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WEAKLY CONVEX AND CONVEX DOMINATION NUMBERS
FOR GENERALIZED PETERSEN AND FLOWER

SNARK GRAPHS

JOZEF KRATICA, DRAGAN MATIĆ, AND VLADIMIR FILIPOVIĆ

Abstract. We consider the weakly convex and convex domination numbers
for two classes of graphs: generalized Petersen graphs and flower snark graphs.
For a given generalized Petersen graph GP (n, k), we prove that if k = 1 and
n ≥ 4 then both the weakly convex domination number γwcon(GP (n, k)) and
the convex domination number γcon(GP (n, k)) are equal to n. For k ≥ 2
and n ≥ 13, γwcon(GP (n, k)) = γcon(GP (n, k)) = 2n, which is the order of
GP (n, k). Special cases for smaller graphs are solved by the exact method. For
a flower snark graph Jn, where n is odd and n ≥ 5, we prove that γwcon(Jn) =
2n and γcon(Jn) = 4n.

1. Introduction

Let G = (V,E) be a connected undirected graph without loops and parallel
edges. Let dG(u, v) denote the distance between the vertices u and v, i.e. the
length of a shortest u − v path in G. By N (v) we denote the set of all vertices
adjacent to v. Let N [v] = N (v) ∪ {v}. A set V ′ ⊆ V is a dominating set in G
if every vertex u ∈ V \ V ′ is adjacent to a vertex v ∈ V ′. In other words, a set
V ′ ⊆ V is a dominating set in G if for each vertex v ∈ V , it holds that v ∈ V ′

or v ∈ N (u) for some vertex u ∈ V ′. The domination number (usually denoted
by γ(G)) is defined as the minimum cardinality among all dominating sets of G.
The terms dominating set and domination number of a graph G were first defined
by O. Ore in 1962 [28]. A vertex v ∈ V is dominated by a set S ⊆ V if either v
itself or one of its neighbors is in S. Many variants of graph domination numbers
have been investigated for numerous classes of graphs. In this paper we study the
weakly convex domination number and convex domination number of generalized
Petersen graphs and flower snark graphs.
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A vertex set X ⊆ V is a weakly convex set if for every two vertices u and
v from X, it holds that d(u, v) in 〈X〉 is equal to d(u, v) in G, where 〈X〉 is a
subgraph of G induced by X. Equivalently, a vertex set X ⊆ V is a weakly convex
set in G if for every two vertices u, v ∈ X, there exists at least one shortest u− v
path (in G), whose vertices belong to X. A set X is a weakly convex dominating
set if it is weakly convex and dominating. The weakly convex domination number
of a graph G, denoted by γwcon(G), is the smallest cardinality of a weakly convex
dominating set in G. The weakly convex dominating set problem (WCDSP) is
therefore defined as the problem of determining a weakly convex dominating set of
the smallest cardinality. Here we notice a useful property of weakly convex sets.

Property 1.1. Let X be a weakly convex set and let u ∈ X. If for an arbitrary
vertex v, the unique shortest path in G between vertices u and v contains vertex w,
such that w /∈ X, then v /∈ X.

A vertex set X ⊆ V is a convex set if for every two vertices u and v from X, every
shortest u − v path (in G) also belongs to 〈X〉. A set X is a convex dominating
set if it is convex and dominating. The convex domination number of a graph G,
denoted by γcon(G), is the smallest cardinality of a convex dominating set in G.
The convex dominating set problem (CDSP) is therefore defined as the problem of
determining a convex dominating set of the smallest cardinality.

Example 1.2. For the Petersen graph (or generalized Petersen graph GP (5, 2))
given in Figure 1, the solution of both the WCDSP and the CDSP is the set
S = {u1, v1, v3, v4}, so γwcon(GP (5, 2)) = γcon(GP (5, 2)) = 4.

For GP (10, 2) (given in Figure 2), one can conclude that the set {ui | 0 ≤ i ≤ 9}
is a weakly convex dominating set of the smallest cardinality, so γwcon(GP (10, 2)) =
10. By the exact method it is calculated that γcon(GP (10, 2)) = 20, which means
that all vertices must be included in the minimal convex dominating set.
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Figure 1. Petersen graph
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Figure 2. Generalized
Petersen graph GP (10, 2)
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1.1. Previous work. The convex domination number was firstly introduced in
2002 by Jerzy Topp (Gdansk University of Technology) in personal communication
with some other researchers. The decision problems of WCDSP and CDSP are
proved to be NP-complete even for bipartite and split graphs [29], so the problems
of finding the weakly convex dominating and convex dominating sets of minimal
cardinality are NP-hard in a general case.

Relations between γwcon and γcon have been studied in [22], where some classes
of cubic graphs for which the convex domination number is equal to the domination
number have been analysed. Since every convex dominating set is a weakly convex
dominating set and every weakly convex dominating set is a dominating set, the
following lemma from [22] is obvious:

Lemma 1.3 ([22]). For any connected graph G,
γ(G) ≤ γwcon(G) ≤ γcon(G).

In a comprehensive study regarding graphs with convex domination number
close to their order [8], a dozen of very useful results have been presented. Among
all of them, we emphasize a remark and two theorems, which are of interest for our
paper.

Remark 1.4 ([8]). For a cycle Cn with n ≥ 6 vertices, γcon(Cn) = n.

Theorem 1.5 ([8]). If G = (V,E) is a connected graph with δ(G) ≥ 2 and g(G) ≥
6, then γcon(G) = |V |, where δ(G) is the minimum vertex degree and g(G) is the
length of a shortest cycle in G.

Theorem 1.6 ([8]). For any connected graphs G and H, the inequality
γcon(G)γcon(H) ≤ γcon(G2H)

holds, where G2H denotes the Cartesian product of the graphs G and H.

Closed formulas for weakly convex and convex domination numbers of a torus
are presented in [30].

The influence of the edge subdivision on the convex domination number is dis-
cussed in [9]. In that paper, it is shown that in the general case the convex dom-
ination number can be arbitrarily increased and arbitrarily decreased by an edge
subdivision.

Convex domination in the Cartesian product and other graph compositions are
also studied in [21] and [20]. In [20] closed formulas for weakly convex and convex
domination numbers in a grid graph are given. The following result from [21] will
be used in Section 2.

Theorem 1.7 ([21]). Let G and H be connected graphs of orders m and n, respec-
tively. Then γcon(G2H) = min{mγcon(H), nγcon(G)}.

Nordhaus–Gaddum type results for the weakly convex domination number have
been studied in [23] and for the convex domination number in [24].

In the following two subsections we shortly explain generalized Petersen graphs
and flower snark graphs.
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1.2. Generalized Petersen graphs. The generalization of the Petersen graph
was introduced by Coxeter in 1950 [7]. For given numbers n ≥ 3 and 1 ≤ k <
n/2, the generalized Petersen graph GP (n, k) contains 2n vertices and 3n edges,
with the set of vertices V = {ui, vi | 0 ≤ i ≤ n − 1} and the set of edges E =
{{ui, ui+1}, {ui, vi}, {vi, vi+k} | 0 ≤ i ≤ n − 1}, where the subscripts are taken
modulo n, as we will be doing hereafter. The Petersen graph from Example 1.2 is
GP (5, 2).

In order to shorten the writing, the set {u0, . . . , un−1} will henceforth be called
u vertices, and analogously the set {v0, . . . , vn−1} will be called v vertices. If k = 1,
it is obvious that the sets of u and v vertices have the same meaning, since there
is an isomorphism which maps u vertices to v vertices.

In the recently published literature, various properties of GP (n, k) have been in-
vestigated: minimum span of L(2, 1)-labeling [1], minimum vertex cover [4], metric
dimension [2, 27], strong metric dimension [18], decycling number [13], component
connectivity [10], acyclic 3-coloring [34], crossing numbers [25], independence num-
ber [11], and others. Some recent works dealing with variants of the domination
numbers in the generalized Petersen graphs are: domination number [3, 12, 26],
domatic number, total domatic number, and k-ply domatic number [33], efficient
domination number [17], power domination number [32], 2-rainbow domination
[5, 31], and others.

The following remark will be used in the rest of the paper.

Remark 1.8. GP (n, 1) ∼= Cn2P2, where P2 is the path with two vertices.

1.3. Flower snark graphs. Flower snark graphs appeared in an early work [16]
as an example of a cubic bridgeless graph family that is not Tait colorable, i.e. it
is not 3-edge colorable. The flower snark Jn, where n is odd, can be constructed
with the following process:

Construct n copies of the star graph of 4 vertices. Let the central vertex of
each star be denoted by ai and the outer vertices by bi, ci, and di. The union
of all these stars is a disconnected graph containing 4n vertices and 3n edges:
aibi, aici, and aidi for each i, 0 ≤ i ≤ n − 1. We further add n more edges by
constructing the cycle b0, b1, . . . , bn−1, b0 of length n. Finally, we construct the cycle
c0, c1, . . . , cn−1, d0, d1, . . . , dn−1, c0 of length 2n. The graph obtained, denoted by
Jn, is the flower snark graph. This graph is a cubic graph with 4n vertices and 6n
edges.

The sets {a0, . . . , an−1}, {b0, . . . , bn−1}, {c0, . . . , cn−1}, and {d0, . . . , dn−1} will
be respectively called a, b, c, and d vertices.

Unlike generalized Petersen graphs, domination numbers, as well as other graph
invariants, have not been so intensively studied for flower snarks. We mention some
recent works on this class: the circular chromatic index has been studied in [14],
the total-chromatic number in [6], and prime cordial labeling in [15].

In the following property, we ensure that for each j, 0 ≤ j ≤ n− 1, there exists
an isomorphism of Jn which maps vertices bj and aj to b0 and a0, respectively.
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Property 1.9. Let Jn be a flower snark and let j ∈ {0, 1, . . . , n−1} be an arbitrary
number. Then the function g : V (Jn)→ V (Jn) defined as

g(ai) =
{
aj−i, i ≤ j ≤ n− 1,
an+j−i, 0 ≤ j < i,

g(bi) =
{
bj−i, i ≤ j ≤ n− 1,
bn+j−i, 0 ≤ j < i,

g(ci) =
{
cj−i, i ≤ j ≤ n− 1,
dn+j−i, 0 ≤ j < i,

g(di) =
{
dj−i, i ≤ j ≤ n− 1,
cn+j−i, 0 ≤ j < i,

is an isomorphism.

From this, we can obtain another two useful properties which will be referred to
later.

Property 1.10. For each j, 0 ≤ j ≤ n− 1, without loss of generality the vertices
bj and aj can be declared as b0 and a0.

Property 1.11. For j = 0, by the function g, the 4-tuple (a0, b0, c0, d0) maps to it-
self, while for 0 < i ≤ n−1, the 4-tuple (ai, bi, ci, di) maps to (an−i, bn−i, dn−i, cn−i).

We also notice a useful property regarding the shortest paths in Jn.

Property 1.12. If Jn is a flower snark, then the following statements hold:
• The shortest path between any two b vertices leads over b vertices.
• For each pair of a vertices, one shortest path leads over b vertices.
• The shortest path between one a vertex and one b vertex also leads over b

vertices.

2. Weakly convex domination number and convex domination number
for generalized Petersen graphs

In this section we present the results related to the weakly convex domination
and convex domination numbers of generalized Petersen graphs. In order to obtain
the exact values for these two numbers for graphs of small dimensions, the integer
linear programming (ILP) model from [19], with implementation in the CPLEX
optimization software package, is used. Since both WCDSP and CDSP are NP-
hard in a general case, exact algorithms cannot be used to determine solutions for
medium-size or large-scale graphs in a reasonable time. However, the ILP model
from [19] has been shown to be useful in determining exact solutions for sparse
graphs up to 200 vertices.

The following two remarks state some obvious facts for the case k = 1.
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Remark 2.1. Let k = 1 and let GP (n, 1) be a generalized Petersen graph. The
shortest path between two u vertices in GP (n, 1) consists of only u vertices. There-
fore, if two u vertices ui, uj belong to a weakly convex dominating set S, then at
least one of the sets {ui+1, ui+2, . . . , uj−1} or {uj+1, uj+2, . . . , ui−1} belongs to S.
Notice that the indices are taken modulo n.

Remark 2.2 (Corollary of Remark 2.1). Let k = 1 and let GP (n, 1) be a gener-
alized Petersen graph. If at least one vertex from u vertices belongs to a weakly
convex dominating set S, then either all u vertices belong to S or a set of l,
l ≤ dn

2 e, consecutive u vertices belong to S and the remaining n − l vertices do
not belong to S.

These two remarks also hold for the v vertices.
The following lemma contains some useful statements for generalized Petersen

graphs GP (n, 3), n ≥ 17.

Lemma 2.3. Let S be a minimal weakly convex dominating set of a generalized
Petersen graph GP (n, 3) and n ≥ 17. Then the following statements hold:

(i) At least one vertex from the set of v vertices belongs to S.
(ii) If a vertex vi from v vertices belongs to S, then the vertex vi+3 belongs to S.
(iii) If a vertex vi from v vertices belongs to S, then all vertices from the set

{vi+3k | 0 ≤ k ≤ n− 1} belong to S.
(iv) If a vertex vi from v vertices belongs to S and n 6≡ 0 (mod 3), then all

v vertices belong to S.
(v) If all v vertices belong to S, then all u vertices also belong to S.

(vi) If all u vertices belong to S, then all v vertices also belong to S.

Proof.
(i) Suppose that no one v vertex belongs to S. Then for each i, 0 ≤ i ≤ n− 1,

the vertex vi is dominated by ui, and therefore S ⊇ {ui | 0 ≤ i ≤ n − 1}.
Consider the vertices u0 and u6. The unique shortest path between them
is of length 4: u0 − v0 − v3 − v6 − u6, which implies that v0, v3, and v6
belong to S. This is a contradiction with the starting assumption.

(ii) Let vi ∈ S. Consider the vertex ui+6: let it be dominated by a vertex x,
x ∈ S ∩N [ui+6]. There are four cases:
• x = vi+6. The unique shortest path vi− vi+3− vi+6 is of length 2 and

it contains vi+3, therefore vi+3 ∈ S.
• x = ui+6. The unique shortest path vi−vi+3−vi+6−ui+6 is of length 3

and it also contains vi+3, therefore vi+3 ∈ S.
• x = ui+7. The unique shortest path vi − vi+3 − vi+6 − ui+6 − ui+7 is

of length 4. Again, it contains vi+3, therefore vi+3 ∈ S.
• x = ui+5. There are two shortest paths of length 4 in GP (n, 3):
vi− vi+3− vi+6−ui+6−ui+5 and vi− vi+3−ui+3−ui+4−ui+5. Both
of them contain vi+3, and therefore vi+3 ∈ S.

(iii) The claim is a consequence of (ii).
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(iv) Since 3 is coprime with n, the set {vi+3k | 0 ≤ k ≤ n−1} is in fact equal to
the set of all v vertices, where indices are taken modulo n. Thus the claim
holds from (iii).

(v) Let ui be an arbitrary vertex from u vertices. The unique shortest path
between vi and vi+1 is of length 3: vi − ui − ui+1 − vi+1, therefore ui ∈ S.

(vi) Let vi be an arbitrary vertex from v vertices. The unique shortest path
between ui and ui+6 of length 4: ui − vi − vi+3 − vi+6 − ui+6, therefore
vi ∈ S. �

Let us now present the closed formula for the weakly convex domination number
for generalized Petersen graphs.

Theorem 2.4. Let GP (n, k) be a generalized Petersen graph. Then

γwcon(GP (n, k)) =



2n, k ≥ 2 ∧ n ≥ 13;
n, k = 1 ∧ n 6= 3;
2, k = 1 ∧ n = 3;
4, k = 2 ∧ n = 5;
n, k = 2 ∧ 6 ≤ n ≤ 11;
24, k = 2 ∧ n = 12;
n, k = 3 ∧ 7 ≤ n ≤ 10;
22, k = 3 ∧ n = 11;
24, k = 3 ∧ n = 12;
9, k = 4 ∧ n = 9;
14, k = 4 ∧ n = 10;
22, k = 4 ∧ n = 11;
24, k = 4 ∧ n = 12;
11, k = 5 ∧ n = 11;
18, k = 5 ∧ n = 12.

Proof. All cases of generalized Petersen graphs GP (n, k), with (k = 1 ∧ n ≤ 6)∨
(k = 2 ∧ n ≤ 31) ∨ (k ≥ 3 ∧ n ≤ 16), have a relatively small number of vertices,
so they can be checked by the exact method.

Case 1: k = 1, n ≥ 7.
Let S = {ui | 0 ≤ i ≤ n−1}. We will prove that S is a weakly convex dominating

set of minimum cardinality, i.e. γwcon(GP (n, 1)) = |S| = n. It is obvious that S is
weakly convex: because of Remark 2.1, the shortest path between two u vertices
contains only u vertices (Figure 3). Further, for each vertex vi ∈ V \ S, it holds
that vi ∈ N (ui) ∧ ui ∈ S, so the set S is also a dominating set.

Suppose that S′ is a weakly dominating set and |S′| < n. Without loss of
generality, let us analyze the case when l, 0 < l < n, u vertices belong to S′.
Because of Remark 2.2, that is a set of l consecutive vertices. Without loss of
generality, let us assign them as {u0, u1, . . . , ul−1}. Since n ≥ 7, there are at least
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Figure 3. A part of GP (n, 1)

three u vertices {ul, ul+1, . . . , un−1} which do not belong to S′. Let us consider
the vertex ul+1. Since it has to be dominated by a vertex from S′ and since two
u adjacent vertices ul and ul+2 are not in S′ (also ul+1 /∈ S′), the only remaining
option is that vl+1 ∈ S′. Now consider the shortest paths between two vertices
from S′: ul−1 and vl+1. In G, dG(ul−1, vl+1) = 3 and there are three shortest paths
of length 3: ul−1−ul−ul+1−vl+1, ul−1−ul−vl−vl+1, and ul−1−vl−1−vl−vl+1.
Since ul, ul+1 /∈ S′, at least one vertex from the first and the second path is not in S′;
we conclude that all vertices from the latter path belong to S′, i.e. vl−1, vl ∈ S′.

Further, for each i such that l + 2 ≤ i ≤ n − 2, ui is dominated by vi since
ui−1, ui, ui+1 /∈ S′, so vl+2, . . . , vn−2 ∈ S′. Again, there are three shortest paths
between u0 and vn−2 of length 3: u0−un−1−un−2−vn−2, u0−un−1−vn−1−vn−2,
and u0 − v0 − vn−1 − vn−2. Since un−1, un−2 /∈ S′, at least one vertex from the
first and the second path is not in S′; we conclude that v0, vn−1 ∈ S′.

Finally, {u0, u1, . . . , ul−1, vl−1, vl, . . . , vn−1, v0} ⊆ S′, so |S′| ≥ l+n−l+2 = n+2.
Therefore, this construction leads to a weakly convex dominating set of a cardinality
greater than n, which is a contradiction with the assumption |S′| < n.

Since the u and v vertices have the same meaning in GP (n, 1), the analysis when
we start with v vertices is analogous.

Case 2: k = 2 and n ≥ 32.
Let m =

⌊n
4

⌋
− 1. Let S be a weakly dominating set of GP (n, 2), n ≥ 32. Let

us denote the set of all vertices of GP (n, 2) by V . We will prove that S = V , i.e.
γwcon(GP (n, 2)) = 2n.

Let vi be an arbitrary vertex from v vertices. Since S is a dominating set, we
have:

vi+2 ∈ V =⇒ vi ∈ S ∨ vi+2 ∈ S ∨ ui+2 ∈ S ∨ vi+4 ∈ S; (2.1)

vi+2m−2 ∈ V =⇒ vi+2m−4 ∈ S ∨ vi+2m−2 ∈ S ∨ ui+2m−2 ∈ S ∨ vi+2m ∈ S. (2.2)

Let x be a vertex from the set {vi, vi+2, ui+2, vi+4} and y a vertex from {vi+2m−4,
vi+2m−2, ui+2m−2, vi+2m}. Although there are many possibilities for vertices x and
y satisfying the formulas (2.1) and (2.2), for every case, the unique shortest path
between them contains the sub-path P ′ = vi+4 − vi+6 − · · · − vi+2m−6 − vi+2m−4
(Figure 4).
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Figure 4. A scheme for constructing the path between x and y

Since x, y ∈ S, and S is weakly convex, all vertices from P ′ belong to S. For
each pair of vertices (vi+2, vi+2m−2), 0 ≤ i ≤ n− 1, we have

n−1⋃
i=0
{vi+4, vi+6, . . . , vi+2m−6, vi+2m−4} = {vj | j = 0, . . . , n− 1} ⊂ S.

Therefore, all of the v vertices belong to S.
Further, let i, 0 ≤ i ≤ n − 1, be an arbitrary index and let us consider the

vertex ui. Since vi, vi+1 ∈ S and S is weakly convex, the unique shortest path
between these two vertices vi − ui − ui+1 − vi+1 ∈ S (Figure 5). This implies that
ui ∈ S, and the proof is finished.
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Figure 5. The shortest path between vi and vi+1.

Case 3: k = 3 and n ≥ 17.
From Lemma 2.3 (i), at least one vertex from v vertices belong to S. Without

loss of generality, let v0 be that vertex. We consider two cases:
(a) n 6≡ 0 (mod 3). From Lemma 2.3 (iv) and (v), all v vertices and all u ver-

tices belong to S. Therefore, |S| = 2n.
(b) n ≡ 0 (mod 3). From Lemma 2.3 (iii) we have that {v3i | 0 ≤ i ≤ n/3 −

1} ⊂ S. We will show that at least one more vertex from v vertices belongs
to S.

Suppose that this is not true, i.e. all other v vertices are not in S.
Since the vertex vi /∈ S has neighbourhood N (vi) = {vi−3, ui, vi+3} and
vi−3, vi+3 /∈ S, vi must be dominated by ui ∈ S. Therefore, {u3k+1, u3k+2 |
0 ≤ k < n/3} ⊂ S. Since for an arbitrary k the unique shortest path be-
tween u3k+2 and u3(k+1)+1 is of length 2 and contains u3(k+1), we conclude
that the rest of u vertices, i.e. the set {u3k | 0 ≤ k ≤ n − 1}, is a subset
of S. From Lemma 2.3 (vi), we have that all v vertices belong to S, which
is a contradiction with the assumption that other v vertices are not in S.

Therefore, at least one more v vertex belongs to S. Without loss of
generality, let v1 be that vertex. From Lemma 2.3 (iii), we have that
{v3k+1 | 0 ≤ k ≤ n/3 − 1} is a subset of S. Let us consider pairs of
successive v vertices v3k, v3k+1, 0 ≤ k < n/3, belonging to S. The unique
shortest path between the vertices from each pair is v3k−u3k−u3k+1−v3k+1;
therefore u3k, u3k+1 ∈ S, for 0 ≤ k < n/3. Similarly, as in the previous
paragraph, we further conclude that the rest of u vertices belong to S, and
because of Lemma 2.3 (vi), we have that all v vertices also belong to S.
Therefore |S| = 2n.
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Case 4: k ≥ 4 and n ≥ 17.
Let S be a weakly convex dominating set. Let us first show that all u vertices

belong to S.
Suppose that a u vertex, say ui, is not in S. Since ui has to be dominated, we

have three cases: ui−1 or vi or ui+1 belong to S.
Suppose that ui−1 ∈ S. Then ui+1 /∈ S, since the unique shortest path in G

between ui−1 and ui+1 is of length 2 and it contains ui. Since ui+1 has to be
dominated, then either vi+1 or ui+2 belong to S. However, the unique shortest
path in G between ui−1 and vi+1, as well as between ui−1 and ui+2, is of length 3
and contains vertices ui and ui+1. Since S is weakly convex and the shortest path
is unique, ui must belong to S, which contradicts the assumption ui /∈ S.

The case ui+1 ∈ S is symmetric to the previous case ui−1 ∈ S.
Suppose that vi ∈ S. Again, ui+1 /∈ S, since the unique shortest path in G

between vi and ui+1 is of length 2 and it contains ui. Since ui /∈ S, ui+1 is
dominated either by vi+1 or by ui+2. The unique shortest path in G between vi

and vi+1 is vi−ui−ui+1−vi+1, and that between vi and ui+2 is vi−ui−ui+1−ui+2.
Both paths contain ui, which contradicts the starting assumption.

Therefore, all u vertices belong to S. Consider now vertices ui and ui+k. The
unique shortest path in G between them is of length 3: ui− vi− vi+k−ui+k. Since
S is weakly convex, vertices from that path must belong to S, i.e. vi, vi+k ∈ S. For
each pair of vertices (ui, ui+k), 0 ≤ i ≤ n− 1, we have

n−1⋃
i=0
{vi, vi+k} = {vj | 0 ≤ j ≤ n− 1} ⊂ S.

We have proved that all v vertices also belong to S and γwconGP (n, k) = |S| =
2n. �

Corollary 2.5. Let GP (n, k) be a generalized Petersen graph. Then

γcon(GP (n, k)) =



n, k = 1 ∧ n ≥ 4;
2n, k ≥ 2 ∧ n ≥ 8;
2, k = 1 ∧ n = 3;
4, k = 2 ∧ n = 5;
6, k = 2 ∧ n = 6;
7, n = 7.

Proof. Let k = 1. Cases n ∈ {3, 4, 5} were checked by the exact method. Let
n ≥ 6. Since GP (n, 1) ≡ Cn2P2 (Remark 1.8) and γcon(Cn) = n (Remark 1.4) for
n ≥ 6, from Theorem 1.7 it follows that, for n ≥ 6, the convex domination number
γcon(GP (n, 1)) = γcon(Cn2P2) = min{n · 1, 2 · n} = n.

Let k ≥ 2. Since γwcon(GP (n, k)) ≤ γcon(GP (n, k)), Theorem 2.4 finishes the
proof for larger values of n. The formula for the convex domination number for
smaller graphs can be checked by the exact method. �
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3. Weakly convex domination number and convex domination number
for flower snark graphs

In this section we propose closed formulas for the convex domination number
and the weakly convex domination number for flower snark graphs.

3.1. The convex domination number for flower snark graphs. If n = 5, by
the exact method it can be easily checked that γcon(J5) = 20. If n ≥ 7, we have
that the length of the shortest cycle of Jn is 6. Since δ(Jn) = 3 ≥ 2, the conditions
of Theorem 1.5 are satisfied, so the following proposition holds.
Proposition 3.1. For every flower snark Jn where n ≥ 7 is an odd number, it
holds that γcon(Jn) = 4n.
3.2. The weakly convex domination number for flower snark graphs. If
n = 5, one can easily check that γwcon(J5) = 10 by the exact method. Therefore,
in the following theorem, we suppose that n ≥ 7.
Theorem 3.2. For every flower snark Jn where n ≥ 7 is an odd number, it holds
that γwcon(Jn) = 2n.
Proof. The proof is organized in three steps.
Step 1.

Let S be a set containing all a and all b vertices, i.e., S = {ai | 0 ≤ i ≤
n− 1} ∪ {bi | 0 ≤ i ≤ n− 1}. We will show that S is a weakly convex dominating
set with minimal cardinality. Obviously, S is a dominating set, since for each i,
0 ≤ i ≤ n− 1, vertices ci and di are dominated by ai. Further, from Property 1.12
one can conclude that S is a weakly convex set.

Let us now suppose that there is a weakly convex dominating set S′ such that
|S′| < 2n.
Step 2.

We first show that all b vertices must belong to S′.
Suppose that there is a b vertex not belonging to S′. We consider two cases:
(a) (∃i ∈ {0, 1, . . . , n− 1})bi ∈ S′ and (∃j ∈ {0, 1, . . . , n− 1})bj /∈ S′.
(b) (∀i ∈ {0, 1, . . . , n− 1})bi /∈ S′.
Case (a). Since there are b vertices which belong and b vertices which do not

belong to S′, we can assume that there are two adjacent b vertices such that one
belongs to S′ and the other does not. Because of Property 1.10, suppose, without
loss of generality, that b0 /∈ S′ and bn−1 ∈ S′. Then, because of Property 1.1, b1 /∈
S′ and b2 /∈ S′, since the unique shortest path between bn−1 and b1 (respectively
b2) leads via b0 (which is not in S′). Then, the vertex a1 must belong to S to
dominate b1. However, the shortest path between bn−1 and a1 leads via b0 and b1,
so b0 ∈ S, which is a contradiction with b0 /∈ S′.

Case (b). Let no b vertex belong to S′. Then for each i, 0 ≤ i ≤ n−1, the vertex
bi is dominated by the vertex ai, so all a vertices belong to S′. Let us consider the
shortest paths between vertices a0 and a1. There are two possible shortest paths
between these two vertices and (at least) one of them must belong to S′:
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(i) a0 − c0 − c1 − a1.
(ii) a0 − d0 − d1 − a1.

It should be noted that the shortest path a0 − b0 − b1 − a1 is not possible, since
b vertices do not belong to S′.

Subcase (i). Consider two vertices c1 and a2 both of which belong to S. The
unique shortest path between c1 and a2 is of length 2: c1−c2−a2, therefore c2 ∈ S′.
Now, the shortest path between c2 and a3 is of length 2: c2−c3−a3, so we conclude
that c3 ∈ S′. By using the isomorphism defined in Property 1.9 and applying the
same argumentation, we can prove that for each i, 1 ≤ i ≤ n − 4, the vertex ci+3
belongs to S′. Since all a vertices also belong to S′, we get that |S′| ≥ n+n = 2n,
which is a contradiction with the fact that |S′| < 2n.

Subcase (ii). Analogously to the Subcase (i), it can be proved that |S′| ≥ 2n,
which is a contradiction with the fact that |S′| < 2n.

Since we proved that none of the possible shortest paths between a0 and a1 can
not belong to S′, we proved that the Case (b) leads to a contradiction.

Therefore, all b vertices belong to S′.
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Step 3.
Since |S′| < 2n and all b vertices belong to S′, at least one a vertex does not

belong to S′.
Without loss of generality, suppose that a2 /∈ S′. Then, from Property 1.1, we

also get that c2 /∈ S′, since the unique shortest path between b2 and c2 leads via a2.
The vertex c2 must be dominated by a vertex from S′. Since a2, c2 /∈ S′, we have
two remaining options: either c1 or c3 must belong to S′.

Case 1: c1 ∈ S′. Then the vertex c3 is not dominated by any vertex from S′,
because:

(i) The unique shortest path between c1 and c3, i.e. c1 − c2 − c3, leads via c2,
which is not in S′. From Property 1.1 we conclude that c3 /∈ S′.

(ii) c2 /∈ S′, which was already stated.
(iii) The unique shortest path between c1 and c4 is c1 − c2 − c3 − c4. Since

c2 /∈ S′, from Property 1.1 we get that c4 /∈ S′.
(iv) The unique shortest path between c1 and a3, which is c1−c2−c3−a3, leads

via c2 which is not in S′. From Property 1.1 we conclude that a3 /∈ S′.
Thus, we get a contradiction with the starting assumption that S′ is a weakly
convex dominating set and |S′| < 2n.

Case 2: c3 ∈ S′. Analogously to the Case 1, it can be proved that the vertex c1 is
not dominated by any vertex from S′. This is a contradiction with the assumption
that S′ is a weakly convex dominating set and |S′| < 2n.

Finally, we conclude that γwcon(Jn) = 2n. �

4. Conclusions

In this paper, the weakly convex domination number and convex domination
number for the generalized Petersen graphs and flower snark graphs are studied.
We prove that in the case of the generalized Petersen graph GP (n, k), for k ≥ 2
and n ≥ 13, both minimal weakly convex dominating set and minimal convex
dominating sets must contain all vertices. For k = 1 and n ≥ 4, both minimal
weakly convex domination number and convex domination number are equal to n.
We also obtain the closed formula for the weakly convex domination number and
the convex domination number for flower snark graphs.

This work can be extended in several directions. It could be useful to determine
the closed formula for calculating the weakly convex and/or convex domination
numbers for some other challenging classes of graphs. Since the problems are NP-
hard in a general case, determining the exact solutions for large-scale graphs is
not possible in a reasonable time. This fact opens the possibility of attacking the
problem via some heuristic approach.
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