. -
. ' Atz Bt e HTR : (3.48) AT
The proof follows b'y multiplication of A and A"! .
The error covariance watrix oan bw rewritten, by substituting £quation (2.43) into Equation (2.43),

T T -
P, = Pl - PHTlH BIHT 4RI R Bt
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Using the lemma, one obtairs . M
=1 . [I%A] ‘Tp-1 ity
P (O IR, (2.4 i'."w v',_w}x'x Ej
Tl
The gain matrix can also be modified: >
K = (BB ORHIR D RIIR 4107
But, from Equation (2.43),
L TR B
a0 ke = B lremirgtm mInTR (et mnThe 1)
= PR L (2.48)

Equationms (2.47) und (2.48) provide an alternutive form when Pk and Rk are positive-dofinite. Fquation (2.47)
haw the disadvantage that an nxn autrix must be inverted, 1ather than the mxm matrix that must be invertud
in Equation (2.42) (usuaslly, m < n).

2.3 The Colored-Noise Problem

2.2.4 Colured-Noise, Shaping Filters, and State Vector Augmentation

It has been assumed that the plant and meusurement noise processes are gausaian and white. This assumption
1o not slways satisfied in practioe, so it is desirable to conaider linear systema in whioh the noise exhibits
correlation betwesn different instants of time ({.e. the noilse is “colored”). This problem is sucowssfully
approsched when tho noise can be described by a shaping tilter®!,

Definition: Consider a gaussisn random _process p(t) that has zero mean and whose second-order oorrnllunna
sre given by .

glactin™m] = b . (2.48)

A linear dynamical system driven by w gaussinn white-noime procuss whose output has the mame statistioa) charmc-
toristion as p(t) 1s oslled & shaping filter,

Thus, by introducing & shaping filter, many random procesmes p(t) oan be desoribed by

b= Mtip+y, (2.50)

(i
vhere A(t) and the statistics of the white-noise w(t) are chosen so that p(t) hus the presoribed statistiocs.
The problem of determining aheying filtera for random processes will not bo treated here, but the filter develop-
ment for those processes dessribable by Equation (2.50) will be given below.

Consider the following linear nystem (mnnlogous to Equations (1.1) and (1.2)), in which colored noise exists
in the plant and measurewent systems. To distinguish betwesn white and oolored-noise components, consider the
fo_llolinl partitioned system,

i Fi(t)  Fy(t) .5 n
= + : (2.31)
5 Ryt Ry (t) 5l L6
. "
shers LN is a white-noise process
41 18 & colored-noise process
where £ = MLE by, . (2.52)
and ¥, isa white-roise process.
The lulurnm_u: data are desoribed by
4, Ht) Bt 5 A5
= ) + , ' (2.53)
I, Hy(t)  H (b . $2
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where y, 18 o white-nolne process
€, s 2 colorad-nnise process
where AN IO RS (2.84)
snd w, is & white-nolsc process.
The problem described by Equations (2.51) = (2.54) oan be reformulated by state vector augmentation tov obtain

o aysten {n which the state varlables x, and g, are combined with the oolored-noise varishles ¢, and £,
to dofine  system in which only white-noise appears explicitly. This system iu

. M ~ - - = r -
i P 0 0 0 N ",
i, Fy(t)y  F(t) 1 0 X 0
; = + . (3.058)
21 o o Att) 0 ‘::l e '
fu L ° 0 0 M).J _‘5'.4 LY
” with mensursment data
B Hit) Ht) o ) 1 (v
' (2.868)
% Hy(8) H(t) 0 1 i [ o
[ .
. [+
..{'..1
«r, .more succinotly, '
v Fx+y (2.08b)
£ ° Rx+y, (2. 86b)
whers oo 8l en

with similar detinitlonn for P(t) , H(t), ¥, and ¥ . Thus, it sppears that the problem hns been reformu-
lated to the wodel given initially by Zquations (1.1) and (1.2), #o that the solut ions already cbiained can be
applied. Unfortunstely, this is not true bscause the zoro components appearing in the peasuremsnt noise veotor
Y prevant the oovariance matrix R(t) fium being positive-dofinite. This property is required in order to
form the optimal gain matrix K(t) , since R-'(t) im required. Thus, shaping filf»rs and state vestor sug-
monitation vermit the plant equation to be rewritten in a manner that is compatible with our previous results
(i.4. tha plant covariance satrix Q does not have to be inverted) but mdditionat consideration must be given
to colorsd measurement noise.

2.2.2 Solution for Colored Measurement Noise

The cokponents of the oeasursmnt veotor which contain only oolored-noise provide the souroce of the diffioulty
- in applying the filter squations developed esrlier. This problem was tirst discussad by Cox!! and Eryson and

:‘ \ Johansen?? and has more recently been considered by Bucy!®, Btesr and Stubberud?®, and Barachik®‘. To devalop
.’,:g ' s solution for this ocase, assune that the model has the form
¢ ! .
"“ s Ftyx+y 2.57)
oo
bl .
5 and ] LG A
0 . = x+ ' (2.58)
o - R H,(t) 0 :

whore § s an (n+p) dimensional state vector

Z, 18 an m-dimensional measurement vector contalnlng additive white-noise

4y 19 8 p-dimensional noise-free 'unuro_mnt vactor.

This |o|'iol Is motivated by Equations (2.88) and (2.£6), although P(t), H (t) , and H,(t) will not be required
to have the form given there. The white-noise y s assumed to have a positive-definite covarisnce matrix R(t)
and the H, and H, are assumed to have maximel rank.
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There are saversl aaspeots of this problem that require mention. First observe that one might solve the
problen formally by differontinting the momauremont date g, @
Bom mkorig
= (1F+h 4 HE (2.89)

1§ M,QMI (f.e. the covariance matrix of the nolse veotor H,p) i positive-dofinite, then §, oun be treated
a8 the mensuremont data in place of (A since thoy are equivalent if the initin) conditions on 3 ave sulocted
appropristely. Now the Kalman-Bucy results oun be applied using the messurement datn g, nnd g, D 4 H,QH}
has rank r < p, then one oan transform tho Z, into a vector that is meparated into components either with

or without white-noise. The noise-fres componchis oan be 4 ifferventinted again in an attampt to introduce white-
noise. ‘The procedure of separation nnd differentiation can be repented until & net of p mousuromvnts ocontain-
ing white-noise are generuted to replnce gz, . If it proves to by fmyouxible to introduce white-nolwe into every
component, then thome "perfoct” mensurements oan ba denlt with as deacribed by Bryeon and Johansen??.

Note, however, that the noise-free mousuremonts {n Equation (2.B8) provide perfect knowledge of p varinbles,
80 that one would expect that the filunr equntions would only involve n varlables insteud of the (n+p) appoar-
ing in the state vector of Fauntion (2.67). This pormits & desirnhle relaxatlon of computational requirements.
Purthormore, it {s undesirable in practjoe tu differentinte duta, mo these two disadvontages motivate one to
develop other means for dealing with colored mensurement noime.

Using the definition of g, and the assumption that H, hes maximal rank, it in possible to define an
(n=p)xn matrix Hy suoh thet a nonsingular matrix T(t) , with t » t, , oun be formed

H,(t)
‘ ey @ ‘. (3. 60)
Uy (t)
The M, must be melected so that
H,HI = 0
and HH = 1.,

The task of chuosing H, is not us diffioult as it may st first appear; at lemst it is triviully scoomplished
for an important olass of syntems that are disoussed lster in this seotion.

Let the inverse of T be defined ms

T = el o (3.81)
whers it oan emsily be shown that
3, = niuEh
J, = H}

when the aonstraints on H, are invoked,

Define new state variables with subveotors g, and ¢ such that
. $ X =Tk (2.62)

8iace T has an inverse, the 3 ocan be racovered,
B = Gy t 00 (2.63)

But g, 1s known measurement data, so the problem of obtaining the minimum variance estimate of X reduces to
that of vatimating & . As a result, the order of the filter that is required reduces, as expeoted, ‘rom (n+p)

to n . Aftor the estimate of  im determined, the estimate of the state x ix obtained from

QeI = 3, (0z,0) + I dtlt) (2. 84)

wl .

I Y
St




_?-’f

Oy

P o) SRSF el
o ettt S,
AV NP

‘—

.- -.l <l -I-

2.

'l

3 .-

—
Pl

’ T
LT

*

s «'.-_ .
ELA I

- %

KL
P
i e e

L

a

2% tm

18
Conmider the problam of estimating the vector § . From Equation (2.63). it is moen that
£ = g,
so & differential equation deseribing { ia obtained by differentinting and substituting Equation (2.57):

I RN N

(N +HyFIX + Hyw
= [y o mma,)g + gy +nma,z, + iy (2.88)
The term (M, +N,F)J,2, 18 @ known forcing functlon Ao it can bo treated {n the fashion doseribed in Soctfon

The monsurement datm 3z, can also be oxprossed “in torms of § :

o= Wde, + ulajg +y
Lat t & on -z, (2.60)
) g = Mag+y. (2,07

Equations (32.68), (2.608), wnd (3.67)form u mystem to which the proviowsly derivod filter equations can be
applied, ¥ince y is sasumed to have a positive-definito covarianne matrix. One point remains to be defined,
ordinarily, statistios are prescrihed for gx(t,) , but in this spplication it ie neceasury to speuify statistios
for &(t,) . To acoomplish this, e that the uensurement g(t,) i» known; so it can be used to estimate
E(ty) and, through Equation (2.6. Lo obtain initial conditions for (¢, . Using the renults for tiuma.
dissrote filtering presonted in Bec lon 2.1.4, one mees that the stutimtice of §(t;) , bosed on the a priord
statistlos fur x(t,) and the nolse-free meawurement data gz, (i) . are

$tg) = Hy(tfctylty)

= H, (b IPCEH] (£ M, (b, IP(E T (£ )] g, tEg) (3.€8)
with error covariance matrix
Mety) = Hy(te) [PCty) =Kt MM, (b P(ty) T (8} (3.89)
whers the gain matrix is given by
. K(ty) = PeeHICE) Myt Pty . (2.70)

Naturally, it is nccessary to assume that the inverse of M,(to) P(to)H:(ta) exiuts for these relntions to be
valid. Since H, has miready been assumad to have maximal rank, it im sufficient to require that P(ty) be
positive-definite, althuugh this le not & ascessary oondition.

Using the initiul conditions (Eqns (2.68) and (2.69)), the minimum variunos estimate of £(t) based on the
data (g, -H,J,%) is obtained by applying Equations (2.32), (2.11) sand (2.12) (or Equations (2.32), (2.29) snd
(2.30) if the plant and weasurement noises mre correlated). There are no differentiatlions of meusursment data
requirsd in this appromch and the order of the filter has been reduced from (n+p) to n . Of course, this
snlution requires that thers exist sore meawursments containing white-noise. If the vector g, in Fquation (3.38)
does not exist, additional manipulations asust be introduced, as now dimoussed.

Supposs that the plant i{s described by Equation (2.57) but that the oeasurements are entirely noise-fres
(1.9. there is no white-noise in the data) and desoribed by

By = Hy(®)x (2.11)

where the subuoript t has been retmined to ba consistant with Equutlon (2.58). To ocbtmin a form that can be
treated by the above procedure, diffeisntiate g, to obtain

i' s H’i + ﬁ,{
3 (W,F+ AR+ Heu (3.72)
To sinplify the discussion, it shall by assumed that the covariance H,GH: of the noise H,x 18 positive-

definite. The differentiated data i, can now be treated as sdditionsl memsurement dats, so that the complete
systea hus the fora

rJuP WU
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F(t)y + ¥
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g, & B = (M (IR +i,(0)]g + Hyt)y
By = H ()i,
and now tho preceding reaults cun be applied without additicnal modification.
From Equation (2.88), the measuremnt data usud' in the flltor will be
g = b, - (MFeR)oz, . (2.73)
where J, is defined in Fquation (2.81). By Equation (2.67), the ¢ is represcnted in torms of { [
g s Dp+efdaé +nyw . (2.74)

The filter state { is st1ll doscribed by Equution (2.65). The plant snd mensurement nolses are corruinted
with covuriance matrix

ot be-m & ElHy )’ mifim)]
ottt -7 = Hy(tIHI(e)B(t ~T) | (2.78)

The initiwl conditions are still dosoribed by Equations (2.88) and (2.69) and Equations (2.32), (2.29) and (2.30)
nust ha used for the fllteriug. Note also that the plant and mcasurement roise sovarimnces for this ayaten are
R, QT and H,QHT . respeotively. '
Frou Equation (2.33), the estimate of £ is given by
¢ = 0+ ang, +K-30d) (2.78)

where

o £ Ay 4R

3 &N, +nF.

The g siven by Equation (2.74) appears to indioate that s differentistion §, is required in order to obtain

an estimte of . Thiw requirenent osn be ciroumvented computationslly by resorting to the following artifice, -

Define

&8 Eaxm, .
80 that

&= d-n, - 4y
= 0,08 + oz, + klg-03,8) - g, - kg, .
Using Equation (2.73), this reduces to ‘
& 2 008 - xalagg,+ 3,0 + o3, -Rg, (2.17)
snd does not require the differentiation of data. The gain watrix K must be differentisted, howaver,

There 15 & apecial case®*:?' that {s sufficiently important that it will be considersd hern and will complete
the discussion of colored measurement ncise. In the following the notation will be ohanged sowewhat from that
ussd elsawhere in this section, In order to deal nol with the sugmented state implied by Equation (2.37) but
with a veotor that is more oclowely akin to the state of the physical aystem. Lat the system be demoribed by

i = ritx+ (3.78)
E = Ht)x+a. : (2.19)
whers p 18 a sero mean colored-noiss process described by s ehaping filter,

i'= atig+y, (4.80)
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and with initial covariance E[n(to)n"(t,)] =N whare y has a positive-dotinite covariance matriz. Assume,
alac, that ¥ and ¥ Ara uncorroluted. This is essentially the problem considered immodintely mbove, excent
that 2 18 an n-cimensional state unangmonted by measuremwnt noise variables. To put this aystem in a form
compatiblo with Equations (2.57) mnd (2.71), rewrite Fqyuations (3.78) - (2.80) as

X F(t) 0

= 1 . (2.81)
A(t)

e
LE ]

1=
o

=
<

14
D
a

where E wlyT = S(t-T1)

1<

a
-

=

and = oot [x]. (2.82)

n

Por this problem the definition of the matrix H, roquired in the transformation T of Fquation (2.80) oan
be defined explicitly as

o= 1 o,
80 that transformution T s
-
o1 T ' H,
(L) = 4 (2.83)
1 o H,
[0 1
and iy = 4 [J, J,]. (3.84)
|1 ¥ ] ’

With this transformation, the fiitering state ¢ s
£ 3.

20 that 3 1is to be estimated directly. Obviously x 1is described by Equation (2.73), although it can be
verified that Equation (2.65) reduces to this squation by substituting appropriately. The measurement given by
Eguation (2.86) is seen to be

i-At)p = [HP-AH+B]z + Hr + v . {2.85)
The estimate for x can be written explicitly in the following manner.
i = rrf r Rty z-Atiz-0008] (3.86)
vhere 3 & HF-M+H.
The initial condition for %(t,) is obtalned from Equation (2.68) and is found to be
Bty = MieHT(ty) (LM (o) +N(E)] T 2ety) (2.8m
where M(t,) 1s the covarimnce of the initial stato x(t,) .
The gain satrix K(t) is given by
Kty = (PeyaTe) +are)HT )] (B QW ey + Ret)] ! (2.88)
and the error covariance smatrix is
P o= PP+ PP + Qt) - K(t) (RO (8) +ROIKT(E) (2.89)
The | :iwl conditions are determ!jed from Equation (2.63) to be
P(t,) = N(ty) - MetORT(E) (HCE MR (6 ) +NEE] T HCEDNCE ) (2.90)

These reaults reduce to those published by Bucy®* and by Stear and Stubberud?® after minor changes in the model
ard notation are Introduced. :
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2.3 Linear Smoothing

In this section the problem of finding the linear, unbiased, minimum variance estimats of x(t) , glven the
data Z(t) , T >t , is considerod. The syatem dofinod by Equations (1.1) - (1.2) is treated and the innova-
tions approach of Scct.lon 2.1.2 is used to derive tho solution. The davelnpment follows Keilath?’.

Based on the rosults of s.etion 2.1.2, suppose that the smoothed estimate is given by
ks
geetny = [Twctoze) d (2.91)
[}

where l. is chosen so that the error {n the estimate is orthogonsl to the innovations process [r(s)

E{(xt) -t Tr@)} = o, ty o<t

From the orthogonality property, one obtajnug the condition that

sawrt@] = [Tyt oEzmTo)]
0
= W, (LORE) (2.92)
But this implies that
" fctln = J"z[;(t);‘(-)]n'}(ng(n ds .
to
' t
= [, et ®IR ) de + f:n:[g(t)x'(l)]l!“(-):(u) ds (2.93)
o .

The first term oan be recognized as the filtered estimate; mo Equation (2.93) reduces to

fetlm) = geele) + f:tE;(t)z‘(--)]u"(-)g(s) ds . (3.94)

Now coosider E[x(t)r"(s)] . Prom Zquation (2.92), and assuning that o> ¢,
Y (R = Elxt)rTo)]
= Bzt )T @lom’ o) + 3t )]
= elg) el n’ e
= g{{gcele) + Ztie) P @l o)
= lP(t.cr)H'(o) , o>t

- where . Pty & ElRtIeT i) | ' (2.98)

Using this definition, the smoothed estimate becomes

gtin ‘= FUIB R I'P(t.u)ﬂ’(l)n"(l);(l) ds . . (2.88)
i
This shows that i(t [T) 1s the linear ‘Gombination of the tilterod est imte ﬁ(tlt) and a correction term that
contains the data not included in x(tl F) .

The eryor covariance matrix P(tiT) &_E[!(tl‘r)!’(tlr)] can be defined in terms of the filtering error covari-
ance watrix P(ti{t) . Observe that the error in the smoothed estimpate is

Ktim %(em - [P @R d

'.~. k
8ince ;(tl'r) » arhogonal to the ruﬂiun r(s) , it is clear that

!

#’[g(tlr)gntlr)] = Elgtitgtelny] - I: Pet, sy HT ()R () E(p(mET et 1t)] ds '
o .
PIT) = B(tlt) - f:P(t.a)H’(a)R"(s)H(a)P(s,t) ds . (2.07°
% -ty
- s

'y,‘- \‘{,"\._'\. .“u‘,‘\-‘.'\ "oy \n'-' ‘:'N “\.-. SRR “‘\-"'-:5' o LR . :_.‘:’.‘-( S e . .. _."‘-N'.. e
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The 1nt||run& is non-negative-definiie, so the effcct of the additional data in the smoothed mstimate {s to
raduce the error in the filtered estimate.

The correlation matrix P(t,s) 1s easily determined. As defined, it is known that

Pit.o) & E[CtIOET(slsy) , a>t.

But f(tit) im the solution of
= [P KB + 8t - KBt

0
X(eln) = Yrm e)E(LIt) + ¥(a.t) I:‘P(t.a)[!(o)-l((cr)x(o)) do ,
whero Y(s,t) is the fundanuntal solution ohtained from the matrix differential equation
d
;‘l‘(-.t) = [P(s) - K(a)H(s) (s, t) . Yty = 1,
Using this solution, one obtains
P(t,8) = P(tlt)¥T(s,t) .

The amonthed estimate becomes

getlny = Rt + Petlt) f; VY¥¢s, IR (MR (W) p(s) ds (2. 98)
and
Pitim £ EIXEIMZT ()
= Petlt) - P(tlt) ft'\l"(s.e)u'(s)n“(-)H(-)‘P(a.t) d8 Petit)
£ petlty — P(EItIM (E,TIPRIL) (2.99)
where

My (t,T) ]‘;\P’(..t)n"u)n"(nn(-)\v(-.n ds .

The mtrix My(t.7) 1is siniler to the observability matrix introduced in Section 3.1. Equations (2.68) and
(2.99) are the general smoothing equations. Three classes of smoothing nroblems have been discussed in the

1iterature?!:
(1) Pixed-interval smoothing?’: The initial tims t, and the fiml timy T are fixed.

(11) Pixed-point smoothing’®: The time t for which a smocthed estimate ie determined is fixed, while the
sgount of data incromses (l.e. 7 increases).

(141) Pized-1ag swoothing?®: The time for which a smocthed estimate is determined is a fixed amount A hehind
the most recent data occurring st time T . .

‘These results can be derived?’ from the general results and will not be discussed here.

3. OBSERVABILITY AND THE BEHAVIOR OF THE ERROR COVARIANCE MATRIX

In this section two important concepts related to the linear eastimation problem are discussed. The first of
these 1m vbservability!?:3!, that ir, the property of a system which permits estimation of its state. The second
cotoept is the stabliity of the estivate as defined by the behavior of the error covariance!?d??,

3.1 Obmervability of Deterministic Systems

Consider a aysten described by Equitlons (1.1) snd (1.2). 1In ocontrast to Bection 2, it is amsumed at thia
point that w(t) 1is s determinietio signal and that v(t) is identically zero. A sinte x(t) of the resultant
deterninistic systen iz oalled observable if from tho input w(r) , t, € 7 <t , and the output &(t) , x(t)




23

can he completely determined. If all states x(t) corresponding to all admissible Z(t) urc obasrvable, the
system is called completely observable.

‘The solution of Equation (1.1) is glven by

t
Xty = Pt e nct) + It $(t, Tyger) dr (3.1
(]

where &(t,7) is the trunsition matrix for Equmtion (1.1),

ddct,my

it = PPt $er.my = I 3.2

The w(m) , t, &7 €t . and @(t.7) completely defina the second term appearing in Equation (3.1). Apparently
if x(t;) can be completely deteruined from knowledge of Z(t) , thon x(t) can be tompletely detevmined, that
is, the state x(t) will be obsorvable. If this is true for un arbitrary state, then the aystem is nompletely
observable.

3.4.1 Observability Cricerion

Combining Equation (3.1) and Equation (1.2) vith y,(t)' set to zero, the observation vectar gx(t) ims given
by

.

E(t) = H(t)gt) = ‘H(tmc.-r)y_('r) dr + HE)d(L, £, K(t,) . (3.3)
%y °

. Kuovledge of Z(t) and g(T) , t, €7 <t , complotely determines

t
Azty = gty - j‘ Hety dee, mywery dr
0

= H(E)B(L. )5ty ! t, <7t (3.4

dhus it is sufficient to deal with Ag(r) , ¢, <'7 <t , alone und seek to deterwine under what conditions
Z(t,) can be completely determined from Ag(r) , t, <7< t. These conditions ara thon conditions for the
otservability of the state g(t) . It these conditions do not depend on x(t,) or on Agz(T) , t, STt
they are also conditions for complete observability of the aystem,

Now consider a linear function of the form

t
L sTinAgem dr, (2.5
0

where s(7) 1s n satrix of piecewise continuous functions. The system is complestely observable if, for some
t>t,, sn s(7) exists such that this function equals zx(t )} for arbitrury x(t,) . 8ince Az(r) is
linear in x(t,) . only linear functions need be considered,

Theoren 3.1
A necessary and sufficient condition that s system defined by Equations (1.1) and (1.2), with w(t) & deter-
- ninistic function and y(t) identically zero, be completely observable is that the matrix

L

' Mt t) = It BTz, t ) HUMIKTI(T,t,) dr : (1.6
]

be poaitive-definite for some t > ¢, .

Proof of Sufficiency .
Assume tbat M(t,,t) is positive-definite and thus has en inverse. In Equation (3.3) let

3 = HmBe, e N ey, t) ' @.7

t t
N T - 1 T T
then f%- (ryAg(r) dr j'%gr (6. 8T (r. b W (m) Ag(m) d

|5
N (g, ) j%«b*(r,:Oxn'mn('r)@('r.to) dr x(t,)

K(ty) . (3.8)

filnos the condition is independent of x(t,) , the eystem is coupletely observabls.
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b Proof of Necessity (by Contradiction)
. . Buppone the system is completoly observable, but that M(t,,t) is singular and hence not positive-doefinite.
. Y This ieplies that & non-zero constant veotor p exists such that "
'ﬁg .'.-(le' : "
{ . t T '_‘ R
» Mo tip = 0 [ Tt KR BN ) dT p i DR
i 0 « » ‘v" T x ¥
B . NSRRI
' © [} e g it o R
B! = 0. (3.9

¢ ) Binoce H(‘T)¢(‘r.to)p_ is a continuous function for t, <7< ¢t , {t must bo identically zero in order that Equa-
) tion (3.9) be satintied,
i

Now, if the system im completely obmervable, then for x(t,) = p there oxists an #*(7) , t, <7<t , such

that
Cy
;u . N t o7 t *T 1
@I - Ie #TrAgr) dr = Ie SH*TIHmdr,tp dr = p (3.10)
. o 0 .
M .
\l However, aince n('r)d’('r,t,)g =0, t; <7<t , the lant equality cannot hold and the system is not completely
-G cbaervable.
! ‘ : ¥hen H(t) wnd F(t) sre constant satrices, the complete observability oriterion csn be reduced to an
Y algebraio oriterion,
Theorem 3.2
j ' A necsssary and sufficient condition that & system defined by Equations (1.1) and (1.2), with w(t) a deter.
3 ministio function, v(t) ddentically zero, and H(t) and F(t) oconstunt matrices, ba completely observable
: is that the mairix (dimension nxmn)
a v o= (YT, Tyt iyT) ' (3.11)
n
"\ have rank n (the diwension of the state x(t,)).
L]
1
.fq Proof of Sufficiency (by Contradiction)
. Sinoe the system is time-invarisnt, ¢, may be sst equal to pero without loss of generality. Also
t.0) = ot (3.12)
5
._i' Lt b, by, ..., be the columns of HT . Assume that U has rank n but that tho system s not com-
W pletely obeervabile, that is, M(0,t) 1s singular. If N(O,t) is singular then e non-zero p exists such thet
W
*a P =0 0dT<v., 1= L2, w. (3.13)
. - Now diffecentiate each o the = Equations (3.13) J times, § =0,1,2,..., n-1, thus gensrating
>4
N ! g™ s 0 1= 12w ad § o= Ol..., B-1, (3.14)
: Now gquations (3.14) must hold for all ¢t > 0, aince U dis conatant. In the limit as t approaches zero,
" , EqQuations (3.14) becoms
Dt
- ReeTYh = 0 4 = 1,2, m ed §) = 01.., n-1. (3.18)
,.1 : If the rank of U is n, then p = 0, which contradicts the assumption that p £ 0 .
. “‘ Proof of Necesaity
’ Assume the system 1s oompletsly cbsarvable but that the rank of U is lesns than n . There than exists a
Y noo-sero p which satisfies Equation (3.15), Now form
1 .
-( ploftn, = pt #L eTodm on
» . R
- -1
s g’}::oa,(r‘n’m .= 13, ., (3.16)
a .
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where the last equality follows from the Cuyluy-Hamilton thoorem. 1t follows from Hquation (3.16) that
PN, t)p = 0 TR
for some p ¥ 0, thus contradicting the mawumption that tho system is complotely observable.

3.4.2 Observability and least-Squarea Evtimates

Consider agnin s aystom described by Equations (1.1) and (J.2). In this ouse it is susumed that w(t) ia
ident ieally zero and y(t) 1s a vector white-noise with covariance matrix R(1)S(t -7) , where R(t) 18 positive-
definite. Now the observation veotor cun be written in the form

2(t) = HOBE. LHX(t,) + y(t) . (3.18)
This systom is oalled compleuly observable if, for every t, and every x(t,) , there exists m t > 0 auch

that an unbiased estimnte a(t ) , which 1s a linear funntion of &(t) , can bn constriucted. The goneral
eriterion for complete obsmvahllity 1s given in the following theorem.

Theorem 3.3

A necessary and suffioient condition that » system dsfincd by Equations (1.1) und (1.2), with w(t) {dentically
zoro and y(t) a vhite-nolwe with mutucorrelstion matrix R(t)§(t-7) . R(t) positive-definite, be complotely
observable is that the matrix

Nt t) = f: T (r, ) U IR L (M) ey (T, ¢y dr (3.19)
0

be positive-definite for some ¢ > t, . .
The proof of this theorem purallels that of Thoo.ron 3.1

1f the systen is time-invariant, that is, H(t) and F(t) are constant, thon the couplate observabllity
eritsrion of Theorem 3.3 oan be simplified to the algebruic oriterion of the following theores.

Theorem 3.4

A necessary and sufficient oondition that the system defined in Theorem 3.3 be completely obaervable is that
the eatrix

u = 4T TT, .., FT)RTINT) (3.0
Eave rank n (the dimonsion of the state x(t)).

The proef of this theorem prrallels that of Theorem 3.2 and is not given,

3.2 The Matrix-Ricatti Equation

3.2.1 General Solution

In Section 3 it was shown that u matrix differential equation of the Ricatti type ia of central {mportance
in the linear estimation problem. In this section the analytic solution of this type of equation is discussed'®.

Consider the general matrix-Ricatti equation of the form
Wee) = W AT(E) + At ML) + l(t)‘B(t)W(t) + Oty , (3.2
with the Initial condition
* l(to) = W,
where l; 1 & non-negative-definite matrix.
The matricen A(t) , B(t) , and C(t) are nxn matrices of continuous functiona. Further, H(t) and

C(t) are assumed to te non-negative-definite for all ¢ > t, . Now conaider the pair of linear matrix differ-
ential equations

LY = AIY(E) + CIE(E) ; Y(tg) = W,

&t)

-B(tY ¥(E) - AT(E) Z(t) 2t,) = 1. (3.22)

O T T
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It oan b_. uht':wn by direct substitution that
Y(t) =‘ wityzt) . . (3.23)
D! .'hro{n {ating this forms
{OEER TOFTISNS OO (3.34)
Using Equation (3,322), this becomos
AYY(E) + Gt Zet) = K(E)Z(E) - WEIBEI Y(L) - WEIAT(L) ZCL) . (3.28)

Bubst ituting Y(t) = W(t)Z(t) wund collecting terms producos the eguation

[Wet) =) AT(6) = ACRIWCE) ~ Wb BCLIMCE) - C(t) )4ty = 0 . (3.26)

Nuw if Z(t) 1s nonsingular for all % > t; , this equstion i{s equivalent to Pquation (3.21), and
Y = ynzie) . (3.37)
Note also that

Wty) = Yt Mt = WX = oW (3.28)

thus the initial condition is also satisfied.
To show that Z(t) - is nonsingular, it is noted that
' : Be) = -BEYY(L) - ATCHYZ(E)

e [-ATct) -Betywit)lzce) | . _ {3.49)

Since 2({t,) = 1, thon Z(t) is « transition matrix and herse nonsingular,
It was seen in Section 3 thit there are tvwo forms of the error covarfunce ‘equwtion. “The -first:aof thene is
Bilt) = PRIt ~ROYHE)]T + (P(t) =XV HEIP(EIE) + K(LIRCEY KT (8) + Qe) (3.30)
Pt = P, .

Comparing Equation (3,30) with Equation (3.21) the folloving equivalent met of equations is obtained by a com-
parison with Equations (3.22): :
oy = [rt) —xey ) tee) + (Ko ReEYKT(E) + QeI 20t Y(ty) = P,
. ) (3.31)
o) = (Mo -t HETZe) ¢ Mty 3 1.

.

Nov Zt) = Wity ' (3.32)

where W(t.t,) is s transition mtrix desoribing the filter dynamios and satistying

d—w%ﬂ-) (ret) =Rt HEI]%CE, ty) | (3.39)
Ptg.ty) = I, '
Y(t) ono now be written us .
. YE) = (e, )P, + j.:“\p(t.‘r) KRIKT ) +Qery Wity ™) dr (3.34)
Pinally,
el = vz
= ?(t.t.)[P°.+ f:u‘l.'(to.ﬂ]PK(T)I(T)K‘(T)+Q(‘r)]‘1"‘(t.'r) arl¥Tet, ) . (3.38

¥

!

%
i

)
» s
»

52
51
r e
'.
1 3
S
L
72,
l"'.

o,
XA

’

frtets
s
= b4,
B
.
s
-
'
PR
.
.
.

il 3

AU I PIL I pE
AT

Tate te Y anuey,




)

3
!

{
}

!

\

N
X

. " The sncond form of the error covarinnoe equation is obtuined from Fquation (3.30) by letting
K(t) = PILIONTRIR L) .

The vesulting equation is

. Betit) = P(LILIFT(L) + PILIP(EIL) - PCLIEYHT(BYRTT (8) HEL) PCEE) + Qet)

P(t,) = Py
The met of equivalent linoar eguations ia

Bty = POV + UDZ), Y(E) = By

) = WUHRUOmE YY) ~ FReace) ¢zt = 1.

Now lot
8.ty = [ Quttite Bty
. L 8, (tity) By, (t.ty)
be the transition matrix correspanding to the matrix
[ Fee act)
. RLEOT GRS O

Therefors .

Y(8) = O (b8P, + 0, (8,8,

Z{t) = 0y, (k80P + O, (L, tg)
ax cinally

P(tIt) = Y(®)Z (k)
m (8, (t.tg)Py + 8, (t.t)] (8, (t.t,)P. + O, k. t)]"t .
¥e now consider two specisl umses.

Case 1! Let H-(;. 80 that

Po= oprTit) + ReE)P + QL) .

In this osse the Rioatti Equation (3.37) reduces to a linear matrix aquation whose solution can be obtained

uning the weneral formalism. From Equat lon (3.38),
t = iz, ozt = o1,
~ But tlﬁl squation is the adjoint of
b, Bltgity) = I
0
Z(t) = Oy, (t,tdZ(ty) = DTy, ¢0) .
This impliss that
B,,(t.t) = 0
O (tity) = ST, ¢ty .
Using Equation (3.45), one has

t o= Py o+ Q) dTet

'l\,i'.-l-.'dh'd\:.*\:.'-:\q' ~;, v

LI
O}
S

Y < S
. Ly
e (X

L‘-_-,..l‘.t'cll..uu,\
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(3.36)

(3.31

il

LIS

(3.38)

(3.38) -

(3.40)

(3.41)

(3.42)

(3.43)

(3.49)

(3.40)




2
‘ vo 1t follows that
Yt = 8L, L (L) +m.eo)f:om.,.nwm‘uo.r) ar 3.48)
which implies that
B et = Bty

, _
8,,it,ty) = @(t.to)ftn‘ﬁ(t.o.'r)qcr)‘i”(to,r) dr

Bubst ituting thene into Equation (3.43), the solution of the linnar matrix differential squation im found to be

t
Petity = Dt b Pe )Tt e + M.t‘,){j't bty ANt ,m) dr]@'u.to) : (3. 47)
0

Caze 2: Lot Qmw 0, no that
Po= BET(t) 4 MOIP - BHTCIRT (LRGP, (3.48)
In this oune the varimnoe aquation has no foreing term and une own condider
t = KoY.
This bas the solution

HONERE TR TTN (3.49)
and {mplies that
0, (.t = Bit,ty)
BLatty) = 0,
Using Equation (3.49), the aguation for % becomes
o= arTz + WRORT IR $t.t P,
This has the solution

. . _
2 = ) + Ot b L“@’(T.t,)ﬂ’(‘r‘)R"(‘v‘)ﬂ(‘r)@('f.t,) dr B, . (3.80)
80 that

t
By (bt = @"(t,.t.)LoO’(T.to)NT(T)R"H("‘)@(r.t,) dr

Bttt = Tt t) .
The solution uf Equation (3.43), using kquations (3.40) und (3.80) in Equation (3.43), is seen to bo

-1
Pitlt) = ou.t,)p,[«b’(t,,n +\P‘(t,.t)f: Tt R ) S 8y) dr "o]
. 0

-3
. G(t.t,)p,[u j': T (r e K (MR (M Her) $er, ) dr p,] ety . (3.81)
. [}

But observe that the integral term is identlcally squal to the observability matrix M(t,,t) detinad in Equation
(3.19), This suggests the important role played by observability cunwiderations in establishing the bahavicr of
the error of the minisum veriance estimator .

3.2.2 Solution for the Stutionary Case

Buppose in Equation (3.37) thet thée cooffinient watrices F , H, R, and Q sre constant.. In this case,
one can obtain more innight into the character of the general solution snd can define the steady-state solutinn,

Yorm
| 4 Q
N & , (3.52)
uratiy T

J .
i\ LI AR T Ny - P - - .
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. L

————————




I ',‘. o< .
: -'f‘:j' :
o
D .
R % 20
]
A .
; where N represents the mntrix of cosfficients implied in the system (3.38). It has been shown® thot the
) " . sigenvalues of N are roul snd that they are symwoiric relative to the origin. For this discussion suppose
e, that the eigonvaluos aro distinct and let A be the nxn -’ dingonal matrix contwining the eiganvalues that are
N positive. Then, thoro exists a transformation T such that
1]
o ) A 0
l' b
}.\. 0 -4
=TT, (3.59)
1
'i‘\,' where
‘-‘::: 7 8 Th T
L
. LT T ]
1t oan he shown that
6
! e Toa _THT
c§ S . . (3.54)
W L'Tn T
o
Ve Define matrices I wnd % such that
. "y T, Ty | [
‘: , x (3.08)
s ] T T b
EJ [ ¢ | " e ] L
T d e -
o . t T T n
) L] .
. L s.T“ T J u..}:-
Pu= |
"":- From Equation (3.53), it follows that
e, - . - -
- g 4] Ao n
Loy . = A (3.58)
Y b (] - z
ok L& L L=
' Since this is a linear, constant cosfficisnt syntem, the solution of Equation (3.36) is
( . —
) | it o 0(0)
i a At ) (3.57)
-, b
{ | o e | s
' so that Z and Y are
UL w0 )]
: = |0 -t (3.58)
2 A 2(t) 0 oM 2(0)
N .
ey The transition matrix @(t) for this system is
M .At ¢
% oty = T L
.1 o .‘At
i ,
Al - Aty T
- LIV A N T, 0740, -7, 08T,
_‘\'I a ' At At T . (3.689)
o0 - .,
N 1, 1], - 10t T ® Ty -1, o%1,
i
:. substitution of Equation (3.59) into Equation (3.43) yields the solution P(t) .
X9 .
Peelty = (1 0ntaf) 1 o], 2 (r o, =T 8] )R]
(3.60)

C e

- * At T -1
x [Ty, Mﬂl "Tn'MTL + (TM'MTH ~ T2 MT“)PO] :

PR T TP S P
DRI S

T
i

- s

. ———

W,

v '
* ]
LY l..




£

S CA PRI
it R

Eolnl

¥ o s

AL ST

e

T
LS

& .
el .

.
-t .

P te g oF o8

pp:

30
Consider the steady-stote value of P as t =< . The terms involving A% will vaniah so
Lim peeie) 4 p,
LIS NULLRS AT LR TC AL A +75, oA R 1
SR TGO NG AR R et
=TT . (3.61)

Equation (3.00) ham A computational disndvantage, since only the term o' appoars us t {noroases without
bound. It is difficult to retmin acourany as t b iargs becnune of the prosence of eft {n hoth Y(t)
and 2°'(t) . This problem cun he ciroumvonted by sxpreasing the initial valua problem (Equ ¢3.38)) as m two-
point boundury-value problem’®, Equatiun (3.87) cah be rewritton am

f%0) oAt g ety

1]

ey 0 oAt 5(0)

It has been shown that
Yt) v PeEItyact)

and Y(0) = P(DIZ(0) .

Uning Kquation (3.88), it can be ween that
Y(0) = P(0) [1,,0) + T, Z(0)]

. and (o) = T 00) + T,X0) .

These relations lmply that
o = [r, -eom, I + [, -poyT,, 15000

%o that 0 = o[1, PO, )7 1y, <P Ty I00) & ROYOY .

Using this, Q(t) and Z(t) oan be related by
Bty = cAUE0) = oAtROO) = @At ReASQYt) | (3. 62)

Thus, one tinds that
YY) = 7,008 4 TE) = (T, 4T, M ReAt) )

z(t) = [Ty, +T,,¢ e M) Uty

aud Peelt)y = (1), +7,, MR, +1, 0"AbpecAE] " (2.83)
In this form only negative exponuntials appear snd the steady-state value P, expressed by Equation (3,61)
follows immediatsly. 'Thus Equation (3. 83) appeats to have computational advantages.

3,3 Bounds for thv Error Covariance Matrix

The error covariance matrix P(t) of the Kalman-Buoy filter provides the primary statistioal measure of
the behavior of the sstimate, ' Since the P(tit) does not depend npon measurement data, it oan be examined to
detersine the theoratical effectiveness of & particulsr measursment process for a given dynamical system. In
this seotion upper and lowsr hounds for the errc ocovarimnce matrix are derived?®:?? that point out the intrin-

sicnlly different roles played by the plant and measurement noisc proocssses.
of the deterministic observabillty oons iderations of Saction 3.1 and are derived using some of the properties

of the mtrix-Ricatti equstion solution discussed in Bsgtion 3.3.

3.3.4 S_ou General Bounds

Consider the systen detined by Equations (1.1) and (1.2). This system can be reinterpretad us the sum of
two simpler systems, which allows the effecta of the measurement and plant processes to be exmmined separately

and thereby obtain insight into their influence.

The bounds indicats the importmnce
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' Define SBystem P as a vystoem with plant noise but no moasurement noime,
Po=rtPry, 2Py =0 (1. 04)
PR (T (3.6%)
‘ and dofine Systex M to have measurement nalse but no plant noise
S TSP R TS B 1O (3.66)
o HO 4y (3.67)
Note that TRty = Aty + aPcty)
and that P+ = % (aP + x®)
= P+ + v,
' 0 that . )+ =g (3.08)
Also, it follows that
gty » gf 4R, (3.69)
' . . The llnilI.UI yariance estimate of g(t) , |1v;n gty , has been shom to be
[ I B 3 T (2.70)

whers the optimsl gain K¢t) in defined by bquations (3.11) und (2.13). Considering Systems ¥ and M, define
linear eatfmates'of 3P and 2" , using the optimal gain K(t) of Equation (3.70), s

7 = Ftg" + xe)pP - neeHgT) 3.71)

N O RO e (3.12)

[
-
PSPy

Note that §" and §* are not the minimun variance estimators for P wnd z% . However, it follows without
diffioulty that the minimum variance estimate of x is given by

*".
ﬂ e per. 3.1
:'.:": Write the srror in the estimate as
w0
")‘QJ 1= 1-4
&
wd @ -
= (P "-1 . (3.19

Using Equation (3.74), the error covariance matrix’ P(tit) oan be expressed as
reley 8 E(lace) ~Reein] [aee) - Rt i)
= @M@ - el -Gt -1
v ela-at -t s rlat-Prat -7 .
ut Bl - -t = 0,
since !’“o’ w0 and p(t) end y(t) are unonrrelated white-noime prouesses; so
JUDRERE (10 $T¢'EF SRR 16 LF @16 b g U (3.18)

It is possible to atate genera) bounds for P(tIt) . Suppoes that PA(tit) and PP(tIt) represent the
ninimum varianoe error covuriance watrices for Eystems M and P, respsctively. Then, sinoe £ and §* are
not the minimum varisnce eatimates for thess mystems, it must certainly follow trom Rquation (3.48) that




Pitit) > pP(tlt) + PUctity (3.10)

where the matrix notation A 3 B implies that the amtrix A-B s non-nogative-definite.

On the other hand, suppose that some gain other than K(t') in used to obtain entimates of both ;V(t) and
gU(t) . That is, & suboptimal gain K¥(t) is used in both submystems. Then, from the definition of K(t) it
nust be true that

P(tit) € P¥¢t|t) + P¥(t)e) (3.77)

vhere P8 and P®®  represent the error covariance matricen masociated with tho wuboptimnl gain K¥¢t) .

3.2.2 Unforced Dynamical Plant with Noizy Measurement Data
Conaider the systen described by

= PO, Mty = &y : (9.78)
g = R +Y. (3.79)

This systen is identionl with Syatem M but the superscripts have been elimiunted to simplity the notation. The
pinimum variance estimate of x(t) ., given Z(t) ., has been shown to be given by

£ = r)g s ez, (3.80)

where . K(t) = P(tltHYIN () . (3.81)
. .

and P o= PP o+ peTiey - PHT(E)RTICLIN(EIP . (3.92)

But in Beotion 3.2, it was shown (1.8, Equation (3.51)) that the sdblution of the matrix-Ricatti squntion in
this case is

B(bItY = e, t,) [P+ M(t,, 0))10T (L, 8,y (3. 63)

where M(t,,t) in the observability matrix (eee Lquation (3,19)) and is defined to be

o .
ik, t) = fg T (r, £ )T (TIRT (NI R(TI(T, £,) dT (3. 84)
0

and Q(t.te) is the transitlon matvix assoointed with the dynamical system (Eqn (3.78)).

Prow Equatjon (3.83), one sees thut the behaviur of the observebility matrix esmontially determines the
behavior of P(tit) . One oan show under appropriste conditions that M(t, t) 1s utrictly inocreasing with ¢t
(1.0 l(tn.t.)-M(ta.t‘) is positive-definite for some ¢, > tx)-

It is olear from the dofinition that

t
et t,) & Mgt - Mk, ) = I"'w"(-r.to)ll’(r)n“(T)H('r)¢(-r,t°) dr
1

so that SM(t,,t,) 20 .

To oonslder the u.vnptoﬁo bshavior of M(tn,t) , and therefors P(tIt) , it I8 convenlent to introduse the
conoept of g-observability,

Definition: A syatem s said to be g-observable for q > 0 on an interval (t,,t,), where ty may be infinite,
if and only if Bu(cj.tk) is positive-definite tor every t, , t, such that ¢, 3¢, > t; o t, and

t,~t, 2¢q. '

{ B

q-observability is a slight generalization of complote observability and is introduced to insure that the
ubservability matrix M(t,,t) s striotly inoroasing over intervals of duration q . For stationary systems
there is no difference, sv that this ouncept ims umeful only for time-varying systems. In this case, g-ohserva-
bility insures that the system ls completely obssrvable for every interval of duration q .

It a system is g-chwervable, then o

Nitg.t) > Mt t-0) . t-adt,.

Te ety e A
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Let the eigenvaluon M(ty,t) and M(to t-a) bo (A% 5 AL 3 ALY and (\§°0 5 M50 5 L 3 ALY, respoctively.
It follows that -
NP LS I L A
Thus, M(t;,t) Ia strictly increnning in the sense that all elgenvaluus wro strictly increnning us t -~ o,

slthough some may remain constant for intervals of length lons than q .

For & symmatric matrix, tho largost elgonvalue morves nm a matriv norm (i.e. the speotral norm), ac one cin
write

Mt ) = AL

a

po thit one sees that

@ (3.86)

lm dnct g 0l =
t-o
. 1
d Itee 0 = 1m < . .
an ml {ty t) ‘_Qqso (3.80)

Note that u"(t,.n oxints if tho system is dompletely obmervahle for t . But Equation (3.00) lmplies
that M"(t,.t) oonverges to the zero matrix, sinue its norm vanishes,

Assuming q-cbaervability. one sews from Equation (3.83) that the error covarimnce matrix P(t[t) 1s glven
approxlastely by ’

Peele) x &b, e (kg Tet e )

for ¢t sufficiently large. Blnoo P;‘ is ponitive-definite, it follows that

el = o, e [Pt +Mcty, )] 4Tt 60
& bt el Hpgt +Mce,, )7t
< ldct, tgal? Bty 00l (3.87)

As & result of Equation (3.87), one ooncludes the following: \

The error covariance matrix P(t) for the q-observable aystem (Eqns (3.78) - (3.79)) vanishes as ¢t - w it
it t5) converges to zerc faster than ldce,t)[' inereases. 1t the plant (Eqn (3.78)) in stable, then

thie im ocertainly true.

This oonolusion indicates, for & large olass of syatems, that the effeot of measurement noise s eliminated
by filtering over & suffivisntly large period of time. Reference to Equat ion (3.81) also indicates that the
gain matrix K(t) vanishes ms the srror covariance matrix tends to zero. As a result, the estimate £ tends
to be oharaoterized by s homogeneous, linear differentiml equation identiosl to the plant equation (Equ (3.78)).

This shows that the mowt recent measuremsnt data Liave » decressing infiuence on the estimate. While this behavior

is understanduble from an entirely thenretical viewpoint it should be cbserved that, unless Equations (3.78) and
(3.79) aqtuslly constitute an exauct model of the system, the convergence of the p(tit) omn lead to unduly
optinug}u,ruuru of the error in the estimate and omn ultimately lewd to filter “divergence” and nonwensical
reaults’® 37, .

3.3.3 Noisy Dynamical Plant and Noise-Free Mearurement Data
Consider a system containing no measurement noiss

= Fz+n, ity = 0 (3. 88)
= Hg . (3.89)

It should first be noted that Equations (3.88) and (3.80) are essentially ideutioal with the system (Equations
(2.40) and (2.33)) treated ia Section 2.2 2. This oase was discussed there, since ths Kalman-Bucy equations
oan not be applied directly to this system. Instead, the filter s reduced to dimension (n-m) and is based on
the system desoribed by Equations (2.58), (2.58), snd (2.88). Certainly, it is still possible to discuss the
errar covariance matrix P(tit) associated with the error in the wetimmte of x(t) but, as & consequence of
the considerations of Seotion 2.2.2, the P(tlt) oan have, at most, rank n-m .

The nxn error covarianos matrix P(t/t) omn never vunish identically as long as the plant covariance
matrix Q(t) is non-zero. This is un immediats consequence of the dimoussion in gection 3.2.1 relating to

po
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Equation (3.30). In Fauntlen (3.30) the mtrix K(t) is wrhitrary and the nsyocinted solution i alvon hy
Rquation (3.35). The measurement noie coverfance matrix R(t) enn be met equnl to zero (1.e. no maasursment
noise) in thear equations. It is obvious that the torm

o
]
“n AN t T
R [ e, m dr
- t
. N ]
4,
\ is nun-nogative definite and nuver vunishes. The \{'(L,t.o) in o transition matrix, so it is alwnya nonsingular,
'f Thersfore the matrix B(tIt) described by Equation (3.33) with R(t) sct equal to zerc never vanlshes for
non-zero Q(t) . Thus, In contrast with the discusaicn of the preceding scction, the error covarlance matrix
o P(tit) assonisted with Fquat icns (3.8H) and (3.89) vanishos only under very special conditions, and is never
xS positive-definite. Also it becoras apparont that the plunt noise covariance matrix can serve to prevent the
;.'-: error covariance matrix from becuming too small in any principal direetion.
"_.." 3.3.4 Error Bounds
.- It was demonstrated in Soction 3.3.1 that the ervor cevariance matrisx can be hounded by RN AR .
g b PPctlt; + PR(It) € P(tit) < PPB(tIt) + POS(tit) . (3. 90) h@.’lb’éiﬁ.&#"
Y ! " . o
O .. N C
N But in Section 3.3.1 the PP(t|t) was exprensed more preclsely by Equation (3.83). If the gain K™(t) dnfined '
by Equations (3.81) and (3.82) were used in both the M and P systems, then Equation (3.83) can be also used Lt
‘._1 in the upper bound and Equation (3.80) bsoomes .
» 1
Bet.t ) [P+ Mety, )] BT (b b)) + FPLLIE) < PPR(EIL) b e, eg) [P + et )] 10T b (3.91)
' ’
.'1'\ The lower bound can be velaxed by eliminating PP(t|t) , so that
1‘~ ° .
v Peeity > Bt tg) (P31 r Mee, 03] 18Tce b)) (3.92)
AN
: It is shown in Chapter # that this bound is essentinlly the Cramer-Rao inequality.
-"
b Consider the error thut one has if thers were no filtering for aystem P . Then
]
N t
™~ Pty = I St Iw(T) dT .
- ‘ te
B f
Assuming that w has zeiro pean, and assuning thot no measurements are proceased, the best estizate is
"
N
) ) . ity » 0.
¥ Then, it follows that
.I
, L]
> t
o PoceltElx-D -0 = J't st man $Tee, ™) dr (3.93)
'x 0
-C: But the matrix integral lus been referred to as a stochastic controllability matrix by Kelman'l. Let
L t
- veon & etnam et ar (3. 54)
W . %
A '
\\,- Note that Fquation (3.93) im identical with Equation (3.47) of Section 3.2.1. Using Equation (3.93), the upper
\\' bound becomes .
A8
Petit) € ek, tq) [Pl +M(to, )] 18Tk, £ + Wikt . (3.9%)
.,
. \ Kquations (3.92) and (3.85) provide more specific upper and lower bounds for the minimum variunce error

covariance matrix. From the dimcussion uf Section 3.3.2., it can be seen that the upper and lower buunds are
defined by W(t,,t) and PP(tit) as t increases, since the pR(tlt) tends to vanish for g-observahle systems.

¥

P
L.

* Kalxan has derived bounds for the error covariance matrix which bear some resemblance to those presented
above!?, It was shown that :

’“ P(tit) € &b, 7N ety Fie, )+ Wertty (3.96)
q-' where 7% detines the timc at which the system is coppletely obaervable and completely controllable ({i.e.

b M7, t) and W(t™.t) are positive-definits). Equation (3.96) is very dimilar to Equation (3.95). Kalman's
- lower bound is




a5
(W ter™ ey + 4T tamer™, £ Ber? )]0 € petley . (3.97

This matrix wil) vanish for a q-observable and g-controllable system and o dues not appear to contain as much
information us Equation (3.82). ’

A linear dynamical system with transition matrix ‘P(t.to) is said to ha uniformly anymptotically stable if

“B(t-19)

et el €ae for all ¢t ¥ty ,

where &, 8> 0. It is possible to prove that, if the aystem (Equations (1.1) and (1.2)) is completely con-
trollable and ci.upletoly observable, thew the filter is uniformly asynptotically atabls. That is, the norm of
the transition matrix obtained as the solution of the matrix different {al equation

Vet = [Pty -KrHe) Wit tg) | Yitg.tg) = 1

satisfies the inequality stated above. The proof of this result is omitted and the reader is directed %o
Kalmant?, :

3.4 Behavior of Error Covariance for Stationary Systems

To obtain more insight into the behavior of the error covariance matrix, it is informative to consider
stationary systems. In this cuse, the asymptotic behavior of the error covariance oan be established more
specifioslly and the upper bound oan be investigated more thoroughly.

Consider tho statlonary lineat system :
= Mty (3.98)
Z = Rg+y., . (3.80)

where P and H are constant matrices, Assume also that the plant and measurement noise covariance matrices
Q@ and R are conatant.

As has been shown above, the minimum variance error covariance matrix

4

P = rP+PFT-PHTR?HP + Q.  P(ty)) = P,. (3. 100)

Let Py be tho steady-state value of Equation (3.100), as discuused in Section 3.2.2. This matrix can be
determined from Equation (3.61) and is the solution of the algebraio equation

5

0 = FP, + BT - PHTRTINP, + Q .. (3.101)
Use P, to form a suboptimal gain for filter applioation
K, = B™R"! ¢ (3.102)

This gain can be shown to be the gain obtained for the "classioal” Wiener filier. The error covariance matrix
for this suboptimal gain is obtained, using Fquation (2.9) or Equstion (3.30).

By = (P-KH)Py + Py(P-Kg)T + RAKT+Q) . Pyity) = PBet,) . (3.103)

This is 3 linear watrix equation of the form trested in Section 3.2.1 with the ateady-state value Py . The
faot that Pg(®) = P; will be confirmed below.

Lat SP(tlt) & Peslt) - By, (3.104)
where P(tit) 1is the minimum variance srror covariance satrix. Also, define
SPg(tit) 2 Byitlty - P, , (3.105)
and 1ot 8P and Bi’. be assigned the initisl conditions
Pty = SPy(t,) = Bo =Py £ 3, 1.108)

8ince the systam is stat ionary, the initial time t, oan be assuned to be zero without loss of generality.
Further, rasume that

LA

This is & natursl assumption and states that the faitial uncertainty is greater than the steady-state error.
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1t follows from Fguations (3.104), (3,.101), and (3.100) that
& = (- KNEP + BP(F-KM)T - SPHTR NP | (3.10M)

But this Is o matrix-Ricatti equation with no foreing term. Thim wam shown in S8ection 3.2.1 to have the molution

BP(tit) = Wb, b)8, [T+ Mt 008,07 Wikt (3.108)

whore ¥ in the trunsition watrix assoc.nted with tho linear system with ocvefticlent mutrix (F~K.MH), Hut
SP(tlt) vanishos as t tends to fafinity if the system is completely obmorvabie, thoreby contirming that Py
im tho steady-state solution of Equution (3.100).

One oan wlso obtain, from Equationm (3.105), (3.10%), and (3.103),

SB, = (P -RH)ISP, 4 P (F - KT (3.100)

This is a homogeneous linear matrix equatiun and, from Equation (3.4'), it follaws that Sk, tends to vanish
if (F-KH) roprosouts o stabls system. This is indeed the case for an obsorvable und controllable system, so
that the stesady-state value of P, la estublished to be P, . Thus, the asymptotic hehavior for the suboptimal
gain Ky must be vory similar to that for tho minimum variance gain.

Let A g F-KH.

It ia true, from Equation (3.47), that
Bpy(tlty = efts eATt (3.110)

sinoe the transition matrix ¥(t,0) assooisted with X
Ye,0) = AWt,0) *

is © Wt,0) = ot ‘

.One.also Linds, .using .Bquation (3,81), that -
BRIty = oA (5 n(D,8)]" ATt (3.111)

The difference bhetween Pl(tlt) and P(tlt) omn be enstablished using Equntions (3.110) and (3.111). Pirst,
note that

SPCEIt) = eAt[1+8,M(0,6))" 5, oA"Y

oAt (145, M(0,8))71 0™Ab 3P (tt) | (3. 12)

Raurranging terms, onhe has

Py(tit) =P(tIt) = BPy(tlt) - BP(tIt) = oAt5M(0,tye Ab8p(tlt)

and sPeelty = oftMTico,t)87 amAt[py(eit) - Petit)] . (3.13)

Kquating Equations (2.131) and (3.113), it follows that
Py(tit) ~ P(tIt) = a“S,M(o,e)[S;‘+u(o.'t)]"c*'° . (3.110)

Equation (3.114) provides a relation for the difference between the error covariance of the subnptimal filter
and the minimum varisnce filter. An inequality is sasily derived from Equation (3.114) that oan be used to

describe the behaviur of the error covariante. Ilat )‘x snd )\ dencte the largest and amallest eigenvalues
of A. (Note that A\, amd )\n are negative since A represents a stable system.) Then the spsotral norm

of the transition matrix is

Hettll = ¢t (3.11%)
and fla-At = ¢ 7*at (3.116)
L)
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and it follows that
t
lInco. 7l = III° T HTR et ar|
t AT, .
& [ HoM I lutwtwll o4 | ar
= [[TRull I:aEk‘f dr
Iretnll , ang
= oMY L
T (' ‘)
Ll 1t .
S e (. ) . (3. 117)
i (1me™) |
e also sees that
[1T8;% + meo,e31- < 15,1l (3. 118)
Usning Equations (3.118) through (2.118) in (3.114), it is found that
W™
lIegctiey - peeity ]| € o®it]5, |1 ”TIR—IJ (1~o"‘*‘) . (3. 119)
. 1
The time-depondent faotor reaches a maximum which i{s determined by nonsidering
4 [.:A,e<l_.nlc>] s 0
dt ’
This implies that 2-”‘“ = 1,
80 that the zaximum ocours at
1
t —_— .
: n, log, 1
The maxisum is easily found to be §, 80 that the maximum difference is
3 2 ,R-l
Hmam-vunW£lﬂLM—Jﬂ for all t . : (3. 120)

an ]

The difference batween the suboptimal and optimal error covariances is seen to depend upon tha initial
uncertainty 5, , the signal-to-noise ratio as described by ||HTR™'H|| and the smallest time-constant IA,|
of the filter gyllllliol. As one should expect, the larger the initisl uncertainty or the better the sigml-to-
noise ratio, the greater the error introdused by the auboptimal gain. On the other hmnd, if the filter system
has & large time constant, the suboptimal gain does not necessarily cause u significant deterioration of f£ilter
performance.

To summarize, the determinstion of the strady-atate value of the optimal filter psrmits the definition of a
suboptimal gain (1.e. the guin of the Wiener filter) which {n many cases way provide satisfmctory filter per-
formance. A bound on the nora of the difference between the. optimal and suboptimal erroer covariance matrices

ol is deterained which involves the intuitively obvious elements of the system which deteramine filter performance.
' More extensive disoussion of this special problem is provided by Singer?!.

| 4. CONCLUSION

15 ““is ooncluding section the intent i{s to state the principal results and the highlights of Seotions 2
wni 3 in ourder to nllow the oasual reader to sidestep the morass of details found there and to provide s support
oy %y siore interested reader with whish he way anchor himself as he slides into morass.

;. ton 1.2 provides a statement of the mathematicul model in terms of Equations (1.1) and (1.2) and then
we emd the Unbiesed Minimum Vurisnce, Linear Estimation Problem. These uspects shall not be repeatsd here.
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'* Section 2.1: Linear Prediction und Filtering
P 4 . ' o
Bootion 2.1 cuntnins the aolution of the prohlem stated in Buotion 1.2 in terms of the Knlman-Buoy filter RIMEIEL
( equationy. This {8 first accomplished in Section 2,1, using arguments which, hopofully, appeal to intuition RGN -
- and provide sote understanding of the basic churacter of the snlution. This devalopment is put on s more r % SRR ‘i..,,
{- rigorous basis in Section 2.1.2, wherein the propertios of the moasurement residunl process “ """.‘ o "y .'.‘d‘::
., : : N
K £y & gty - ety (4.1
¥
A are examined and then used to derive tho f1lter oquations. Thus, in the first two parngraphs, it is shown in
{. two ways that the solution of the linear filtering and -rediction problem stated in Bection 1.2 is provided by
the system
- ity = prgeier + k) (4.2)
X whers Ree it = Elpepl .

The optimal gain K¢L) In given by

Kty = PeeltHT R (t) (4.3)

W
g where the error covarisnce matrix

v .

- L [y

9 peelt) & ellace) - £ io)) (xe) - Rl ™ LY T
ot -:‘,\'n:,_-"_‘ ~
) in dencribed by the matrix-Ricatti squation ;_ ot

’ .
d .

2 RO PFT (L) - PHTCLIRT Y (BYHCBIP + Q(t) _ (4.5
& .

2 where Pt Ity = M.
: Some additional aspeots of the filtering problem are consldored in Section 2.1.3. FPRirst, the concept of

orthogonal projections is introduced and it is proven that tho entimate that is formod as a linear funotion of

9 data minimizes the mean-square error if, and only if, the error in the estimute is orthugonal to the data. This

. result is used to deriva tho Wiener-Hopt equation for the system (Equations (1.1) and (1.2)),

:.\.] Next, the original problem is genaralized to mllow cross-correlation C(t) between the plant and wewsurement
YA noise processes to bs non.zero. 1t is ahown that the correlation causes the gain matrix K(t) to become
&

! Kty = [Pttty +Cce)IR ) (4.0)

sand the error covarisnce matrix is modified to become

: P o= F0)P - PPT(E) - Koty [CTe6) + H(EIB] + acty . ' “4.n
| .
: The effect of a detorministio forcing function d(t) din the plant is considered and it is shown that this
N . term Tequires a trivial change to the estimute. Bquation (4.2) is modified to
t o= PO d) + RIIE) 4.9
. * Pinully Section 2.1.3 is concluded by proving tlat the oonditional mean E[x(t)|Z(T)] provides the unbissed,
" minimun varience estimate' for a random variable x(t) . This result is useful in giving a probabilistio inter.

pretation of minimum varisnce estimates. For the linear problem desoribed in Sectlon 1.2, it follows from thiy

:‘- property that the unbiased minimum variance estimats of x(t) for the systsw (Fquations {1.1) and (1.2)) is

A actually a linear estimato, thereby confirming that the linear Kalman-Bucy filter provides optimal estimate

o ' aven when nonlinear estimates are considered,

5 The tima-discrote systom equivalent to the cont{nuous-timo model desoribed by Equations (1.1) and (1.2) is

9 introduced in Beotion 2.1.4 and the filtsr equations for thia syoten are stated without proof.

K

'_' Seciion 2.2: The Colored-Noize Problem

" In Beotion 2.2, the white-noise agsumptions of Section 1.2 are relaxed to allow the plant and measuremsnt

1 noise procesiyes to axhibit corellation between different tiwas (i.e. the processes are colored). The restric-

i tion that the process, say p(t) , oan be described by s linoar shaping filter

i - .

P a = Ab)p + () 4.9

N .
) :n .
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in introduoed, however, The y(t) mppenring in Fquntion (4.9) is m whito-noime process, Tho olsas of probloms
with colorud-noise p desorihed by a shaping filtor (Kun (4.9)) 18 treated by mugmanting the noise variables

to the state. It is soon that this approsch is satisfuctory for colorod plant nolse but is inadequate whon
there sre pennuremont datw which do not contain white-noise.

In Socifon 2,2.3 the molution for the colored measurement nojse problem is determined by noting that the
treatment of data without white-noise is nccomplishod considering a transformation of the state that allows the
dimonmion of the filter equations to be reduced. Beverul spevial cases are tveatsd that have mppearod in the
litarature,

Section 2.3: lLinear Smoothing

To copplete the dimcussion of linear estimation theory, the linear smoothing problem s solved using the
innovations (or residual) process [(t) introduced in Seetion 2.1.2, It {8 shown that tho estimnte of x(t)
given the date Z(7) , 7 >t , haa the general form

QT = ftley + P(tlt)_Lf¢T(n.t)l{’(u)ﬂ"(ﬂ)x‘.(u) ds . (4.10)

with assooiated error covariance mutrix described by
ety & e{lxet) - geInlge) - §eeInITh = Pielt) - PRIDMETINEL) (4.11)

where

Mty = f:\?’(-.nu“u)n“(-)Hm\v(u.t) ds .

Equations (4.10) and (4.11) represent the general wolution of the smoothing problew Threes classes of mmooth-
ing problems, characterized by the time ¢t at which the estimute is to be determined und tho interval r for
whioh dats exists, are stated and the smolution for emch {s given.

Section 3.1 Observability of Deterministic System

The concept of observebility t» introduced in terms of a determiniatic linear system obtalned from Equations
(1.1) and (1.2) by considering the plant nolse w(t) s known and the measurement noise y(t) to be identically
gero, IZ all states x(t) of the deterministic system can be dotermined from knowledge of the input w(r) .
to €7 <t and the cutput Z(t) , then the mystem is completely observable. It is shown that the mystem is
coeplately cbwervable if, and only if, the observability matrix

t
Mt t) = [ 8 BN B ty) ¢ (4.12)
0

is positive-definite for some t > t, .

When the linear system is stationary it {m shown that the obsarvability oriterion oan Le expressed in terms
of the nxmn matrix

U o= [WTeTHT TyEeyT) (4.19)
The system is oompletely observable if this matrix has rank n

In Becilon 3,2 it is shown that the least-squares estimate of an arbitrary initial state exiaty if the wystem
is completuly observable. That -is, a lemst-squares estimutor exists if, and only 1f, the observability matrix
is positive-definite.

Section 3.2: The Matrix-Ricatti Equution

The error covariance matrix was found in Section 2 to be desoribed by & matrix-Riomtti equation. This non-
linear satrix differentinl equation is investigated in this section and it is shown that It can be rawritten by
a mystem of linear matrix differential equations. Thus, the matrix-Ricatti equation

Pos PP+ PET(E) - PRTEIRD(OH(EIP + QL) 1 P(5y) = B (4.10)

oan be written as .
Foa o mty eIz Yt = By (4.18)
B W oRTOHEY - FTz By = I (4.10)

.
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The solution of Equation (4.14) is cbtained from the solutions of Equat.ions (4,18) nnd (4.10) on

B(t) YA . (4.17)

Mors explicit solutions omn be obtaired whon elther H(t) or Q(t) vanish. These solutions are devived.
Also, additional lusights ore pomsible into the character of Equation (4.14) when the mystem ia statiohary.

This apecial cane is discussed in some detail,

Section 1.3: Bounds for the Error Covariunce Mutrix

The error covarinnce matrix provides the primnry statisticel muasure of the parformance of the estimator.
Thie statistic is sctuslly indepsndent of the mensuroment datn ao it cnn be investigated Lofore the Kilman-Bucy
filtor equations are used to process dnta for a Kiven syntem. Upper and lower hounds for this matrix are estnb-
1ished in this system in such & mamner that the fundumontully different roles of the plant noise and the measure-
ment noise processes mrs clearly displayed. It is shown that P(tit) i bounded below by

PeeIt) ¥ Bt ) (B! +Nceg 0] 8T ee, ) + PPetlt) _ (4.18)

where PP(tit) im & non-negative-definite (nover positive-definitn) matrix snd the firat term vanlishan as ¢
becomes large for g-observable mystems. (This term is defined in Baction 3.3.) 'the uppor bound is given by

P(tIt) < &t ) (P31 EM(t, )17 8T (b bg) + W(tgit) (4.18)
whore the stochastio controllubility matrix W(to,t) 1 defined to be

vign & [ ermantten dr.
L}

Section 3.4! Behavior of the Error Covariwice for Stutionary Systems .

Tie srror covariance matrix for staticnary aystoms oan be studied in more detail uaing the steady-value
1in B(Elt) = Py . A suboptimal gain Ky equivalent to the Wianer filter sain oon be dofined that is useful in
exenining the influences that affect the relative performance of the optimal and Wiener filters. Letting P'(tlt)
denote the srror covarisnce matiix of & filter using the constant Wienier gnin, it is shown that tha difference

is bounded by

? Tl
gty - peelell € s * W wl

for all ¢, 4,20)
8in,l (

where 3, = P(t,) =P, , and where IH®R*'#il represents the signal-to-noiwe ratio of the measurement systew and
[A;| s the smallest time constant of the filter dynamics.

This concludes » summary of the presentation found in ‘Sectlons 2 and 3. Many topios have been omitted from
this discusaion and other topics have besn dealt with somewhat superficially. Many of tlese omissions and
superticinlities are given their deserved airing in subsequent chapters amd their variety and number provide
ap indication of the bremdth, depth, and importance of unbiasod, minimum variance linear estimation theory in

enginearing theury and applioation.
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' CHAPTER 3 -« FURTHER CUMMENTS ON THE DERIVATION OF KALMAN FILTERY
)

N SECTION X - DERIVATYON OF TUE KALMAN FILTERING EQUATIONS FROM

ELEMENTARY STATISTICAL PRINCIPLES

P.M. Barhuo and D. E. Humphries

1. INTRODUCTION

Iu less than a decade Kalwan filteriug has become wn estahlistied techniquo within the resources of the Aerompace
systems designor. Unfortunately tho fact that 1t 18 an advanced statistical concept, mminly dosoribed by uathe-
matioians nn the nasumption that the roader is familiar with wdvanced statistion) theory, has tno often had the

. offect that the praotioal enginesr has mcoepted a wet of equations while feeling Insufficleatly qualified to
' attempt & full apprecintion of their wigniflosnce, The wiw in this ohaptor im to provide a simple, though rigotous,
derivation of the Kalwan filtering cquutions in a form which should appoal to thie leas wathomatioal reader. For
this rivion more steps have bewn inoluded in the derivation uf the eguations than would be neosmsary for thoss
fully tw' .diar with statlstical methods.

R hu necesanry statisticsl theory is (. ‘aloped iu Beotinn 2 a8 an extension of familiar and slementary sampling

theory. Whereas a knowledge of wimple w :rix notation mnu sanipulation is unsvoidable for the development and
upplioation of the practiosl muitd-diwersiionsl filtgr, the theory im first devuloped for a simple singla-dimension
oase shich leads direstly from the conr:pts of wemn value and standard daviatiou,

2. DPTIMUM COMBINATION OF INDEPENDENT ESTIMATES

The Xaluan filtering prooess oonsists of combiniug two independent estiuates of u varinble to form u weighted
moat, ‘The weighting 'factur s chosen-to yield a mesn with witimum variwnoe and hsnve maximum probability. Ons
of the estimates is derivad by upduting & prevlivus best estimate in ssoordunce with the known equations of motion
and the other estiuate is obtained from » messurement. The form of the required welghting factor i derdived bolow,
first for & single-dimensicn case and secondly for thy genernl multi-dimensional forw required for the Kalmsn filter.

l'* AN .
i \:\\ .
2.1 The Single-Dimnsion Case i ,\:‘%'K-yq_ Wk
. VAR YRARSA G R
tet z, and x,° ba two indepsndent estimates of & quantity " x vith variances of sud 07 recpectively. m e
It is required to conblno these estimates to form m welghtad mean curresponding to the oversll best estimate (R) ; Y %

where “beat sstiuate” memns. the sinimum varinnoe eatioate.

Now the general fora of the weighted mesn of x, and x, Is

X s (Ll-wx; + wx, . T(2.1)

-Thus the expected or wean valus of X [written E(X)] s given by

i D = (1-w) E(x) % wB(2,) . )]
By definition the variance of & quantity x is )

=

P AP -

ez~ . (a3
Honce the variance (o') of ¥ {is given by '

-

o? 2 E[-Em}'] = El{(1-mx, ¢ wx, - (1emB(xy) ~ iDixp}']
2 Bl(1-m¥x, =)} + v}z, E(x)}? - aw(1-w) {x, -B(x )}z, ~B(2 )]
" (2= Ellx, ~E(x )} o+ wtEl{x, ~E(x)}]
or ot s (1-wio! 4 wlod [t X))
since * Bl{x, ~mx) Ha, -RxpH 2 0,

" x, and x, sre independent estimatos so that {x,-E(x,)} aud {x,-E(x,)} are uncorrelated. To deteruine the
value of v for vhich ! is winimuws, Equation (2.4) may be partially Jlf}enntiucd with respect to w . Thuas
. .
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giving the optimum valus ® of weighting fuctor as
L -,——-rv" - 2.9
Tial (2.8)
Substitution in Equation (2.1) gives

3 ?
ox, + 0
¢ = ot

. (2.8)
o) +oy
and in Equation (2.4) gives the variance of £ ns
ote?
4t = e .
. '-"1 +oT 2.1

If x, is cous’dernd to be u measurement used to lwprove an updated esimtate x; , Equationw (2.7) and (2.7) can
be put into the more convenient forms

it

x; - Mx; ~x,) (2.8)

and & = olir-n , {2.9)
which more oleasly show how the estismte wnd its varixnce are “lmproved” by the mwensursment in readiness for further
updating., Kquation (3.8) also showa the close analogy to negative feedback,

2.3 The Nulti-Dimensjonnl Cane

Let X III;! X, be two nxl mutrices representing two ludepandent ewtimates (1.4, with uncorrelated errcra)
of an n-d{unuond vestor quantity X . P, aud P, &ty two nxn matvicos representing the veriancss of X,
and X, respectively.

In geperal the weighted mosn of X, and X, is given by
. X o= (1-mX, + X,

or
A w X, - WX =%y (2. 10)

whege ¥ is wi srbitrary oxn veighting watrix and I ix the unit matrix. 7Vhe best estisats of X (denoted
by X) will be.given by (2.10) when W is chosen Ao that the variiue of X in a winlum in the senoe considersd
below.

In mauy prastical cases, howsyer, the two estiuutes are not of equal dimezsions, one of them being some funotion
(N, say) of the individual slemeuts of X (for examply, a messursment relating to some ouly of the wlements
of X). lu general M may be mu mxn restangular wmatrix operating un X to give sa m-dimens{onal estimats Y .

The geners} problem thersfoe is that of lormiug an optimum ustimate (R) of X fram one estimmice (X, with
varianot P/) of X and an estimate (Y, with varisnce V) of Y(=MX). If we lot the weighting matrix in (2.10)
be W= KM, where K la snother arbitrary weighting matrix, then

R o= Xy - KM(X Ry
= X, - KNX,-Y,)
® (1-KNX, +KY, . (2.1
By definition the variamos P of R ia given by °
F o p{R-xDIX-(H]T

and similar ezpresstons may be written for P’ aud V. the varimnces of X, and Y, respeotively, where, as
in Bectiou 2.1, K denotes the expested or wean valus. BSubstituting for X from Equation (2.11) we have

B s g{l(1-w0x, + KY, « (1-00R(X,) - KB (T ~RNX, + KY, - (T-KB(X,) - KE(Y,)]T
= (-me{lx, ~xx)) x, <617 x-m0? + ke{lr, - E)) v, -B0e) )T,
since X, and Y, are uncorrelated, Thur
Pz (1-K0OP'(1~-K0T « KVKT . (2.12)

It is oow required to find the velue of K whioh miniaises P in the sense that emch dimgooal element of B
shall be a ainimum varianoe. Expandiog Equation (8.12) gives

Pz (I-0P (I-KkD7T + xvx®
= P' 4 (KNP (0T < (P! -~ PI(RMT + KVK?
= P k(PNT 4 VIKT - ko) - oe”)TxT

A
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g sinos  (ABYT = BTAT and P’ 1is & symnetrical matrix so that P'T 2 P’ . Now consider

(KE-AY(KB- 0T = K(u8T)KT - KBAT - ASTKT + AAT
= K(B8HKT - K(mAT) - (8ATYTKT + MAT
= KT +VKT - Kp'y - (WP)TKT + AAT
i BaT = we'nt 4V '
and BAT = We'
whence F o= P+ (KB-AY(KE~-A)T - MAT

= B+ (KB-A(KE=-A)T - PIHT (M /MT + V) "l (2.13)

The only term in this expression for P which is dopendent on X ia (KH-A)(KS-A)". As this 18 of the form
88T , the dimgonal elements consist of tho sums of squares of tho individunl elements of (KE-A), and, s such,
cannot have nagative values, Thus esoh diagohal elomont of P shall be & minimuu varianve if X takes the value
which mnkes (K8-~A) = 0; that is, 1if

K o= P'MTIMP/MT4v)t (2. 14)
" Bubatltuting in Kquation (2, 13) with iKH-A) =0 given
) P =P =p -.KMP' (2.18)
a8 tho variance for the bes’ ostimate of X which, from kquution (2.11), becomes
o= X, =KX, -Y) , (2,168
i where X takes the velue given in Equation (2.14),

3. REPRESFNTATION OF PUYKICAL PROCESSES ' .

Olanslonl physios telis us that, in the absenos of sxternul discurbance, the future behaviour of » system may
bo derived frum its present state by applloation of tbe known equations of wotien. It is now realised that, due
to thu quantum vature of fundamental physloal processos, this is only effectively true in the marco case when the
quantun noise gan ke hgnared and only the statistioal mean noed be considared. Mhore this 48 ot the oswe the

Wreriis

sxpected or mean state of the syatam may be predicted by the equations of motion, but imposed upon this will be . .‘: ‘...i'“'. et
& random contribution due to quantum events, whose probability distribution only will be known. t.-_',\_'*.ﬁ\-"(‘u\;;\-‘ﬂ'..
RO '\i_‘.
Bipilar considerations apoly to any external diaturbance. B8ome of thess are predistauble and cen, {f desired, \: " N . «

be included aw parameters within our chomen system; this will also apply to any bias which may be present in PR,

otherwise unpredictable disturbanoes. It is thus veen that the bshaviour of mny physionl system zay be conzidersd
to consist of one part which in precisely prediotable fros the known equations of wotion and s ssoond part which is
random wbout aerv moan, but whoms probability distribution cey be detormined., Puch a provess, in which the
statistios of tho future behsviour of a system are purely a funotion of {ts state nt a particular time and the
statisticel structure of the perturbing prooess, is termed a Markov Process. It is clear that, by a suitable choloe N,
of the yariables inoluded, sny physical procasa can be represented in this way. .

Assuming s Markov provess of this kind, its true state X, , ot time . , may be represwnted ss
Xeor + HX 40U (3.1

where X, wap its true state at tipe t, . Here X, end X ., are nx1 wmatrices representing the n parameters
- oecensary to define the state of the lyltu (termed the state vector).

O' is an nxn natrix representing the known dynenics or eguations of moticn of the uystem (termed the transi-
tion satrix). '

U, represents the randws inputs (with zeru means) to the system. In geeral, if there are [ wources of raudom
lwut, Uy will v an {1 batrix and is known es plant uoise.

. ﬂ. issn ox! matrix representing the effscta of the ! elements of noise ou the o paracetors of the l]lt‘lw.

The ohoice of elewents to include lo the state veotor is, in praotice, somewhat arbitrary., Although theorstically
xt should include sll the systematic elements and U, all the random elevwnts affecting the syatum thin itmelf

18 8 choice dependent uon the wtate of tha art. Mauy effests which were considssed random or unpredictable s :'_-.'.-" -~ .-‘_‘: *
oentury ago WP¥ how woll unjerstood processes. On the other hand soms influences. although fully understood and ('t .',-C,-:.-; R
predictable, may he s0 remote from the system under consideration that their effuots mey conveniently be insluded [ RPURE et B

as part of the random Input. . N

The representation of a Markov proosas by Equation (3.1) dowa not necessitnte a stationary rsadom prooess. Tha
tora of fbk sad G, and the statistioal structure of Uy (l.e. fts variance Q) may vary froa step to step.
Indeed the renuirement (s not so much that thoy should be constant even within & wingle step, provided that the
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' integratod of et whnld be krawn for each individunl step. 1In nost cases, of courso, tho atep size will bo
chosen to enmuro that the transition matrix, tho variuncoe of the blant noise and ity effeat on the aystem mny all
bo considored constunt. Finully im should bo noted that, ws the stop slzo approachus the zero llmit, Equation (3.1)
cellapsos to the more famliliar differsntinl form,

4. PERIVATION O THE KALMAN FLLTER

It in nevunsary to cunaidor three quite diatinot sets of eguutions in order to devise the Kalmun filter. Flest
we must repromont the true stute of the systom in order to he able to wtudy Itw stotistical struoture. Bocondly,
wo must consider how we may forocast the ntate of the system frow s previous best estimnte wnd what varlance this
forecast will have., Finnlly we muat determine u bust estimate of the updated stute, together with its vurianoce,
by suitably combining its fovoonst value with s measuremont

In thin and subsoquont seatlonn true valuvs will bo represented by non-ancented oharacters such as Xp o @ foru-
osst vilue which has not boon subjectod to a messurement will be represented by a prime (o.g. X’k,l) und a boat
estimato by & hat (e.g. ih§|). wiere n monsurement im avallable this last will be obtulned by combining the
forocent with the measuremant, In the absonce of w muasuremant the furecast valup will ho the best estinate.

4.1 The True State Equutiony

Ye have slvesdy showu in Soction 3 that the true state X, . ub time t,,, is dorlved frow its state X, st
time t, by the squation

Xk” = ¢kxk + OkUk f (4.1)
Hure ¢k ; the tranaition matrix, is known, as is 0, reprenenting the effoot of a uoise input on the oloments
' of the state vector. We know that statisticully U, has o zero moan wnd varianoe Q, , but we have no knowledge
. of the notusl noise oontrihutlon U, to this pnrt(uulnr ltop.

Similarly, wheun wo make a munsurement. the quantity mowsured will be some funotion M,,, of the lndividual
elements nf the stute veotor, but the uctusl reading will also have s nolse contribution N, . 'Thus the sotual
quantity dotermined by the weusuremunt will be in the form

Yor = MipXiay + Mgy (4.9
My,; iy, in peneral, an .wxnu metrix which oporates on the n elemsnts of X,,, to give the wmx1 watrix
reproyenting the mw wlements of the cewsurement Y, . . 1In mont ouses My, , will be o simple row metrix ylelding
s alngle puranster for measurement and freguently a { vlenouts of the row except one will bo reros, s thut the

sffuct ot M, , will by to isolate u single eloment of X,,, . N.,; is the '‘wonsurament nuise” and has zero
woan with variance Ry,, .but the sctual contribution to a particulsr memsurement is unknown.

¥e at¢ then able to desoribe the true behmviour of the aystem by Equation (4.1) and of the measursment procens
by (4.2).

4.4 Tne Forecusting Pruceas
12 the error in ih (the best estimate of the true state X,) is «, , then

A Xy + oy . v
) Ay 3 Xy vy v
' Bince the plant noise U, hes zero mean, it ia essily seen that the best foreoast is siuwply :. S
. %o = R, l.':..'::.;'..:_'.'...n_. o
:m w
! = dx + e ' .
= Xy - U+ by (4.9

Now ¢, , the srror of ﬁ + will have the mane variance os X, itmelf (e Py) and hence the variance of

d i op 8 Blmillrlv the varisnce uf O U, is 0,Q0; . whors Qi the varimnce of U, . Thus, aince
' xbl {sa true vnluo. the error ot X[, , is vepresented by thu lant two terms of Equation (4.3). Binos thess

] two wrror terms (original urror and error inoremsnt) ave indopendont, the varisnce of X, , is glven by

"Im- = a8 ¢ 0,00 _ (4.4)

4.9 The Measuroment Process

The memsurement procuss consists of a dutorminltiun of Y TSR which iz definod in Equation (4.2), and comparing
this with » foracast (X, ) in order to obtain a best wutimate (Xy41).- Now using Bquations (2.14), (2.18) and (2. 10)
the beat ertimate of xk,l will b

Rk»l = x‘tl - Kkl'l (“kblx\'ul'rku) ' (4.8)
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where ' . L
o bt ' -
Keor = PloMi, (Mg, PLL T, + Ry, )

and Rg,, I8 the varisnce of Y, , .

The varimce of f(k“ is given by

- !
Pku - P:H*Kknmknpkol '

8. CONCLUSJON

If the true stato of a Markov process and w measurement are dofined by the equations
oy = DX, + 0, .
where X, is the state vector at time t,
¢l is n transitlion metrix revresenting the equation of motion
U, is the plant nolae with varience Q
Gy Teprescnis the uffect of the noise input on the stetr vector and
. Yir = My Xy + Mgy
where th is the quantity measurad
M., represents its relationship with X ,
Fgey 10 the measurcavnt noise with varlance Ry,, .
then the best estimate ik of the system and its variance P, csa be updaied by the equatlona
Xy = &
Pra = AR 8E 0000

.

T 1 -1

Kpor = PloMiyy Mg pE T, #Ry ) .
Reer = Xt - Kyt OhoenX s =Yia)

and

. , .
Pk.x = Ph-.' = K_kol“kup‘ol .

ACKNOWLEDGEMENT

49

(4.8)

4.7

(6. 1)

(8.2)

(8.3
(8.4
(5.5)
(8.6)

(3.7

The author» wish to record their debt to Mr D.E.Williams of Mathemacios Department, Royal Airoraft Establishment,

for his helpful criticis» of thias work.




CHAPTER 2 ~ FURTHER COMMENTS ON THE DERIVATION OF KALMAN FILTERS
BECTION I - GAUSSIAN ESTIMATES AND KALMAN FILTERING

by
! Y.Oenin®
"o B
iy
e

3“'] Applied Mathematios Group
. MBLE Ressarch Laborato: iss

W
EI‘ ¢ 2 avenue van Becelasrs, Brussels 17, Belgium

»
PR

ata

AN

» PR G:DING PAGE BLANK

----"



B2
9

. .

l“\. ) .;

:J ‘ t

Ny 1

5

R

A"

vl

Y1
yiet

NOTATION

generalired nolse veotor random variable corrupting the generalized measuremant z1 of the atate X
genoralized noime vector random variable corruptin.g the generalized meusuroment 2i°! of the atute X
deterministic vector forcing function in discrete, linear dynamical system mt t,

eigenveclor corresponding to eigenvalue )\J of matrix M

% gampling time -

random hoise vector variable corrupting the memsurement = of the constant state x

k*? random veator variable formed by partioniag v In subveotors

white nuise sequonoe corrupting wessuromant LTI A 2

generalized random veotor varisble formed by grouping the ¥y for {1 running from 1 up to i in
ohe veotor

white nnise sequence affecting disorete, linear dynamlcal system at t.,

goneralizad random vactor variable formed by grouping the ¥j.y for 1 ruuning from 1 up to 1 in
atie veotor

conatant state vestor

estimate nf x based upon the k first messurement subvectors 2z,

state of discrete, linesr dynamioal system ot ¢4

unnrll.uod state veotur formed by grouping the x; for { running from 1 up to i 1in one veotor
estimate of Xy based upon P

estimate of x, based upon st (extrapolation of §;_,)
suxilisry vector defined by &, = Py,

extrapolation of y,_ , from &, , to t;

neasurement veotor of the state x

Kt .asurement subvector formed by partitionirg £ 1in subvectors
messuzsmept vector of the state «x, st time t;

gonural ized mensurcmont vector formed hy grouping the Z  for { running fiom 1 up to 1 in one
vector

covariance mtrix of o , K(ese])

covariance astrix of of , El(e])(e{)7]

sein watrix for acourulative filter l

suziliery satrix defining o' as funstionof w'"! and v, e = - uipteltl 4!
observation matrix of state x

luhntH.x of H defined by =z, 3 Hyxy + v

obmervation matrix of state x; at ¢4

goneralized observation matrix

¢ain patrix for Xelman filter

non-negativa dofinite matrix

tovariance matrix of thw error (X - x)
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covariance watrix of the error (%, - x)
cover{ance matrix of the error (& - x;)
covariance matrix of the error (| - x)
covariance watrix of wy ,

covarisnce matrix of wi-!

sovariance matrix of v

aovarisnce matriz of vy

covariance matrix or vg

covarisnce matrix of vl

positive definite weighting matrix

J"‘ sigenvalue of M

state transition matrix from t; ., to t;
goneralired state transition matrix
identity matrix

n‘ro vector

sero matrix

transpose of ()

nverse of ()

W01 value of ()

Kronecker delta

summation aymbol for J running from 1 up to n
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) CHAPTER 2 « FURTHER COMMENTS ON THE DERIVATION OF KALMAN FILTERS
‘Tn'.
= BECTION XII - UAUBSYAN ESTIMATES AND KALMAN FILTERING
&y Y.Genin
o)
Pyl
v 1. INTRODUCTION
B The aim of this eontribution is twofold. First, it will give the readar, who in familiar with mesn sguares
bv teohniquen, sufficient background tuv anin easy uocess to Kalman filter theory. To this end, the Intimate it
conncotion betwaen the Kalman and the Gaussian estimation theory will be pointed out: more preciaely, it will be
v, shown that the application of results obtsined by Gauss, at least in essence, to dimcrete stochastic linear
: ': . . processes lends to the Kalman filter, :
I .
3‘ The first part recalls the wain points of the Oauss theory®, as slightly extended by Plackett!?. The corn of
o this section is a restatement of two clawsionl theorems, which are of primnry importance in medern linear filtering
A techniguen: the first constitutes the cornerstone of recursive filtering, shile the second offers its dual form,
W {,8, nocunulntive filtering.
“ ! The second part is devoted to the application of thess theorems to. disorete stochastio processes and shows
N how the Kalman filter and its dusl form fit naturelly in the framework provided by Guuss,
.."l
..‘; 2, THE GAUSSIAN LEAST SQUARES THEORY
.d
iy 2.1 Statement of the Probiem
W .Coumider Lhe. fnlloning. aquation .of \nessurementsa:
N 2 Hetv, (1)
whers = is & N-dimensional veotor of measurements, x & n-dimensiors]l constant state vector to be determined
M<N), H a Nxn matrix of manimal rank and v a N-dimensional veotor of errors with zero memn and
positive definite covariance matrix R .

";‘ The problem is tu find an cstimate £ of the unknown state x mm a linear combination of the weasurements = ,

» i oan, @
Cl
[y w0 that the estimate X be unbiased and have the smallest variance for each of its sloments.

2.2 A Deterministic Problem
Lot ux conaider a particular problem, in which Equation (1) holda®, The =z veotor is known and is mssumed to

Rl

My - - take the value ¥ . Let us temporarily disregard probabilistic and statistical considerations and seek s “good”
AR approximation X of the stats x , in the form of & linear combination of the known measursmsnta 2 . If we
}'.1 ! srbitrarily decide to measure tha quality of the approximation by adupting the usual mesn squares criterion
W
y (- HOTWE = KD = wininum ' @
with ¥ a ponitive definite weighting mwatrix, the best approximation is remdily found to bs
a £ = (K'm)-'HTwr, 'O
3 . :
) which uolves this simple deterministic probleas. . X
" 8 LI - "
¥ 2.3 ™ SN o5
X sorem | . ,‘.:,. (A SR A
} Coming back to our mein problem (Beation 2,1), we ahall now prove the following fundamental theorsnm. The :-':-'T:-{t-j:: ‘\_a:_\:
x unbiased estimate X , which is a linear combination of the measurements 2z and has the smallest variance for @ o
; sach of {(ts components, is given by P - ““
. LN I oA R P o™
Q) . o= (RO CUTR e . (8) e ,'.i-;..- s
"y PR Ny .')' Qo)
E . ) , o'
: ECEGING PAGE BLANK
A
[ ~)

AERIA

it g A

ARG LR LR L T St
ot eath, okt e ot o




.1}
. It hae the same form as Equution (4), the solution of the determiniatic problem in vhich the weighting matrix W
; s set equal to R™!,
,", The ostimate in resdily proved to be unbiased, tor its mean value
;: _ B = (WRHDHIRME(2)
.. Y
l:}. ray be writtan in view of Equation (1),

£R) = OTROMD CUHTRTU[Hx + R(WY)
_— (8

The covariunce matrix P of the estimate £ 1s defined by

P = E[E-nt-nT)

whioh, in this case, has the form

-ﬁ s Po= (HTRTVR) TR ROy R H(HTR® 1) <!
)
raad = (HTRU) Y )
1%
" Bafore proving that oach disgonal element of the P matrix is minimived by Equntion (3), let us first establish
) the following important lemms. Lemma. Let M be ony n x n non-negative definite matrix. Then the unbiased
. ' ) estinate 2, which iz a linear combination of the measurements ¥ and minimizes the quadratic form
\ t (¢ -0TH(R - ) ()
l\‘\_ .
»
:.{- iv again given by Bquation (5).
o ' Suppose this proposition were false and let X = Be , the solution with s matrix B differeat from
, (RTR-3H) *'HTR-! | without restriction, M may ba nssuped to be syuwetric, for (8) is a hosogenscus quadratic
. Lora. If 1t.hen multiple eigenvalues, it may be submitted to the Gauss-Bchmidt orthogonaliration procedurs® so
» that, in any oase, (8) may be written
“A
5 T
§ #l Al -0 @ -0Tq (0
) .
‘!vH with Q) the sigenvector corresponsing to the wigenvalus A, of the matrix M. Hote that the sigenvaluss A,
are all real and non-negative, for M is u non-negatlve definite real symsetric matrix. On the other hand, A ..;.;‘,‘-
o sincs the estimate i is unblased, we hava . L BN
) )
By Moo=, 10
2y
.‘3 with 1 the identity satrix, The quadratic form (9) is therefore equivalent to
."“- .

TARBT
E)\,q’mﬂ q .

which nay bo' trafsformed into

Tprp! T TRty Tr _ (uTreduy = intr= 11 plm — (HTRe b <pTp- 1 T '
&xmm 4 = ﬁ?\.,q’(llk W) "lgy + #‘Am[n (TR ) = IHIR- 1) R(B - (HTR™ W) “inTR- ) g (11
in view of Equation (10) and the identity
B e (HTRM)TWTR*Y + [B- (WTR™'H)HTACY] : (12)
Since in the suomation (11) each term is non-negstive, we are left with
B = (HIRTIH) TR, (3

which proves the lewma.

A direct consequence of the lemna is that the sstimate Eguation (B) has the szallest variance for each of its
elements, as oan be seen by choosing all slements of N equal to zero, except for a unit element snywhere on the

diagonal, NN G-
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' 2.4 Theorem 3 (Recursive Fatimation)

Buppose now a partition of the measurements vector e in two subvoctors By.y o Py o Partitioning v and H
accordingly, Equation {1) oay be written

B o Baxt v

(14)
Boom Wxtwy
and we nasune the set vy, tu be uncorrelated with the sst v, , Ao that R has the form
Ry, 0 .
R = . (18)
0

Let ﬁb_l and Py, be the minimum varisnce unbinsed estimate and its sssocimted covarianece matrix, defined on
the subset w, . only. ‘Then the minisum vaeriance unbiased estimute ik defined on the zet of measurements
{my. %) may be obtained without roprocassing the subset 7y, und (s given by
VI NN W T (18)
with K. & gain matriz defined by
K, = P HIIHB B 4 RIS (an
while the covarisuce matrix P, s oboained by .
. B8 (1-KHIP,, . (18
' ‘ To demonatrate the above relations, note that, in view of Equation (7), the inverse covariunce matrix is
Pplox HRCM
= HE Rt M. 4 HERDTH
oppl o+ HIRgH, (9

This expression has u clansloal form in matrix algsbra, known as the Frotwnius form, o that the inverss may
be readily obtained:

Pe = Py - By HEIHGR (KT + R TR
= (1= KHIP ., : (20)
On the other hand, in view of Rquation (3), the new entimate ’k has the form
= RHR Iz
= PylHE Mm, v HEREIR] L (1)
Combination of l:-quu.ionl (20) and (21) yields thu-ruult
By = (1 - Re)R L THE R m L + RG]
' = (- Kyl R+ (T - RHOR LIRS
T (D= KB 8+ R iR e -
- 0 HElH R KT+ R CUHP, T+ RIR 4
+ Py LR+ Mg
T Ryt K(my - R (22)
whioh cospletes the proof of the theorem,

The generalization to an srbitrary number of subaets of measurements N uncorrslated with each other is
obvious, . .

-
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2.5 Theorem 3 (Accunulmtive Estisation)

with the same definitions ma sbove for oy, , # . Rh_t v R o Ryl ownd P, let us now denote by
the winimum variance unbiased catimato detined on the suhsol 2z, only, and let P, be the corresponding
covarianue matrix; then, the mininum varionce unbicaed estimate § defined on the two subsets [nk,,.mk] is
directly obtained by

§ o= oplppl 5+ gy (20)
with & covariance matrix P ocomputed from the relaion
Belo=oprtoa gt (24)
The proof of this theorem is a direct consequence of Equstions (8) and (T); in fact, we have

Pt o= gTRH

”

HE AT oy v HRG Ny

= 5\"1‘ . pil ) (25)
and
t = PRI
= PIHEL D g ¢ RS e
= plgl ., ¢ Pte) {28)

The sonstaliention to an srbitvary nunber of subsets of measurements uncorvelated with each other is again
obvious.
2.8 Obmervability .

Prom Kguation (7) the existence condition for » minimum varianoe unbiused estimste is readily deduced: the
unknown atats veotor is observable if, and only if, the satrix H has waximal rank.

3.7 Comments

Theovem 2 and its dusl forw (Theorow 3) have recelved numerous applloations in the field of satellite orbit
determination, espacially Reference 4; the filtering procedures of Bwerling', Claus® aud Battin!:? are direct
consequences of thex. Thsorem 2 is of primary iwportance in modern filtering theory, for it constitutes the
corneratone of the XKalman reoursive filter,

It oan be proved‘! that, for norwal procesces. linear least squares estimation yislda the same molution ms
non-linear least squares sstimation, Moreover, in that cawe, the lesat squarss estimate turrs out to he
identioal to the maximus likelihood estimate, whioh requires to maximixe thm conditional probability density of
oensuring =, assuaing x .

The minimus variahce unbimsed estizate is often cnlled Qaussian estimato, Merkov estimato, for obvious
reansoos in viev of Theorem 2 or weightea least squares estimate, underlining the ovourrenco of the covarisnco
satrix A*} o the quadratio form (9).

Let us finally swphssize that the winimum varianoe unbissed estimate u'quiru 19 a priori information
concerning the error distribution funotion.

3. INE lMiAN-IUUV FILTERING THEORY

3.1 The Kalman Rocursive Pilter

It will bs whown in this section that the Kalman filter, almost simultapecusly derivad by Kalman and Buoy”,
Battin! and Bwerling'" is & direot consequence of Thecress 1 and 3, vhen applied to first-order disorete linear
systens,

Consider au n-dimensional non-constant state vector, taking the value z; at tiss t; and cbeying the
following first-order disorete linear equation (13 1, ..., N)!

X = °1.1-ﬂt-x A BT (am

A e e e IR
._.' ORI 0 YOI R L R A R AT R Y Y L P
M e :\ AR t} ¢ ! ) > \.' ‘,\ R -..'\"‘N.“.‘R \ ':':u.\:-.;h ORI
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-
. ‘ 4|
A : 8
!
i where w, . v & white nolve random vector sequence with gero mesti and positive derinite covarimnce metriz Q.
» L
Vv -5, ynmq,-' ]
! Bv.) = 0 t‘; \\ﬁ;‘..*r_“(ﬂ#. -
"%‘: B, o) = g, . ::.":'.:j.\" N J. i
¥ . 3 P
T N e
- Ewvim) = 849 . ke ;
.
Y .
1w while 01.1-1 i the system state transition matrix from time t;., to tims t; . At emch time ¢t; . the stato
] veotor 1 Is observed through the measurement equation .
B = H‘X‘ +vy o, (28) b‘ \
fi with the sace definitions for = , H; and vy as in Thoorem 2. It i further sesumed that the twy white nolee '
;.j random sequences v; and w; , are uncorrelated. .
\ :
L)
J"j Then, the prublem may be foruulsted am follows, Find frow the measurements (ry,x;.,,....2,) the miniwum
" varianoe unblused estimate £, (covarimnor matriz Py) of the state x, , depending linearly on the memsurements,
\ i i i

assuming tne winimum varianoe unbismed estimate £, | (covarimnue watrix Py_,) to be known from the
waanurcaents (B, 8 .4..0. 2, ‘

In order to apply the theurems of the preceeding sections to the problenm st hand, let us introduce the
veotors xi , u! , wi*l | vb defined by the followinyg reourrence relations:

il

,A

y "1 ®

o L‘ﬁl] " et E;t‘h}
' ( ! .

i Rl T P
'.ﬁ

3 It we similerly® define the matrices Q‘.“ JM L,
b ael x gl(wlHaieHT)
Hl M o= gy ()T

) Mt o0
-1 W = [":'i"if.]:-l

LA h

FYRNS DU
N, ?1 l*"l.‘ i-1
J .
g 'R
! rl s | panewvana A .
“:‘ . oeherty PP
W, . !
B .
the whole aet of Equationa (27) and (28) for 1 running frum 1 up to 1, may then be globslly written
. IQ - : o Wy - et e ‘ (29)
N -’ or equivalently
’ s o= wl®y e, ' (30)
1 vith v the random vector variable
- o = ~HPe e, (31) X
¥ : ' ) G .\'l:":-:\:q:\.‘
¢ with sero mean and vovarisuce matriz G . ' . - v TN
) o = wWeg-iuT el | (32)
&
¥,
Bl
.".' .
\ * Tematrix & ., 18 sammed to have an laverse ¢7' .
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Note that Equation (30) haa the form of Equation (1) sn that, by Theorem 1, the eatimate

R, = p,_,(lc"“b"‘)fcﬁ,a"‘
P, ® [("1-1¢1-\)Tcill(ﬂl-1¢1»l)]-l

in view of Equatijonn (3) and (7).

Before omlculating & , let us first compute the minimun variance unbiased estimate HH

P{) of tho stata x, , bamed upon the mensurwments (zy_,.Fy.q, . ..,7y) only.
Introducing (27) in the generalized moasurement squation
A Y L T T

one obtains

s s W e
whure o iz s nev randon vector variable:

o = o '"l.l'('hl@i.lhl"i-l .
with garo mesn and covariance matrix 0f :

of = cpp + KM ittt il T

A a Probunius forn im recognized in the above uiunuon. (o[)°! is known, i.e,

- - - eidleide < ol A ol ] alfl=ide Il
(o=t = ety woptubidteadgh ety TR gt 4 gl Tteieinien, yTeql,

80 that the covarintice sutrix ©| , which may be written, in view of Theorem 1,

(p‘)-l - (Hl~l¢l~l¢;}1_l)1(c£)-1<H1-1@1-l¢{}1.x) ,

reduces to

(DY = R0 OTRIN L - LT RO, Ot TR e g R )T RO

S A TR O SRR X T R
us omnh be easily varified, using Equations (34) and (38), Thus, P{ is equal to
Bl Py gt Yy

" A similar wanipulation of X| , whioch by Theorsn 1 i defined to he
;i - p{(ui-xgps-lqsi'll_l)'r(ci)-l.l-x

leads via Pruationa (33), (34), (38) and (41) to the resuit

Ay A
Rl & ahag

may be written

an

(34)

(covariance matrix

(38)

(30)

(37)

138)

(39)

(40)

(41)

(42)

(43)

We are now in pueition to simply derive the Kalman filter equations, for sll the conditions are satisfied to

apply Theorem 2 with .
."k o
B, = B
f.. 7 &
W=
L S W

i
i

Aot

’. ' " J Wy X hJ
AL W, u‘!‘ ..

F&h« 3

VNG
R
N »e n.‘ L
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so that the eatimate il {a immedintely given by Equations (16), (17) and (18):
£ = 8 + X (m ~ W2 (41)
Ry = p{HJ(HP] + R (40)
> Py = (I-KNIP[ . (46)

Equationa (41), (43), (44), (4b) and (46) constitute the Kalmun filter. The physical wmeaning of these
squations is evident! Eauations (d41) and (43) satrapolaie the eatimate £, . from time ¢ .y to time t; through
the state tranaition vquation (487) while Equationm (44), (d48) and (d@) upéléo this uxtrapolnted entinate on
acoount of the new availahle measurements =z, ,

The dynamical system model (29) may be readily eatended to inolude deterministic foroing terms f, , :
LSRR TIPPRT TP PRI JURT (47)
This nlearly affects the extrepolated estimate % only and Equation (43) must be replaced by
o= Y pakat (48

the other filtering equations remaining unohanged,

The Xalman filter ix cupable of other important extensions: although out of the scope of the present con-
tribution let us quote the sisultaneous estipation of impreoisely known parmseters, entering the dynamicsl system
linearly'?, the replacement of whits noiso sequsnoss for w ., , v; by wide-yense Msrkov weguences'?® or by
sequences dorrelated with respect to asch other?, ltouhutio optimigation, and so on ..,

3.2 The Aocumulative Filter

i

Tt has been shown in the preceding seotion, that the Kalman filter im a direct application of Theorem 2 to first-
order dsloutn Linear systems; it {s therefore patursl to ssk whether Theorem 3 oay be applied to the suze
problem’: ¢,

[ g

Consider Equations (27) and (38) of Bection 3,1 with the sate definitions and sesumptions end let us introduce
o -n-dimensionsl veotor y; -such that et sany dime ‘t; the fullowing relation-holds:

8 = By . (49)

= r

s

It is eusily verified from Theorews | and 2 that such a vector may always be deflned, Furthermore, suppase that
the veotor y,_, and the {nverss covarimnce oatrix Pj!, are available at tice t;., and lat 8, bo s satrix

o

defined by
H B (LTI (%0)
S Equations (40) and (41) may then be written
N P oB ., (s1)
_.:‘. 1 1 1«1
2 (-t = o8y, (82)
- with D; a matrix given by the relstion
D, = 1-'8(s +qfi)t. (83)

-,

PR S s

Similarly, the extrapolated ¥, , veotor, i.e. | . can be written

A B

Y= Dyl )y, (34)

YIRS,

in view of Equation (43).

-

Use of Theorem 3 ylelds the new vector y; at time t;,

¥ 7 y|+ HjR]'y (88)

258 A

and the inverse estimate covarfance matrix

Pt o= (B! 4 IRy, (s

l
RN L I G ) LT, S R L :x"r-u-\.:




Tho estimate £, 13 then available via
R‘ ® P1y1 ' (57

Equationa (850), (B2), (33), (B4), (B88) and (BO) conatitute the acoumulative filter eguations for the problem
at hand, It in {mportant, to note that tho cnloulution of tho estimate Rl is nnde independently of the
noounulative filter: it moans that any errur in the invéraion of PI‘ doos not affect the suoceeding entimates,
For the general case, howover, the accumulative filter is not a practical tool to aclve the problem, In view of
the n x n matrix inversion required Ln Fquetion (33). Tho aituatiun {s compleiely different in the ahsanow of
plant nolws: in such ennen (w, , = 0 for any i), the M, onttix veduces to the idontity matrix wo that the
accunulative filter equations simply bocome

o= @t (80’

(-t = 8 o'

My = 1 _ LEN

LI C TR L 50’

. Y, = 9]+ WKy (s0)’
(P! = (P! + HIR{H, . (86)"

Any numericul matrix inversfion hus complotely disapveured in the wchems, which is not the ocase {n the Kalman
filter: the computation proocdurs is made particularly stable and this may be of primary importance when wenkly
abservable systeos are dealf with,

3.3 Obmervability Condition

th view of Theorem 1 and Equation (29), sn observabllity coundition is smsily obinined: the scute x; s
observable 1f, and only 1f, the matrix (H$D)Top'(H'4) hes an inverse or, more compmotly, if and oniy it the
mtriy WY hasa gotoralized inverse (.ct i positive defintte),

4. DONULUBION

The modern recursive filtering theory han besen shown to pro.eeu from an ides origlnally due to Cause, at least
in ensenco, More precisely, wimple theorems arising from the minimuv varisnce estimation of s constnul atate,
linearly depending on the messurements, have been applied to dimcrete first.crder wtochustic linear :».:ems, by
the way of a restatement of the problem. As a result, the Knlman filter amd its dunl form have besi. obtained by
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CHAPTER 3 - COMPUTATIONAL TECHNWIQUFS IN KALMAN FILTERING

&tanley F.8chmidt

1. INTRODUCTION

1n the application of Kalman filtering theory, the nathematical forwulation of the prohlem and computational
techniques utilizvd muy depend hen-ily on the compatutionanl capabilities available. This interface is part.zularly
strong in real tilm. acrospace applicetions wherein couslderations of weight, puwer, and reliabilfty gunerally
raquire the sclection of techniques which minimize onboard computational requirements.

The discussion of this chapter will emphasize computing techniques for Kalwan filtering in these onboard type
problems. The techniques are applicable but not necessarily essential when large general purpose computing
faoilities are available.

A note in p asing is that tha Kalewn filter 1s8 a special dats processing technique. It wes originally
1ntroducod"_' for tho onboard application because of its reduction in cowputational requirements over othar methods
svailable at the time.

Nuaerous investigatorn® ® have reported various problems with snd “fixes” for Keluan filters. The problems in
general fall Into the following sutegories:
. {n) Loss of positive definiteness in the covarlmnce matrix resulting from numesical errors.

(b) fmproper wathematioal wodel, 1enqlns to a divergence of the eatims*< from m.asurements.

(¢) Nonlinear phenomena genctally aggruvated by a poor selection of the stariing estimate.

0f these probloms, (w) kes probably baen sxperiencaed .to some .dagree by almost everyone working in the fisld.
Homsonably efficlent (from computatioual considerutions) solutions for this problem based on square root algorithus
will be glveu in this chapter,

For Item (b), techniques exist for ocompensating for errors in the mathematical mousl. The techniques, altheugh
uaeful, still leave e good deal of “cut and try" in finding suitable solutious. Some relevant material on this
subject will Se covered in th!s chapter.

Itea (o) will not be covared “cre, 'lhe mechanization equstions described use linearization about the ourrent
test estimate of state. Tuis faclor and the vocasional requirsment of speécially designed starting calculations
(based on the rew data) hcve remeved nonlinear prublems in the practical apriications with which the wuthor is
familiar,

2. MATHENATICAL FJRMULATION AND BEFINITIONS

One of the firat problowms which must be addressed in applying Kalman filtering thecry is xhe mathematical
formulation. of the problem. This sectlon will define the overall filtoring problem from a practical viewpoint.

3.1 Problem Statcment and Discussion

(1) A true sot of dynamical equations describing vhe dynamic behavior of the system Is belleved to be re-
preneited by a set of veotur differential equations

* = MX,CU¢t) . (2.1)
One therefore developa s set of squations for the mystem of the form ]

X = FXCUL), _ (2.2
vhere

X = o vector deacribing the fundamental state varisbles®
C = a vecter describing constants used in the system equations

PRECEDING PAGE BLANK

The term “fundancotal state variables' 1a used for those time-varying quantities whose initial conditions wust be specified
in solvivg (2.2) (e.g., the position and velocity vectors of mn orbiting aprcecraft).
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U a vactor of forcing functions acting on the dynamic syatem

t

the independont variable, timo.

(ii) A vootor, Y , of memnuremonts is available which is holieved related to the fundamontal state vuriablos
in the form - .-
Y = a0,V 1) o+ Gt . (23

A wodel of these memsurements 1s thorefore developsd of the form

Y = O(X.V.t) +aqt), (2. 4)
where )
YV = @ veotor describing assuncd constants and/or time-varying states in the messursmont model
q = the asmsumed random error in the woasurecent.

Before proceeding further in the definitions some discusslon of the notatlon and msaning of the phrases “believed
to be” and “assumed to b’ is in order.

“Bolieved to be" is defined ue meaning: in conformance with such acientific knowledge as is possossed at tho
present time.

“Asgumed to be" 1s usad in the context of known approximatiaon, such s truncations of infinite sorios reprosonta-
* tions, and so on.

(111) An initial estimate of the stute veotor at w time t, mmy be given, or is sasumed, as

Kty = & . @

(1v) Other initial conditions and une-uryin& foroing functions which are assumed are®
Gy = G, (2.6)
Vit = ¥, (2.7
oty = 0, . (2.8)

{v) The .arrots in the.pvexiously.defined quantities are definoed by

E(X=X)) = E(®) = 0 (2.9)
E(X ) = covariance mutrix = P, (2.10)
glaty] = o (2.11)
Badh = &) ' (2.12)
E(C-C) = (@) = 0 (213
B = Py, (2.14)
luce) - 0y} = Eliey) = o (2.18)
BADT = ruu(ti (2.18)
BV-, = BM = 0 (2.17)
EWDH = py, (2.18)

The use of the expected value operator E in Equations (2.9) to (2.18) requires sowe discussion. Nominal
usage of the operatur implies mn ensemble average. For example, if the errors in X ware conaidered ss injection
errors of a space vehicle, the ensemble represents an infinite number of leunch vshicles of the same type launched
from the same locatiocs. If the basic oauses of injoction errors are random in this ensemble and it 1s maaningful
for the probles, then (2.9) ls a true statement.

In general une cannot dufine a meaningful ensemble for quantities such as errors in the estimste of the vectours
like C and V . Hence one really should consider the initial values as estimates and the covarimnce matrix as
s cuufidence level, This is, in fact; how one uses the quantities and the problem of defining the ensemblo is
avoided. Equations (2.3), (2.7) and probably (2.15) are not true statements in the strict statistical sense.

¢ As & result of lieited knowludge and known approximatiod ln computations, one way desire to uvonsider m portiom af U(t) to
be & random foreing function. This will be discussed later in this chapter as a possible means of dynswic model compenaation.
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. requiresent of data procesaing mlgorithms of a "one pass” nature. That 1s, once moosuremonta at any time point
' have besn prooessed they must be disoarded. This mssumption is made to restriot the scope of aubsequint discussion
to modifiod foras of the Kalman filter,

89
2.2 Problem Objectives
The aobjective of filtering (or datw processing) considered herein is to find:

Algorithmw for use in a given couputer which process the moasurcment datm and provide an estimate of
the state variables uhich s sufficienvly uccurate for real time command and control purposes.

Additional famotorm which must be considered in this problem inelude:

(») Computer spoed,

(b) Coaputer memory avallability.
(6) Computational errors.

(d) Measuremont dots availability.
(e) Davelopuent timwe schedule.

This problem statement contuins some of tho pructical considerations which arise in most applications of
Kalman tiltering. Theory is.used to provide approuches for finding a practical moiution. By no means will this

solution bo optimal in the theoretjcal sense. This in because exact smthematics! modala of all quantities, sy
well as practival perforumnoe indices which consider all the fnctors, cammot be defingd.

Subsequent discussion will assume that prellminary considerations of computer speed and memory huve led to the

A practical solution of the filtering problem in any speoifioc example is found by the use of existing theory
and bractical experience t.o define starting algorithus. Bimulation is then upsed for further validation and/or
moditicstions, Final validation and/or modifications then tekes plave in tests of the real systes.

Beforv Introducing the basic smlgorithmws, some additlonsl definitions are required. 1f the gradient of (2.2)
is taken with respest to X, €,

sad U, aset of timo-varying linoar differential equations is obtuined*:

£ = POIK(E) + BlE)S * D(E) ult) , (2.19)
where

B = DyPCU,8) xe) o Rt

BE) =

VPR C U gty » Eet)
D(t) = TYFKECUL) ey = Oty -

Bince (2.19) is linear, the general soluticn mey be written in the forw
t .
x(t) = VtitIxity) + o(tityda + It e TId(rIU(T) o (2. 20)
[
The transition matrix Q’(t;tﬂ) and the seunitivity to constant forces or control cen be found by solving
$ = P2t . Ptgity) = 1

(2.21)
$, = orad, s BAND , Betgity = 0.

(2. 21)

The integral term of (2.20) may be molved by approximsting u(t) s s constant for small time imorements, A:

&, s MtIB, 4 DIL, D (to+nd; t,+ad) = 0. (2.33)

It 18 usually oouvenieut to consider an augmented state vector of the fura
%\ - fundasental state variables

. 2 = 5 - o'onstmt taras in saquations of motioa
ﬁn ~ gonstant forces.

In this instunce the augmented state deviation obeys

, .
20 = Gt uey) + [ G uimmug dr
Q

(3. 24)
it lim_u' assumptions are valid.

¢ Lower cene letters aro used to denots amll deviations from the corrasponding upper cuse velue, That is, & vector Z ia
oousidersd an 2 =2 + 2 .



.
E iy

»"2MAL .

L
. _»
-

k(]

P

V to find linvar equations

?.‘j The gradient of the measurement equation (2.4), is tuken with rospect to X and
" , tor the 1'" mewsuroment®
Yy = hil + RV +q (2. 20)
whers
" : hy = an(x.v,t,)h(;) = Rty (2. 26)
8y = VOBVt |y, - (2.37)

Onc may dosiro to rolate the vector of measurements to the veotor, z,, at a fixed spoch. This way be done by
‘ using (2.3t and (2.28) to obtain

y = Hzy + Qv + q . (2.28)

In (2.28) the vootor ¢ may consist of measuremonts wt difforent time points., The veotor Z, omn bo at &
fixed epooh. This fact can be used to obtain an algorithm for processing small batcheo of data or for s simplified
forn of dats comprossion!®, It is gonerally desirable to consider a furthor augmentation of the state to include
the measurement paremeters, V . Then (2.28) would bo written in the aquivalent form

- 24 A '
y = (HG)(")H:‘;MO +a. (2.208)

In the cuse where !t s meaningful or nocessary, uno moy write the equation for updating the covariance matrix

P (t) in time
Pa(t) = Bitit Pt SRtity) + B . (2.30)

The matrix R in (2.30) givea the addod uncertainty caused by random foroing functions in the time interval ¢ - ty:

e m a7
<

)
n
3
.
)

2.3 Kelman Filter Equations

A modified form of the Kalman filter for nonlinear systems is given here for processing the measurements in a
soquential manner, Theme algorithma are readily derivable from Kalwan's original equaticns for the discrete
2ilter’. The algoritha is conveniently stated in two parts:

e T S

a
\: (1) Between the 1 and 1 +1 measirement times,
. -l a ti 3

Z(t,,) ¢ Bty + ft ter) dr (2,30

i

\ b, - (vi‘z_a) B, . ftity = 1. (2.32)
; (14) At memsurement times t, , .
g Pycty,) = BP 8T RAR, (2,39
1 2, = 2, + KO- . (2.30)
]
3 Py = Py- Ky (2.35)

PR T + 7t (2,30

-
.
»

[}

O(i.\ll.t,“) = computed messurement.

Equation (2.31) is a simple statemont of integrating the system dynamic equations (2.2). The < notation is
used to imply a tims update of all those components of the state which ars assumed. non.conatant. The transition
matrix can be caloulated by integrating the variationsl equations implied in (2,32) with the apjropriate initial
oonditions. At the messurement time t, , . the covarisnce matrix P,(t; ;) is calculated by :2.33). Equations
(2,34), (2.35), and (2.36) are then used to omloulute the new estimate of state, 2. , and the paw ~ovariance matrix
P, . These new values result from including the measurements Y ai tive t,,, in both the est’ .¢ and the

covariance matrix.

Y R
-y
1]

o

<

Note that if the influsnce of random forcing functions is approximated by the use of (2.23), then (2.33) should
be updated at A time intervals between the measursments.

R s

* The random error in seasurement is sssused to be small end therefore coneidered to give a swall random deviation from a
aciaviens measuremsnt.

t The effects of the randoz varistion of u(t) are sssumed negligible in writing this expressiop. Otherwise, s time sorrelated
error wust be added to equativm (2.28).
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3. SQUARE ROOT FORMULATIONS

A3 already mentioned, numerical errors frequently caumo m problem when the covariance matrix equations (2, 33)
and (2.33) arc used. The usual symptoms of the probiem are negative disgonal torms coeuring {n the covarisnce
matrix after processing data. The problom can vccur after the first measuremont in some instances'®. It is more
of & ‘nulaance” than of & serious type, as oune usunlly con find a remedy by adding or increasing R of (2.33).
This is one of tho techniquea discussed in Section 4 for amodel error componaation. The other tochnique glven in
Section ¢ also can bo uaod as a regmedy for Lhis numerical problem.

This numeriosl difficulty can also be removed by square root methods. The square root aethods also provide &
signifioant improvoment in numerical accursacy of the covarience matrix. Since the covariance matrix is the

wolghting factor cuntmining the effecte of all past mensurements, improving the accuraoy of this matrix oan be
important in sowe problems.

The square root of P s defined an W and satisfios the relntionship

wlo:op o= f;} vl (3. 1
where
v, = 1 colum veotor of the zatrix W

n = the pugber of colupns of ¥, which will be defined am the dimension of P,

with this definition, it P is positive definite, the column vectors w, weie linearly independont. It is
gonorally desirable to force the column vectors of W to bo linearly indepondent. Then when P 1is pomsitive
somi-definite some column vector or vectors will be null., The rank of F is equal to the number of non-gero
coluwn veotorn of W in this formulution,

In the case of the square root matrix one needs computation algorithms for
(a) atarting the problem (e.§., given P, fi‘ud LN
(b) propagating ¥ in time (square root of (2.33)),
(c) modifying W for including measursmonts (sguare root of (2.38)).

Bubsequent materiml will summarize algorithms for these purposes.

3.1 Initialization of the Square Root Matrix

One obvious way of specifying the initial square root oatrix W, is to define the coluun vectors of W, . One
stould note thut when the oolumns of W, are made linearly independent, cach columu specifiss an independent
error source. All error asources lie in different directions in the state space,

An glternate problen {s"that P, ia given and a suitable square root watrix W, 1is to be defined. For this
usage and frow the preceding disoussion it is seen that the desired algorithm will construct a set of coluan

vectors of the matrix W, which are linearly independent. Consider the spplication of the following equation
for B =P,

B,v,viB
By, = By --RLEW (3.2)

T
ViBy Yy

In 3.2) v, is an arbitrary (non-zerg) column vector. Note tha* the quantity "Esk# Vg is zero. In other
words, (3.2) reamoves all errors of P, in the direction of the vestor v, . If v, im chosen such that its kth
element s unity and the remaining -elementw are zero, the kI row and column from '8, wre removed. By letting
k=1....n then By ,=0. The quantity n s the dimension of P, (the number of state variables).

Therefore, by defining the column vectors of W, by

B.y

T,
g 1t vy, A0

for k = L....nm (3.3
X =
0 it by, = 0
the resulting W, matrix will be of lower triangular form. From filtering considerations ons cen view the
algoriths as the wquivalent of making a perfect obmervations of the state vector whioh reduce the arror in sll

components to zero (B,,, «0). The error vector removed after each step of the slgorithu is stored so that the
matrix P, oan be recovered frow W, . This slgorithn is giveu in & slightly different fora in Refersuce 11.
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o 72
) The elgorithn provides a means of caloulating a lower trisngulsr satrix T wsuch that

. .
T
TBT = & diagonm] matrix, (3. 4)

>

WA

where, in (3.4), . 1
W B = & positive semi-definite matrix. :-:
; .
I Another use of the algorithm in in finding s sequence of observations whose rundow crrors wre uncorrelated from VY
iy & sequency vhose errors ara correlated. For example, if Vo
e W
h RS
G- G &
kA ¥, hq 4, b
A .
A and
[ ‘ q 7! PG
J', E ( ‘)(q,q,) =( 1 ; )= Q. (3.8)
"¢ Lh) PO 9
then the observetions given by
- . ¢ »
o, [ - i = bx x+ q (a.m
| ) \® Yy 4y llhll+ h, 1,0, + Q,
Al
W have uncarrelated random errors if
|
4
' , b o= 'P;:- ~ (3.9
. In this instance
!
: 1 0
T = .ot <N}
Py ¢
%
¥,
y 8ince T = ol 0 1,10
0 (i-phot| (3.10)

The mensuremint 2, is & linear combine-

the memsurement 2, 1s the same as y, and its random error is of .
The variance

tionof y, and y, so chomen that its randow error is uncorrelated with the randon error of =, .
ot the random error in 2, approaches sero as the correlation faotor o appromches unity.

plom L Ao

3.2 Measurament Update of the Square Root Matrix
For » single (scalar) measurement, (32.35) way also be written in square root form as®

N
X
. j , ‘:“"H'

! waw x-_-;__b , (.11

-

y - where Wi o= p,

Y

;\1 and o = ettt . .

) L W 03T + Q

-'-\j .

Hultiple messurenents (at 'n given tive potnt) may be treated as sequentisl sonlar messurements if their random

: . rTOYS are uncorrslated. The previous nmaterial illustrated how an uncorrelated mequence may always be defined;

?.[ hence the square root formulation of (3. 11) i» genersl. Other foruulations for multiple memsurements are also .

& availablel?,
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¢ This slgoritbm is given in Reference 12 and will be referred to as Potter’s wethod.
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3.3 Time Update of the Bquara Root Matrix
Two methods Lor updating the mguare root matrix in time for vandom forcing funotiuns are givon. Bolh assume
that the matrix R of Equatfon (2.33) is svailable in faotored form such that
R = F';‘ s8] = 8", (3.1
wher's
8y are linearly independeni vectors
J = number of rundon forcing functions.
2.3.1 Method No.l
A square root mutrix time update algorithm can be developed by noting that
-1
Pty = ¢P¢T.+ gﬁ IYCH (3.13)
Al » result of the well-known matxix indsntity
(B+eeT) "t = "' - B ie(tfe e+ 1) it (3. 14)

and Pottar’s squars root method for squations like the right-hand side of (3.14), oue method for obtsining the
tine update of the square root watrix is romdily doveloped. The steps are as follows:

(1) Detine €0 = (Bw(b )] L, .

(11) Operate j times on the watrix O, using Equation (3.11) with H=w , 121, ) wd Q= 1,
Lot the remult be .

(114) Then
. wt) = 03‘.

The suthor 1 not aware of any extensive ume of this tecbniqua, sy a remult of the ohvious drawbaok of requiring

two mtrix tnversions Yor nvery tiwe updste. Refurence 14 refers to this technigue we Potter’s method.

3.3.2 Method No. 2

An alturnate technique whioh does not require inversion oan be developed in s relativaly simple manner from
the muterinl presented thus far.

Exwnination of Cquation (3.2) itllustrates that it way bo fsotored as follows

Awidler = MAADT = By, (3.18)
where
Ny = [X-M] . (3. 18)
YIMALY
Honve, 1f the matrix A is reduced using . '
Aoy ® MA, ko= L., (3.17)

and the W patrix of Eguatlon (3.3) is stored, & lower triangular matrix in W will result.

Purthernicre, this
lower triangulal’ matrix has the property that

mT o= AAT. (3.18)
It should therefore be obvious that, if \

A, = [owial, (3.19)
the resulting squarv root patrix W is the deaired mquare root matrix whioh includes the effacts of the random

forcing functions. ' This method was develobed by-the acthor®® but appesrs to be equivelent in practios to the
technique outlined in Reference 14.

‘The spvoisl choice of veotors (the kP elepent unity and sll cother eleaents urn?1 zalies the matrix M, very
sinple to oslculate. Furtharmors, lu (3.17) each step of the slgorithe makes the kP row of the oatrix LY
zero. As & result the numbar of operstivnu is not as large at it way appear at first glunce.
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To illustrate the simplicity of the slgorithu, & simplo example will be carried through each step. let

1 0 0

1 1 0, 8 =1, (3.30)
1 1

—

L)

-{ "\ ‘.o )
5-.1.4_"&-_\-" LA TN "
LA A XY S
oy )

6 o 0o o o0
=|¥: 1 0 -1/3 1 0
lv: 1 1 -1/2 0

v = W = first colusm of W(t)




(1) The dimensicn of My and A, reduces (effectively) by one at each step,

()
% . ) 0o o
e [ 0 0 0
I .2 04 1 0.2
o . 0
,§ f v = va.b = seoond ooluan of W(t)
1.8/2.8
3
) D
) wh = [i]
EN ' i
) 2.4
. o
,_.?: My = 10 1 0
[} ’ 0 0
4 Ao o
N v
-‘ 0 \
LT =z third eolumn of W(t) .
% va. 8
The final anayer is
\ .
| . L% o o
« ey = [ wv2 Va3 0 (3.22)
. 1vV3  LB/VLE /L8
X ' As o check one say computs AM from Bquation (3.21) and coupﬁ. the result to W(t)WT(t) of Equation (3.23).
.o i 1
" AN 2 )1 ojjo 1 ¢f+
.I . i 1 3@ o -1
) F] )
Rl » (1 3 12
K i 2 ¢
% 3/ 0 0
\ ey = |12 va.s 0 v2.8 1.B/V1.8
'.:‘q i/va 1.8v28 vae
.6 .
v’;1 2 1
- a |1 3 3] , vhich checks.
& = ) 4 39 , _
¢ ! As noted from the example, the following two facts about the method are significant:
|

(14) The final solution to:: W(t) is s lower triangular patrix, that is, the slements above the dimgonal

of W(t) are sero. This faot oan be used to reduce the number of oaloulations for the measurement update for the
first measurement processed after the time update algoritha.
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Both thess facta result from the specific choice of the v, vectors.

3.4 Recomended Algcrithms for Square Root Implementat.ions

(3. 23)
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Caloulate the column vectors of W(t) in mcovordanice with the n-scop algorithm k = 1,...,n where vh(l) =0,
. LEK, and v(k)=t. '
: B,o= AAlv, (3.24)
7 .
""j , M = 1~ LA (3.28)
7:1 . LTS
i
LY Muor B WAy (3.26)
e v, = W0 = kP column of W) . (a.am
"'1 Measuremant Update (for a Single Measurement)
L]
i, 2 n Compute the vectors . 3
";,3 v o= Wy : (3.28)
' .
uE W (3.29)
By , |
T ' Q
e .. + P el B I ,
,.\’ vo= (vl Q)(l J[v,v - q]) (3.30)
7"'1’ Wodify ¥ in ascordance with
»% Y v-whn, _ , (3.31)
! 3,5 Cosparative Computation Requivements
Although the propowed method should enhance the accurmcy it may be comtly in machine time. The proposed method
| is compared here with the more conventional method using the covarianes matrix (Equations (2,33), (2.38) and (3,30).
‘\‘ .
(9 The compirison data given mssupe that none of the mmtrioss or veotors have asros in presoribed looations, Also
AN P is acaused an nxn matrix and 8 &n uxa mAtrix.
i -Nunber of Gperations for o Time.lpdate
(i) Conventional Methad*t
K
. Hab AdS
K Fquation (2.93) | 207 + n'a 20 + n'm + 0’
‘: (ii) Square Root Nethod
!
, ’ N&D A&S Square Root
X .
- Equation (3.23) n? n?
' \ - Rquation (3.34) #" (ntm)(n+1=4) #; (n+w)(n+1-14) 0
v [ ] -
- n1 \
X 1' Equation (3.28) 3. (n=1) o o
L1 '
*
o,
\ Squation (3, 26) ﬁ (n+m)tn-1? }:{ (n+w)(n-1)? 0
L) : .
Y
e Equstion (3.21) 51. (a-1) 0 0
9 "_I L
n:"]
"‘-.‘
kR .,

¢ M & D means nultiplications and/or divisions.
¢

A & 8 neans ndditions and/or subtractions,
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As an exnuple sssums that n = 10 and m= § . Tho use of the tabulated equations for number of operations ":' .}‘:‘-:}_:
! givus the following: SIS
N i
bl oA
Equivalent M&D M&D A &S Square Roots S .
. Conventionsl Mcthod 2850 200 2200 0 r

Bquare Root 5837 4030 4788 10

The oolunn lsheled "Equivalent M & D' assumes

Ll £ 'Y

e

(1) Bquare roots take B times as long as wultiplioations.
(11) Additions take 1/b of tho time of amultiplieationn.

D

L P Sl
Ld

For this exmmple, the sgquare root mothud takes twios ay much computer time ms the conventional method. If the
udvantage of symmobtry of the covariance watrix for tho conventional method wam foroed, then it would be about 3
times as fust an the mwodified squaro root mvthod.

A

2

Number of Operations for a Mewsurement Update (Scalar Obaervation)
(1) Conventional Method N

MabD 445

Rquations (2.38) aud (2.38) | n* +u 3" +n 41

(44) Square Root Method

-

(3
'ﬂ‘
4

|

If Triangular On Start Not Triangular

&b AdsS N&D |A&S

Equation (3. 28) #:(nu-i #:‘uu-t ot | at
Equation (3.329) gnn-l #;“”" ! n®

Kquation (3. 30) n+3 2 D+ 2

Tquation (3.31) a? +n nt nf +n| n?

One square root is required in Equation (3.30).

The number of operations in the various columns indicate whether or not W is triangular .utur s time update,
- This advantaxe oan valy be used for the first uessurszent processed at a givon time point.

Por ooaparative data mssume that n = 10 and & single measurspunt is proceased.

, Bquivalent 4 &D M &D A &S Sguare Root
Conventivnal 382 310 a 0

4 Bquare root 3817 331 302 1

.j 8Square root (triangular) 281 132 212 1

i

" . iﬁ ORI A i

K The “Equivalent M & D" ocolumn is cowmputed using the wame relationshipe as stated for the previous case. The ¥ ety
square root method has o slight sdvantage for the first measurement processed if W {s triangular. However, “.‘._'. A ed
this advantage 18 lost for subsequent measurements. L hpins
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t.. , If one takes advantnge of symmetry for tho conventionsl method and other obvious improvoments Iu techniques
i (for vxample forming the vector PHU/(MPIT+ Q) instend of dividing n? timoes), then tho convent!onal method will
be about twice as fast for the exmnple cited.
\ 3.5.1 Influence of Coding Techniques
' Codling omu signifiomntly alter the provious computational time estimates, For sxample, if the nyuare root
method were codnd ma
]
¥, = WI- (3.3
. 3
aud tho conventionkl method as
P, = [T-k) P (r-kil? 4 kT, (3.3%)
whars
X o= mtamteQt,

then the comparison is as follows for w ainglo womsuremoni. Nu sdvantage of ¥ boing trisngular ims used.

. Mapb ' AgS Sgquare Runt
Conventional Mm? +on? +3n  m! R ot 0
(n=10) 2330 2221 0
. . Baare root  nd 4+t +m4 1 nl 40t 1
) (= 10) 1211 Coum 1

Beveral oonolusions are evidunt:

(1) One should uot code the sguare rout algorithm using Equation (3.32) if speed of computations is of wny
impnrtancs, Thers are no nbvious sdvantages of (3.33) for mcourmoy either, so it i definitely not reconmended.
The_nreviously outlined prooedure, where wo matrix multiplioations are ussd, {s decidedly muperior.

(11) Cquation (3.33) is extremely poor frow speed considerstions for the conventional method. 1t requires at
least 10 tiwes us long as (2.30) for the example of o = .40 . This speed difforence will get even worse with
1arge valuss of n . Egiation (3,33) has the advantage chat the ocoverisnce oatrix P should remsin positive
definite. However, there are numerous other ways of doing this, so that the use of (3.33) is not reccsmended.

(111) Proper coding for both techniques should mlways make the conventional methud superior with veapeot to
computuntion time,

3.8 Formulation Using the Information Matrix

=
P

One may readily obtain & set of filtering equetions whers the inverse of the covarimnce matrix (the information
matrix) {s used. The equations are as follouws,

3.6.1 Time Update

MRS

! Lot ' A (3.34)
'ul ~ s .
:-;’ then pME) = WeETeRC = Ay, (3.95)
1y :
é':.; defining Ul wor, = 3T AR (3.36)
el
!’J and ' . - Pﬁ‘niu'{. (3.37)
‘\;\T Then the j-step equation, By, * By -Bys(eB e s talB, kv 1 (3.38)
) _
:;::: yields the result that Pl = By, = A, (3.39)
xJ' Note that the mdjoint equations

@HT = #Tde T et = 1, (3.40)

may be used in place of the trunsition matrix equations (Z.32). This avolds any requirement for matrix inversion.
It should therefore be obvinus that, {f the aquare root amtrix C 1s defined such that

ot = A, (3.41)

R
LA

.
S e
aladmlalnt .

e
L}
“

(Y




' Tho © obtained after inoluding wessuremonis is msuch that
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then the sguare root matrix 0 way be updated in time using Pobtor'a footorissatiou of (3.38). ‘This method wam
given befors as part of Mothod No. 1 for the timo updute of the aquare tool of thu covarlance watrix. Tho quantity
§W was inverted before, using Potter's algorithn, Hers, no inveraions are required, howaver, since the informution
wntyix formulation 1s umed,

3.6.2 Measurenant Update

In thin instance the sguers root of mn equation of the forwm

& = A+Hfatn (3.42)

is to bo saloulnted. Tho memsurements are deiined by

Yy = Hn+q
and .
E(at™ = q.

Quite obvicusly this im the identioal problem to the time update of the square root uf the covariauce matrix; hence,
it ono defines .

A s (el T y@hl, (3.43)

and uyes equations (3.24) to (3.47), the columus of the new lowsr iriangulwr matrix © are given by the w, of
Equation (3.37),
3.6.3 State Change at Measuraments .
It is well known that the gein K of Keuatioh (2.34) may alwo be written in the form
K = PHTQt, §3.44)

leot] = m, ' (3.48)

it C has no sero column vectors. The watrix O will be of full rank if the problem is iuitialized with a
positive definbiv -eovanimive -pabnbx, This dnitielisation ir.not pocessary in the invurse formulation, so the guin
K of Equation (3.44) should be written as

XK = [(coflty"Qt . (3. 48)

In (3.48) the (1) symbol reuds the pasudo-inverss. The fmot that an a priori information matrix ie not required
with this foraulation ¢can be an advautage in some problems. \

Ax & result of the mannor of caloulating O, the rank of the information matrix is avellsble;
rank = o - nueber of dizgonal terma of O which are identically uro.‘

Hanow, if K {is caloulated by (3.48), the knowledge of when the pssudo-inverse is required im wvailable, Alsc,
sinoe O im lowsr trisngular, iaoversion of O direatly (when it is full rank) is recommended. The recommended
mannay of cowputing the atute change im

k-6 = @ To et -9 . (3,47

c;lcuuuénl are to be oarried out in (3.47) starting with innermost bracketed terma. 1In (3.47)
"t w 0!, it C ia lavertible;

otheruise, p! = [#'p)l0. (3. 48)

‘The mstrix F in (3.48) ia defined by shifting all non-sero columns of C to the left to form a lower dimension
matriz. Ino (3.48) D”' iu the square root of the rusudo- laverse of the informetion matrlx.

2.6.4 Discussion

The iuverss formulation given here is approzimately the wame as that of Reference 14, ‘The method given uses
Potter’ ¢ equation for the time update, which is beliuved superior to the method of Refurence 14 from computational
gonsiderations, Raferecnco 15 gives this moennsurement update mguare root tectnique for purposws cuf improving
numericeal acouracy of the weighted loast square type filter. In this latter instence the estimated states are
held at & fixed epuch snd all the wessursments during e given interval are processsd in o “butoh’ mchewv. That is,
the utate is ohanged only as a result of all the measuremonts in the batoh.

Reference {4 containe several exumpies whioh illuatrate the supsrior scouracy of the square root foraulation. |,
An exmaple is as follows,

O Py W - - A P
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t c = . .40
Lo B “J (3. 49)

where o 1is some wmsll numbor. If CGY 1w formed, then

. ot = | 2 +e | (3. 50)
2+e 2+ %0+ gf

The veotor outer produot given by

2 (3/V3 (2 +0)/VD) . 2 2+0 (3.51)
(2+e V2 2+8 242 +g} '

18 also formed, Comparing (3.50) and (3.81) shows that the only way of diatingulshing rank (3) in (3.50) s the
underiined e! ams oppossd to tho ©7/2 of (3.61). If an B docima) digit computer is ocunsldered, then nulte
obviously when C€ is squared, (3.60), ronk iw lomt 1f e is smullor than about 4 % 10Y. If € 18 reduced to
lower triangular form, using previous algorithms, then ’

ol = a3 0
Co, 2+ eia| ]

An examinution of the mlgorithm shows thet the relative wize of e to unity is importunt, rather than !,
Numsrical rank would not he lost here unless e i lems than approximately 1x 107 for au 8 declmal digit computer.

Another point of {mportanoe is that, onoe © hes full rank. it sipearc lwpossible to lose rank numerioally by
sdding very mocurate observations. This i not truo of the {nformation mwtrix formulation.

4. THCHNIQUES FOR CUMPENSATION OF MODELING BRROWR

The statement of tha problem of Seotion 2 was wade in & manner to emphasize the fmot that muny types of mathe-
! uatioal modeling arrors oau wxist, As was montionod in the real time onbourd problem, one desires to winimize
: cowputaticnal requirements. Henos, the modeling problem ia furthor mggraveted by the dosire to keep valculations
and word lenythy to a minimun. Ae & remult;

(8) The numbor of state variatles is minimixed by omitting as many error sources as pussible,

(b) Olosed forw wpproximationa are uned as much as possihle to minimize computer speed teguirements,
(o) The minimum word length may be sought for reducing computer ocoats, size, and weight.

(d) FMixed point arithuetic is dosirable from somputsr complexity considerstions.

The overall acouracy’ attainuble depends on
(AY The frequency mnd accuracy of, and the stats space spunned by, the obsarvations.
(8) The scouracy nf the models used in fitting the data.

(C) The magnitude and spectrum of rundom foroing functions sotipg on the systenm.

The interrelationships between gosputational requirement considerations and sttainable socurscy are very complex
in practioal problems.

In this section techniques for dytamic model compensmtion in Kalman filters are addressed, The techniquos
f pressnted will tend to “look' the watimmte of the siate to the most recent measurements and thus prevent a
divergence of the esatimate from the wessurements. This divergencs ccours when vne attempts to £it dute over
relatively long time arcs with a poor dynamic model.

4,1 Orbit Determination Exwmple

As au example of model error, an orbit dotermination problem whers pusition and velocity of the spacecyuft are
tie ouly asaumed state variables im considered If suoh a constraint is imposed on the number of state variables,
then it is easy to show that mudal errors generally make it impussible to find a molution for the pusition and
velooity which fits the actusl data,

In this instance
' [ A
. 2 s FXL) 4.1

ta ot . (4.2)
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. ' The problem of finding the estimate of the initial state, iu . which mirimizes the loss function
. L= -nTela-h (4.9)
is considered. '
L
a® ~ ~
_.'_ . Fquation (4.1) impnses w constraint on the time histury of the solutjon fur X {f X, {v glvon. Equntion (4.2)
"~ givea the functional relationship for computing the vbservetion frum the estimate of X .

The real messurements oliey reality rather than (4.1) and (i.2). Honce, if one uses Equations (4.1) and (4.2),
w value of X, for which tho residuals Y - Y are small wd random about zeru mean, over all time, implies
there are no errors in the mathemutical models.

Jata

Since A weighted lrust squares it is used in this exumple, one can hypothesize the typical residual behavior
af the solution for errors fn (4 1) and (4.2). A plctorlal representation {8 shown in Figure 1. The tern “short
arc” means, for example, the data durlng @ single pass of & ground station for u low altitude satellite.

As shown In Pigure 1, for a short are, dysamic wodel errors (errors in kquatfon (4.1)) will not prevent a
solution for Xo where residualy ure essencinlly randon with zeru mean. This can be seen by considering a Taylor
serles solution of (4.1) Let X, represent the three position oumponents at the beginning of o data arc. Then

SRR

X . s P s [t -t N
W ) fit-t) = Xo Kp(t=ty) « X, (-—-ZTJ> o 4.4)
| ] \ -
' In the equation, X, and xo are freo to be estimated, and a nearly perfect [it omn be asmsured as long as (t =ty
n! is wmall, vogardieas of the constrainiug effect of the dynaml. model.

’ The underlineJ terus of the infinite series (Fqustion (4.4)) sare dependent op the dynamic medel; hence, errors
Y v in the dynamic rodel will become effective over long time arcs. One therctore will not be able to find n value
’3'\ of X, and £ which produces small residual errors, for example, over & multiple puss. Dynamic uodel errors
|.."‘ for data over innu time arcs should causa effects of the typv shown in Flgure 1(b).
- Measurement errors such sa biuses will also have only & soall effect, for shori timo arcs, as shown in

B

pigure 1(c). The error in the estimate of state will include the bias caused by the moasurement model error In
this instance. Only when measurements of uany diftcrent types are prucessed should biased offyet residuals occur
for short dats arcs. This latter results from the.faot that no singie wvalues of X, -and io can be selentwd
which fit multiple measurements (more than 6) in the presence uf biases or other messurement model erross. A

'r,' seasurenent wodel error, however. is, In general, bounded. Hence, if s long data arc over many stations is
::. visualized, seasurement model errors wuuld be expected to csuse residuals as shom in Figure 1(d). 8ince the
3 solution {s constrained to obey th~ dynamic wodel, measurement model errors will have less wud less affect on

orbit deiermination accuracy as wore data is processed. In thase examples the errors are essumed to be small
(oot mistakes). Typical measurement model srrors ave station Jocation errors, tiaing errors and biases.

B s

The real problem, of course, includes both messurement and dynamic model errors. Dynamic errors may have both
periodic and seculur effects on the residuals. Hence Figure 1 can only i{ndicate L euds to be expected. Alao,
in the general situmtion, what is weant by short and nultiple pass is not readily defined.

g T ol

-

Pigurs 2 depict- general trends of the effects of measurement and dynamic model errorc on state estimutiuvn
sacchracy. Tho figure is intendcd to indicate thst dynamic errors cause a ever-increasing state estjmation error
a8 more dsta points, over a large time urc, are jocluded. MNeasurement errors bave the opposite effect.

e

{.

Oune desires to have a ocoapensation technique which gives the best balance between these two effects. This wil.
be called dynamic model compensation and will be discussed in tie next section. One should recognize, however,
that both measurement ond dynamic model errors exist and the resulting effect of the dynamic compensation can
b cause the measuresent Jrrors to be dominant,

- =

4.2 Dynamic Nudel Compensution

7 LUEISISTAP W W

As indicsted in the previous sectinn, some mesns of previnting the state estimation errors from growing
ipdefiriteiy is necessary. It should be ressonably nbvious that one way of preventing this growth is tu graduslly
reduce the influsnce of past measurements in determining the estimate from current measurements. Assume that totally
false measurepents (outliers) caused by mslfuuctions can be removed. The remsining messurements can then be t:-.sted
Ve, to give the theoretical value based on the correct mods; plus an srror terw. It ia reasonahly 1 «ely that upper
. hounds may be placed on the measuresent error. That is. the error which is causvd, for example, by calibration,
atmospheric effects, receiver noise, and so forth, cannot be larger than some specifivd number. If this ls the
oase, then the error in the cosputed measurecent should be mo worse than this upper hound.

. et ot .

A an example, suppose the meusurement 1s the propagation delmy of an r.f. signal between transmittal and -t
reception frua a spacecraft. It is reasonsble to mssume that the two-way range may be computed from thia bl .."“,'_”,',"‘"‘!f_‘
mersurement and the upper bound on the error in this computed quantity preacribed. If the residual is greater --,"\"' IR
than this bound, one must conclude that too much emphasis has he... .0 .ced on past data 1o establishing the computed a - R cL T
orbit. The authur does not mean to imply that such “worst case” consideratious are to bv used. These remarks ’ - o
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are only mmde to give some rensons why a reasonable degree of trust in the basic measurements must be made to
develop & compensation schomo.

Two different approachos for weighting out the influence of past data in the determination of the current
eatimate ure as follows:

(1) Increare the a priori covariance matrix (or dogrease the information matrix). Argumonts for usi this
approach are as follows: Equntions of motion which are invalid have been used tu update the cstimate of state. One
should therefnre increase the ¢ priori covariance mutrix In accordance with the errors involved in tho time-
updating of the eatimato, The difficulties in using this appronch lie in defining tho real error sources. Their
formu)ation can also bocome extremely complex. Honce, for practloul usages, it (s perhaps better to pay that
pseudo-errors are introduced to cause an increase in the a priori covariance matrix. These pseudo-errors can he
of two types:

(a) random foreing functions,

(b) errora attributed to inaccuracfes of coustmnts in the equations of motion.

(11) Overwelght the most recent data. In this upproach it is also recognized that the o priori covariance

matrix may be overly optimistic. The metrix, howaver, 18 not modified on the basis of adding the effects produced
by pseudo-orrors in the dynamic model. Instead, s non-optimal filtor algorithm is adupted which sttachee a greater
signifloance to the recent ohmervaetions than the optimal filter does. The o posteriori covariance matrix is
mwodified to conform with the nun-optinal algorithm.

Either of thome approaches has many variations to-suit any specific problem. Although the philosophy is
different, both provide & means of developing a dynamic model compensation technigue.

4.2.1 Pseudo-Random Foreing Function Approach

In the equation for time update of the covarlance matrix, 72.33), the quantity R representa an added growth
in error caused by randow foroing funotions. &ince dynamic model or computation errors would cause an additional
error to exlst, the natural 7ix is to inorease R . A8 already woentlioned, if

R o= gll aoia] (4.9)

then the direction vecturs h and the variances a} are to be selected for compensation of the dynsmic model
orrors,

In the real time onboard problem it is likely that a far more accurste model can be analytically defined than
is possible to calculate. Aun approach for defining tho errors is to use a general purpose computer to caloulate
the diffurence batween the assumed “exact” solution and the approximete solution as computed by a simulated
onboard computer. This difference (or error) data is calculated for a numbar of initial conditions and time
durations. The quantities LI and o? wsre then adjusted to give a reascnable approximation of the error grouwth.
Such & siuulation is likely essontiil in validating the approximations and onboard computational techniquea. As
a result this approach should not require s large wdditional effort. The alteraste approach of defining s, and
a{ (as well a8 J) by “cut and try” experiments with the real system is definitely not recommended for mﬂptex
systous.

Model errors and computational errors generally cause bias type errors in the estimate. The error sources may
be modeled snd their effects included in the filter in e more direct manner. The theory for such a technique is
given in Reference 16. For moasurement type error cources this technique is reasonably efficlent. For dynamic
errors, however, it requires extensive ulculluonn and does oot nocenurily give large reductions in stete
estimation crror ovar the pseudo-random approach?.

4.2.2 Direct Overweighting of Most Recent Data

The pseudo-random forcing appruach gives a higher weighting to the more recent weasuroments by causing an
additive covariance aatrix growth between messurements. There is no resson why one should not consider modifios-
tions of the filter algorithom for achieving the overweightiog in a direct maaner.

oOne such modification is shown in (4.68). Tuis modification is for sequential processing of the observations
(one at a time).

K, o= Ky ¢ (PHT +HTQe/HHT) (Y~ Yp)/(HAHT + Q) (4.6)

The scalar ¢ Ju Equation (4.8) is a control gatn.

1t linearity prevails, then HX = f. = the computed memsuresent safter the observation. Multiplication of

(¢.8) by H gilves
- - Wru? + Qe .
WX, = HX, + m Y-y, . 4.1

‘e .
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Note in (4.7) thai, for € = 1, the estimate of tho observation im oqual to the obmervation. lience, the error
in this component of tho estimate of state is no worse than the error in the moasuroment. For ¢ = 0 the optimal
filter is obtained.

This nodification was suggested by cunsidering the form fur tho estioate of state using & single mommment;
That is, if

y = Hx+aq. (4.8)
then, using the pseudo-inverse tu caloulate the estimate,
Ty
= by = = 4.9
Y b 4.9)

As may be noted in Equation (4.8), part of the chunge in X, is proportional to Equation (4.9).

The covarlaice watrix of errors in f. is found by taking

EX-K)(X-%)7 = P, .

This operation applied to (4.8) gives
Py = Py - PHTHPY/ (HPHT 4 @) + 2QNTH/ [P T + ) ™) ] (4.10)

The underlined term ot (4. 10) shows the sdditive orror (ahove optimal filtering) caused by the control gain ¢ .

Consider the following simple exmample, using th)s non-optimal filter.

Actual Model Assuned Model
' = 0.1 = .asoalar - fz20
Yy = x § = 2.
Lat Q=1.
P(0+) = Q (after first measurement)
X(0+) = 10 (after first mossurement)

L0+ = x(0+) .

Figure 3 shows the estimate of state after the observations at two second intervals sre included. The watimate
between obscrvations remains constant,

The error in the estimate for the Kalwan filter grows indefinitely with time. The growth arises because x(t)

“ was assuped to be a constant, while in reality x(t) is equsl to = constant plus a time-dependent term. The

modified filter (£720) bas an error growth between meamurements. Howaver, If < = 1, tho error in £ after the
neasurement is inocluded is no greater than the measuremsat error. For « < |, the error in estimate, after each
measurement is processed, has a bias offset from the measured valuc. Hence the use of this non-optimal filter
tends to look the estimate of state to the recent observations.

Equivalent results to those given in Figure 3 can bu obtained by introducing » pseudo-randum forocing function.
This can resdily be seen, since random foroing functions csuse an sdded growth to P botwoen messurements. Prior
to including the ot measurement for this exanple.

Po=) = P, +R,

if R were nade extramely large compared to Q. then the ruult.l correspondiag to ¢ = 1 of Figure 3 would be
obtained.

4.2.3 Discussion

Two tachniques for dyunamic model error compensation have besn briefly described. In the applications with which
the author is fsniliar either appromch will prevent the so-called divergence®. The bad features of requiring
“out and try” sre comson to both techaniques.

Ope should note that both techniques can be used to prevent loss of positive definiteness of the covarianze
matrix. PFor this spplication the overweighting-of-most-recent-data spproach has boen easier (froa the author's
oxperisuce) to use.

Other alternatives for uodel compensation, such as described in References 7 and 8, bave not been covered.
These alternat ives, although applicable, lead to remsanably complex calculstions.
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8. CONCLUDING REMARKS

\

N The over-all devnlopment of “software’ fur real time onboard applications of Kalwan filtering theory is a very
7:' complex subjnot. This chapter deacrihed approsches and algorithma for solving several of the problems which ccour
JT N in these typo mpplications ae well ms applications where large genera) purpose computers arc available. There

:. are, however, many other problem areas which must be addressed and resolved in the developmont of ‘appropriate’
5 software,

5

One of the most difficult protloms is the definition of the appropriate mathematioal models. These models
must be sutfficiently complex to satisfy the estimation mccuracy specifications yet simple enough for the onboard

| computer. Cleverness in the seleotion uf coordinate systems and fundamental state variables can lead to simple LR

iyl forpulations. Approaches which lead to theso simplifioations sre however more of an “art' than a science. Vool ,_‘,\_
- ' T e

'_‘ . The filter slgorithma considered in this chapter were of the "disorete” type. There are instances where '..ﬁ.-\‘..-'\)

. continuoun filter thoory may lead to aimpler formulations, Propagation of the covariance matrix between obseirvations
tn problems where (he transition matrix is not roquired is one powsiblility'?,

AN
For high datn rate problems the filter equations derived from either the discrete or continuous theory may be
n too complex for the real time computer. Date averaging or datu compression tochniques appear to offer s good
. ‘:'J . . compromise for haudling suoh problems'®, In applying such techniques some information is lost. In addition,
" : improper formulation or inadequate validation of approximations ean lead to unwanted bias type errors in the
45} estimate!’, The “software” dosigner should therefore exercimse a good deal of caution in the application of such
-,}.[ techniques.
4 B
A From the oaterial presented it is obvious that many pructical solutions of filtering problems exist. It is Lot
B alwo ohvious that the theory available will not provide a uniquely optimal solution when all factors sre considered. . w0
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CHAPTER 4 ~ MODELING ERRORS IN KALMAN FILTERS

T.Nishimura
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1. INTRODUCTION

In recent ,oars the Kalaan filter''? has beon extenmively used in such applications as the tracking of mimsiles
or planes and the orbit deternination of spacecraft. Oue of the problems arising in these applioations {s that
very ofton a precise knowledge of the a priori statistics of initial oonditions and of the noise model (pro~ess
noise and obuervation noiee), as woll as those of systom models, are not available, while it im escentinl for the
design of optimal filters.

For wxample, in the orbit determination problom of spacscraft in deep space, the observation is usually supplied
in tho forw of Doppler, counted Doppler or range data. Thesu data are subject to oscillator instability, dis-
turbanoes in the fonosphers, receiver noiee, snd quantizatian noise of the ocunter, which together conatituts the
observation noise.

Also the spscecraft undergoes, during its long journey ta the planet (e.g., about 300 days for a typics! Mars
nission), various unknown disturbmices originating from solar pressura, impacts of meteorites, und fuel leskmge

from valves. It ia a rather difficult task to determine the statistios of any one of these noise sources. Besides o R
the unoertainty of the injection conditions of the mpacecrsaft, the coordinates after the widcourss Daneuver may AT I
enter into the filter design and influence the gain of the filter strongly during the initial period of estimation. A .‘.'_“h:‘)"{z.;ﬁ,"'.':é
DAY N
A )

. - it} o
. L . M
Errors srv inevitable in assigning a priori covarimnce mattices of large dimensions, because of lack of mufticient t}tq\'.'-(z ‘.;‘i-,\".g-\
‘experience or of incapability of anslyzing complex correlations among parsmeters. }{: b
Purthersore lack of precise knowledgs of system modela is a problem which practising engineers frequently '
encounter in designing filters. Thin mattar is also closely related to the probleas of identification, which is
amother major tople in control theory and it spplicstions.

In this ohapt:r sttention is focused on the anmlysis of the effect of errors in these a priori stetistios and
xystem models on the performance uf the resulting subtoptinel filters, Both continuous systems and discrete systems

ave anelyzed and an eftort is made to find the upper and lower bound for the error covariasces of these suboptimal
tilters. !

Throughout this chapter it is assumed that the systemis are linear and that the stuchastic variables have
gausaian distributions,

8. ANALYBIS FOR CONTINUOUS SYSTENS

The basic m;ooul is desoribed by & firet-order differsntisl equation in veotox form,

dx(t :

:d(—tl = P(tix(t) + A(t)w(t) . T " e .:

- Laag ey

- he vbservabion is . . e \:. - \
J(ty = H(Oa() + a(t) , (3 » RS

.
x
LI

vhere x(t) is an n, vector of states, with

b
elx) =0 .

y(t) is sn a, veotor of ohsezvations,

w(t) is an n, vaotor of stochastic inpute to the process with .

h

glwt)] =0 %)

=_m >

wlwt)w’ (1] = Qtydce-m . )

5,

where 3(t) 1ia the Dirsc deltu function.

a(t) is an o, vector of the obaservation noise with
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Elny) = o _ T

Elnthn(n] = RIS -7, (6

Kty, a(t).. H(t) are Ry X fyy My ¥ By, By %0y matrices respectively,

E() is an expooted value operator un stochastic variables. It ia also assumed that the process noise w and
obsearvation nolde n have no currolation to each other,

Blwtin’(n] = 0. M

Then tha optima} ostimator x*(t) of x(t) which minimizes
E(llx*-x11?] ,

having the obsorvation y(t) from t =0 to t , {8 described by the differontial equation?
ds*(t)

ol FE x*t) + Ky [y(t) - Htx* ), (8)

K(t) = P(LH/(LIR™ L) . )]

It s sssimed that R(t) i positive definite for t 30 . ' 3‘_\*
Then the covariance matrix P(t) is defined by .
P(t) & E[(x*t) - x(t))(x¥t) - x(t))') (10)

and it is obtained as & solution of m matrix Ricoati equation
' dP(t)

= I"(t)P(t) + BOFIE) = PCOH(ORT OHEIP(E) + at)Qera’(ty | (11)

The initial conditious for Equmtions (8) and (11) are respectively
™) = 0 . (12

. PO) = Elx0x'(®) . (13)

33." ASSUMPTIONS AND MATHEMATICAL DERIVATIONS

; 1 'The optimal estimator desoribad in tho previous seotion is based on correct information for initial conditions,
poise covariances aud ' coeffioient matrices. Buppose the estinato¥ design is bused on incorrect inforustion with
reapect to thoso quantities, naasly,

(1) the incorrect P,(0) rather then the corrsot P(0) (a priori covarlance of states),

(11) the incorrect Qott) rather than the correot Q(t) (covariesnce of the process noise),
(111) the incorrect R, (t) rather than the correot R(t) (covarimice of the obasrvation noise),
(iv) the incorrect P,(t) rather than the correct F(t) (process matrix)

(v) the {noorrect @,(t) rather than the correot G(t) (onefficient matrix of the process noise),

(vi) the incorrect H,(t) rather than the correct H(t) (obssrvation matrix). ‘he resulting sstrix is no
longer then an optimal ons, but hecomes suboptimal.

Tuis suboptimal estiwator is denoted x:(t) ond it is descrided by

da¥(t) . "]
—— 2 R skt o - Benagn] (10

o =0 (18 -
Ko(t) = Po(EYHL(EIRG (L) (M

sad the caloulated covariance P it) is ocosputed by the sase Ricoati equatinn os Equation (11), but using the
idoorrect wodel specified by (i) - (vi),

&P (t)
-:;— £ PP (L) + PU(BIPL(E) = POOOHUGIRHEIH (BIP (L) + G (B)Q(EIG(L) . on
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Honoe Po(t) £ E[(xA) = xet))(xhee) - x(e3) ],

o

The actual covariance P‘(t)

is dofined an the error covariance assooiated with the suboptimal eatiuater of
Equation (14), '

(18)

This is the covariance expoctod on the estinator when thers ts {nsufrloient information on the design
parameters, It im the mai.s objoctive of thim wection tn dorive equations doscribing thia P (t) .

For this puipose it is easier to dorive a differontial equation for P (i) .

Thus differentiation of bt of Equation (18), and & chango in the order of the differentimting operator and
the expectod value operator, yield

Bty = E[GRE) - ke (xhety = xe)) '] + BI(Ree) = x(0) (R5eL) - ke '], (1o
However, from kquetions (1) and (14),
RAE) - AME) T (Fg(B) - K (D00 (XR(L) =« x(1)) + AF(EIX(L) ~ R (EIAHIEIR(E) + K (tIn(t) -ty . ()
vhere ARty = ¥ (b)) - M) (a1

AHIE) = Hg(t) = HEY) ‘ (21)

Aleo, x(t) is obtuined from Equation (1) as

Xt = U(t0)x(0) + ];'m.n)am-m de . ()
where U(t,s) is defined by
W(t, m)
—— = PFEYUCE, )., (34)
% (tYU(t, »)
with . Ws,w) = I, t2s820, . (2%

and I is an identity satrix,

Furthermore x3(t) 1s derived from Equation (14) as

t
o = [t axgmym ds ()
vhere Vu(t,l) is defined by
, (e,
-4;—';—'-) 2 (Py(t) = K (I ())V, (t, ), t2820. (@)

When i:(t) wd ::(t) are substituted into Equation (19), together with x(t) of Equation (20) snd its
solution x(t) in Equation (23), paying attention to the fact that w(t) and n(t) are uncorreluted whits noises,
the following three differential eguations are derived*:

Em(:l—‘? 3 (P (E) = K (B (E)IP L) + P i) (P (8) - K (LH () +

+ (OF(E) = K (OAHEIAEY + A (6) (AP(E) = K (IAR(E) ' +

+ K (B ROIK (L) + Q(LIQUEIA' (L) (28)
dNt) ! I ’
- PIOAE) + MEY(P(E) = K (0H(L))! + PL(E) (AP(E) = Ko(BIAH)) ' - a(tIQ(tIa’(t) (39)
dp (t) ,
—h— 3 POPY) ¢ PP+ e’ (30)
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whore A(t) and P_(t) are dofined by

Aty & elxeer(x3ety - xt) ') . (31
Pty & Elxct)x’ity)] (32)

The initial conditious foy theso differentiml equations are respectively given by

PO = P() (30
Moy = -MO) (34)
P = P(D) . (a%)

4, ERROKR BOUNDS OF SUBOPTIMAL FILTERS (CONTINUOUS CASE)

Whott both prooesa matrlx P and obrervation matrix H are known correotly, the results in the previous
soction oan be simplified considerably. In fact, only the first differentiml oquation needs to bo solved’,

dp (t . )
.._da:._’ B (F(E) = K (EH(EDPL(E) + P (b) (R(8) = K (DHCE)) ' + K (R(EIKL(E) + GBIADIA'(H) (%)

with O NOTUDTAT (amn

Py = P(O), (38)

Let l“(t) be the differencs between the computéd covariance Pe(t) and the aotual oovariwnce P.(t) , then

B, (8) 5 Py(t) - P (L) (39

Bubstituting this into Equation (38) yiolds tho following differentiml squation of Byg(t) . with the aid of

Lquation (17):

Bo (8 = (F(E) - Ko(t)H(t))I"(t) + R (B (KLY - Ko(t)ll(t))’ + Ko(t)@(_t)l(",(t) + aLAQD A () g 7 "4.0)
“n‘ 'rl ‘.. .

vhare AR(t) and AQ(t) arw the differences vetwesn the incorreot nolse covarimnoces and the correst onew, nlnf\ly

» A

oo

. '-Anm = Ryt - R() ‘ ¢ ,Qf\:""" (m

. km & 9(6) -ty o ;.‘]*
N \, & ; -
8inoe Kquation (39) is s linear diftcrontu'l oqtflﬂon, ah upuoit“m-lytio uolutlon oan be dcerod )
' 4, . (,{ :r i(" .'*' . -.l. c; . 1‘,' vy
Bo(t) = V,(t.O)I“(O)V;(t.O) + f V‘_tt.a)l( (gmnq)K'(n)V (L%} dl "’5 ]
LI o TN
AT t vV et , I '
e 4 jo vn(t..uq‘(,mqmo (MVA(E, L) dn "‘w'
.

As observed from the Equation (43), I:o (t) i{s & sun of raal symmetrioc:mat Lun, [ 1] thst 1{. h u,mllpolphvn
definite provided evory ters in the right- hlnd slde of Equation (43) is semi-positive delt l,tl Bconuu of dhe:,
specifio (symmesric) configuration of these terms, every one of them will be ro-peuﬂvoly K mc dugtnl;t
if every matrix at the conter uf the reapective term, nuoly B0, AR(s) , and * (n) "ufo t. Zs n.. R

semi-positive definlte. ] : ;‘ .
LA
Basid on this discussion, the following theorem omn be derived’. "
Theoren 1

Ea(t) 20 ; hence P (L) 2 P(t) for t 20 1if thy condition C-1 is satisfied.

Cl:E,(0) 20,4Q(t) 20, and AR(t) 20, or equivalently P (0) 2P (0),Q(t) 2 Qt) . sud R, (t) 2 R(t)
for £ 20,

The fuplicaticn of the inequality algn (plus equality sign), e.g., P, (t) 2 P (t) , ir that the difference
aatrix Py(t) ~ P (t) is seni-ponitive definite.




R 9a
5 -
Q': Therofore, an upper bound for the varianocam of the suboptimal eatimator x*(t) oan be sat, and it {a equal to
N , thé dimgonal components of tha oalou)mted covarience P,(t) whon the conditinn C-I is sstisfied, The lowor

bound of thawe vurionces is, of oourse, poru. 8o lot pou(t) and p.u(t) he rospeative diagonal components
. of P (t) and Pty then
e Poyy(t) 2 Pyyy(t) 30, (44)
N
S Kven though the designor doem not know expotly the a prior{ stntistios, he can expect that his subuptimal
o esimator vill properly bohave within thu spevified range pruvidud the conservative oondition C-I is satisfied.
'Rl
vl Though 1t is of less practiosl importmnce, the following Corollary is derived frowm Equation (43),
X Corollary {
s B, (t) S0 ; henoe P (t) $P(t) for t 20 4f the condition C-II 1s astisfied.
'l s ' c-11: E“(O) <0, AQ(ty £0, and AR(t) €0 or, equivalently, PO(O) S P‘(O) ' Qo(l) < Q(t) , and Rc(f-) SR(Y)
hy for t20.

Furthormore, differcntiul equutions mesocimtod with the othur two error matrices, E_.(t) and E, (t) , which
N, are defined as
AR Ego(t) = P(t) - ML) (48)
) Bog(t) = Py(t) - P(H) , (46
H
Ny will bo derived.
, Plrst £, (t) can be obtained as & difference between P (t) and P(t) wiven hy Equations (38) and (11),
respoctively:

(0 = () = RCOH(OIEL (8) + B (0)(K(E) = Ky(BHIE)) ' +
+ (K (OR(E) - PCOH(E)IR(E) " (K (£IR(E) = PCOH'(8)) ', (“n

When & similur disoussion leading to Theorsm 1 is applied to Equaticn (37) 1t may be conoluded that T (%)

is always semi-pasitive dofinite for ail ¢ 2.0, -beomuns R(t) 1w positive definite by sssumption snd E,(0)

) is soni-positive definite, as deduced from the definition of B(0) , This is described in vhe following theorem,
"

iy . Theoren 2

- Bo(t) 20; henow P(t) 2P(t) for t20.

This result can naturally be expscted hecauss P(t) 1is the minimum varlanos by definition,

Sinilarly the differential equation for K, (t)

in derived by mubtracting P(t) of Equation (11) from B(t)
of Equation (1),

B () = (R(E) = K(BIH(EMG (L) + Bog(t) (F(E) ~ Ko(6IH(E)) ' +

+ B (O (BYA, MEIH(EIE, (£) + GEIAQIEIA'(L) +

* FOORTCE)(ROE) (ARCED)™ 'R(E) + R(£)" H(LIP(L) for AR >0 . (48)

s TIRRE Lr Sl e

:‘

. AR N S
Agadn, it is clesr from this squstion that E . (t) 1is semi-positive definite if C-I s uulﬂnd. Yhen St
AR = 0 the ssme conolumion can be proved hy tlkfnl s lmlt AR-O, ’

KRV 2 e 4

' Thus the following theorem is obtained. _: _‘____' o
\ nh-'n‘. .

LY

i Theoren 3 Q ' ,‘u M \ -

N B, 20: hence Py(t) 2P(t) for ¢t 20, {f C-1 is satisfied

\" '

l\“

- 8. ANALYSIS FOR DISCRETE SYRTEMS

.\

‘ﬂ

In this seotion the ssme techuique ix applied to discrete systems and similar results are derived, Symbols

are defined in the mame mannar as i{n the continuous systoms, and similar assumptions are made conosrning modeling
errors and noise statistios,
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RO
o o
‘-'.'"! Co The proocess vyquation and obmosvation equutionn mre rempectively ekt
( x(k+1) = dKIx(k) + a(kyw(k) (109) L N
o : . Q) !-(‘ﬁ'xa X
"_:; yeky = HOORCKY + 00k . (80) RN
) - N !
v \J . Then tha optimal estimate x%(k +1) having the {uformmtion Y(k) = (y(0), y(1), ..., y(k)]) 1n given by! .
o\ N
o KD = ARIXAR) 4 KR (R - HODR¥CK) (51) : RN rAR
‘.J |; 1N \-l R‘l\
wheve Kk = PG (k) EKPRON(R) + Rk ]! (52) L ¢ gy 1
o ™0 = 0. (83) gt
f' : ‘The covarimnce matrix P(K) 18 dufined by -:'
M u"‘ .-
Ly P & BLO*KO = Xk (XK ~ x(k)) ) (64)
HE : M
\(‘ and 1t 1s governed by the nonllinoar difference equation k.l ;
'%} Pk+1) = (DR = KON IP(R) (B(K) = KKK + KRIRCKIK(K) ' + GekIQURIG! (k) , (88) e,
3& ' with - BO = klx@x' ) . (88
[/
1 .] When tho incorreot modsls which are the counterparts in discrate syntems of those desoribed in (L) = (vi) are
" used, the remulting suboptimal estimator x:(k) is computed by
' V ‘ L
" ' ) Bkt = Pag0 + Kk (y(k) = Hokyxge) (7
251
\"'1 C with Rotk) = GokyB (kAR (Mo (P IRSCRY + Ry )™ (88)
. .
'.:.." x:m) 0, (39)
- )
i The caloulated covariance P (k) 1is -
{
N ; Pl d) 2 (B0k) = K (OHR)IP R (B, (1) = K OOH (D) + K (IR GOK' (K + G, (kIR (K gk . (80)
\ . .
{ The aotual covariance associnted with this suboptimal estimator x:(k) in defined us
|
L)
i Pty £ mICxRck) - ak)) (xfo - x(k))'] (81)

The recurrence squatious describing thim P () are derived in & similar manner to the continuous case'®,
Bh+l) = (B (k) = K (KM (K)IP () (P, tk) = K (KOH (X)) ' +
+ (A8k) - K (OAHR) A(B (k) = Kotk (k) ! +

+ (8,(k) = K (WM () YA (K) (AB(K) — K (KIAR(KY) ' +

+ (A0 - K (OAKKIE (K (ANK) = K (RIAHK)) '+

’ . + K (ORCOK(K) + B(RIQKIA' (k) (62)
R |
P Ak +1) = SOAK (D0 = X (H )+ SIP (k) (AHK) = K (RIANKD) ' = A(k) (KA’ (k) (83)
oy

T ™
o . C Pk 3 PO K + G0QKI(K) (84)
g .

k ) where A(k) and P (k) are defined by

;- A & elu (k) = )] (a5

%

< P ¢ Rl ) . (86)
:,\ The initial conditions for these recurrence equations are respectively given by

'P.(oi = P(0) (87)

M)

: Moy = - PO (68)
Mg
I P0) = P(O) . (49)
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6, ERROR NOUNDS OF SUNOPTINAL FILTERS (DINSCRETE CASE)

Whett the procoss transition matrix $(K) und the obgervation matrix H(k) are porfootly known, only tho first
recurrence equation, Hquation (A), nonds to be mulved in order to find P (k) . Numoly®™*:*

P+ = (Bek) - KR COHIP RYCRR) = Rk + K (ORKIKI(K)Y + TkQrkya’ (k) © 10

Then the differonce matrix E“(k +1) batween P.(k* 1) aud Pn(k +1) of ELquations (D3) and (58) reapoctively
becones

Egalk#1) = (B(K) = K CRMKDIEL (0 () = K GOHKY) ' + K (RARKIK(KY + GCOAKIA'(K) )
whure Bog(k) = Py(k) = P(k) . (12

Following the swma discussions used {n the conlinuous cese as well as the 1ndu0t10n: thn following theorem ran
be derived for disotote mystems, -

Theorem 4
B () 20 henow Py(k) 2P (k) for k 20 ir the condition C.111 18 matisfied.

C-ITl Eg(0) 20, AQEK) 20 wnd ARGK) 20 or oquivalantly Py(0) 2 Py(0), Qy(k) 2 G(k) and
R (k) 2R for k20, :

Also the counterpart of Corollary 1 im derived, which ylelds the lower bound of P (k)

Corollary 2
I“(k) €0 i henoe P,(k) < P k) if the condition C.II0 im satinfied.

In tho omse of the other twn differennes,
L Bty = Pok) - PCK) (13)

Eg (k) = Byk) = B(R), (14)
results similar to the ocontinuous cene can be proved,

First Equations (60) and (70) are wubstituted into Equation (73) and after certain manipulation of matrices
the followlng natrix form omn bo derived.

B (k1) (BK) ~ R (RIHIK)E, (R (0D = Ke(IHIO) !+ (Kytk) = KB (Kytky = Kk, (18)
where 8(k) = HOOP(KIN!(K) + R(W) (19)
Bo(k) x HG(OPLOHA(K) + Rylk) (m

In this derivation the following relation is wseful:
K() = K(k) + ($ek) - K(R)H(k))lnn(k)ﬂ’(k)s;l(k) - K(k)AMk)ﬂ;‘(k) . (718)

In view of Kquation (73), the following theorem is derived.

Theoren 5
K, (k) 20 henoe P(K) 2P(k) for k20,

This is s natural oonclusion beoause P(k) ls the optimum covariance by definition,
Por the third difference matrix K, (k) the following relation is obtained:
Bolk #1) = (®(k) -~ K,(k)N(k))l“(k)(@(h) - Ko(k)H(k)" *
+ (Kg(k) - L) 80 (K (k) - K ¢ Ku(k)An(k)K",(k) + AU (k) (T

Then the follnwing theorsm in derivad,

Theorea £

Koo(k) 20, henoe P (k) 2 P(k) for & 20, 1t C-II1 {m matiafied,
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T. EXAMPLES

Two examples domonstrate the theoratical annlysis of this chapter. Tho first example 18 concerned with the

modeling errord inh the a priori atatistics and the socond exmuple with the syatem modeling errors

Example 1

A apacocraft is erufsing with o constant speed along a straight lino wnd informution is supplied by the vange

datm, which are contaminated by white nolse having the spectral density @r and zoro meal

Lot X, and X, be deviations of speed and position of the spacecraft from the standurd trajectory,
respectivoly, Then tho process equation bocomua

i = o0
1,00 = xm .

The observation equation in

Y)Y = x(t) 4 n(e) .

Therefore F(t)

"
- O
o o
| S

ey = fo, 1)

Qty = 0

"
e

R(t)

The a priori covariancs is chosen as .
Py, (0) 0

PO) =
0 pyy(®

Then the covariance P(t) of the optimal estimator is derived from Equation (11)

¢ | Put L Py, (008/2) py (O1t(1 + p, (016/20,)
P(t) = — s
Z(t (0)p,,(0)t
- ® P (ML +p, (00t/30) | P40 +p,,(0t? + 2u )::"

vhere
2 = 145,50 +p, (O3 + b, OO 138 /S, .

Suppose that the incorrect model actually used in the design of the suboptimal estimator is given Ly

Po1s(® 0
P (0)
¢ 0 Pg1af®)
Py;(0) +0,,(0) 0
0" pgg(0) + e,,(0)
ud By = B+ OR.

Then the diagonal ~omponents of Eo.(t) are computed by Equation (38),

. a8 = 63,0y + ety

where

O = [.“(o)(x + Popa (OB )T 4 .,,(O)p;“(on‘/w}_o]

v
7 ()1
7y

oV IR

.'.'i'."',. .n‘-"

.;.-.:‘u‘;'u"‘-."..‘l-. \‘n.‘\- el
’ L™ -

(80)

(81)

(82)

(83)
(84)
(88)

(86)

(87)

(88)

(89)

(90)

(81)

(¢:2)]

(93)
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) _ Dy (R - ? ?
T AT (197 + 2,008, + 07, @t ] (94)
and .
7)) = 1+ [pc"(O) * Do (OIL7/3 + p,‘,(om,,,(on'/mm]t/@m . (9%)
Also foaza(t) = ed,(t) 4 ohty, (80)
wiere
1
et = AL [o,,(om * Pogn(OIE/28, ) T + 0, (0)(1 - py, (OVEV/BG ) '] oM
a
ARt c1a(0) 7Y (0yt\?
S Tan? | Pona® * Peir(OEY/2 + by O, (0L 120, 07 Di“;z b “c;‘; : ' et
ree re

In Plgure 1 the optimal variance "72“) and actual varjance pc“(t) of position of the spacecraft are
depicted using Pg,1(0) mm wparameter. The computation of the optimal variance Pgp(t) 18 based on the true
model. . :

The suboptimal filter is designed in such a way that
Poaaf0) > p,y(0)
TR
and using pg,,(0) a3 a parameter,

The figure indicates that the varisnce of the suboptimsl filter is quite sensitive to varimtion of Py l(0) '
l.e,, the lncorrect initial speed variance, Cuse (8) 18 when an sxcessively 1arge a priori uncertsinty oé upeed
waa employed, 1.e.; p,,,(0) = 10p,(0) . On the other hwnd, case (e) is whon the a priori value tuken was smaller
than the true value, namely, Pey () = '}9“(0) . For both onses significant overshoots of the variance are
obsorved, This is because the gain Ko(t) was ill-conditioned for both extreme cases, In other words, sufficient
weight had ool been mssigned to the information during the initial period so that the station did not track the
spacscratt properly. Case (e) wapeciully demonatrates how the eatimator oan behave poorly when an optimistic
selection is mmde on the a priori covariance. '

In PMgure 2 the calculated variances Doy (t) used in this case are plotted for the same parameters.

Figure 3 is the case when the variance of initial position Py ,(0') is changed a9 a parameter. It cmn be
observed that the suboptimal filter {x not so sensitive to the mfthl uncertainty v position as to that of speed,
However, case (d) reveals a degraded performance of the filter when a smaller value is picked up for the positional
unoertainty than the true value,

Pozal0) = 7hp,y(0) .

aa Flgure 4 the incorrect information 0“ 0f the power spectral density of the observation noise is employed
a8 & paramoter.

The suboptimal filter behsves very poorly for ¢ru , which 18 either very large (case (a): ¢“ =10 &,) or very
omall (case (d); ., = §8,) compared to the trus ¢,

Figure 5 is one example of vurisnces of speed of the spacecraft, corresponding to case (e) of Flgure 3,

Exemple 2

An expoasntinlly correlated signal is procu;ud by & ssquential continuous detector which is contaminated by
additive white noise. Let x be the signal, then

L) = - Pat) +w (99)
y(&) = x(t) +n, ' (100)

where w and n are uncorrelated white noise with zero mean, having pover spectral density q and r
respectively.

It is assumed that the variance o: of signal is known, but its curvelation time 7(= 1//) is not exactly
known a priori. Hence an approximate value Tﬂ(= 1/,50) is employed in deeigning the filter.
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By = B+a8, (101

=

Y Yo h(i':‘
O DR
U
-

Alsu it i» assumed that a wufficient time is assigned for tracking compared with thu correlation time of the
signal, so that only steady-state solutions of Ricenti equations which are the limiting vuluos as t - @ wsre
investigated.

s = A

Tho purpose af the subsequent analysis is to find the effect on the filter perfornance of deviation of tho
sssignoed correlat.on time from its truc value. The Riccuti equutiun of the optimnl varianos p(t) associated
with tho eatimator x*(t) becones

?
. (t)
Bty = -~ 20p(t) - L;_ tq. (102)

At the stcady state 6 - 0 ; hence the steady state solution py is computed

P, = ~frx (B2 e t? (103)
where a = 28}, (104)
- On the other hand, the aotual filter desig: is based on {ndorroct knowledge of the correlation time (or £2.).
Thus the steady-state value p . nf the calculnted variance is given by
Peg = =Byt + (Bt v rq) Vit (105)
. . q, = 280,. . (108)

The sctusl variance P,(t) associated with the suboptimal estimator x:(t) which in denigned using this p(t)
is determined from the following three differential equations:

.

Ba() = = 2[B +py(t)/rlng(t) - 208M) + p(t)/r + q (107)
Ay = = B+ Ay + pt/rIAce) - At = o (108)
o Be(t) = =28ty +a. (100) N
4t . ) !
. ‘] The steady-state molutions of these equations are computed and, after some manipulation, the steady state value .
:: .! Pyy 18 found as .
- al -
] w, o0 U
" .p 5 Pag ™ . (110} .
3 [

\ - S Doyt T o)[gu + (B + 8] v
o "
‘;."l‘- This Pas becowes a mininum st AJ =0 and it is oqual to the optimal value Py It is noticed, howaver, n
y \:"4 that as the sssigned vorrelation time becomes shorter p_, approaches of . .
* o

N -,
T.\‘n:: ' By=®, Doy=74: Pyg—0}: o
.. v W
; Also as the assigned correlation time becomes longer, again D,e WPprouches cr: .
i - - - 1
iy - Ba=0. 9=0. -0y
u'“ .
rv“.t-:.- In both extreme oases, the filter is so ill-conditioned that the sstimation of the signal is not performed at
‘:-.'\,' all. Hence any deviation of the assigned correlation time from its true value in either direction will result in
pASK: ' an incresse of the actual varisnce. In Figurs 8, D,y 18 plotted agalnst AB/B for unit value of r and a:
" . respectively.
Y .
J’J The ratio between the maximum deviation of Vs and the optimal value P, ins computed as
Y S .
-~ ol - o\ | 11 oA
N PREIR- Sul "UuSY JEPRR PR . (1)
SO Py pr
AN .
"J‘~ '-L .
.21--. This « provides the range of the probable deviations of the suboptimal filter performance from that of the :\
-‘,iq optimal one. A,
1.
n\.'.' '-‘
!
'{(‘t:' ] .
(3%
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8, CONCLUSION

Tho algorithms for evaluanting the effoct of orvors due to moduling errors in the Kalman filter havo buen
prenented in this chapter for both continuous and discrete saystems

Alna, the error bound of the Kalman fliter has boeen studivd when the incorrect a prinri atatistics on initial
conditions as woll as on roise nodels are employed., The cunservative desjgn critorion espressed in Theorems 1 and
4 guarantecs that the suboptimal filtor satiafying it remains within the spocified range over the estimation parlod.
Also, the formulan of Equations (28) ~ (31) for continuous systoms and of Equations (62) - (64) for dincrete
systems nupply the nocessary {nformation to evaluate the effuct of erroras qualitatively for paramatric studius,

Buch parametrioc invostigutions ave vory Important to find out to what oxtent consurvative asstgnment of a prined
atattarics and noisec modelu cen hu made, brcauso large covarimnces of initial coordinates and noises tend to
ineromse the covariance of estimntem and eventunlly to slow down lts convergence, thums deteriorating the sensitivity
of the filter,

The firat example of this chapter well demonstrates the importance of preflight parametric studies when estima-
tiona are to bn carried out in rather short periods. An optimistic meloction of the a priori statistics (smaller
values of P (), Q, . and R, than true values) 18 espuclaily dungervus because it pravents the estimator from
having u proper gain K(t) during the initial period of estimation (cuse (¢) of Flgure 1, cass (d) of Figure 3
and case (d) of Figure 4). On the other hand, it has been observed in exwmples that an excessively conservative
cholce may also be harmful, because it frequently results in o large offset of suboptimal covarlances from the

optimal cnes at the end of the estimation period (case (a) of Figures 1, 3, and 4),

The second exomplo is intended to study the influence of eorrelatlon time on the suboptimal filter porformance,
This is, again, an important problem in space missions because it 1s often difficult to obtain the exact values
of correlation timo of stochastic variables such as fluctuations of solar pressure or of low-thrust-engine power.
Therefors it is essential tc carry out » sonsitivity study of the filter as in this example.
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\ﬁf . CHAPTER 5 - SUBOPTIMAL KALMAN FILTER THCHNIQUES
.. 4 *
ﬁi,i A.R.stubberud und D.A. Wisner
a
.‘. LINY
e 1. INTRODUCTION
The applicatliun of Kulman filter theory' requiros the definition of  linear mathomatical model describing the
system for which the application i{s intended. In many cases a highly complox model must be used to adcurately
doseribe thoe systom. Usunlly {n these cases only a fow of the state vartinbles are of primury f-iterest, the rest
morely enhunolng the description of the systom. Sinve the computationn! burden assoclated with ihe Implementation
af & Kalman filter incressas signlticantly wiih tho dimenslon of tho systom modol, desiygners ave motivated to seek
simplifications tu the required fillering nqua.lons which do not result in a large performance degradation in the

eatimation of state ventor components of principul interest. The reoculting filtors are called suhuptimnl filters.

; One sucousaful techniquo inveatigmted by Juseph?, Moditch® wnd Pentecost" for simplifying filter somputations
'\ v involves partitioning the state vootor into strengly coupled subsystoms, employing Kalman's optimal filtering
'-C'\ algorithm for the state vectors of thowe lowsr-dimensional systemc ond reconstruoting an estimeto of the originml
QT\ syatem Crom the lower-dimensional estimutes. Another approach, introduced by Aoki® and Huddle® and rolated to
) .,:;- observer theory of Luqnberuar’. amploys the conowpt of linear aggregation of states to achdeve m conoiso reprosenta-
N t ol of duta, thereby reducing the dimension of the estimator. Important work on the effects on the Kolman tilter
: performance ot ervor in the kiowledge of the covarimnce mabrices desoribing the {nitial cunditiuns of the systam
- stats vector, and the white observation and disturbanhos noise veotors hus been contributed by Heffes® wnd
"‘3.‘1 Nishimura'?,
SN .
'.‘-:1 The teuhniques for gonerating suboptimul filters oan bo roughly divided into two classes. In the fivat, the
,q},i number of equations aefining the filter is the same as for tho optimel filtur, but the number of equatlons nocessary
'.\:,':! for vomvuting the filter gwin is reduced by partitiouing ths system, In the mecund, the number of state variables
o defining the filter im reduccd by npgregation. This almo reduces the dimcusionality of tho covarisnce matrix and
hence reduces the computation required tu generate the filter gaan,
| . % i
A ,: Thess two classes vf suhoptimal techniques arv disoussed in the next two sectionw. \\ *'1{". 0 j-. .' Y “
N L]
Ay

2, DISCRETE TIME SUBOPTINAL TILTERS EMPLOYING PEBUCED
' FILTSR GAIN COMPUTATIUN

AL

The computatirnal burden sssociated with s minimum variwnce, unbiased linear ilter i{s atrongly dependent on
the nuaber of simultansous difference cquations which define tho filter and the filter gain. If the state of an
n-dimensional system is being estimcted, a total of u differsnce wquations define the filter and a total of
o(n + 1)/2 difference squations must be molved to determine the optimal filter gain. In this section a particular

e
! 1

o -\m olass of muboptimml filters is discussed. The property of these filters is thet the order of the equations defining "
\,q, the filter is the ssme am tho ordor of the uptimel filter but the number of ec .ations used to aslculate the [ilter P
“\J gain 18 less than the number used in the optimal filter. Hopefully, the total nusber of equations osn bo reduced ,«:
"J oonoiderably without the perfosmancy of the filter being significantly different from that of the obtimal filter. ~
3.1 Problem Forrmulation
‘ :- X - Consider & dyhamlc systen dofinod by the linear stochastlc diffsrence equation
o e}
._\l. ! xk,, LI SR k= 0,1, 2..., (.1
ol
R where x, is the n-dimsensional -tate vector
.-“In .
fa U is an n-dimensional zern mean white soise sequence with covarimnce matrix q.s,.
'L : @, 1is the nxn dimenaional state transition metrix
\ Ry . the {uitial condition, (s & mero moan random variable, inderendent ot uy ., with covariance satrix Y.
h .
\J The system is assumed to have the cbservable output
: “e:i Yy = Mgy +vy . (2.9
",_ whore y, is the n-dimensional cbservation vector
L,
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vy is an m-dimensional 2ero mean white noise sequence, jndependent of hoth v ad x
aatrix Rkb'“(

o + With cuvariance

My isman mxn matrix defining m linoarly Independont observeble combinatlons of tho stute variubles.

The problem is to gencrate m llnear estimator fov tho stute x; which mukes uue of Lhe observutions Yy.4=0,
1,...k , to genoraty the ostimate.

Conslder the class of linoar unblased filters definod by the stochastle dirferonce eguation
lI(Al = ik‘l + Kku[yknl_“k‘lilﬂl ' (2.3)
whare .., is dofined by
i.,l = ¢’klk ' (2.4)

with initial conditien R, =0 . Hore &, is en unblused estimte of x,., aond K., in an arbitrary nxm
gain matrix. The estimation error associated with this ostimator is defluvd as

€ T xRy (2.5)
and the covearlance motrix of this error ie defined by
B, = ElReD . (2.8)

This matrix (specifically the elemonts on the main diagonal) 1a r measure of the effoectivencus of tho filter and
it satisfies the matrix equations

P = BFAL Y Q (2.1
B,o= -k Ip -k IT + ReRKT (2.8)

with the dnitisl condition B, = P*, where
P, = Kl ~5) (0, =37 = B(82]) . (2.9)

Note tusi, sinoe ik is the bost estimate of x .bnuod O ¥y o ¥yove-Yyoy o It 18 genorally a poorer estimite
than %, . which {noludes y, also. P, is thus tho true memsuro of the filter performance and P, 1s simply an
intermediato matrix which it is convenient to varry along. Equations (2.3) and (2.4) which dofine the olass of
unbinsed linear filters are valld for any gain Ky, , , and Equations (2.7) and (2,8) define the variances of the
srrors for any filter having this form., Thus the effectiveness of suy suboptimal gain oan bv evaluated from these
general variance equations.

A special member of this olaus of filters results whon the gain is chosen aa
-1
Ko = Py ML DN, Py N, Ry, 170 (2.10)

The Lilter is then a minimua variance unblased filter. 1In thims case Equation (2.8) reduces to
By = (1-xmJp, . (2.8a)

‘The oomputational burden of this optimal filter inciudes the solution of the n difference squations definod

by Epations (2.3) and (2.4) plus the solution of the a(n+1)/2 differpnce equations defined by Cquations (2.17)
sad (2.9) to oaloulate the optimal gain K, . (Tho sywsotry of tho n? diffsrence squations requires that only
a(n+1)/2 need to be solvad.)

In the following sub-sections some wothods Yor choosing suhoptimal gains Ky, are discussed.

3.3 Constant Uains
In terms of w reduction in computation, an obvious cholce for K. ia a conetant; thaet is,
K, = K for all k.

Probably, the most common choiue of a constant gain is the sieady-stats value (if one exists) of the optimul
guin matrix. Conaider the omse of u time-invariant system, that is, the cwne where

H =B, M = M, g = Q, Ry = R tor all & .

The steady-state galn for this systom (if it exists) is determined from Equations (2.7), (2 8), and (2. 10) by
setting

P, = P, . = F, K, = K torall k.
The result is s set of algebriac equations -
P = pPPt + Q (2.11)
P = [1-emlr(r-xu)? + knKT (2.12)

K = PuT(wuT +R]TY
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The.error 'var fance equation for this cane becomos
Peor = [1-Ru)eBaTe-kn)T o (1-wilQlr - kM7 4 KRKT . (2. 14)

It should be noted that the filter genernted in thit way in the clussicsl Wiener Cilter for discrete time Bystems,
which fs suboptimal unti! stoady-stnte conditions are reached.

2.3 A Suboptimal Technique Rased On Partitioning

In this section n mothod is domonstrated which iIs based un partitioning of tho syntem state vector into several
sub-state vectors. The states of the subsystems thus generated 1cu entimuted Individually and tho resulting
estimates ave combined linvarly to generato the total estimate. Sirao tho numbor of variance squations varics
approximately a¥ the mquare of the dimeneion of the system state the number of variance equutions used to compute
the optimal guins is aignifienntly reduced. .

Considor & dynemic system dufinod by Equation (2.1). Juseph® described a gonerul methud for partitioniug the
state voctor of the ayatem iuic # set of 1 subsystem state voctors. The 1| subsystem atate vectors aru deflnwd
by J

g = Dyxy . o= L a ..., 1, (2.18)

whote D, is an nyxn matrix of rank ny . Thu state vector X in recovered from ths subsystem state vectors

by the relatlonship
% o= gAJSi = EAJD,:‘R. (2.18)

Suppone¢ the state vector x, has been partitioned into i sub-utate veotors

where AJ is an fxny matrix.

£, &0, ... &L with respective dimensions .

By L PERN 11 lnd‘ suppose that individial estimates .

3; , {,3: N éﬂ huve been genoruted from thc'a observations .-l.. A

Yol s otk ‘: o ,:‘J".:\:

Then the estimate of ths state veotor is given by

g, = ﬁ:\ A a1m
This estirate is then propagated by the state transition matrix, thus fovming

Teor = Bty (2.18)
The propugated sub-state estiuate of ;’fm is then formed hy

o= D, (2.19)

Consider now a partitioning of the observation vector defined in Equatiop (2.2). The vector Yy is partitioned
into 1 obsurvation vectors

o= By, 3= L34, (2.20)

where E; isan wmyxn matrix. The estimate of E{,l is now updated by the equation

Eiu = "z{u + Ki.x["’{.x"ﬁl’;n] : (2.21)

where

Mo = Moy = Egny,, - ., K '.....'uf' RN

. p-q. b |.-n,".“ N ‘

gt ey e gy

= By¥pa - BM, Ty,

= Byl =My, 5, ) (2.3
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The updatcd state ostimate is thon given by

'lol = ?iﬁfkol

] -
g Agias * ﬁ:: A, bnf -,

L T P‘_‘i A E) (EREL e (2. 20

11

Cooparing Ecuationsa (2.3) and (2.23), it is apparent that this rcopresents a member of the class of unbiased filters

defined by Equation (2.3). Here the gain is
Keoy = EAijulEj' (2.24)

Nute that ()‘| , AJ , and "‘J can all bo made & function of ihe time index ¥ so that

For = Eﬂﬂu“i.@{u- (2. 24

This generaiisation ailowa the subaystems to be changed if the system hes several modes of operation which make
it mandatory, convenient, or morc effective to change the system partitions for the ceveral modes of oporation.

Equation (2.23) indicatcs that the individual estimates of the subsystom states neod not be generated. It is
seen that, for given A, and Ky, only the Ky, , need to be generated and then K,,, oan be generated by
Cquation (2.24). This K, , cau be used directly in Equatiom (2.23) to gonerate the estimate zm .

The next step in this suboptimal method is the generation of the set of equations uased to compute the guins
R{ . ¥irst, an error ecuation is genarated. Subtracting Equation (2,4) from Equation (2.1) gonerates the error
squation

- - ~
Bor = B+ (2,28
18 follows immedistely that
By = a8y = Ogsgy = Dy,
= DJZIM = n,d{e‘,‘ + Dyuy . (2.26)
Now , ¢ = . (2.21
and therefore . I i = 033{ ‘3, (2.28)

where % is a vector io the pull space of DJ and Dj is the pssudo-inverse of DJ .

¢4 D, bas paxisal rank, then

= pt Ty}
D; = Dj(dyD}) (2.29)
is & suitable pseudo-inverse.
Subst ituting Equation (2.28) into Equation (2.26) ylelds
@, = D@0 + DBy + Dy,
= MRl Dz + Dy, . (2.30)
vhere , #} = Do) . (2.31)

At this point an approxiwation ig made. It is assumed that the subsystems ars uncoupled. This allows the gains .
for sech subsystem to be calculated individually. The absence of coupling botween the subsystems implies that

s = 0. Ia general this is not trus and the resnlting gains are suboptiwml. Uuder this assumption Equation (2.30)

becomes .
e, = Hedropu, . (2.32)
A variance equation is now generated from Equation (3.32) as
wle, @07 = HElEEDT@DT + pEluuilo] . (2.33)
e - o
ot .‘-;.‘-‘....‘-..\;.'- D ORI _‘\ N T L NN T T e




am

' Naow define
B = mlej@iehm (2.34)
= slaled (2.35)

and Equation (3.33) becomes

Py = HPL@DT v af, (2.36)

af = D] . (.31

where

Now consider the error equation
o= & -st (2.38)
Bubstituting from Equation (2.21)
ziu = ‘f{n - ‘-‘iu - Kl’ul['ﬂ,m"ﬂ.\]
= !ibl - x{¢l[EJyk0K'—EJyk¢l]

SR TR L S EyViayEyMyy i, )

= qu' —KLl[E’lhllk“ + ‘1":.;] . (2. 39)
Bincs
H,, =0, (2. 40)
then : . . o .
' ket 3y for + 8y (2.41)

vhere 3, 1is in the null space of D; . Agsln the coupling is ignored by assuming 2z, = 0 . Equation (3.39)
becones
oy o= l-xf, By, 008, -l gy, - St

The corresponding variance equation is given by
E[e{ol(eid),] = Fiﬂ
= [r '-xi.l:,ul.,n;]r{, Jlr-kl, B, 071+ k En BTDL 0T (2,43)

vith initisl condition B) = b,FD] when By = £lx;xl] . The gain which minimizes B|,, is then given by

ht

Ki#l = P{..;("L;)r[“{.;”i.;(‘{.;), + Rl’xu]“ ' (2. 449)
! vhere
o W, = EM,, 0] (2.48)
-..-\,!
e Bloy = ByRy E]. (3. 48)
4,
o The basic equations for generating Ky, , are Equations (2.36), (2.43) and (2.44). Having calouiated Kfm .
4=1,2...,1, the total gain is calculated from Equation (2.24) and the estizate of x, is given by the
difference equation (2.23).
N -
iy As » sinple example which lliustrates only the computational sdvantages of this method, consider the case of
o s system state with nice statd varisbles (n=9) and suppose it has besn partitioned into three subsystems, smch
:-".} ) with thre» state variables. The optinel filter requirss the solution of a total of (9)(10)/2 = 45 simultaneous
:;.1 varisnce equations. The suboptimal filter requires the solution of 3[(3)74)/2] = 18 siaultanwous squations.
.. .
wed Obviously there is no unique choice for the partition of a specific systesm. Pentecost' discusses w rationale
for partitioning s systea,
‘-3 One general rule for partitioning a systen is that ssch state variable should be siasigned, through a choice '

of the aatrices D, , to a aubsystem which assures it is strongly corrulated to en observation. Heuristically,
using & suboptimal filter is equivalent to making the system less observable. The correlation between a state
and the observationa i3 a sessurv of the observability of the state and should be kept #s large as powsible when
choosing a partition. Several observations will generally be associated with a single subsyoteu.

A sscond partitioning rule is that strongly correlated states should Le assigned to the sanme subsystem since,
in & general partition, the correlation betwaen states in dirfereut subsystems is pot taken into acovunt. Any
partition should be chosen to minimize this losa of correlation. Oune measure of the corrslations between state
variables can be obtained from the srror cnvariance F. for the optimal filter. The vorrelation matrix Cy with
elerenta
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. X Ph‘- NI,
c = ' (2.4T) (R WA o
RG] ‘”g* T g N

where ’}J is an element of Fk . The terms c'{, ., 1 £ J ' being a measure of state variable correlation, can be
used to group state varimblos into the samu subsystem. Note that it is possible that one state variablo will
belong to more than one stbaysten.

In order to proporly demign o suboptimal filcer ms described in this seotion, it is sppropriate to perform a
full scale simulation of the optimal filter covarimnce equations and suboptimal filter covarlance equationa,
iterating on the cholce of subsystems should leand to s suitable filter design. In most werospace applicatious
axtennive simulations are usually the rule; thersfore this technique is well suited to these applications.

3. SUBOPTIMAL FILTERS EMPLOYING STATE REDUCTION

An slternate spproach to that oltrd in Section 2 assumes that unavoidable errors will ocour in the formulation
of & mathematicel model nf the system. With this premise, a primary systom model is formulated including only
those state vector components of dominant special interest to the designer, The other components and their
interactions nre considered as part of a secondary subsystem. When this is done, the state vector of interest
L. has raduced dimension and allows m reduction in the computational burden required for lmplementing a Kalman filter
based on the primary system model. In many praotical problems®-!! the structure of the plant is such thet the

state vector components which mre ignored Ly such & procedure are independent sources of correlated disturbance

or additive obaervation noise. Thus, the secondary system may be considered to be a mudel of colored noise in
addition to the usual white noise sources assumed in the primary subsystem. This section considers the performance
degradation [neurrad by basing the filter design on the primary aystem only. Tha matrix differential equation
goveraing the srror in the covariance matrix of the primary systen is expreused explicitly in terms of the
neglected state compohents, {.e. the sescondary system. The expression for performandce loss inourred with any
proposed filter sllows the desigher to determine direoctly the utility of simple models in {ilter synthesis. Krror
_models of tLis type have been discussed vxtensively by Larson'®.

3.1 Problem Formilation

Cousider s dynamic system which can be represented by two linear stochastic difference equ.tions of the form

2}, = dal +cpad +u) (3.1
o= Aaleod, (3.2)
where
1} is 80 n-dimensioanl state vector composed of those components of w refined linesr nathemstical model
which are dominant or of sp-oial interest (thm state of the primary subsystem).
l{ is an n,~-dimensional vuotor composed of those mystem components which sppear as time-correlated
disturbances or additive obssrvation noise in a refined model (the state of the secondary subsyctem)
ui is an n -dimeasional zerc-mean white noise sequence with covariance mstrix atij
uf 1s an n,-dimensional serc-mean white noise ssquence with covariance matrix Q{S,k
@, 1s the state transition matrix for the primary subsystem, an n,xn, dimension zatrix
C. {s » matrix which couples the effect of the wecondary state vector into the primary systez, an n, xa,
dimensional matrix
~ A is the atate transition matrix for the secondary subsystem, an n,xn,. dimensionsl matrix.
‘The systex is assumed to have the observable outputs
Y 5 ONxg v, ) (3.3)
where
' ¥y le an s-dimensjousl observation vector
" is an m-dimensionnl sero-mean white noise sequence whioh is indepsndent of u{ and u: wd has
covariance matrix Ry, )
Xg is m 0= (o, +u,)-dimensional vector composed of x; and xi
g, = (M, :M,) 18 an mxn divensionsl matrix defining w linesrly independent obssrvable coabinatiocns
of system state variables. N,, is an mxn, dimensional matrix aud M, 1is an mxn, dimensional
matrix.
e
-1 . To reduce computationsl requirements for implementing an estimate of the primary subsysten state vector x{ N
N the filter design is based on the simplified model
‘.‘: oy = d\!k + 0 (3. 4)
\y
B = MgXy + % (3.5
Cal .
J .
0]
o
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where .
1, is an n,-dinensionsl atate veotor L U@ Y

¥ isan n-dimensional obaervation vector
ﬂ. is an n-dinennionsl zero-mean white noise sequence with cuvariance aksn

¥, 18 an g-dimensional zerc-mesn white noise sequence with covariance matrix ﬂs"

It is now of interest to determine the error of tho estimate of the state xﬁ where the Kelman filtering slgorithm

is applicd to the sivplified padel dofined by Equations (3.4) and (3.8).

In ordoer to caloulate the performance loss from optimal incurred by this simplifioation, we could compute the
optimal estimate and compare it with the estimate based on the simplified model. However the optimal estimate
requires the solution of an nxn dimenslonal matrix Ricatti equation whioh we wanted to avoid by using the
suboptimal approach. It is poasihle to determine & portion of the porformance degradation with little additional
computation. This portlon is tho offect of the scoondery state variables on the estimate when the suboptimnl Kalman
galu is used. Although this is not the tots. performunce loss due to the suboptimal estimation it does give an

indication of this effect.

The linear filter for the entire system is given by
EITPRL B AR RUNETTE W (3. 8)

.00,

Bt

S [}.‘!] I8 an nxm srbitrary sein watriz, K,
ek

whers

Ay

being o, xm disensional and K,y

being nyxm dimensional.

nomponents that are of primary interest, the gain matrix beccows

X - [.*.a.k.].

!: a t.-..

Now defining the srror of the sstimate as
a7
| SR | [

and !l s .k - *. N
we oan determine the covariance matrix for the filter. However, since the filter guin is based on the primery
system only, 8} =0 and ¥} = xi . Thus, by wpropriate subsitution inta (3.7), re ges

Teor = [, 02 + G + X2 4 ug - Ky (3.8)
whers

al 2 Cy - KMy -
The covariance matrix for tke overall system can gow be written in tcros of the subsystem elements. Defining
oY, = slahabhm,

where the dimensiors of o8, oX, , oKX, are respectively n,xu, . n xn,, sad ngxn, and where o%, = (o¥)7
Perforning the inficated operstions yields °

i o2 Beol Bl + 8oL +Tyokmy + BOYE] 4 g ¢ KT, (3.98)
Plat = mel S + 52,0 (3.9%)
e AN .90

where

PEL

By * Oy~ KMy -

PR |

Note that the nature of the coupling between of3!, P54t and o¥' permits the explicit solution for each of
thess matrices In a serisl manaer.

In order to evaluate the degradation in performance due to the effect-af the secondary subsystem, it is necessary
to determine the covariance matrix bmsed on the simplified model. This 's vasily determined from p‘f‘;‘ by setting
8, to zero. Defining

Pt o= el ),

RN T




g
. .g, ,
: 3:‘\{ ' 1
',' . we obtain the recurrence relation for the simplified system as
1 AN ] e T e KR 3.10)
v "
{ \'.: Now defining the error introduced into the primary subsystom by the secondary subsystem as
- ok '
50 B = PP
.
.;.‘:; yields a recurrence calculation for the error matrix; namely
iR - v
‘ ‘ Bror = B8] + BOYTY + OyobiB] + Budl ] + 00y + Ky RK], (3.10
T hare
o aQ, = Q- §
::'1 ,h Ani, = Rk - Rk '
" N
! and where the matrices p‘,‘, and p‘,‘, are obtained reoursively as ahove. The AQ, and AR, mitrices represent
; the error in modeiing the white noisv sequences for tho simplified system. Thus the error mutrix EY omn be
computed sisultaneously with the simplified filter equations in order to indicate the error {ncurred by omitting
Y the secondary subaystem variables from the primary model.
SaE
) ‘ The above analysis holde for any sibitrary gain mutru Kk + However if the cptimal Knlman filter is employed,
’:‘_‘l the gain matrix is chosen as
o Kie = Pk“xt["npk"u*iu]” ‘ (3.12

3.2 Results for the Continuwous Cane

.'_:n In the case whers the aystem is desoribad by linear differsntial equations instead of difference squations
::\.' . nimilar results ave obtained. Thus if the system is given as
I . 1]
::c 1, = A)X; 4 C(LIX, 44,
"l i
Y » 3.13
Mo W= A by (@19
and Y(t) = WEIR(E) + v(t) ,
. where the veotors and matrices are defined to be analogous to the disorete casv aud if the simplified aystem is
'\ | given by
ol f6) = AR +u,
Of (3. 14)
| ey = MBXRE) ¢ v,
. the corresponding covarianos squations are . 7
B Byy = By +P, 8" +Toyy 40,07+ Q, 4 RAKT (3.158)
S . .
.e Py = 89,y + B0y, 40, (3.18b)
) ' .
,\‘; ‘ Poy = Moy + 0 +Q, (3. 180)
Lt where B o3 (L) - K (DM (1)
. , B o= o) - Ky ()N (L) .
AR ~
bt Bimilarly the covariance matrix for the siaplified systea is given by
XM
SA; A= bo+et+Qrkikt, , (3.168)
L}
,‘-' ' In this osse the differential equation describing the degradation ia the system performance due to the existence
Wy of unmodeled state varisbles is given by
A E = pE+m"+ 00, +0,0 ¢ A0+ KANT, (a.1m
) ' where -
] EQ) = Pu(D) - p(0) ,
'h which equals zero if the {nitial conditions for these covariance matrices coinoide. In the coutinuous case the
N optinal estisate basad on the simplified modsl {s implemented when the gain matrix is chosen ss
't K, = mﬁ"
- :
. 3.3 The Steady-State Case
ALY
", An snalytio closed forz expression for the stesdy-state values of performance loss can be obtained directly
i-. from the above differential equations. Temporarily assuning that the design corresponding to the simplified model
-,
LW .
l" .
.“
L~"
5t - - .
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io stable, ‘three matrix squations are obtained by setting

il=ﬁ”':;3"=0.

Beploying the wli-known solution of these equaticus'?, the following sequetice of evprescions permits the deturmina-
tion of the steady-state performsnce loas E due to Lho nodeling arrors.

0y, ® Eup[/\t‘q, oxplAT) at (3. 188)
Py = I:uvlﬂtwﬁ"up[A’t] dt (3. 18b)
E = I:oxn[at] [Bol, + kAR +aQ 4+ o, Elaxp(a] dt . (3. 180)

3.4 The Casm of Random Sewpling

In many applications of Kalman filtering, the filter states are updated randomly in time. This situatfon may
be caused by computational allocation in the systen computer, subayotem malfunctions, or when measurements are
uade aperiodioally®“ %, 'the Yoptimal” gain for this type of filter is gero exospt at the update time when it is

e given by

K, = oMiDnon? LRIV

This is pearly the same optimal gain as the disorete time filter, except thst in thim case the covarisnce matrices
are propagated by the following differentisl equations obtained by metting K, = 0 in (3.18L) (3.180) mnd (3.17)
for the coptinuous case., Thuw, between the random update times, we have

’ ® o« Bp+ 08T 405y, + 0,07 +AQ (3.10m)
By 8 Boy, + 00T + Coyy (3. 199)
Fra = Aoy +plh” + 8y : (3. 190)
3:} At the tine su update in the estimated stmte of the plunt ccours, the old valua 2] (a priort eatimata) is raplaced
by » new value 2, (a posterior( estimate). The a posteriori estimate i# obtained as
" I S N RRITI E R AR ' (3. 30)
':ﬁ Bince no estioate of the state vestor x, is generated,

2 = 8 = 0.

“® ., 4 ., .
b n.. -‘,‘ -.(. L) . o
Defining the instantansous estimation errors as -L'\r‘:-":' ~ .

S N A

h;.iﬁ "W EE..‘; . "

L v

. X = x, -1

o= ox -8

L4

2, = 1x,,
we obtain
+ - -
_ LYRERE A 1 B ol I AN (3.2
Y, = Y. , {3.22)

4

Using these exprsasions we can obtain expressions for updatiug the covariance matrices corresponding to the a priori
aad o pasteriori estimates in & straightforward mapner. Thus, defining

Py = Elap N7

3 and Py = slapapt

[, yiclds

a Ay o= lr-xmley [Tk M )T + x T + (Kt 105, (1 -k M 0%

:: ’ + [r-x,ulip],[xtu,)’ + (K My107, (X M,]T (3. 238)
..: P ® LE-x M0y, +K M0, (3. 23m)
. Pre ™ P (3. 230)

where I ls the identity matriz of dimension n, .

The corresponding equation for updating the covarisnce aatrix of the simplified system is

e ¥ 1M,

I
|
L
v
*
-
)
%
»
G

1 _ Pt 2 (1-km)o lr-xm)? + kKT . (3.20)
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Pinally the equation for updating the performanco loas dafined as
E = p,-0p

is obtained from (3. 23a) and (3.24) as .
B2 (oK MIE (=K M)+ K ARKT ¢ (KM )op [Tk 1T+ Trak M 1o, (K 1T 4 (KM, 105, (R M1 .28

4. CONCLUSBIONS

In this ohupter the suboptimal filtering problem is disoussed., Roughly, the suboptimal filteving teohniques
can be broken into two general categories. The firat oatogory has the property that the vrder of the suboptimel
filter s the name as that of the optimal filter, but the number of equationt necessary to generate the filter
gain is roduced. One way of porforming this redustion is vy partitioning the system and ignoring suy correlation
which exists batween the various subsyateas thus formed. Generwlly an extensive simulmtion ia neaessary to minimiza
the degradation in filter porformanne oaused by the suboptimality. Tho savings in oomputation oan, however, be
very subatsntial if the system onn bo finely partitioned.

The second catogory of suboptimal filters hus the property that the filter design is based on & iower dimensional
state vector than the higher dirensional model which definee the system state. As a result the number of covariance
squations is wleo reduced, An estimate of the scst jmportant slemerts of the higher dimensional model otn be
e'Lainsd along with a difrerential equatiun desoribing thy performence loss lncurred by tho model simplifioation.
The filtering and porformmnce loss squations can he solved sinultaracusly to obtain an indioation of actuml

perforaance.,

L Y

2y wrt'n‘-_’) Y s o
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CHAPTFR & - COMPARISOR OF KALMAN, BAYESIAN AND MAXIMUM LIKELIHOOD
ESTIMATION TECHNIQUES

H.W. S8orenaon

1. PRODABILISTIC APPROACIES TO ESTIMATION THEORY

Thetre are many different appromches to the inferential problem of estimating parumeters or states from observed
data. Bowe of theae have been discussed in other ohapters (e.g., Chapter 1). In this shapter the problem is
spprouched by demling with the probability denmity functions describing the atate and messurement variables.

This genera] probabilintic formulation is roferrcd to as the Duyexian upproach'”? and it provides a framework
within which many other spproachos oan be subsumwed. Using the Bryosiun formulation, one arrives naturally at

the mximus a posteriori and maximum likelihood estimatlon prooedurss®. It in slao seen that detorministio least.
syuares can ba reinterpreted as naxisum a posterinri estimation theory, In Uhapter 1 the Kalman filter eguations
have been derived as the solution uf the unbiased, minimum veriance estimation groblem. It im pointed out here
that the minimum variande oriterion is just ons of many that could be ohosen whioh all yield the same astimate

for lineay, guussian systees,

Tho estimation problem for tiwe-disorste, nonlinear, stochastic uvstems is formulated ia Beotion 1,2 Within
the Hayesinp framework, a general treatment of nhonlinear systems can be developed in a straightforward munner.
As indiented in Beotions 2 and 3, it is necessary to ihtrodios additional restrictions in order to obtuin practiosl
solutions, but it 1w felt that the general formulation and subsequent miwplifiomtions pravide desirable insights
into the nonlinear estimation problem. R

1.1 Detorninistio Leant-squares Estimation

As & preliminary to the probubiiistio discussion of estlwatinn theory thet {s found in Bectious 3 and 3, the
problem of estimating paramaters or states {rom measuzement deta is first treated uiing determiuistio least-
squares. This forallation lesds to & minimismation problem whome solution is uontrivisl. It im pointed out in
Gection 3 thet the deterministic lesst-squares wproneh im equivalent to the maximum o posteriori approach when
the appropriste assusptlons ure introduoed,

Yo sinplify the disousaion, tiret considur tho problem of estimating an unknown parameter X from messursmsnt
dats gi(1=1,2,,,,N) , whers the collection of data will be denoted as g, . Suppowe that the dats Z, are
obtnlnoé 8t discrete instants of time ¢,(1=1,3,...,N) and that the B; 18 an o-dimensional veotor repressnting
u indepsndent wvasuraments. These data contain unknown errors ¥, and are related to tha parameters asecrding to
L. N,

Bo® b(x) 4y {1 = (L0

whers the h, are known funotious of the n-dimeusional vecter of paramster X,
In the claseical least-squares procedurs, vne trests (1. 1) in 3 detarminiatic fashion and finds the value of

I that ainimizes the sum of the squares of the error. Por example, ccabine ths N measurenent veotors into one
AN veotor (or, suppose N=1) and dencte it aa

v = b +Y, (1.3
whers Z, . h and Y heve obvious definitions. Then, choose the j av that
Loe [Zy-bl? (-] (1.9
is minimised, 8ince there I.l'l no other coustraints, a necessary condition for & to be minimized ia®
ah T h T
..<5‘.. 2t = by = 0. (1.4)

: PRECEDING PAGE BLANK

¢ The following convention is used. The purtial derivative of & soalsr function h of wn n-dirsnalosal veotor varlsble ]
is denoted by /3% wnd ise | xn matriz whoss elements ars oh/3j, , ch/dx, e 9h/3x, « If an m-dimenulonel veotor
fuzotion § 1is differentisted, then 3y/g i« an axn matrix with the %" element squal tu n 'ij Alwo, the
l:eond derivative of ascalur functlon b in written es 3/(H/25)7/3% , and is wn nxn matrix -hou 1561 wlement is
b/ A,
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It is got yenavally pomsihle to sulve (1.4) explioitly for § . However, if (1.2) In linoar so that

Iy = Wx+Y, (1.8)
where H iman BN xn matrix, then
%E— t W',
80 that (1.4) becomes
Ry = 07y, . (1.6

Donoting the molution of (1.6) by § , the least-squsres estimnte, suppoming that (HTH) has wu gaverse, is seen
to be

t SLIC L R L M (1.7

Obaserve in (1.7 that an nxn mobtrix must be inverted and that all of the mousuremont data ard prosessed. Tho
poaitivo-definitenows of (HTH) is equivalont to the cbmervubility of the ayatem (1.8) ms introduced in Chapter 1.
It is possible to gonerate least-squares ostimales recursively as now data are obtmined and thoreby avold
reprooessing old data®, :

Buppore 8, | 1s the estimate cf x based on tho date Z, ., ...o0 gy o L8t 2y, denote tho set of
a1l these dats and suppose thut new data g, are obtained. Let

Ly = x_" (oy = Hya) gy - Hya) (1.8)

Note that (1.8) is identleal with (1,3), wexocept that tis individusl swmples are written explioitly and the system
in sasumud 'to be desoribed by » linear version of (1. 1),

. ll‘_‘ + [.k'"kl]“[lk-"k‘] .
To detormine the satimate that minimises L, , form

. oK.
.5‘2 £ 0 = .-5'-‘-' -~ 2 giHy + 3 5™HR,

or, letting
LI
H,

uk-1 @

PO

- 2(“_01...‘1 + z‘i(nl‘l)ful-l - 2':Hl + “EHIH. 10,

this condition becomes

Tlus, one obtaius
‘I[u'.'l)ful-l + H:H.] 2 (zk'l)fuk-l +.:Hi

PO LN L L T - (1.9) ,
Quided by the fntuition provided by Chapter 1, let R .-:':.\r:-";.*-‘..v
MUY ."'.\"_- "
Pp' & (W, (1.10) IS VRN BN S
S ‘A".\-‘S..hl".

Then (1.9) becomes

-l =1 T
Pl = Pulidy, +H[Ey

AN LY N e e e 3 [ VR T - oy, . T et e W Ot ey N N P -
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S re-wwsus ot PRl ohus an invers. o.c gbtaine
; I % Y PO ) (111
But it .sollows, using the Nstrix Inversion L. »: (swe Bection 3.1.4 of Chapter 1), that
]
-1 . T 1ol ped
-.1 PPies fat “k'-ul LI
! o CRE T T OIS R :
Bt
R
f .
:‘J where Ke = Pty Dp,  wE o+ 1)t (112w
) Ax shown in Chapter [, 1t follaws that ) _
' K, = P (1. 12b)
& fo (1.11) reduces to )
¥ L = R+ de -md ). (1.19)
% 4 There is a generalisstion that 1-'plrt1nu1u1y' useful, Suppose that certain measurcment errors aro to be
_ glven nore weight than othars, Then, the cost function oan be written as o weighted loast-squarss sum,
J
W | Ly = #’.x lay ~Hyalng gy -ya) (1. 10)
1 It follows, by forming 2L,/3x . that
\ 3L L TR T Ty}
‘ ‘ .é.x.: =‘ 0 = T.l - “k"klk + nl Hkl.k "k
%
e Thus, the weightios matrix R;' sodifles only the matrices P, and K, ,
i
g B, = (gl ¢ NTRH (1.18)
3 ' %
) e
! . 1 T -1
\ ‘ and Ky = Py ML [Py WD+ m] (1, 160) I
X ! ' PR |
W i = PHAG : {1, 16b)
] Clearly, deterministic least-squares astimates ars closely related to the Kalaan filter estimates. However,
A ' no probabilistio interpretations have been attempted. As will bw ssen helow, the problem can be oouched in a
B fragevork that provides a probabilistic interpretation of least-squares as the maximum a posteriori or sost
! ' probable eatimate.
;j Thus far, the parsusters 1 have been trested as conatents, Ancther way of considering these parsmeters iz
bl ta view thea aa state variobles desoribed by the plant squation
) A * Bgey» )
k< The sxtension to & more general model for the plant is not eapscially diffioult. Suppose that the plant is
k desoribed by .
B ® LlEy-) + Wy k = 1,2,.. (L1T)
L and the measurements involve only the current state '
4 _ LA IS kx4, 3., . (1. 18
] Equation (1. I7) repressnts & constraint on the system. The ¥, , represent uncertainties or errors in the model
0 that cannot otherwise be accounted for. ¥y.. ¥ill be considered as purameters that are chosen to miniamize the
’:l estimation error,
', Consider the problem of ohoosing the saquences ¥, and ¥, , to sinimize the moart-square error
i !, IR R AR AR PRI A 1“1 g~y ap)™ 87" gy -bya? + ol 91l ) (L1 .
y
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uub]&et to tho constralnt (1. 17). Tha first term in (1.19), 1s included tn account for somo iuitinl eatimate of
the state 3, . Weighting matrices P;‘ ' Ri‘ . Q;l are {nocluded for gonerality.

This disnusalon has been included to set the stuge for later discussion. As should bo anticipated, the
solution uf thin gonoral problen is difficult, However, when (1.17) and (1. 18) are lincar, one obtains the
Kalwan filter equations. 7Thiam ampeot is dewlt with again in Seetion 3,3,

1.8 Goneral Estimation Problem for Time-Discrete Stochmstic
Syntema

It is possible to approach the llnear eatimation problem in a varicty of ways. Too often, however, the
treatment of the linoar pruoblem does not indicate tho manner in which one can upply the technique to nonlinear
problems, nor are the difficulties prosented by nonlinour systems mnde appurent. It is the intent in this
chaptey to doncribe a ponlinoar estimition problem and tu discuss two of the methods used to attack this problem.
After the gonucui oharucter of (e approaches is defined, the discussion i8 specialized to linear systoms to
obtmin the Kelman fllter equations. Time-discrete systems are consldered in order to eimplify the mathematlcs
and thoreby evoid the difficulties that huvo ked to the devolopment of ihe stochastic oslculuses of 1to® und of
Btratonovich! for imo-continuous systems

Consider & dynamical systom desoribed by m nonlinesr differenco wquation in which the state evolves according
to
F PR 17 T PO (1. 20)

The atate has sn initinl state x, which is » random variable with a known probubility donmity function®, say
p(Xy) .« Tho .., representsa wamle of & random ssquonce with known probability density funotion. Throughout
this oisounsion, it is wssumed that the ¥y e independent between the smmpling times and, thoreby, oconstitute
n white-noise sequence. Thus .

D(!ol!plnn!k) = D(!o)p(!ﬂnnp(ﬂk) .
The state ix obsarved through related messurement data g, demoribed by

B * bx(Epety) s k= 1 2., (1.3

The ¥, represent a numple from & white-noise sequunce for which the probability density funotlon is known and
-gdven gy .
D(Yp!.l'-'l!k) =z P(!l)D(!g)n--P(!k) .

The plant snd mewsurement nolsc sequences sre assumed to be independent of each other and of the initial atats,
This sssumption could be eliminated without signifiomst conceptual difficulty but the notation becomes more
comp licated,

The tilterlng problem! of estimating ix from measuvument dits g, will be considered almost sxclusively.
The soldtion of the prediction problem is & trivial result. As shown in Chapter 1, the solution of the smoothing
problem ls obtained from the filtering sclution, so it is not discuzsed hers.

The problem has been cast in s probabilistic mold thut veflects the uncertainty in the dynamic model and the
measurements that commonly exist in physiocal systems. Admittedly, this formulation might be considered to be
artifiolsl, since one is unlikely to huve a good knowledge of the density functions involved, so the uncertaintien
appear to have been compounded by their introdustion. BSetting this objection aside. it will be sesn that the
clusslonl leant-squares approsch is imbedded in this formulation, o that one does not obscure the problem by
these oconsiderations, In fact, one is led to the conclusion that the least-squares philosophy is enriched mnd
deepened by recusting the problem in this manner and that new insights are obtained thereby.

The Bayesian spproach provideu the theoraticel structure within which s variety of appromches oan be considered.
In Bection 2 the genersl results of this wothod are presented and the Kalman filter oquations are derived. The
maximum 1ikelihood and uaximum a posterinri estimmtion procedurss are disoussed in SBection 3. The Cramer-Rao
inequality s discuased and the Pisher informatlion matriz is related to the error covariance matrix of the Kalman
filter.

* The potation that s used fullows rol'dbaus’ and has the disadvautage that the argusest of the function werves a dual
purposs. It is used to name the funution, we here, and is also treated as & variable name (v.g., it is treated ss the
varinble of Integration). The meaning should be olear.from the context

t The readet is directed to Chapter 1 for a definition of the terms relsting to ths diffsrcnt mspeats of the estimatioa
probles. )
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2. TRE BAYESIAN APPROACH

In the '“Bayesian approach” to the filtering problem ono is concorned first of all with the dotermitation of
tho ¢ posteriori density funotion p(xy1%;). This density. function provides all the Infurmatlon required for
the solution of this problem. This statement will bo dimcumsed in more detall below. The fvllowling four uspocts

of conditional density functions will be uoed fruguoently®.

(1) For random variables p and } with joint probahility density function p(g, D) . the conditional
donmsity of 4§, given L , iu definad as

(nh)
@lp 822 a1
ptalb) e a.n

(11) For rondom variebles g, b, and g , It follows from (2. 1) that
pablo = palowmlee . 2.2

This is known as the chain rule,

(1i4) Further, it can be seen from (2.2) aund the properties of density funotions thate

palp = J ralegwle . (2.3

This is su integrated form of the chain rule mﬂ {s ensontially the Chapman-Kolmogorov equation.

(1v) Equation (2.1) also implies that

. ptlmp
. p(p|h) s TR (2.4)

This relatlion is known as Bayes's rule and ls the source tor the term used to describe the appromah
in this section.

a1 Porrornanoo'Crltnrtn Considerations

Equations (1.30) and (1.21) and the concomitunt density functions provide the information required for the
Bayesian formulation of the problem. Before going to the development of the o posteriori density relations
tirst note thut the solution of the unbimsed, minimum varisnce estimetion problem, as posed in Chapter 1, Is
obtained if the a posterior{ dmnsity of the state oondltlonod on all available measurement data is kuown. Thig
is demonstrated in the following stitement.

Theoren 2.4

Suppose that s random varinble x istobe estinated from measuremont data g and suppose that x and g
have the joint probability density function p(3. ) . The unbiased estimate of 3 bused oh the date 7 that
yields the minimum error variance '

eliz-%x-2) = ointoun
is given by
= glzlg) . (2.8)

Proof: Pirst, write the error varisnce in terms of the conditional density, using the ldentity

Blgz-0Ta-8) = eela-Ta-nlzl) .

Clearly, to minimize the error varisnce it is sufficient to minimize the conditional expeotation. Thus, consider
»
els-DTa-H12- = £78 - ahlslz) + elxlz)
g-ellgh*@-ellgh +

+ kTxlz) - &3lzhlzlg) . (2.8)

Only the first term in (2.6) invoives £ . It ia quadratic, so that the smallest value it can assume is zero.
This obtains when

$ = elalz].

‘The £ given by (2.5) is unbia:+d, as is meen omsily by ohmarving that
' elg) = elelzlzgl) = elyl .

* The aingle intesral sign in (2.3) and the diffureatial db are used to indicate integrations {nvolving vector variublau.
¥hon more than one vector is iovolved, the differontial will be written ss d(a,bi@....) .
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This completes the pronf and demonstrates that the first moment of p(glz) provides the unbinsed, minjmum
variance estimate of x .

The mininum error varimnce criterion is only one of many criteria that could be selected. It has boen
troquently stated that it s used bocause {t is mere tractuble analytically and not always becnuso it is the
nost apprupriate for the prohlem This implies that tho-minimum variance estimntes represent a vory aspecialized
class. However, Biorman® domunstrated that the res.lts obtained for this criterion actunlly apply ta & broader
nlaas of cost functions that includes many other meaningful criteria.

Conaider a genesral orror eriterion L(X) whore X 2 (x-£) and thoe L has tha following charucteristics:

(1) L is symmetric wo that

LE = LD 2.m
(11) L 1s eonvex eo that .
LM, + - ME,) €ALE) ¢ (=-MLE . X200 . _ (2.8)
This class certainly Includes the minimum variance criterion
Ly = i
and the absolute error oriterion
Leps. = 1l -

Supposs that the x is tq be estimated from data 2 . Then the following result is applicable.

Theorem 2.2: T

It the conditional density p(;IZ) is symmetric about iim mean value, then the estimate § that minimizes
ay cost tnncftnn L in this class is identical with the estimate 3“ obtained with the minipum varimnce
eriterion.

Proof: 1t is desiced that the estimate £ that minimizes the expected value of L(X) be determined. First,
nots that
elL@®lzl = elu-2lg = elui-pi2) .,

wheres the symmetry of L has beea used.

A s
Lot €23
» SEiE

=3 -6z -

Then, observing that

alLix-21zl

-]
j_n Lex-2peslZ) dx .

and using the definition of € , this becomes

ELa-0I2 = [ Lees,, Dol de .

#

But it has been assumed that n(_x_|a) is symmetric ahout the mean, 8o thir 1npueg that
PEID = pi-€lD) .

Thus one obtains

ElLcx -1 2

[: L€ + Buy ~ RI0(e1 D). de

i

r_l-(.‘g-;.,te_)v(slm de

[: L(f - By ~IP(EIR dg .

sing thess identities, it follows that

Elncx- 1zl = Felig+ @-2,n12) + el -2 -2, 12} .

ok
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But L 1is convex so

B -5 2] » elulle+ @~ape) + He-d-gonlE) = slueolz) .

Prom the definition of ¢ , it can be soen that equality ocours if § = R .

Observe that, if L is roquired to be strictly conver. the % s un.que and must equal 8_" R

This result can be extended to non-convux cost functions by considering the following atatement.

Theorem 2.3

Suppose that L is symmetric and non-decreasing and that p(;IZ) is symmetric about the meoan. Suppose also
that p(;IZ) is unimodal and satisfier the conditions

lim L(a)n(le) = 0.
=

Then the § that minimizes » cost function L in this olass is identical to the minimum varimice estimats £ .
.. The proof is similer to that of Theorem 2.2 and is ouitted.
This thoorem permits a varisfy of non-convex cost functions to be considered. MNor example it is sometimes

wore meaningful to weigh squally all errors larger than & cartain magnitude, sinuce any errors larger than the
prescribed limit may be undemirable. Thur, one could consider a modified minimum variancs oriterion in whioh

_— Ll = {[i:‘i]} 1§l < x
) k il > x.

k3
Sty

';4' Another example would be th-l uniform cost funotion in which errors within a ocertain magnitude sre scoepted without
:4 cost and all other errors are weighted equally. This is desoribed by the fullowing function
R ;
k
0. 5] ¢~
2
I wyH = .
»,
1, gl >
[{ X

This cost criterion is closely connected to the maximum a posterior{ density. Conmider the expected cnst for
this oriterion,

BlL®) = Ekluglzl}

f:{f: udHvralp dx} pZ 42

o ungt K72
f 1- piald dxl p(@ daz.
- },,k/2

ot e i 2y R T T ST

whers £ .. is the estimate aswociated with this criterion. The cost is minimized by maximizing the {inner
integral. Mor small encugh values of k , the best choice is essentially the maximum value of the a posteriori
density. Estiustss of this type are dimcussed in Section 3, The theorem laplies that the maximum a posteriori
estinates are equivalent to the minimum variance estimates when the appropriate conditiuns are setisfied,

. -

3.2 The a posterior{ Density Function

The a posteriori density function can be seen from the preceding discussion to provide all of the information
required to determine estimates for any cost functions. Ome of the Lrincipal sivantages of the Kalman filter
eguations is their recursive cheracter, which saoubles new measursments to be prooemsed without reprocessing
older duta, Thus, consider the prublem of determining the filtering donntty in a recursive fashion. The following
theores provides the desired ralations.

Pt — VIS T AT )

Ld
oy

Theores 2.4 :
Por the system (1.20) - (1.21), the a posteriori density function p(x.|zk) evolvis according to

¥ 3L P

PlEIZy. )P By By

u PlalZy) = ———— L, 2.9
i (gl )
J
3 .
&
) : P
:i . . ) : : ~ } 4.‘-.-?:.‘-(‘. =
J LIS \ .
| ..v{.. .
ey - AL A R S S LA A e n A e b LN « . . e At ST
..\ 4 ‘.' ,\¢'1 Yo "- “e .'-‘ “a ""..1.. et .t "-:‘., RO '.\) "U o o " ' ‘;f * e, l"“‘\* Q"‘: L‘.;m" .qhk . " '1-‘. ‘“'I‘-
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;.: L where the normalizing conatant is

- PUB Ty ) = JPCR T O0(E B 9y

,: ) Tho prediction density p(;klzk,l) is desoribod by
', Pk G ) = oG B PRk 12, ) dBye, (2. 10)
_b The initial condition p(x,lz,) 1s given by

1)

1 p,lzy) = 2-(53-:;’:—;:—')’-‘3"-) .

..\, Proof: Pirat, note that the initial condition follows immediately from Bayes's rule (2.4).
,;: ' Cousider arbitraty k . From the chain rule (2.2), one soes that

N Py gz ) T P IZOD(ZIZ,. )

] 80 that

N ‘ Pl = pm(px(kz':kzlf.‘:*—.)l_) .
" The chain rule also enables one to write

‘Q Py 2yl Bx.)) 7 Pk ldg &yl PR ER.)

% ' ] which can be simplified to ) . .

i : P gy ® B3P R Gy

since 3, . siven j, , is indopendent of 2, , . Equating the two relutions fur p(§,.2y1d.,) . one obtains
_,‘ |
saulzy » el 0El)
':1 which proves (2.9).
.\' The normelizing constant is determined immediately by using the sondition that

v

-JP(Iglzk) dgy = 1.
The proof of (3.10) follows from the integrated ohain rule (3.3), Note that

Fvé)
bte

5.5

p(lkllh-‘) = JD(lkllb,.Zg.l)D(h-;lZg.,) d‘k‘l '

A
" X which reduces to
A PEIZ. ) = JPOE I Py 12 )) dXgy -
¥
bt thereby proving (2.10) and completing the proof of the lemma.
.;'\ - Several oharucteristios of (2.9) and (2, 10) require discussion, First, ncte that the density p(g.lx,) in
Al (2,9) is defined by the measurement model (1.21) and the prescribed dunsity function for the memsurcament noise,
o Biuilarly, the demsity p(x,I3,.,) sppearing in (2.10) is defined by the plant Equation (1.20) mnd tbe density
. A funotion prescribed for the plant noise. Thus, theoletically, one knows thease two funoctions, The initial
-"..\ a posteriori density p(z,lg,) is known frow u priori information so it is possible to determine the a posteriort
9l . dunsity p(;.lgl) for any subsequent valye of k .
7 .
T . In & practical sense several difficulties hinder greatly or prevent p(akizk) from being deterained.
3.1 ().) the plant and neasurement equations, ‘k end h, . may inhibit the determination of the p(gkl F aud
) P(Zgl3). ) . To avoid this difficulty, it i3 frequently aysuied that the plunt and measurement noise
2 are additive. Then the plant and weasuroment equations take the form
&
K 2 Xy = Bg(Bg.y) + Xgay (2.1
b -
I sad P ¢ R (2.12)
f
|
¥
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Wi
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pan It is slmo common to assume thnt those noise sequences are gausmiwn, with donsities
“ ) plyy = ky expl- | aqp'w,} (2.13)
) piyy = ky axpl- FyfRply,) A2 W) g
j ' Using (2.11) - (2.14), It follown that ‘
i Py lay. ) = oy 90~ fnu-£k<£u.x)l’°i.‘.[au-fk(zx.l)l} (2.18) .
A ' 'l‘
CIPME IR W .xp{-i [zk-n(ak)lTn;‘(zk-hkmk)l}. (2.16) r
A

\ This shows that the difficulty in determining those conditional densities is avolded by assuming
q: additive noise.
) .

¢(11) The integration requirad in (2,10) canrot generally be wcconplished in a closed form. The principal
y Q) . exception oceurs when the plant wnd muvasurement equations are linear and tho initial state and the nuise
sequonces are gaussian.

(A (1i1) Equation (2.9) requires the multiplication uf two functions mso, if thay sre known, the Niklik) can

N . at least be determined to within & nultiplicative constant. It is lmpomsible in most instances to
’ t] , Gompute woments or expooted values of particular quantities (e.g. cost funotions) in & closed form, mse

. that the estimation problem can not astually be solved through knowledge of the o posteriort density

N funotion. Aguin the major exception voours when tha systen is linear and gaussian. This oune is treated
t later in this section where it is seen that the Kalmun filter equations describe the mean and covarianoe

oy of tho gaussian a pusteriori density function.

To circumvent the diffioculties dosoribed in'items (i1) mnd (i11), methods for approximating the density funotion
have bean proposed”: !, These sspocts ure beyond the scope of this chapter.

The recuraive a posteriori density function relations for time-disorste syatems have their analog for time-
continuous systems, Stratonovioh'! first derived s partlel differontisl equation to. deseribe the evolution of
p{x(t) |Z(t)) . Bubsequently, Kushner.!? and, then Buoy'3 modified thess results conmistent with the Ito suochastio
oalculus, Theme equations for the a posteriori density sre very difficult to solve. Linesar, gaussian systems
are agein the principal case for which solutions can be obtasined. Fisher'® has attemptad to obtain mpproximate
wolutiens,

2.3 Linear, Gaussian Systems

Buppose that the plant and moasursment data mre demcribed by 1inewr .qu‘ti:onl 80 chat the systeh ia

PO ELONEE (2.1m
. Sy = Hply + g ) B ) (2.18) . m«r‘n- 7 kv
§ A
g \ where the initia) state is a gaussian random variable with density funotion ) )
) P(ay) = kg, exp{~f (3 -0T W' (3,0} (3.19)
d "l-
v and the plant and messursment noiss sequences are gaussian white-noiso with density funotions defined by (%. 1)) T
- and (2. 14).
A ~ For this linoar, gsussisu system the a posteriori density function is characterized by the following result.
it .
. Theoren 2.5
:: The a postariori density "(!k|5k) for the aystem (2, 17), (2.18) is gaussian
I‘ 1
plaglzy = LamPley ]t/ exp{-tz, -8 P B 400} (4. 20)
, ! L with mean value given by
X F IR TS NTTRN N T (3.21)
*1 .
"‘.1 The 2 reprosents the mesn value of the a posteriori density D(Lk|?.-|-‘) and is
LY
1 f o= Ela.) = e (2.22)
, The matrix Py is the covuriance of Nln'ﬂu-.) and 1
Py s k-2 B0 T B P et % (2.23)
N !
1
, ‘ﬂw"", W
t

!‘n_t*' "F" “:.\ \.. «\'q.....'_.n" (:.‘-.:“. - ‘:'i(‘»'-,.‘v‘.
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Ky o' a gein matria defined by
K, = PHIOLPIHT +Rp°' .

The covariance matrix of "(hlzk) 1w dofined as Py and {s given by
P, = ElG -8y -80T1%) = Pk- KiPy -
Assuming the first moawuremont ocours at ¢, , tho Initial donmity in p(xy) ; so

39 = Rt Ko(Zo‘Hgl) '

whore Ky MGHS (HMHT + Ry)" !

and Py = Mg~ KHM, .

Note: Tue equativns domeribing the conditional mean and covariunce ats ident ioal with the Kalman filter equations.
This is not unexpected, aince it has beon shown that the conditional mean provides the minimum veriance estimate.
Thus in the linear case the Bayexian spproach ylelds tho rosults premented in Chapter 1. It should ulso be noted
that the covariance of the conditional density is independent of the momsurement dats. As a result the conditional

covariance is ldontical with the covariance of the error in the estimate, That is,

' Py = E[(Ik‘xk)(h‘ﬂk)flzk) . l[(lk“k)(lk*&k).r] .

(2.24)

(2.20)

(2.26)

(2.27m)

1t is interesting that the proof? of the theorem is most easily sccomplished by resorting to the use of
characteristio functions. This apyruach is taken here, Certainly, direct evaluution of tho general recursion

velations (2,9) and (2. 10) will provide an equivalent result, but it is ‘interesting to note that it is the result

stated in Seotion 2.1.4 of Chapter 1 as an siternutive form. This socurs becauss the detsity functions involve
the inverse of the covariance matrix; mu one obtaina .P;‘ suther than P, when prooeeding directly Irom (2.9)
and (2.10), On the other hand chmracteriutio functions require the covariance matrics and not their inverses,
50 this apponrs to have meveral advantages, Kalmsn pointed out that it is more satintying to desl with the
characteristic function formulation since then M, . Q . Ry neud nat be swsumed to be positive-definite.

Before procesding with the proof scme characteristio function relstions shall Le stated.

(1) The chavacteristic function @ and the probubility density funotion p asnociuted with ‘& rendom

varisble X form a Nourler transform pair

>

s A rlexpta™] = [ expia™Hn 4z
pex) & (' [ exp(-1axxE(N) di

{11) It ic also useful to recoguize that

(@m™® J explip’s) 45 = 3 .
where 3(:) is the Dirac delta function.

'_ (111) It osn be proven that

]
T I_. owolpte-gtaz) ag = m/2(Al" T axpligTa gl
_for sny complex [ and positive-definite A .

i ;“:Sl\'
' ;r& he definitions it follows that the characteristic funotion for 3, im

. b > owiiag a-1 afoag) -

Por p(gyls,) 80 P(Ey,,l%y) the characteristic functions are
.- Tﬂ E Y gy = exn{ialigzy - IalRa,)
. gy = exo{igld,,, ox, -105Q,8,)
To accomplish the proof, first obu.rvo that the charmcteristic function of p(;.llk) is
Ha = J emala)p X% dix

1 N T T
———— e - - - p Ny s b d By .
(zﬂ)nolp(h %0 J oxp | 108/t By 3y xHv‘h] By/x-1) (Ry) dlXy By f/u-)

(2. 28)

(4. 39)

(2. 30)

(2.31)

(2.33)

(2.3%)

(3. 34)

(2. 3%)

-
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Note also that tho charsoteristic function of p(x l%.,) 1s

Oy .0 = ) enlind o a0 2. ) d5,
1 T 7
ey TRUL UG TCNE] WARVLE T TV

LA MUTCTRRTTE TR TN N T I (2.30)
Using the above relations, the proot fullows in n straightforward manner.

Proof: The initial conditions (2.26) and (2.27) will be wstablished. Uwe (2.32) and (2.33) in (2.38). Then

1
*(8,) = (2—7')-,,7;,""(';) Joxpl-i(ny =~ 8, ~ HEAT 5,y -

- 878, ¢ dga - deghomg - i8iRee, ] d(gy By Xg) -
Integrate with respeot to g, snd use (2,30). Then one obtains

() J 8T, +mo~ny oxp[~1878, + 1008 -

:n)‘p(z )
- tajMon, - IRl a0

Because of the delts funotion integration with respect to p, ia trivial, sc this reducus to

(1, oxplinte = dalion,) wxn(a} (-1 g, - Hop) - HNop,) -

1
* (am(y)
~ fafingugnd #Romy) oy

Using (2.31) and evalusting p(2;) . it follows that
B = explialln rRyz, ~Hom] - INSIMG-KGHMIag} o (2,37

But this im the characteristic function of a gaussian variable with mean and covarianoe described by (2.126)
end (2.27).

To verify (2.22) and (2.23), aasuze that the lezan is true for t,., and form (g, y.,) . using (2.36).
This follows in a straightforward manner as dou the proof of (2.21), (2.24), end (3.23), using (2.38). The
details wre wnitted,

The use of characteristic funotions has eliminatod the requirement that the a priori distributions have
s nonsingular covarianoe matvices. It addition, the development leads directly to the equations presented in the
theoren which have come to be kuown as the Kalman filter squations, As an slternative, it is possible to deriva

e the density relations directly from (2.9) and ({2,10), The direst spplication of these equations leads to an

] esquivalent set of eguations under the assumption that sll of the a priori covariance matrices are nonsingular

! but which have some important differences. The density ls, of course, still described by (2.20) and the mean

values given by (2.21) and (2.22) are unchanged, as is the covariance P‘ desoribed by (2.23). However, the

covariance and gain take the following fora

P ox (P! + HIRCH (2.38)
k k kR Hy

- R, = PHIRGY . (2.39)

ot uporw o0 hers is the obssrvation that the nxn matrix P, wust be inverted, rather than the axm matrix
(Hkl"uk +Ry) appearing in (2.24). Ginos © wmay be significantly swaller than n , this ls an important
couputatioual consideration. It im shown in Bection 2.4 of Chapter 1 that the two representations are related
through the use of w matrix ioversion lumsa.

[ N
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' 3. MAXIMUM 4 POSTERIORT AND MAXIMUM LIKELIHOOD
! ESTIMATRS

In the proceding mection, recurnive ralations for the a posteriori denaity funotion were daveloped which led
io » natural way to vhe rocursive Knlman filter equations when the systen was assumnd to bu linear and wwuselnn.
In this section the density functions will not be written in a rooursive feshion and the considerations will lead
to the maximun a posteriori estimatfon procedurs. Wheun the system is ansumed to be linowr, thu Kmlmun equations
are obtained again, as must be the cume booause of tha Theorem 2.4, 7This discusmion can still bo considored to
be Bayewian since the results are ohtained using Bayow's rule to describe the o posteriori dunsity. Agaiu, the
denmity relntions will be non-recursive and this sspect conutitutes the primwry differcnce from the discusalon of

Seotion 2.

.
-

L Zan i et o
S e e gt

e

» -
e -

3.3 The Maximum o posteriori Estimation Problem

Consider tho collection of all states X, (i.e. X,y ....%) and all measurement deta g, which are doscribed
in general by (1.20) and (1.21) and suppose that ¥ wnd 2, have the joint danaity DRy &) - Then, by Bayes's
rule (2.4), it follows thut

1

P Ty o)

PR3
L Py

- ptzklxpum)

(3.2
v(dy) )
But the weasuremont noiss is indepondent bhetween samples, so that
’ .
Py &) = PidglEIP(E 1B o0 B(ZLIB T f_‘l;n(:,lm (3.9)
. “snd (3,2) becomes
A\ .
3 p(gy) D(lﬂh)
P4 lZy 2 3. 4)
Yl p(z‘) (3.4)
Also, the definition of the plant wnd plant noise sllows one to write
LT0. TARNE I 1¢ TAF RS 1-T¢. 1Y
L T THE PORVL-1¢ PRV T Y TN 1¢ 1T 19116 19)
LI 1¢ 1% m D(lgllg.l) ' (3.8)
g0 that (3.4) can be rewritten as
16 3] [t( D(l;llg-l) ﬁ‘; D(l"'l‘,gl
' PX g = — ; . 3.6
- : Tl . 1% )

b

ﬁ As pointed out in Aection 2, the densities L5738 TP and D(lxllg) are defined by the plant and messurement
noise chavacteristios and the equations desoribiog the two systema. If the noise sequeuces snter nonlineatly,

y it oan be very difficult to define theas conditional densities in & tractable form. To ciroumvent this problem,

2 ' suppone that the noise enters additively and is gausaisn, as desoribed by (2.11) - (2.14). Then Equation (2. 18)

i .and Equation (2. 18) appiy and (2.8) vsa be written more explloitly. In particular, it is sven that

PEylay = o m{-{ f:.a [:ru,(m]* n;"[:.-niuu]]

3 | _Qmmpigum-mmwQJ- @.m

PEY = play) C up[-'i ?:. | 3y - £at8y) 1) :.. } . . (3.8)
. 1-1
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Au‘wnin‘l that X, 1is gausalan, (3.8) becomos

T

AR —ali? -ttt ' - | 9 *
w ka|zk) z Q HD{ t [” %o ll|“a| + g 1 FTRC T1¢ YY) I‘i-‘n + 211 I By h](h)'ll“il]- [ .

wherse 0 is n noraslizing conmtant.

°
‘The a posteriori density D(xk]zn) contains the information required to obtain eatimatos of any or a? ot

. ! the status ¥, . Aa discuseed verlicr, estimates for many oriteris cannot actually be oblulned becauss of the
Ly . conp) ioations” introduced by the nonlinomrities. Mowovor, & reamonable entimate to try to ohtain is.the muximum

. o porteriori estimate desoribed in Béotion 2. In thim onse one attempts bto determine the mode (1.e. the muximum)
0 ) o of v<8u|h) . This in equivalont to onousing tho estimates of ¥, e those values which minimize the ne“ti\m
# of the exponent of the a posteriori density. Let
X
b, 1 H 2 2
] 3; L = il Au-l||lal*ll$” FY LTI IIQ?‘H ?:,” By - hy(xy "n;“ o1y,
%
<80

Ly = don, € = lory bikl2o) - ;

e a

The L, isto be minimiged througn the selestion of the estimates. Equation (3. 10) omn be put into & fort
that in similar to that for optimal control problems so that the theory developed to solve thoss problems can

¥ bo applied,
2 As stated, the entimation problem has bhewn reduced to a deterministle minimisation problem. Detine variubles
- . Yg., 80 that the plent can be ocotsidered as .
a: PR {1¢ PRSI T (3. 11)
A ' )
i R This squation i similar to (2. 11) but the y. . huve byen lntroduced to emphwsime that, unlike the y,_, ,
they sre not random variables, Now cohsider thn entimation problen ma the followiug.
\
_ Cucose the swqusncos X, and U, , %o that the cost function
i K A .
N I ll" = *" 3 "l"I;l :*g” ﬂi'h‘(l‘) ”:i‘ + *‘g“ I'n ”Qi‘ (3. 12)
| is minimised subject to the conutraint
(s B ® LBk gy ko= L duN-t, @.13)
J One oan atteapt to solve thh.problw using the mathematioal formalism of optimal vontrul theory, It s
not generally poséible for arbitrury funotions §, wnd |1, but oan be wohioved when the system is linear. The
N general problem is beyond the mcope of this chapter but the linear problem will be considered below.
)
i It should be observed that the problem that has been posed is identioal to the determinlatic least-squares
4'1‘ probles formulated in Beotion 1. This indicates that this deterministioc problem has been imbedded in « prob-
g abilistio framework in whioh the crrors aud uncertmintiss have boen assumed to be gauaaian randum varisbles
" and white-noise ssquences. Thus. the deterniniastic and probabilistic problems are not fundameéntally different
" although the langusge sand analysis proogdures sre very dissimilar. This formulation has been suggested Ly Coxt®
- for time-disorete systezs, Cox'¢ also considered time-continuous systems in whioh the summutions of (3.12) are
replaced by integrstions and the difference Equation (3.13) is replaced by a differentisl squation. Dstchmendy
2 - snd Bridhar'? also considersd the nonliuear estisation problem in this manner mnd derived a mystem of equations
ot } that are siamiiar to these of Cox. More recently, Mortensen'® has conuidered the time-continucus problem and
'fn \ gura and Henrikson'® have considered the gervralized lesst-wquarss procedurs of Chapter 1| and have obtaind and
|
. ‘l .

extended the results of Detchmendy and g§ridhar,

iR

3.9 Maximuy Likelihood Estimation Theory

} The maximum 1ikellhcod procedurs that has been widaly used is vlosely relatod to the maximum a posteriori
estimates of the preceding seotion. To discuss the difference, consider Equation (3.2). The denominator p(g,)
is o normalizing constant and can be {giored. In the meximum u posteriori prooedure, the estimate is determined
that maximizes P(Sklzu) . Suppoau that the a priori {nformstion reiating to the ¥, , us desoribed by p(X,) .
duss not suggyst that any state im wore Llkely than mny other. Taen, the p(),) will be  uniform density and
the auxinization of p(xk]zk) will motuslly be deturmined by ihe maxinization of p(zklg )« The values of X,

wiich are found to maxinize p(Z,lY,) are reterred to as maximum lik-!ikood estinctes wnd p(ZylY,) is referred
‘,, to as the [ihzlihood function,

L

[

) wirii @ hr vk @
Maximum likelihood estimates huve several proparties which are desirable and huve therefore seen widespread Fr—gs o
application. For the discumsion immediately bulow, some of these aspects ars considersd and will ve related o N

soms of the properties ¢ the Kalman filter. For a more complete cisocussion the reuder is refarred to Cramer®?
or van Trees®,

.




p "‘,A'\l » ,""'."-F""'-q"..u"- .-‘.-"-__;:....-“.“u. oy ,1‘._ U R T IS "-""q-“;;‘-."'\""‘."

134

The oovarianoe of the orror in wiy estimate cen bo-bounded below through o relatively atrajghtforwurd applion-
tion of the Bchwarz inequality. This bound {8 usunlly referrnd to as the Cramer-Kao lnoquality. In the following
the Cramer-Reo inequnlity is proved for unbiesed (mes van Trees® fur n troatment for hiasod ontimntos) estimutes
of au unknown veotor paramoter and then for a random parameter. Buppose thut 1t [4 dosired to estimste an unkiown
paraneter x from meusutonsnt data ¥, . The puramoter snd.the data ave amsumad to he related according to

gy *© hk(ll!k)l k= 12,....N, (3. 14)

where tho nolse ¥y hos & known distribution. As a result, the oconditlonal dousity P(Zylx) o be doterminud,

Theoren 3.1 (Cramer-Ruo Inequality)

It 2 1k Any unbiased estimate of X based on the moasurement dath g, . then the osonditional oovarimnco
of the srrur in the estimate given g is bounded below by the inverse, ussuming it exists, of the Fisher informa.

tion matrix J

Blaa-% -t >t . (. 10)
vhere _
3 S A |
J = E .& logg p(Zyl8) % logy, p(@yI0] 1 (2.16)
e {22 tou, pitln)| | 3
z axa;"."”“‘ i} (3,11
Wquality holds in (3.18) if, and only if,
3
3 1% pEyln = k-0t (3.10)
It is also assumed that
- .
a (@l
39 T L
and % .Si-Nzuli) ., e L
exist und are absolutely lntegrable,
Proof: rlrat, consider thst
eld-pla = | @-pp@ln gy = 0,
since § i unbiaged, Differentiate both sides with respact to x to obtain
3
o = [= la-noay il oy
N
CLIMEIN
® 4" I D(Zull) dZN I+ I(x'l) —B‘—'—" d‘N .
But obaerve that
BEID 12 0 oo b
% b % * N N 4
no one obtaina ! .
3
I = J'(x-n [3-‘- log, n(z,.lx)]p(z,.lx) dzy
3 L
# ﬂ(t-n M AE {[5-‘- 1og, n(z..lx)] [uz.,ln] azy .
Aoplying the Sclwars inequality, it follows that’
1<{g-na-nEln ), (.19

* Yhe mtriz {nequality A € B wmeans that (B-A) 19 non-negative-definite,

t=rriiut=init
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where J 18 deffined by (3.18). If J°' eximtm, thon (3.18) im proven. 1t remains to dononstrate the second
form fur the Fiaher information metrix. Equality holds In (3.19) if and only it

9
-a-‘-lun. p(z,,l_x) = k(-1 .

LELAL -

By definition, it {s truo that

Io@yln agy, = 1.

Differentinte with respect to § . Then onv obtaina

BN

! . 3 3
IS;' n@yix) gy = “‘52‘ lug, D(zﬂlgﬂ Iyl dzy = 9.

Differsntiating u second time with respest to x . it is found that

] 3 T ERE T
'a-‘-f[;: log, D(Zulxﬂ Byl 4@y = . 58[3—5- log, D(ZNIAEI P(Zylx) dgy + :

L] r
+ 5 log, p(Zyl8) 5 P(Zy 1K) 9%y

or

A L 3 t [
0= fs;[a"; log, D(hlln:] PRy dgy +I[5: log, v(zﬂlx)] [5; log, D(ZNI;)-JD(ZNM) a2z

. Equation (C.17) follows inmmedistely and the proof is oumplete, Note thut the conditions ou the partisl derivatives
are required so that the interchanges of differentimtion and integratiou wre valid,

This theorsm and the Fisher {nformation matrix ean be applied to the linear tiltering problen and some
interesting relationships sre obtained, Consider the following exum les,

Exumple 1: Buppose thut the memsursswnt data are linearly related to the parameter g,

By * W+ ¥ (3.20)
and assume that the moise 1o gaussian and saples are independent,

piyy =k, oxp{d yiRyly,) . _ (3.21)
Thus, the conditional density Nzull) in

1t MY k-xp{—iﬁ: (zy~HypT n;‘(a,-nm},
=g

vhers k is the appropriate normalization constant. 1t follows that
log, p(Zyx) = logy &k - & #:a (-1t AT @y ~H8)
50 ' ) !

-a-loc AN ?u:h (e -y T Ry
n B Plly by (Eg - HiB) T Ry

Al ]
| - LTI
n [3‘ lox, p(z,.lx)] ?"__.o HiR{'H,

Using (3.17), the Fisher information satrix is found to be

and

L] Trit
J g H{R{ "Hy (3. 22)

and the covariance of the etror in any unbinsed estimate of x is bounded by

elx-Da-07 3 [ﬁ_‘:ﬂ u{n;‘u;I.

i

it J°' exiots,
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\.", ‘ Exasple 2! As & minor variation on the preceding example, supponn thet the parumoter g is timo-varying but
l' satistios the construint that
' FYRRCE NIRT T k r 1, 2.0, N, (3. 24)
»
The measuremonts mre duscribed by
N B * Wy + ¥y (3. 25)
',: Solving (3.24) for tho initiml state J, , ono hea
‘ IV N T (3. 20)
9
- o whete ¢k.° - ¢k.k-l¢k~l'k'7"' q’"o \
"
)
A ) . Amsuming that ‘:’k.k-x is nonsingalar for all X, the mensuremont equation booones
X By = Wy, ko + ¥k - (3.21)
) Equation (3.27) has essentially been reduced to the smmo futm as (9.20), su it follows thet the Fisher information
matrix is
e 3= ﬂ‘,, oL IRy (8.28)
' and the error covariance is bounded by :
a-1
a-pa-nt )[ﬁi ﬂlonfn;'ngth . (3.20)

This example is important boomuse it showa thlt': the Fisher information metrix is essentially identica! with

b
::i the obrervability mattix that wan introducen in Baction 3.1 of Chupler 1. Furthormore, the Cramer-Reo inwquality
' (3. 29) provides » lower bound that is very similar to the bound presented in Seotion 3.3 of Chapter 1.
\.'! Any estiuate for which equality holds in (3, 18) is said to be an efficient sstimator. It hus boen nesn that
* squality ovcurs if snd only it
. 3 '
¢ 3-"-103. P = [f-glken) .
b
o 1t is easily shown that, if this condition can be satisfied, it osn be acoompliehed by & waximum 1ikelihoud
. ! entimate.
) g The saciuigation of p(Zylz) oen be uqlmd by the maxinization of log, D(Znh) » Then a peceamary condition
that an estimate 2. oaxinlze log, p(Zyi¥) 1s
Ji 2, 1l 0= (
, ‘J 55 e P@lB gy, @-Dr@ g (3.30)
W Thus, for ths last reltion to equal gero, eithar
A =1, (3.31)
vyt
- or k) v 0.
5 - Condition (3.31) is selected since it provides an uttu@to that depends upon the data; so, if an effinient
) j entimate exiats, it is & maximum likelihood estimate. If au elficient estimate does not exist, then thers i{s no
[t measurs of the mcourmoy of the wstimute. This constitutes s major dravback of this approsch or saximum a poateriori
\‘" estimates. Thus thers may be unbimsed estimatea which yield a “smaller! error covariance when thers is no efficient
.;-i estinate.
, ' In statinge Theorem 3, 1, it vas aasumed theot un unknown parametor z was to ba treated, If z is treated as
. s random variable, & similar remult can be ...ived which ylelds insight into the existence of sffioient estimators.
o This developuent follows van Trees“.
- %
|:: Theorea 3.2
i\ Suppose x and 7. have jolnt density p(z.g,) wnd let & be any unbiased estimate of x based on the
:" nedsuremsnt data T, . Then, sasuming L°! exists, the covariance of the errcr in the estimate is bounded below
I w
Y tla-pa-nTlrut, (3.32)
3

- - .
- — -... ) b o
i Chnan ey -
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? T3 :
vhere L o= {[a—‘- leg, m.zd [?)_l logy m.z,.)}] (3.09
3l ' T
n B S log, plx. 2| }- (3.34)

Dquality holds if and only if
?
5 logg pixz) = K(E-0T. (3.38)
The first and second partial derivatives
» CAK] .
= (% d e | )
3 (% &%) an % [a‘ p(x z,ﬁ]

ave assumed to vxist und ure mbmolutely intvgrable with respent to 1 and 2, . Also, it {s asnumod that

Lis p@e) = 0 (3.30)
s b(x)p e 0, (3.2
1 I TE911¢ Y] )
where pw ¢ [ -xocdln oz, . (3.38)

Proof: The proot is sinilar to that of Theorem 3.1, wlthough expsotations with respect to g must be conwidered
also. Firat form p(x)b(x) nmnd differantiute with respect to 3 . Thia ylelds

d 3

LRI (T REPARY [FEPE-F TR R

Integrate with tespect to 3 and invoke conditions (3.30) and (3.37) to vbbain

2
0 n -1+ fd-p [a_; 108, m.z,.)] PG A T -

Applivation of the Schwarz inequality ylelds
1< wig-nd-»™ v,
vhere L is given by (3.33) and equality holds if and unly if (3.30) is satisfied. Note that the sveraging
with respect to hoth 1 and 2, ioplies thut, uniike the condition of Theorem 3.1, k 1s & vonstant independent
of both 3 and 2.
The resainder of the proof is identical with that of Theorem 3.1.

Two results relating to the effect and conssquence of treating z & # random parameter are worth noting.
Pirat, the satriz L as given by (3.34) can be rewritten as

t=JI331 (, 3.39
‘ a1 ox.n:{ . (3.39)

" whare J is defined in Theorem 3.1. Thus, the probabilistio desoription of g enters indepe-lently of the noise

ctatistion. This will be disousmed further below.

The condition (3,30) for equality in (3.32) iuvolves the constant k . Note that the conditisn can be written
- .

?
'a';[“" pEIZD) = kd-pT.

Integrate with respect to 3 and take tho antilog tu obtain
P(XIZy = oxp[— -:- 1+ K"s s u] . (3.40)
But this luplies that the a posteriori density P(3lgy) must Le gausseion for un efficient estimats to exist.
1t follows saslly that a oaximum u posteriori ’uunto will be efficient if an efficient estimate exists.

However, since p(,x_lgu) must be gaussimn in this casme, the minimum variance estimator yields the same result,
0 It is alaso efficient.
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Consider thess results through the fullowing exmaple.

Example J: Consider the syutmm domoribed in Example 2 with tho additionsl requirement that z, is & geussian
randon variable with density funation

pry = k, el Ha, -7 MG, -0} . (3.41)

Then. the informatiun matrizx L , as given by (3,38), is

EIE 0
J+tk 55 Be- LI YT
g: ﬂ.o"?“il"l@l.o s u
a)

and the error covariance is bounded below by .
1
1
Eﬂ r‘u‘..wnnn,nd’ :l

But this i{s enmsntially the bound disoumsed in Sestion 2.3 of Chapter 1. The right-hand side repromsents the
error covariance given by the Kalman filter for this problem and provides another vorifiocation that the minimum
varisnce estimator is efficient for this system. To obhain precise agreemont, note that the eatimate of the
terminal state 3. 1s given by :

[ a4
"

elixg-8o0(8,-2)7

f 7 Oy oo

It follows that the error covariance wssooisted with §, 1is

LI NEF 1¢ ST LIERE W10 P BT¢ PET DRI A J

. Using this celation, one obtmins the result given in Beotlon 3,3.2 of Chapter 1.

This completes the discussion of error hounds using the Cramer-Rao inequality and {ts generalizations.

3.3 Naximum a posteriori Estivates for Linesr Systems

Buppose that the plant and messurement equations are linear, so that the maximum a posteriori estima®ion
problen becomss that of chaosing the saquences [, to minimize the cost function

=t g -allt, st # gy = mgag 2., 4 }:‘ (TR A (3,42)
I° ud I‘ Y] q-l
1
subject to the constraint ]
B Sl U - (3. 43)

The minimiaation is sccovplished inductively in the following menner. Consider the cost function afier the
first measurement has been obtained,

=t xo-n":;m’rll 2o - Mol II;(_’l : (3. 44)
As will be ween, this simple problem clontllnl within 1t a major portion of the problem, sinoe a recursive
wolution 18 to be obtained, .

, Choose the gz, that minimizes L, and oall it §,. A necessary and sufficient condition for this probles
is that

(g—:: Teo s Nib (Rp-m) - HIRG (2g-Ho8g) . (3.40)

Solve for 8, to obtain
oyt +HTRS MR, =MDt + MRy, . (3.48)
or £, = ongtenlrotuyt gy +ulRyz,) (3.41
Lot ' P & oMzt eulniiug (3. 488)
2 Mg =~ MHI(HMHT#R) ™ HM, (3. 48b)

using the satrix inversion lemma.

\ 1, V" .
m‘;* n‘{
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W ' Using (3.48b), (3.47) hecomen
i _ £ 7 bt kolp,-Hal . (3.49)
) whers Ko & MHTHMHT 4R (3.30)
'y Thus the maximum & posteriori estinate of 2., given g and g, , is demcribod by (3.48). As must be true,
‘z this agrees with the eatimate derived in Bootion 2 using the Bayesisn recursion relutions.
3
A Suppose now that there sre two measuremsnts and the cost funotion L, is given by
. AR PR LR 3 -8 PR LR Y Y 3.8
T,q o = L1 9
,,.“',' where the x, , x, ead y, are related by
‘; TR R TR
o The estimata 3, thst was Jerived above will bo different than that obtained by minimizing (3.81), slnoe two
- messuremonts are involved. In fact, the est.mate of x, that is derived by minimizlng (3.81) is & smoathed
. extinate rather than the filtered estimate given by (3.49). To obtain the desjred recuraion relation, consider
‘ Y Ly and exprems it relstive to 8, . '
"'g = *" lg"ll:.l++ll 'g"“o‘o ":.1 ' (3-52)
] °
Expand in a Teylor series, which is given exactly by
K b =t g~ nlt, okl g - mgglin,, o B
0 Bo-all oy #00 mg - By Ny ¢ S (Zo-2p) +
d',’l (] ] (] !0"0
- .
3 M,
I
A i (:,-t,)’(ﬁ) (-2 - (3.83)
) ® lggeke
- [
N But 2 = 0
g i T 1
y
; L C .
A ad et 2 DM E -0 = HIRG (R = Hoky)]
A 9, 3%
- = wt s nIRgt,
.' "
l' 80 bg = *" ‘g‘.ll:-l++|l !o"“o‘oll:-g"‘*” ln"xq ”:'l
0 ] 9
~ .
) 8 c,etllz,-18, ||:., . (3. 84)
W 0 \
- vhere O, is independent of X, and therefors will not have an influence on subsequent disoussion,
b = The L, I8 now given by
J ' '
M L, = co+illz, -2, II:al +l & -, II;;‘ +1 u.,l:‘.l : (3.88)
. N
\
- To «limioate 3, ., introduce the plant constraint. Assuming that the inverse of &, , exists and is &, .
. ' L, becomss )
l"[ & °° + *” ¢° 1 (xl'uo) - xo "‘.‘ +" B -ul‘l ""l + i—” Il "'
2 , ' , L 0 ‘;1'
.'11 Now, ochoose the y, to winimize L, .
: C] ’ T -l -1 .
.1, 524 =0 = 47 Pt [0, x -0 - &) + QM. (9.80)
-

Solving for {, , ore obtains

L -3

| 0 = [1-8 200 @, 20} +ap) lx,<9, &) . (3.87)

. o + .
\ NEYCALRR

T "i""‘
’ !I .al.‘bl e
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o . Let P28, Pt g, - (3.89) v,
v and note that LW S SR Y W ¥ yc‘"‘;‘m
[N 2T e N
i 1t follows from (3.57) and (3.58) that S .
L . N
3 tlh e, -0 - o115+ 1l g, ||:_, Pha -0 o2 -Gl . +illg, II:_l
‘:,' ] ] 0,40 "o, 1 ]
w1,

' = % - : + - 2
! TR L L TR L
.% = flgy -0, 802, . (3.58)

P
9
: with this relation, the cost function assumes the form
¥ L= cortll g -9, 8 II:,.HHI;l-nmII:_‘. ' (3.60)
1 1

X Note that, in the abaence of a now mouwsurement, the bost predicted estimste 3'1 ie

o

L. 3{ H ¢,'°3_° R (3.81)
which corrosponds with the anticipated result.

SN

It oan be seen that (3.60) has essentially the same form as the L, Jdescribud by (3.44), since C, doen not
depend upon x, . Thus minimization of L, with respect to 3, will yleld the result that was obtained sbove,
except for the.notation change. In partioular, it follows that

FEEIE N T T TR R ' (3.62)
vhere ' X, = PTRPHI+R) ., (3.63)
:v", Alsa, the cost L, {is seen to be given by
v L= oo+l g a0, (3.84)
Py
'Q wheve . P, = (Pt euTRH ! : (3.88)
3 L - '
b = Pl ~DPHIHPH] +R)™  HP,
'_‘h ’
3 = P, -KHP!, (3.66)

The generalizatlon to an arbitrary stage follows inductively and is accomplished by using the same arguments

‘5' as above. Thus it follows that tha recursive, maximum o pusterior{ estimate is deirribed by tho system
32 NI I IR LT NEL T S a.en

where PLHE (M, LHT +Ry) " (3.68)

and P = P ¢ (3.69)

= Pf - KHPL . (3.70)

Once again, the Kalman filter equations have been derived.

IR P~ % EOCNN
]
]
»

=r.

4. SUNNARY OF RESULYS .

The filtering problem for time-discrete, nonlinear, stochsatic systems Lms been considered within the general .
probabiliatic framework provided by the application of Bayesa’s rule. This Bayesian approach provides insight
into che general charactsr of the behavior of the a p2steriort density function for nonlinear systems. The
development has been designed to provide an underatanding of the difficulties arising in nonlinear filtering
theory mad provides & structure within which the nonlinear problem can be attmcked. Further, the Bayesian
approach leads naturally to the discussion of the maximum a posteriori and maximum likelihvod estimation procedures.
The forwer procedure is shown to be identical with deterministio least-mguares shen the plant and memsurement noise
sequences ars assuned to be additive and gaussian. The recursive Bayesisn and maximum a posteriori approachss
are sesn to yield the same filtering equations as the unbiased, minumum variance eatimates when the plant and
measurcment systems are linear with gausaian noise.

I - 1T

rxCs

o) s

\
The principal results of this presentation are stated in the following paragraphs. The general problem is
stated in Section 1.2,
/
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1 J Section 2.1: The conditional mean E[glz] Iy shuws in Theorem 2.1 to provide thu unbiased. minimum vuriance
estimate of & random variable 3 [from measurement duta g . Thus, knowledge of the a posteriori density n(a]a)
would enablo this emtimate to be dotermined, as wnll us virtually any other type of estimate that might be desired
"A
i
!.; It is shown in Theorom 2.2 and in Theorem 2.3 that o signifioant number of estimntion criteria will "lead to
b. . the same estimate au the minimum variance criterioin. This is Important bocause it indicates that the choice of
" the minimum variance criterion bouwuse of it anmlytical tructability haa broader application than might le
A ] othorwise appreclated. -
g
i
' Section 2.2: Recursion relations which desoribe the manner in which the o posteriori dunsity functlon changes
us nuw data become available ara presented as Theorem 2.4. Bomo of the principal diffioultios that are encuuntered
s in applying these results to nonlinear systems are discussed
;j Section 2.3: The general results of Boction 2.3 are applied to linear systems with gaussian noise. Thoorem 2.8
' shows that this system has a guussian a postertori dousity @nd that tho Kalman filter equaiions describe the
) conditional mean and covarimnce of B(X,1%,) . It is pointed out that it is more convenient, at loast in this
i.[ ead¢, Lo work with the charactoristic funotion rather thun the density itaelf to derive tho desired results.
Section 3.1: The maximum « posteriori estimation procedure is presented essontially as & nonrecursive version
=% of the Bayesian approach described in Section 2. This formulation is seen to be identical with the deterministic
%:1- . lernt-squares problem discussed in Suction 1.1 when the plant nnd measurement nolse sequences are assumod explicitly

\ to be additive and geaussimn,

Section 3.2! Somo aspects of the well-known muximum 1ikelihood procodure are discussed in this section. It is new
that this approach differs from tho maximum a posteriori through tho negloot of the o priori distribution assignod
to the parameters to be estimated. The two wre identical 1f p(¥,) 4s uniform. Then the maximum a posteriori

", procedurs which oalls for the dotermination of the ¥, that nlximizeu D(Eklsz is identioal with the maxinum
iikelihood procedure in which p(Z,!X,) 1 waximized through the cholse of X, .

The Crumernnno inequality is presented in Theorom 3.1, This inequality provides a lower bound for the arror
covarisnce matrix for any unbiased estinate of an unknown paramoter. This result is generalized in Theorem 3,2
to the case vhere the parameter is s random variable with prescribed distribution, ‘The lower bound is the Plsher
information matrix. For a linear system with gausnimn memsurement nclee and no plant noise, the Cramer-Rao
inequality is shown to provide a lower bound that is identioal with & bound derived in S8ection 3.3.3 of Chapte. 1.
Also, the Fisher information matvix is shown to be identioal to the vbservability matrix,introduced in Ssction 2.1
of Chapter 1,
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Section 3.3: The determinstion of the states x, that maximize p(xklzk) is shown to again yield the Kalman
tilter aquations. The procedure that is used to socomplish the minimization makes use of the desire to obtain
a reocursive solution and promises to provide straightforward application to nonlinear systens.
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The preceding discussion provides s brief description of the contents of Sections 2 and 3. The reader is
directed to the refurences for more complete treatmeats of many aspects that have only been touched superiiciully.
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WITH KALMAN FILTERING
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CHAPTER 7 ~ NONLINEAR FELTERING AND COMPARISON
E1TH KALMAN FILTERING

Lawrence Schwariz

1. INTRODUCTION

.
o

The finld of nonlinoar filtering Am quite broad, wnd u Reneral disousaion of the various appreaches is not an
approprinte subject for a single chaptor in a book dedicated to Kalwan Flllering. The specific form of nonlinear

»

¢
"
7,

filtering treated horein is that which is most clomely related to Kalman filtering, indeed, that which is the
post hatural generalisation thersof: minimal-varisnoo fiitering. To further limit the woope, the deorivation is
limited to continuoum-time minimat-vuriance filtering,

Curlously eniugh, the work that led to the suocowsful derivation of nonlinesr continuous-time winlmal-variance
filters does not stem from the paper by Kalman and Bucy! whieh contains tho derivation of che llnear vontinuous-
time winimsl-variance filter, Rather, the impotus dorives from Btratonovich?, in an even exrlier paper, who
noted that all the information related to the optimal estimate of tho state of a syatem ia contained in the
oonditiona) probabiiity diatribution function.of the stute given the memsurewentd. Thus, the more general filter
{¢ not an outgrowth of the mors vestrioted one but the result of a parallel line of investigation,

While:only one appromch to nonlinear filtering is discussed in dotajl, seversl noalinesr flilters are
computationally comparsd with s Kalman filter. All of the nonlinesr f{lters wechanized reduce to the Kelgan
tilter when the dynamlonl equution of the system is liuear, the measurements wre linearly related to the state,
and the noiua processes are Gausalan, An outliine of the steps in the derivation is essentiul to set the stage
for the following disouesion, The first step in the snalysis of any physival aitumtion iy the specification of
s mathemation} bcdel; the choice should by made carefully, since the whole unalysis depends upon the charsuvteristics
of the model. For minimal variance, which is » probabilistie oriisrion of aptimality, tne manipulations lemling
to tha filtor equations are made partioularly simple by wesuning that the random processes are white nolaes.
The foreal simplicity is gained st the eapenne of & oertain amount of coaplioation in the physical {nterpretation
of the mmthemat {oal results.

Given the probabilistio oriterion and the whitu-noise assumption, a natural ethematicsl wodel is the
stochastic differential equation. Of courds, the problem must be such that the atoohustio differentisl equation
satisfien existence and unigueness conditiona, which are different from thoss pertaiuing to nonstochastic
differentinl equations, The esscitial liffersnce stess frow the fact that for whits-noiss godels there is no
bound on the foroing function and global conditions must be satisfied. W¥rom the stochastio di fferwntisl
squations for the system and the memsuremens, it s possible to derive a stochastic partial difforeutial equation
for the conditional density funotion. From the stocliastio partial differential eguatiun, in turn, it is possibie
tc derive a stochastic differential wquation for the expscted value of any sealar funotion of the.-atate of the
systes; a finite wet of such equations form the veotor eguation for the filter. ,

The exaot equation for the fiilter requires the instantmnsous sevaluation of the conditional expectation of ’
ssveral functions of the state of the system, To simplify the problem, the originsl model can be repliced by an
apprukipating stochsstio differential equation, from which an approximatd filtsr oan be derived wore simply. It
suess reanonable to require that the approximate model equatious also satisfy existence and uniquencss conditionl.

Ouaranteeing existenos and uniqueness for the approximate systen dous not guite do the same for the filter,
but slightly stronger conditions on the equstions suffice, At this point, one sbtep remaina {n the validation:
that of relating the stochastio differential equation for the filter to an ordinary differential eguation for the
sctual meohanizmtion. It is shown by Bchvtrtl and Btear? that nonvalid filter squations similar to thowss
previcusly derived by Gchwarts and Bass® aud by Fisher! for whito-noiln proosases canh be oade computationally
identioal to velid filter equations.

I '

2. MATHLNATICAL MODEL

8.1 White Noine

The usual ssthesutioal formulmtion ror a dynllionl problen in & differentisl squation, nowadays most generally
written in atate-vector fora:

dx ",
T £, a(t), u(t)) , m.
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whers 3 and f are n.vectors, u is an w-veotor, ahd ¢ 13 u 4culsr, The memniug of ({) is wall known for
nost input funotions u , but the ensuing analyais deals with white-noise {ip.t funotions, and (1) must be
reintorpreted. The presant sectiun oxplaine the probloms ammocinted with white-noisa inputs, atid outlineu the
development of the necessary calculus of stochanstie procusses, White nolae in often dosoribed as a random
process with a power spectral denwity which is a constant or, eguivalently, an autocorrelation funotion which

{8 & Dirac §-funotion, It {s furthur noted that such a process has no phymical monning, since {t would require
infinito signnl power. 'The foregoing definition is valid for stationary white noimo, though the autocorrelution.
funotion definition can ba extended to the nonatatlonary caso by milowing s time-varying coetficlent for the

§-tunction,

The notrealizability of white-nolse processes is no vreason tn disoard them; they ocoupy s place with respaoct
to the family of stochustio processes annlosous to the pluce of the Dirue S-functlion with respest to funations.
Just an tho 8-function oan bo regarded as m llwit of a woquonce of unit-area pulmes of decreasing width, a white-
noine process oan he conaidered as tho limit of a mnquonce of processes which aie atep functions, Moreover,
both ave useful only when thelir integrals are considered; indved, both can be made mathematiomlly rignrous only
in teims of thelr Integrals, To ba somawhat {mprecime, the 5-function muy bo considured s the derivative of a

unit step; with similar imprecirion whito-roise im the derivetive of Brownian wmotion,

The practical remson for being cuncorned with whitu-moine processes i that, when differential equutions are
forced by whitee-noise, the solutions ars Markov processes, i,e,, the future ia independont of the pust. In other
words, the solutionm to differential squations forced by white-noise exhibit the stochastic analogue of the
property of solutions to differontia) equations forced by ordinary functiona: given the stute of the molution at
sone tioe and the foroing function from that timu on, the subsequont svolution of the solution is stochastiomlly

iudependent of the previous history,

The sathematical prolles associsted with white-noiso (s momewhat similar to that amsociated with the §-function:
the meaving of thy integral. The 5-function la not really a funetion in the ardinary senss of the word, ard no
theory of integration can result in & value other than zero for

f:'sm dt

1if the B-funotion is mwsuwid to be an ordanury function of t . Howaver, by not msoribing values to 5(¢t) and
coneidering only its inteyral, it is possible to conmtruct s meaningful theory, Bieoilarly, no ordinary theory of

{nteyration oan make sense uf
Iu(t) dt ,

where v ia & white-nolse process, Here again, if no instantaneous valuv is given to w(t) , a useful theory
of stochastic integration ib poswible; that theory is outlined in the following section,

.8 Stochastic Integyals

The exposition in this section i{s werely an outline of the mathemetical derivation of the stochastic integral,
and it does not inolude any dimcussion of stochastic integrals of discontinucus randow proceswes, A complete
discussion of stochastic integration own be found In Bkorokhod®, The underlyng ides is the dessription of o
white-noiss process am the derivative of a Brownian motion: the major difficulty lies in the fact that a
Brownian motion fails to be differentimble somewhcre in every intarval of nonzero length, with probability one.

Thus, i b is a Brownien sotion, db/dt has no mesning and
[acty vzt as

is generally not defined, even for continuous funotions § . But, if db is an inorement of b, it ham a well-

defined stochantic desoription, and tho Stieltjes integral
Jsto weey

in & possibly meaningful alternate form. However, b is not s functicn of bounded varimtion and even the Stieltjes
integral is not defined., The amtochastic integral i3 s siocumstioslly wesningful uineralieation of the Stieltjes
integral, in which the approxinating sums rre required to sonvergs in probability to the integral, rather than to

converge in the ordinary sense,

3.3 wstochastic Differsmtinl Equutions
The discussion contained in the sequel is linited to the following mpecia)l case of Ejustion (1)

E!i . dx

wy — = (¢, 2(t)) + s(t,x(t)uct) , ¢))

i dt

P'-‘.‘A, .

'4J where x and £ are n-vectors, t is a s.alar, u is an wm-veotor unit white-nolse process with independent

3{1 olements, end § is an n » w wmatrix, A vector white-noise proowrs hasn elements derivad from Wiener processes;
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& Wienor process is a unit Brownlun mation, 1.e,, Its inurements hnve meru wwan and varisnce egual to the inlurval
of time over whioch the inorement ia definsd. While Equnuon (2) u leay gonoral thoh kEquation (12. it is
suftioient for must practical applications, Lot g denote the ™ column of g and w, the 1M row of the
veotor Wiener proooss frow which u s derivad, Then, by formal multiplicatlon of k‘quntion (3) bty dt and
integration of the resulting expreanion, Fguation (2) oan be rewritten as

t
(0 =) v 5t da e > [P dt(aam) aw (3)
to = "%

In Equation (3), the first {ntegral {s wn ordinary integral, and the remmining = integrals are stochastie
integrals. For simplleity, {f the stochastio integral equation in satisfied by a provess x with probability
one, then kquation (3) im written in the form

dx = f(t,x) dt + g(t,x) dwit) . .4

The ximplified form Equation (4) is referred -to as a stochuntic differential equation and is understood to be
& sherthand notation for Eguation (3).

The following forumula ia necessary for the dorivation of stochastio differentiul eyuations for funcilons of
solutions of other atochmativ diffurentim] equationn, 'The senlar vorsion of the formuls is proved by Bkorvkhod
in Roference 8 (p,24ff); the vector version follows quite eiwply, Let x wntiafy Equatioh (4) for te St 4 tp)
1f a sonlar function (t,x) is derined with continuvus second oross partial derivatives with rupoot. to the
X for t, K t<t, and for all 1z, then the process y(t) = @(t,xa(t)) satisfien the relation

(w1 e ¥ '
dy <3t+5'§’+5' Frol) dt+-5;|dv (8)

where 2()/3x denotes the gradient (row) vector, 3!(V3x' denotes the Hemsian (matrix of cross partinls), wnd
the 'star denotes matiix transpose, .

2.4 Relation to the Phymsionl Problem

Thore are two interfuces between the physioal situmtion and the pmthemetiosl godel in the filteriny problem:
the reduotion of the dynamics to a stochuwtio differential aquation and the interpretation mnd mechanization of
the stochustlo differentisl equation for the filter as « computational algorithz. The macond intarface i
oonsidered first. The interpretation of the stochastio integral in the context of the actusl estimstion environ-
ment 18 not at all a trivial matter, The filtering algorithnm will be & finite-difference spproximation to
Equation (2), with u represented by s samplod mwasureasnt, not a white-noise, The problem of the interprstation
of Equation (2) and the mppromchi to use for the integration is discussed at length by dray and Caughey'; they
specify two appromchea and proposs a limt uf four pragsatio rules for choosing between the two approsches based
ou the interpretation of Equation (2), Another treatment of the difference batwesn the two approaches ls given
by Wong and Zakail, '

The resl difference betwwen the approsches {s in the choice of whether to uss the ordinary oaloulus or the
stochastie onloulus. In the nomenclature of Gray and Caughey’ the former choios is the physical mppromoh and
the latter choloe iu the mathematical mpproach, 1In contrasting the two approaches, the suthors are quick to atate
that neither appromch is inherently correot; tho ohuice should be made mccording to their pragmetic rulos:

(1) It g(t,x) is not aotually & funotion of x , both appronches provide identical results,
(11) It the problem is a strioctly mathemstical vne, the mathematicsl approoch must be used,
(111) If Equation (8) ia either an approxiumtion to or a limit of the dinorete problem

[}(t..'o - 2]/t = ) = £t a0t)) + a(ty (8 ult)

then the mathematical approach must ba used,

(1v) If Equation (2) is either an approximation o a white-noise probles or the limit of & problom with short
dorrelation time, then the physioal approsch must be used,

The computational effect of the difterence between the two approaches is stated by Wong and Zakai® as follows:

Let (W} be s n?\uncc of piouowln linear approxioations to the Wiener proceas in Equation (10) such that
w? =y ; then if (a8} denotes the seguence of corresponding solutions, 1 = g , whars x i the solution to

day = £ (t,a(t)) dt 4 %E Byt 8(t)) 2;}:- (t,x(t)) dt + Zlu(t.l(t)) dey . (6)

They state zome reservalliuig about *he correotness of Equation (8) in the vestor omse, but the sume form is implied
by the results of dray s d Unaghay'.
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There §s also @ prohlem in relating the statimtion of tho ronl data to the statiatics of the white-noise _
used in the model; thie problem exists st both interfsces and is really the only one at tho first. For simplicity, S
consider the following special cass: Let u(t) denote m scquunve of pulses of width At and of rawdom height
sivon hy a Gauspian distribution of zero mean and variance o? , The mutocorrelation function for u i a
! trisngular spike of width 23t and hoight of ; the area under the spike is than o®\t . It then soeos
" reasonuble that tho equivalont white-noiuo bo specified by an inpulse of weight o\t , The general result im
\ as follows: If an n-dimenaiona] white-noise is given by w vovarinnee of the form &(t)8{t-7) , an n-dimensional
- A pulsu-sequonce approximating the prooess should be chosun from » populstion given by a covarimnce nf B(t,)/At
for tl <t tl + At . The oase of continuous u Is not quite mo direct, though an equivalent formulntion ewn
ba ohtained by using tha concept of m correlation time ™, which is a time interval such that u(t) ocan be
oonsidered uhcorrelated with u(t +7),

-
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Gince the mathematical nodel im constructod under the awsumption that the Wicner process has independent
elencntn, one final step Is required to model & nolwe with correluted elements, Let B(t)d(t~7r) be the denired
covariahoe, which implies B(t) is positive semi-definite for all t . Then thore exists m matrix (which may
' be taken s symwetric) 8'/7 wuch that 8Y?(8UH* =8, 1t dv 8 87 dw , the white-noise derived from v
' han the proper covuriance. For notational simplioity it muny be assumed that B'”(t) is inoorporated into
! ) g(t,x) , and the formalimw of Equutions (2), (3), and (4) {8 atill valid,
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3, DERTVATYON OF APPROXIMATE FILTER EQUATIONS .

2.1 Conditional bDonaity Function
tat the dynwwic equation of the systew be given by Equation (2), and let the measurement be given by
¥ty = ont, x(t) + ret) vty , ()

wheye h ds wn l-vestor, 1€ n, v is an l-dinenslonal unit white-noixe and r is o nonsingular symmetrio
I x 1 watrix relating the unit white-noise to the mpdeled white-nolse (squivalent to ths matrix 81/ just
desoribed). Bince the mathenatical mudel cannot handie white-noise directly, it is assumed thut the messureswent

N is derived trom a process z glven by

dz = h(t, (L)) dt + r(ty dbily (8)

o« 0y O
e SN,

L

where b is an l-dimensional Wiener prooess. The mathematicul model of the aystem consists of the two vector
equations (4) and (8), The problem is to find the winimal-variance estimite of x(t) , given the process x(#)
tor bty € 8 < ¢ | that {n, to find the estizate R(t) wuch that the matrix given by

EIAFOORA

X =D =N* = ¢(x-N(x-H)*

is positive somi-definite, where X s any estimate of x , the processes are evaluated at t , and the symbol
¢ denotes expectation,

It is a simple oxeroise to show that the minimal-variance estigate of & random variable, given a related
quantity, is simply the conditionml expectation, so that

¥ ' : ft) = elxt)aw), t, <kt ®

and the problem is to find an eguaticn for the couditional expeotation.

The firat step is to derive formally ah sxpression for the stoohastic differential of p(x|®) , the conditional

r- ,. i probability density function of =x(t) given m(s) , t; < < ¢t , It can be shown that
Y] -
AN ) ' a(edl pn)
K (x|s) = 1
oY p(x|%) «(e (10)

where p(x) {a the probability demeity function for x(t,) and

1 t ¢
i d Q- ;J h*r=%h de + I et ds an

) to

Pollowing Bucy®, let p(xim § Q/P . Also, let 9 £ ¢(e®x) . Then Q@ is explicitly & funotion of & wnd
p(x) , and 6 1w explicitly & function of & random process & given by

4 = ; Wreth de + W) db
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In addition p(x(t)) e & functfonof t , while x(t) and £ are aasuned fixed, Thon, using Equations (8)
and (12),

3Q WA L, ;_. 13% , ., '
dﬂﬂatdt+30<éhr h dt + h'"r~¢ db +;Whr h dt . (13
Now
3 30 an(xtt)) !
S0 7 5, MR(M) + 0T olptscty) = fq, (a4

where IV is the forward diffusion operator

\ 3%(Las* 4y
N _(:[_'_1] ) (18)
-~ 31‘ 2 ey dllalj )

94q 3%
Also, % » Y t Q. (16

Mubstituting Equations (14) wnd (16) into Equation (13) provides
aq = [ dt + q(u*e=th dt + n*e"} db)
» fqdes gi'r-tan ., an

Using Equetions (18) wnd (18), and the definition of Q/P,

a» d(fln Q dx> . 'r'.. (4) o

s

= pdfl f (g)n dt + j gh‘r"dx ds .
lﬂ “I\

A ~ A
= pR'r*t g = PH'rthdt + Pu¥rldb (18)

' M . ”~
Using Equation (8), with x 8P, o8p, t4pPtrn, sfpPt*r!, and vib,

”~ ~,
dP™Yy = < p i h e M (h-F) dt - P lb¥ "t db

. ”~N
Finally, using Equation (11) with 3 $etr, phwt, e trrtn-f . Lqequten*,

g8 (=P h el qh% e )%, and whb,

d(g) . <ﬂ (2) ¥ W :-:)dc + b (g) db - & r(n-f) (—:) dt -

~ Q e q)
- hpet (2 - h iy -
by (P) db h. r h(l’ dt

" 2 (g) dt + (h=-R)*r? (g) (ds - fidt) | an

Let ¢ be sny aslar Jun:tion, twioce continuously differentisble in x :

SHLATD EN%)
BRI Y
l-. . ‘- - L] ‘.
d = : -}\&\'\-' :\{i}\ \.é
f'- P(zIp(x1 =) dx :"'.:"'.':"::"'\*'\. :: :

, (AN WS

and o = L“#(x)(dp(xlz)) dz (20) EN PN -.'.‘; o
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Substituting kquation (19) Into (20) provides

ad = j‘ s (Bpain + h=By*rTpoxny tda -f dty) dx | (a1)
n .

Let [ denote the foraal adjotnt of 0,

3 1 S: CH
. f) ot - (anY TRyl (22)
= iy 2 Iy Bx@xJ

‘.l
. Then Equation (21) bscoues
’! -~
Py a o [N
* ¢ = L ~Ehrt(ds - hdt) . (23)

S

3.8 Approximato Filter Equations

The use of Fquation (23) us & diffsrential equation of X remults in

FaS A
. . ?, dt + (% - qﬁ)‘r"(dn S TONE (24)
whioh {3 not very practical evawse it v hoand ox h are needed continuously. As the first step in the

approximation, Jet £ and h be upproxlmtod by & nooond degree expanuion about x = X ; alwo, for notational
sluplicity, auppress the wxplioit ap,v.ivance of ¢t ar »n argument of £, g, and h, since their depsndence on
" time {s incidental to the following v .nipulations, Thua, adopting the summation convention

\ e (b P -5 + b St x-2)x <) (28)

where

qp 02w oy aq

IJ lj Xy
o . .
NI A sieilar expression holds for b, Prou Dquation (28),
.‘ ' /\
™ hay x fd + ey -3 (xy-5,) | (28)
A
whars (1) -8,)(x; -X,) s the conditional covarisnge of x ond is denoted Pyy .
! N\ ~
) sinilarly yfym xR+ R amn

Using Equationa (38) and (27 for f and b in Equation (24) provides
A x o dt v fe{firy, det+ pyn{} eyl E-, - (b + + h{D @) n) dﬂ . (28)

- The next atep is to find a differential equation for P . In general, cven with a seennd.degrec expansion
for the nonlinearities, sn infinite sequance of differential equations is required, becauss all the moments are
peeded to dusoribe tae cunditionsl density, lkmvcr. by susuming an appropriats form for p(x|s) , the asquence

, stops at P . The first assugption, used by Bucy®, im that third and fourth gentral conditional moments be
peglected. In Schwarts and Bass® it 1s shown that the assusption is ressonable for s distribuiion with vost of
f the probability sass sufficiently close to the mean. If it is assused that p(x/s) is Geussiun, the sequetics
sloo stops at P, and there is no restriction on the size of the moments.

Bince P“ oan be written (xm i‘i,) + dPyy is derived in two parte., et ¢ = xxy wnd use Bguation (32) to
find dx‘x, 8ince
Cxyxp = 1020+ 60 + Bpuyy
it follows tlmt
dhl, = £3 dt+ B3 dt+ Gady dt 4 (BnR - 53 RORIA, -6, db) (20)
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Noxt, lot ¢ = §,8) and usw kiquutions (B) and (24) to obtain
”a EIE R A,
di gk, = ..%.ﬁi;ﬁ [y dt + (xghy =5, hy) rid(dn, - B an)] +
1944 %)) A "
o 22O (S, Rl rat (X, - Bk dt (30)
2 3lka 1
Combining Equations (38) and (30) provides
P a e a 7N ey a “
dP” ® (fil.’ - ?il, + f‘li - fjx, + l“l") dt ~ ("1“k - l‘ﬁk))‘if(i’\hl - ljﬁ;) dt +
v [rahy - Sokghy - &Rk, - Gy + ak3yh] rilcan, -y av) (an

which is an exaot equation, ‘the derivation of the approximate form of Equation (31) 1s a tedioun aluebraic
oxeroise, and is covered in Besw, Norum and Schwartz!?, For completeness, several {ntermediate results follow:

For either assumption about the cond.tional density,
//\ ’/\_ . ,/\} .
2% (a0 = %) = xy(x =R)x) < xyag ~X)% = 0.
Por ihe Zirst assumption, ]
N -~ - a A
. l‘ll"h‘ - lgl"ﬁh - lj‘k\l‘ - lk‘k\l.’ + Hl1l’ﬁk ] -*F“(h“;fmph) . (32)
for the other assumption, the right-hand side of Equation (32) ia
1(py Py + PP NN R ()

ror sisplicity, let the ters in parentheses in Equation (33) be denoted by Tyyu; . Then, if & is alwe
expanded in & firet degree approximation, the following equations are obtained:

@y = PRl db+ ffD) Rony b - L (rTIRGD Ry dt 4
+ Bk dt + e i ifiny dt -
L SLHIGERCTRE NS S TOL WY a6
and
dayy x Py tfd (D b+ o By dt - Pnf OrpinD Ry e+
+ gy (rmgy () dt + sfilaf i) (D, at +
17y, 180 @y rgd(am -y (8 - HR{Eh IR (38)

whers Equation (34) uses (32) and Equation (38) uwes (33), and |ﬁ{ denotes g, /x, .

4. BIMULATIONS

4.1 Desoription

Tue numericsl investigation was conducted- for eight different appromches to filtering, for two sets of
dynamics, for two measursaent schemes sach, The two systems were chosen wuch that one satistied cxistencs and
uniqueness conditions for stochastic differentisl equations while the other did mot, No difficulties wers
anticipated in connection with filtering for the second system in the actusl cowputer enviranwent, and none
were encountered,

4.3 Pilter Equations

Beosuse 0f the large number of casos involved in the study, only first-order systews are conxidersd. The
tirst systen is : .

"‘C(':'fé‘":::'w':-':{é'c‘:ﬁf

Watat :‘\ A
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dx
™ — 5 e we—ee g Y
(M) m

(N11) y = tan"!xtow

(M13) Yy = oxtw

. nug“ml
whera v and % are white-noises. With oither measuremont schume, (Mi1) or (M12), the overall uyntrn ¥
sxintence and uniquenosn., The wocond system, which doos not, im given by

ax
(b2 T -ty

' (3
21) y © o x+x'tw
(M22) y = s*+w,
f g e in
The tilterins scheres are outlined below, For the outline, £ and h are the systen nonlln""”'.":‘" (‘,: and
Equations (2) and (7). The white-naise processss, 'v and w, are mssumed stationary with cov"”“"“,.. ”v X,
ol respectively a0 that ¢= o, and r=o, . The subsoript "n" denotes nominal, R in the «'H”::'l‘l"m T
.| o 1}

p in the approxicate covarlance, and a prime denotes differentiation. Mote that for 1inear meani"
and (N22), oertain terms vanish and there are only three different tilters,

1. Linear

~ The linear filtering algorithm oan be appiisd tu & set of squations jinearized about an a prl"""
The squations, derivod by Kalman and Buoy®® are .

pomiond mytinm

- dx
= & i+ ohi(y -nH)
d
Lo oot eo)
2. Quasi-Moment Minimal-Variance
This is the filter derived by Golwarts and Bass', sna independently by Fisher®,
di ] R n
woE ol 4 b e +ogtph (B ly-hed -t ph” (D] .
dp . . . R a9
o ° Bt @ -oghtid) 4 o3 tpth? (&) [y -b(x) -1 ph" (D] + @} .
3. Truncated Minimal-Yarianee
This is the filter derived by Bass, Norum, snd Schwartx!0,
dR . .
oL BIORE ERUTRLS ph' 8y [y - hef) - ph? (2]
(40)

4 .
i% = apt! (@) - ottt - fo s @y [y -hex) ~F ph ()] 4 o)

4. Modifiad Minimal-Variance

This filter is « compromise betwesn Equations (39) and (40, which is based on difference i
in the p equstion, By dropping the driving term, the filter is simpler, yet the response fallo
reaponses for the two preceding filters.

driving termt
. th"lm!mmn the

dx R .
e tek) + ¢ £ (R)p + atph’ (8 [y -h(d) -1 p” (i)

dp . o (41)
T W' ot dy + b,
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. . 8. ‘Haxinun-Prinoiple Least Squares
‘{ . This £i1to. is dovived by Dotohmendy nnd Sridhar!! for minimizing an integral-squure-est imation-orror ariterion,
. using deterministic techniqu-: sy the usv of Pontringln's muximum principle tho minimization is "reduced” to m

‘\. two-point boundary-value problom which is solved by an invariant imbedding teohnique using an approximation to

o one boundary condition,

A

. di “

v R R OLERYEN)

N

: ud Ry 2y 00 1.1 0

: el ORI O Ry - (k)] +of . (4
”‘;‘

N

o Actunlly, Equation (43) is a special omse of the derivation in Dotchmendy and Bridhar!'; thuy used arbltrary

» Y velghting functions in tis oriterion integrand, while Eyuntion (42) corresponds to the particular sot of waighting
B, funiot fona that rosult in thu Kalman filter for linesr dynamics.

6. Dynamic Programming Least Squares

' e This filter is derived by Cox'? fur & oriterion whioh is similar to that used for the previous filter. The
ninimization is effected by dynsmic programming using & quadvatic approximation to the cost funetion,

\)
di
; | RO R A R OLER T
[
v ' d
p
Y _— l it + ,
- S i m b/t (%) (49
A ] .
.o .
sy A look ut Equation (43) shows that this filter ls essentinlly equivalant to using linear filtering about the com-
(N puted wean, w technigue that had besn voed heuwristionlly previously.
, 7, Discrete-Meanurament MinimulsVariance
. This filter is derived by Jaswinshy!? for s minimal-variancs oriterion under the sssumption thnt the measuxre-
‘-; ponts arrive at isolated instants. The form presented hore is the limiting form for continuous measursments,
S d8 e o et
4 ol £8) + $eMhyp + ogtph (D) [y ~h(d))
[
dp s Y IR T Y ¥y 1
5 — = pe'(h) - oyt (D - oDy -ned)] + o) (44)
A dt

| Bince the evolution of the system itself is oonmidered continuous, the portion of the squations rslated to updating
“.\ the estimate in the nbsence of weasurements ngraes with Equatlons (39), (40), and (41). The loss of the term in

' ~8™8%) 1is due to the differsnoe between the phynionl and mathematiosl appromshes dimcussod in dsotlon 3. In the .
derivation of Equation (d4), Jazwinsky uses the approximation to the conditional denmity that is used to derive

- Equat lon (40).
S -~ ) -
-‘:J, 8. Modified Discrete-Measurement Minimal-Variance
) ‘.‘(" This filter is releted to Equation (44) in the sume way that Eguation (19) in relatod to ¥quation (40), L.e.,
:." the conditional deosity is assumed to be Gaussien.
o ' a2
g1 - S 10 e ¢ aten' DIy -nh]
L
':1I ) d .
‘-.'; e pt! (D) = ogtptn! () + opteth "Dy -h(d) +od . (48)
U :

The application of Equations (38)-(45) to Equations (38) and (37) im straightforward and is not oarrisd out
bere,

The computer program used for the mimulation study inoludes a minmple rectangular-rule integration with conatunt
step-sige. The use of constant step-size nllows each filter to ba comparud on the basin of the sume paeudo-rundom
sequence, The randoa number gemarator {w a combination of a rtandard uniform random sequence routine plus an

a8,
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. approximnte transformation to a Gaussian random sequence. The program hus two modes of oporution: in ofie modo
only o single cstimation 1s mnde with o pre-specified initinl condition for the atate; in the othor mode, agveral .
runa are made for random initial conditionn, apd the atutistics of the estimation errors are computed. The output h
from the program is a computer-prepared plot showing the timo-hintory of tho {ilter response ov the error statis-
tics. The plots show overy 20th point with linear interpolation botween. '

4.3 Results

As roted earlier, the simulation study wns not {ntended to be & complete investigntion of the computational
characteristics of nonlinear filters. Twou atundard cases wore used, which were computationally docila when used
with the step-siza chosen. For both dynemical equationa (D1) of Equntion (36) and (D2) of Equation (37), the
standard tua consists of $000 points O 001 socond apart for a total prabiem time of five saconds, with 03 =1
and ol =10 . Only the initial condition difforr. Figures 1 and 2 show the state x and the measurement y
for the two atandard cases. The figures show the nonlinear monsuremnt, but the noise 18 so large that there is
not too much apparent difference between the linear and nonlineer mensurement..

In the reapionse to the standard inputs, there ia 8 large differtnce hotween tho reaponse of the linecat syatems
and the nonlinear systems, while the various nonlinear systems avo remarkubly simtlar. Figures 3 ana 4 show the
estimation 2rror for the two atandard cases. As rnight be expected, linear measurenents help the linear system,
What might not pe expacted is that the relative errar pe.formansce of the nonlinear filters within tho shaded
region ia different for the two ocmses. To show that the results in Figures 3 and 4 are not peculiur to the pare
ticular initisl condition mnd pseudo-ramdom sequences, three representative fi)tcrs we'e vhosen for a set of ten
runs. ‘The mean and mean-sguare errors are shown in Figurea 5 and 8 for initinl conditions with varisnce one for
the first case mnd varisnom 1/4 for the cecond case, It oan bo seon that the error stntistlos are still quite
olose, practioally ind/sting:ishable from n mean-square error point of view, Mcreover, the relutive error por-
tormance of the chosen filters is qualitatively unchangad.

) Wulle on the tor:le of otatistioal runs, i im interesting to note the comparison hetween the output of the p
i squation for an initial condition of one standurd deviation ann the mean-square error for ten runs for one case,
: as shown in Pigure 7 for rilter 2, dynamics DI, and measuremert MI1. Moreover, it was found that the change in
the meai-square error for a larger number of sases, up to 850, while noticeable, wam relatively small.

Tha effects of changing the statistics of the random sequences are similar for all the filters, and are intui-
tivel, ‘eajonsble.’ Changing o, has little effent on the initial responre, though thes higher <, the worse the
ult‘mate following. Contrarivwise i.oreasing o, slows the response noticeably without affecting the ultimate
tracking. ‘The error responses for filter 2 with i and M1l ate shown {n Figures 8 and 9.

T4 The runs deronstrating the correctness of the noise model show the affects of improperly matching the filter
-, parameters tu the noise statistlcs. The effect of the mismateh on x-X and p is shown in Figures 10 and 11

~ For ull the curves showi, the uctual pseudo-random inputs were taken from identical populations: only the filter

~ paraneters varied. Evidently a statistical mismatoh can scriously affect the pertormance of the filter. It also
appears that the value of p generatad by the filter is & good index of the performanne, even when the statistica
Are poorly matched

e oL
Lt et
v

s "‘I: _f

» The finnl aspeot studied ct the computer was .lie effoct of sampling the data. Tvwo wpproaches to sampling were SR
s gl considered: sample-and-hold and pulre sampling. PFor the sample-wmid-hold runs, the effective noisa variance was s S
oY obtained using a At equal to the sampling period, rather than the computation interval. For the pulsc-mampling *
13 runs, o;‘ was made zero fur those intervals during which no measurements were made. Hoth types of sumpling wore .
‘_{i’ applied to filter 2 with dynamics D1 and measurements Mil. The response plots are shown in rigure 12. As suould f-.
Wl be expected, sampling ias detrimental to the initial response of the filter, though ultimatsly the ostimate settles L

4

.L?

{n to the proper value. From the one case considered, sample-and-hold appears somewhat beiter than impulse sam-
yling, which may be due to the smoothing effect of the zero-urder hoid.

Theiw is one problem in mechanizing the filters, which nas not yet been discus:ed, that requires much more
investigation: the effeots of the filter parameters ‘and the step-sice on computational stebility. For some com-
binations of parameters o, snd o, and initial covariance o(ty} , the etep-size must be made amoll to 3tabilize
the cowputation during the initial portion of the run. The reason for the instebility is the large value of tha
derivatives and the consequent large truncation errors introduced in the integracion. A particusarly insidious
form of computational instablility arose in the course of the simulationstudy: {t is pussible to be in a condi-
tionally atable region cuch that one pseudo-random sequence with & given statistical description results in &
stable response, while another sequence drawn from the sume population does not.

P T

»
g

Py

-_a
T e T

. Apparently, nonlinear filtering is superior to linear filtering, although no one nonl)inear filter offers any :
:.“ clear-cut advaatage aver any other from s performance point of view for the prohlem considered. It also appears Ve
.: that the filters derived from a continuous model ore quite arensble to samplod-data use. >:'
-. . u‘l‘
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CHAPTER 8 - LINEAR SMOOTWING TLCUNIQURS
(POST-FLIGNT DATA ANALYSIS)

Herbert E,Rauch

1. INTRODUCTION

1.1 Buckground

Binco the time of Qauss' peuple have buen interested in the probleu of least-sguares estimation. Oauss not
only formulsted the estimation and devised m teohnique for solving it (a mrequential algorithm oalled Gaussian
olimination, which iw umed on modern computers), but he applied this to determine the orblt of the asteroid
Cores. The limitation on his solution was that it only appiied to the came where the systen to bo estimated i
deterninistio and the errors on the individusl messurements are unoorrelated. When u systen is deturmiuistio,
its evolution own be completely speoified from the initiml conditions and the differentiml eguationms of the
systen, Celestial bodies obey Nowton's luws of motion and dimturbing forces due to other celestisl bodies are
kuowt to a reasonable degres of avoursoy, 8o for practiosl purposes their motion san be considered deterministic.
Terrestrinl bodies, on the other hand, are subjeot to dimturbing foroes whose effsots oannot be desorihed exsotly
beforshand although their statistical properties might be known. When a system is desoribed by differentisl
equations subjsot to disturbanoes whiok are stetistioally time-varying, the systen oma be uslied s stochastic
procass,

The plonesr work of Wiener? disoussed and solved the problen of linewr least-squares estimation for stochustio
processes. However, his results ware mainly for stationary, non-time-varying systems, and there was some diff{-
oulty in obtaining numerical answery for large order systems, Many pspers have appearsd sincs then giving
difgerent solutions to the problem under more genersl conditions, The wost widely used splution for filtering
and prediction is that of Kalwan?'* and Bucy’ ¢, The primary sdvantage of their-solutions is that they upply to
tine-varying systens and the squstions which specify the optimunm filter mre in the form of reoursive difterence

Lequations which -have 'obvious sospusational advantuges. However, Kalman and Buoy did not oconsider the important
problea of ssoothing, Filtering sllows one to estimate prossut values of the variables of interest using present
data, while smoothing sllows one to estimate pust valuws, A number of pmpers have presented different derivations
of recurajve solutions for the smoothing solution from different points of view for both dimcrets and continuous
systess, Bryson and Frasior’ gave one of the first recursive solutions for continuous systems using the oaloulus
of varintions and the method of maximus 1ikelthood. Oimilar solutions with some slternative forms wers given by
Cox® using Dynamic Programming, Rauch, Tung and Striebsl” using discrete time manipulstions ol Bayes’'s rule and
the method of Maximum Likelihood, Lae'® using the caloulus of variations, sad Meditoh'! using projection arguments,
Two more recent results were by Fraser!! who expressed the solution as tho combination of two filtered estimates
from & forward and beokward Kelosn-Buoy filter, and Kailath and Frost!?:!* who oade use of an innovations appromch
to linear smoothing, In their papers Keilath and Frost also give an interesting summary of work in filtering and
swoothing with a list of uvar forty references,

Obwiously, all these solutions should ultimstely give the smmue auswer to the same problem, but the differont
derivations give insight into the reasons for diffurent recursive forms of the smoothing solution. For deter-
ministiv «ystens with lincar equations, the solution simplifies considerably because the smocthed estimate of
past velu.s {s obtained directly from the filtersd sstimste of the latest value by integrating the differentisl
sguations of motion backwards, For linear swonthing of stoohastio systews s similar proosdurs can be umed in
which differential equutions are integrated bmokwards, starting with the latest filtered estimate. However,
thors are additional inputs to the differential equations involving earlier f{ltersd estimates or measurements,
depending oo the form of the solution. The purposs of this presentstion {s to outline the procedures and molutions
which oun be used in the linear smoothing problem and to indioste how the resulte oan be applied to & problem in
post<flight datm analyses which involves tracking a satellite disturbed by stoohsstic drag forces'’,

1.1 Notation C AT
ey ', AL :

In general, lower case letters, such as u,v,x, and =z, will denote oolumn veotors while upper case letters, ‘."_-.'-‘{r‘:-."-.‘,-.“:'L
wuch ma A,B,P,0, and ©, will donote matrions. The letter 1 represents the identity matrix. The super- N}\'_\}\\}‘-\'-;‘A{
soript prige, as in A’ or u' , will denote the transposs of the matrix or the tranepose of & column veotor Sah -'\“‘.}:\.\\\,
(whioh becomes s row vector). The product of a column vector and & row vector, such as x3' is & matrix. The 5'}:'\-4’\:‘.3‘}" .,
sysbol I represents expected valus so that E[Al represents the expscted value of the quantity A . The super- » ,".-:-"3- tay ;-:")'.\"‘.
soript -1 as in A"' means the inverss of the matrix A . 1In all vases it will be ausumed that the inverss of b LN

Y

the matrix vxists, although quite often, the inverse can be "M“.%ﬁﬁ Ruudo-nlnvnru or generalized inverse

without chunging the results. PREc[mNn PABE
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, 1.3 'Linenr Estimation Mt
Por the discrate version of the lincar estimation problem the wystem to bo estimated can bo desoribed by the o e
following met of matrix difference equatioms: . L...,..al,’k.u,a
YRR W N
e

oy ® Bl tu for ko= 1,3,..,N. (1) e

The linear poasutrements obtained from the system ure given by another met of matrix equations,
L "h'k*"h for k = 1,2,.,.,,N, (1.2)

The veotor x represonts tho atate of the system which {s to he estimated while the vuotor = rtepresents the
knownt messurements, The veotors u sud v arn not Known exwotly, but thoy are merv mean independent random
variables with known covariance. The variable u represents rundom changns in the stato (dynamic noise) while
the variable v represents random changes in the msungurements (mensurement uolme), The subscript k reopresents

the value of the quantities at the time of the W' measurenent., 1f the dynumie noise u ix identioally zero ;\

for all time, the mystem i{s said to be determinismtin. The matrices ¢ (transition mutrix) and “H (output matrix) 'r:'.‘

represent known gquantities which oan olange from ono measurvment to the hext, :-«‘\ 4
R kd

Mout physion] systems will lovolve uonlinear equations, but it im assumed the above set of linear equations
oan be obtained by linearizing mbout soms nouinnl valuos for the state and thie measuremetts, It may bo that the |
physioal systen is governsd by m set of linear (or linearized) diffevential squations rather than difference
oquations, slthough the memsurements will take plmoe at disorete times. 1In Jhut oase the original system diffor-
entisl equations must be intagrated to obtain the required differsnce squation relating the change in state from
one mesaurenent to the next. Conversely, under cortain oonditions, in the limiting csse us the timo between
seasuremecnts goes to aero, the dimorete syatem will approach a continuous system,

A

The optimum estimate will be the linear estimate which minimixes the memn nqusare error, Caloulating the
estimate requires koowing the mean and covariance of all the randonm variables of interest, but no higher wuments,
1f a1l the random verisbles have s normal probability distribution, the estimate will be the conditional mean of
the state given the measurenents. Bometimes the estimate is also cailed the Maximum Likelihood estimate bucause
it maximizes the conditional probability distribution,

'-"_'(
O ¥ (ot Bl SRS
~:‘n~‘h.':|." h.‘,h.':n.

'..i“\.l‘..‘l \ﬂ"n‘.'i

Eas

Lot X /y denote the optimum estimate of the atate X; given all the measurements up to AR § S BT |
sreater than or equal tu k , it is called filtering and prediction. 1f J i leas than k , it {s ocalled
smcothing, The optimum filtering solution ay derived by Kalman, can be written, whers B in the matrix gain on
the Kalaan filter, ‘

Sk = Y- + By
bomow - Ry

The initial conditions for the filtering solution sre bused on the a priori informstion. The quantity 2, , which
containe the now {nformation, is the difference betwesn the actusl memnsurement %, and the best astinste of the
weasurensnt, This quantity will play an fwportant part in the derivation of the smoothing molution.

(1.3)

3

'

The wbove filtering solution is recursive in the sense that the desired estimate is oslculated seguentially
frow previous estimates. Tho smoothing solution oan also be written in a recursive form and, in fuot, four
) different recursive versions of the smoothing solution will be presented hers. In theory, these four versions
will give identioal results but, due to such things ss coaputer programwing or running time or the effect of
. roundoff errora, one way may be superior to another for a particular problem.

The first veraion, oalled fixed point saoothing, is useful when it is nvcessary to omloulste the smoothed
ostimate at ouly one polnt, For lustance, the smoothed eatimate uf only the initial conditions of ths state
Night be desired. The form of the solution for fixed poiut esoothing im similar to that for filtering as shown '
below, where the matrix gain. B is & goneral weighting coeffiolent:

B m By + By : (1.4)

' The second version, smoothing using filtered estluates, hes two paris. First, the Kelusn filtering solution
in used to process the memsurements ssquentislly, in the order in which they were received, to obtain tha filtered
estimats (forward awesp). Hecond, the smocthing solution is used to process the filtersd estimato u mecond time,
in reverse order, frow the last to the first, to obtain the ssoothed estimated (backward wwesp)., The initisl
coudition for the backward sweep is the filtersd sstimate of the state at the final time, which is also the
amoothed estimate of the state at that time. Tha form of the solution for smoothing with filtering is shown
_below, where thn matriocss A and B are general weighting ooefficienta:

\
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There is an alternative sethod in which the backward sweep involves measuresents instead of the filtered
eatimates. This is the third varsion, which is onlled swoothing using weasurements. The recursive solution omu N
A be written schesatically as shown below, where the vaotor Wy is also caloulated resursively:
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J f" The fourth version, oalled fixed lag omoothiing, can bo used when it iw desirable to smooth for a fixed number
N3
L', of measurements. The recursive solution involves both filtured eatimmtes and massursmenta:
"A. -l. .
L] 1} A
3‘\',"": Reviswe, @ My v By, + CRy
I.‘
1 N

1.4 Outline of Work

: The remaindar of this presentation examines the smouthing solution for the disorete system (Bvotion 2) aud tho
, : "--.] gontinugus systan (Hvotion 3), and applies it to & problem in satellite trmcking (feotion 4), It is whown that
the optimum estimate for the disorete systom must satisfy the sampled Wienor-Hopf equation mnd an innovations

O
-‘Q-,'}, ) spprosch is umed to derive a solution. ‘The innovativas mpprowch presented here does not have the genorality and
fond the oleyant mathomatios of that of Knilath and Frost!®+'%, but it usee some of thelv ideas, Four different
.*-.\,'.: versiony of the smoothing solution uwnd tho meroulated covarlanse are promsented.
' The relations betwoen the discrote mystom and the continuous aysten are examived and the continuous smoothing
solutions are presented ws the limlting ouwe uf the discrets ones, Finslly, s problem im outlined iovolving &
stoohsstio model for mateilite drag, end the smoothing sulution is applied to sotusl dntm. ) W .
v . l-:-‘,.'.."l.:::"‘,‘ v,
. ' AL ““. ‘-.\. “.v..'
2. DINCRETE TIME BMOOTIING ),'.'.-'_'-,\._-._-\\‘
'l_\\ a A"‘.\
. AN
2.1 ‘Blatenent of the Problem IR
' . The aysten to be estimnted is deworibed by a met of matrix difference equations,
Ky = ¢kﬂ"k+“k_ for ko= 1,3,...N, (2.1)
The meastirementa obtained trlom the system nre defined by the eguations
By = Hx +v for &k 1,2,... N, 2.2)
whers 4 = sn nx1 column vector of state vuriablew .
U = an nxl column veutor of u-wtem (input) uncorrelsted dynamic noise
v, = sn rxl ocolumn vestor of nexsursmant (ontput) uncorrelated noiss
g = an rxl - olumn veotor of kiown measurements
@y = the nxn transition astrix with kaown coeffiofenta
By = an rxn watrix with known cosfticionts.
The dimenaions of the memsurement can vary from point to point ms long as the dimensions of the sssocinted
vectors and matricus also vary acoordingly. The veotors u, and v, represant vector-valusd indepsndent rsndom
variables with sero aean and a known covarianve,
E(yu{d) = Q@ it & = J eud wero othervise
l(vhvj) = By it &k = J and gero othervise
E(yv{) = 0. (2.9)
N In soms trestmanta of this problem, it is assuped the vectors U epd vy are correlsted if k= J . This
slight modification will be-discuswed later, The matrices Q and R could be singular and the lmplicatlons of
thin are also discussed later, although for the time being it will be wasumed both matrices are non-singulwr.
, In any real ustimation problem there is an important distinotion between u' priori inforsation und sotual
wuanuraments, However, iu order to simplify the notation and subsequent explanations, it will be convenient to
treat the a prinori informstion forwelly as the initial sessurement 3, , as shown beluw:
%, = X, + v, vhere & 3 Elz)
and Blegvi]l n Ry = E((xg-1) (8 =x)"] . 2.4
Thus, tbe o priori information about the initial valus of the state x, {s thet it is « rendow variable with
mesn 3, and covarlance R, .
The state x, 1is the quentity to be estimated, The best satimate of the state xg , given the weasuresenta
' g, for J=0,',,..H, is denoted by R,,, . and it {s a.linear combinstion of the wevsursments with coeffi- Y
clents given by the nxr weighting aatrix Ay 1 o RO
A ~"J"‘t"‘l“‘?l‘ .
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ik/“ = #0 Al/j'j f . (2.8)
The eatimation procedure im cmlled filtering if k equals N, prediction if & im gromter than N , and smooth- -‘ M \\ e 14 1«“‘
ing 4f k 4in leas than N, The error in the estimate, denvted Xy/q o 18 the difforence botween the state wnd """

the hout eetizate of tho state:
N
CVELEE R VR A Ea LYIL'E 13.8)
The purtial derivative of the error with respeot to the cosfficlents ‘h/J is equal to the measurement g,
W Bhyyy = - my @a.m

The best estigate of the state will bo defined as the linear entimmte which minimives the mean rquare error, which
in the trace of the covariance of the error P,y !

Poow =BGy Tm) (2.8)

Bince the linear cooffiulents Ag/y ware chosen to minimize thu momt square error, the condition for this to
be & minimun im that the partinl derivative with respect to the coefflaleuts is zero,

My /BAyy = 0 for o= 0,1,.0N, {3.0)

Substituting the equulion for the error Into the novariance gives an expression for the oewn squars error which
{8 quedratio in the ccefficients. Carrying ocut the differentiation gives an expression whish is linear in the
coefflolants - the saapled Wiener-llopf equation . which is sufficient to determine tlie coefficients,

‘ UIMPL Wy v 0 = S AMNe])  for f om0, 1,.0N. (2.10)

This sxpreasicn can be interpreted by saying the error in the best estimnte, ."k/N . 18 uncorrelated with any of
the maasuresents whioh sade up that estimate, Bince the best astipate s & 1inear ocombination of the mewsurements,
thin neana the srror in the bost estimate im uncorrelated with the estimate itself,

. Ef/u8{) = 0 for § = 0,1,...N

LIEWR VR L @.11) e
W PRI S R
3.8 Innovations Appromch "

The innovation is tho asw Information which comes from each seasurswent, The innovations approsch to linear
eutloation s bused on the assumpticn that the notusl measursments and the innovation process (wll the innovatious)
Are oqual in the sense that they contsin the sowe information as far as linear operations ars noncernad. The new
informtion is the differcnce between the sotusl wessurement 8y and the best estisate of the mewsurepent, ziven
all the previous memsursmeuts. The best estimats of the memsurement is the nutput satrix timea the best
estisate of the atate 1% , ., vhile the new informstion, denoted by B, , is the ecror in this estimate,

LR D WAL B WS
since % = Hx +v, . (3.12)

The bast ostimate of the sewsursment has the same properties as the beat eatimate of the atate dllculud previously,
while the new {nformation hus the mame propsrties as the error. The new information of the k! womsurement is
uncorrelated with any previous measurvments and the new {nformation im unoorrelatsd with the estimate. These
propertien of the new information can be used to derive a seogquential estimation prosedurs,

Assume the current best estimste %, ,N- oan be olloulutld 83 the sum of the previous best estimate 2, . and
a soeffiolent tiwes the nev information 3y:
‘ B, ® Ry * Bady (213

17 the coefficient By, omn be chosen so the error in the ourreut best mstimate is uncorrelated with any of the
messurepeuts, it will indeed be the best estimate bevause it satisfies the sampled Wiener-Hop! equation. 7~he
error in the current best estizate is composed of two terns, the error in the previous bast estimate, snd the

orror in the new ilnforsation: ]
(3. 14)

YRR MR ORI WL Y .

Bscauss they sre errors in beat estizates, thess two terns are uncorrslated with the previous wessurements,

Bl 8) = O
BBa) = 0 for §om 0,1,.N-1. (.18
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For the ourrent possurement 2y tho cundition that the error bo uncorrolatod determines tho coefficlent By, .
R 0 = E(!k/N'I:) = Euh/u.‘ﬂ:‘) 'BUNI“NE':) ' (2.1
Therefors, the sequential estimation pronedure in (2.13) u'veu tho best ostimate us long aa tho coeftiolunt By,
satisfien Fquation (2.16), For practical computution a more oconvenient form for the covfficient is obtuined by
using tho following relatinns;
Blyyoimy) = BlynaB) = E(xyH)
K(Eey) = E(BH) . (3.17)
Thess relations allow tho coefficient B, ,. to bo written {n the form
Sam = e * Bty
ECxRy) BGRED™ (3.18)

L

B/

The nojse v, is uncorrelated with tho error in the best estimate su the covarimhoe of the new inforwation %,
can bo caleulated directly using (2.12),

DORE) = BB/ b0
PR o HP B Ry (2.19)

Multiplying the sequentisl error (2.14) by tho atate x, gives 4 weyuentisl procedurs for culoulating the covari-
ance of the errer,

. By xl) 2 EOh ppo kb = By yBR)
Be/n = Bojney = Bo/nByal)
B Py/n-r = By/nlOhEL By
ainca : B(4/y%) = By ' (2.0)

To sumsarize, the acquential form of the optimum vstimste and the asscoimted covariance eguution are given by
¢3.18) and (2.20)., The fora of the wolution is guite gonersl and does not depend on the system equations, The
weighting cooffioient By,. involves two covariances. Ons of these is given {n (2,18) with k= M, but the
other covarisnos ie as yet unknown, When N =x k - 1 the above squations apply to filtering and predietion.

Yhen N> the eguations are for fixed point amoothing beonuse they show the ohahge in the smoothed estimate
at the k¥ potnt,

2.3 Filtering and Fined Point Bmoothing

Up to now it has not been neceasary to examine in detail the systen equations faor the utate ot the measurament.
However, to oaloulate the coutfioient B, ,, , for the sequential eatimation procedurs, it will be nedessary to
find a way of oaloulating the corresponding oovariances., Consider first .he sicgle<step emtimation problem in
(2.18), where k 1is replaced by k + 1 and N s replaced by k . This is the femiliar Kalmen filter aquation,
where By, /. ds the gein matrix for the filter,

Sk ® Ykt Boandy
Bk & B(n, WOEAEDT . (3.31)
Por one-step eatimation the unknown covarimnce and ‘the gain matrix can be deterained directly,
Bixgo ) = K00y, 0+ ) (B3 4 v)')
= &Pk
Beoi/k * Puai P B (RePese ie+ RO L (.30 .

It should he pointed cut here that, for the spscinl oase where the dynamic nolse Uy and the asssurement noise
¥y ore correlated, the unknown covariande has an additional term: .

E(n, B0 = &, Ry B+ By .

To complete the solution to the one-step estimation problem, it is necossary to oaloulate a seguential relation
for the covarianae of the error P, . which is wsed in the gain satrix. The best prediotica must be the boat
astimate times the trunsition matrix,

Bkt * aadseen
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The error in the best estimate is

A
LSV R WIS RNy

.\h" 4
b‘mh i) .1

Gainet wd = [oaifezion + Bk My syga + v
= UparRega * o= Brgavy
where Yoot = Ko - B adk (2.23)

The covariauce of the error is obtained by multiplying the error by the state and taking the expected value:

Poe = BSndig)

X1/ (e by
= VP B + G (2.24)
The covariance for the current estimate can be written in a similar way,
= &) = -
Pk = NehnPusit = (I=B BB 0 o

shere Bn

oh-lxnku/h

(1]

sad Pk = BoPundho t & - (3.28)

These sre Kalumn fiiter sguations for the onn-step estimation problem. To extend this to the smocthing problem,
whers N is groater than k , it is necessary to see liow tle errors in the estimate evolve. The matrix .
(2.23) shows how the estimaticn errors evolve frow one point to the next pcint. Applying this to the points frow
k to N one can write

Iomer & VWer oo PoaaBesuay + :
+ terma fovolving ] and vy for k € ) €H=-1, (3.26)

8incs x; 1is uncorrelated with the uy and vy the unknown covariance can be written as

B8 = Blx (M g, 4 v

= l(.!h/l-x!t:/n-l)_uli
= Py/padfund o
where Yurm = Yler ooo Vi
axd Yyay = ’1” =~ Byay/gBy - (2.31

3.4 Other Swmoothing Nolutions

The fixed point smoothing solution giveu by (2.18), (2.19) and (2.27) will :uow be used to derive other recursive
vercions of the smoothing solution. At each point ~here the nev information !J is received, it is multiplied by
the weighting aatrix Bk in (2.18). The mnoothed estimtes et points k and k+ 1 omn be written as the
weighted sua of al! the new intor=mation,

LY RS VRS L Vit

N
Yaoam @ Bt ,1-%»1 LSV (32.28)

From (2.27) the previously uuknown covarisnous and ths wolght.ing cosfiiciant can ve related to s new matrix €, ,

Bxly) = P s iy
= CyPyer/abi/uniby
= cht(‘luir'c) 4 :
where G = PusyetPreProsn .20 APEAREA ;.‘\‘
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Por the weighting coefficlents in (2,28), )
.. . "’,'._‘] '\I.,"j"'e, . .
Bi = CGBynyy o P\.‘:,;’ o J@M‘!&', ‘
sinos By = EIDE@INHT, (2,30)

Bubtraoting C, times the mecond equation in (2,28) tr;:m tho first equation, and making use of (2,30) to canoel

out the terms involving the new {nformution, gives s relation between the smouthed octimate at points & and
k+1,

LWRER WL ¢ WYNEL Sy (3.31)
This second vaersion is called smoothing with filtered estimates. Tho smoothed estimate at k I8 oalouluted

from che smoothed estimats at k + 1 and the filtered estimaie, In the same way, the smoothed covariance (2.20)
can be written as the sum of terms

Parn = "-/r,_#“ By, E(E(ENBL,, for m = k e k1. " (2,32)

Preaultiplying the equation with m ="' + 1 In (2.31), by C; snd post-multiplying by c{ , sybtrscting from

the equation with m = k , and making use of (2.30) gives a relstion betwaen the covariunce of the smoothed
estivatus at points k and k+ 1,

Pe/n = Pk = O (Pyyyzn=Praa 3Gk (2.33)
An alternative definition of the matrix C, which is useful im obtained from (2.28),
% = B/diniPoeisu
slnce Poser = Pespo¥inn (2.34)

! . A alightly ditzerent form of smoothing using the filterod estimetes is obtained by grouping terma and making
3 use of sono identities, in (2.24), Multiplying (2.31) by €,  and subtracting X, sy Bives

L RS WVRL I RRTIES s JCWRYAES YR
- Qb B = Rpand

since By = e sPusi-VhesPiri/a

[]

LRYIELN oy (3.38)

The smootbing solution with mewsurements, the third version, is written in a similar form, but it requires
some detailed algebra, making 'se of couplicated identities, to show the equivalence. T zeasurement smoothing
involves a new veotor w, whioh is suloulsted sequentinlly and, in the continucus version of the problem, oan
be interpreted as s Tagrange multipl.er. The smvothing solution involving messurements is

L WRES RV I

CWRLI RS S CRL R W
with wy = 0.

(2.36)

Comparing (2.38) and (2.38) gives a direot interpretation of the vestor , but 70 hiat how to derive the
resursion formula for oy

IR PN CWYES WY . ' (2.37)

I order to derivu the recursion formuls it will be necesaary to make ume of the two "utionl'

Pl o= Polpo, + HRUH

P;}kit/u = P;)l-l‘l/l-l + Hhyle ’ (2.38)
ey These relations arise naturally when ull;:: the aazimum likelihood derivation, but they sesm artificisl here.
-1‘:. The first relstion oan be proved by multiplying Pk-h by Pysy in (2.28) to get the identity. The second

relatlon can be proved by showing that

._"-_q‘ ¥
e A A
PO NS RENAe

= P "In-l . . (2.39; - . 'a:'.

B u /xRy . _ h‘—“—"‘! s _ul-

Starting with (2.37) and uakiag use of the two relations ss well ss (2.31) gives the desired recursive relation e :‘:?.J‘,.
for wy . PR KN
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= ayy = HRe e =R ) (2.40)
F The fourth and laet version is ocalled fixed lag smoothing because the amoothed esmtimato is anlways & fixed
nusber of points, s , behind the latest moasurement. It can bs writien am shown brlow where the veotor o, |
catl he defined either by (2.37) or by the recursive relation in (2.26):
Ben = Bekeasme * Bt Qoo
l vhere kK = N-8, (2.41)
:' . This relation is obtainsd by replacing k¥ by k-1 snd N by N -1 in (2.36) aud substltuting tha resulting '

| oxpremsion for %, ., into the fixed point solution (2,18). A recursive relatiun for the fized lag covariance
i{s obteined by replacing k by k ~1 and N by N-1 in (2,73) sand substituting the resulting expremssion
! for Py/e into the fixed point covariance (2,120),

PN = Py/pes - ByE(E 308l + o (p,_,_,,‘.,-r,.‘,.-n(e;‘)' . (2.42)

Thus far, it has been assumed the wmatrices Q “and Ry were non-singular, If the matrix Q, 18 singular
it will not change the form of the solutions, although If Q, is zero the smoothing solutlone simplify to

A -l ~
LWL WY e

It the matrix R, 1is wingulsr the smoothing solution involving measursments omnnot by used beosuse it contains
Re' . For the filtering solution, it is necessury that

WPkt + By ' A

SN

be non-linuulu;'. 8o there may be & problem if both Q wnd R, are singular,

3, CONTINUOUS TIME EMODTIING

3.1 Statement of tlu. Problem

| The systew to be estinated is desoribed by a set of matrix differentisl equations

dx/dt = Fx+ 4, 0€t &1, (3.1

The continuous measurements obtained from the system are defined by the equation

A -

g = Hx+ v, 0 <t €71, (3.2)

-~ where ‘
nx1 column veotor cf state variables

nx 1 ocolumn vector of system (input) unoorrelated dynamic noise

E ES

rx1 columa vestor of memsursment (output) uncorrelated noiss
$ = sn rxl oolusn vecto