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Abstract

Purpose—The brain undergoes significant structural change over the course of neurosurgery, 

including highly nonlinear deformation and resection. It can be informative to recover the spatial 

mapping between structures identified in preoperative surgical planning and the intraoperative 

state of the brain. We present a novel feature-based method for achieving robust, fully automatic 

deformable registration of intraoperative neurosurgical ultrasound images.

Methods—A sparse set of local image feature correspondences is first estimated between 

ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate 

dense mappings throughout the image. Correspondences are derived from 3D features, distinctive 

generic image patterns that are automatically extracted from 3D ultrasound images and 
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characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of 

local image appearance. Feature correspondences between ultrasound images are achieved based 

on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough 

transform.

Results—Experiments demonstrate our method on intraoperative ultrasound images acquired 

before and after opening of the dura mater, during resection and after resection in nine clinical 

cases. A total of 1620 automatically extracted 3D feature correspondences were manually 

validated by eleven experts and used to guide the registration. Then, using manually labeled 

corresponding landmarks in the pre- and post-resection ultrasound images, we show that our 

feature-based registration reduces the mean target registration error from an initial value of 3.3 to 

1.5 mm.

Conclusions—This result demonstrates that the 3D features promise to offer a robust and 

accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided 

neurosurgery.

Keywords

Brain shift; Intraoperative ultrasound; Image-guided neurosurgery; Image registration; 3D scale-
invariant features

Introduction

Neuronavigation systems can be used to determine the position of brain tumors during 

surgical procedures relative to preoperative imaging, typically magnetic resonance (MR) 

images [1]. Commercial systems employ an electromagnetic or optical device to track the 

surgical tools and model the patient’s head and its content as a rigid body. Paired-point 

registration based on anatomical features or surface-based registration methods are 

commonly used to determine the rigid body transformation from the coordinate system of 

the preoperative image to the coordinate system of the patient during surgery. During 

surgery, cerebrospinal fluid drainage, use of diuretics and tumor resection cause the brain to 

deform and therefore invalidate the estimated rigid transformation [2]. Brain deformation 

during surgery, known as brain shift, along with registration and tracking errors reduces the 

accuracy of image-guided neurosurgery based on neuronavigation systems [3–5].

Because maximum safe resection is the single greatest modifiable determinant of survival 

[6] and strongly correlated with prognosis in patients with both low-grade [7] and high-

grade gliomas [8], the development of intraoperative imaging techniques is desirable 

because they guide the surgeon toward obtaining a more complete resection while helping to 

prevent damage to normal brain [9].

Intraoperative magnetic resonance (iMR) imaging has been used during surgery offering 

high contrast for visualization of tissues using multiple sequences [10–13]. However, MR 

devices are expensive and require a dedicated operating room and specialized non-magnetic 

tools making this technology unavailable in most centers worldwide. iMR is also time-

consuming, adding an hour or more per scan to a surgical intervention.
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On the other hand, intraoperative ultrasound (iUS) appears to be a promising technology to 

compensate for brain shift [14–17]. iUS is relatively inexpensive and does not require 

changes to the operating room. However, awareness of artifacts in ultrasound images that 

may occur during tumor resection is a necessity for successful and safe surgery when using 

iUS for resection control.

Registration of intraoperative imaging is challenging, especially of iUS images. Brain 

ultrasound images acquired prior to resection often have high image quality, providing the 

capability of localizing surgical targets, typically defined in the preoperative MR during 

surgical planning. During surgery, e.g., right after opening the dura membrane, this 

capability degrades as artifacts may occur. Moreover, brain deformation is a complex and 

spatiotemporal phenomenon [3], requiring non-rigid registration algorithms capable of 

mapping structures in one image that have no correspondences in a second image, such as 

the tumor and resection site [18].

A solution is to use biomechanical modeling to combine intraoperatively acquired data with 

computational models of brain deformation to update preoperative images during surgery 

[19–22]. Development of accurate biomechanical models is important to compensate for 

brain displacement and is an ongoing focus of a large portion of the research community. 

However, most of the research work that has been done in biomechanical modeling of the 

brain tissue for this purpose is not completely independent of the registration methods.

We investigate the use of intraoperative 3D ultrasound to compensate for brain shift during 

neurosurgical procedures.

A body of prior work has investigated iUS image registration in the context of neurosurgery 

[23–25]. For reducing computational complexity, deformable registration approaches 

typically adopt iterative algorithms that are only guaranteed to converge to locally optimal 

solution. They are thus prone to identifying erroneous, suboptimal solutions if not initialized 

correctly, particularly if there is no smooth geometric transformation that models the 

differences between the images, e.g., following brain tumor resection. These methods may 

require initialization within a “capture range” of the correct solution, where initialization is 

typically provided via external labels or segmentation of regions of interest within 

ultrasound images and the alignment is optimized primarily for the specific labels [26,27]. 

Alternatively, generic salient image features have been applied using a wide variety of 

methods [28–32], and distinctive local neighborhoods surrounding edges and texture 

features can be used to identify image-to-image correspondences prior to registration [33]. 

While correspondences between distinctive local features may be achieved, a challenge 

remains when computing registration throughout the image space, particularly in regions 

where one-to-one correspondence is ambiguous or nonexistent.

A major advance in image recognition was the development of invariant feature detectors, 

capable of reliably identifying the same distinctive image features in a manner independent 

of geometrical deformations. In particular, scale-invariant features (SIFT) are invariant to 

translation, rotation and scale changes and provide robust feature matching across a 

substantial range of addition of noise and changes in illumination [34]. SIFT features were 
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extended to 3D imaging with the 3D SIFT-Rank algorithm [35]. 3D SIFT-Rank matching 

was previously used to stitch multiple hepatic ultrasound volumes into a single panoramic 

image of a health liver [36]. Ultrasound volumes were acquired from healthy subjects with a 

breath holding protocol; thus, soft tissue deformation is minimal and modeled as rigid. 

Additionally, keypoints are encoded using a 2048-element 3D SIFT descriptor, whereas the 

memory efficient 64-element SIFT-Rank descriptor was adopted. 3D SIFT-Rank was also 

used to align left and right ventricle volumes in 4D cardiac ultrasound sequences to enlarge 

the field of view [37]. Correspondences are identified between 3D volumes at similar points 

in the cardiac cycle, where deformation is minimal and approximately rigid.

In this paper, feature-based registration aims to identify a globally optimal spatial mapping 

between 3D iUS images, based on a sparse set of scale-invariant feature correspondences. 

We demonstrate the application of a fully automated feature extraction and matching [35] 

for iUS registration to compensate for brain shift. To the best of our knowledge, it is the first 

work to apply 3D SIFT-Rank features to iUS registration in image-guided neurosurgery.

Methods

3D ultrasound images consist of image patterns that are challenging to localize or register 

across datasets. For efficient and robust registration, we adopt a local feature-based 

registration strategy, where the image is represented as a collection of scale-invariant 

features, generic salient image patches that can be identified and matched reliably between 

different images of the same underlying object. Feature-based registration operates by 

identifying a set of pairwise feature correspondences between a pair of images to be 

registered based on local appearance descriptor similarity, after which feature geometry is 

used to prune spurious, incorrect correspondences via the generalized Hough transform. 

Feature correspondences were manually validated by radiologist and non-radiologist 

physicians. Figure 1 presents a summary of the proposed feature-based registration for 

intraoperative 3D ultrasound.

Feature extraction

We use the 3D SIFT-Rank algorithm [35] to automatically extract and match features from 

3D iUS. Feature extraction seeks to identify a set of salient image features from a single 

image. Each feature f = {g, ā} is characterized by geometry g = {x̄, σ, θ} and appearance 

descriptor ā. Feature geometry consists of a 3D location x̄ = (x, y, z), a scale σ, and a local 

orientation specified by a set of three orthonormal unit vectors θ = {θ̂1, θ̂2, θ̂3}. Appearance 

descriptor ā is a vector that encodes the local image appearance. Feature extraction operates 

first by (1) detecting the location and scale of distinctive image regions and then (2) 

encoding the appearance of the image within the region. In general, feature detection 

involves identifying a set of distinctive regions {(x̄i, σi)} that maximize a function of local 

image saliency, e.g., entropy [38] and Gaussian derivative magnitude [39]. Following the 

SIFT method, we identify regions as extrema of the difference-of-Gaussian (DoG) function, 

given by Eq. (1).
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{(xi, σi)} = local argmax
x , σ

∣ f (x, kσ) − f (x, σ) ∣ (1)

where f (x̄, σ) = I (x̄) * G (x̄, σ) represents the convolution of image I (x̄) with a Gaussian 

kernel G (x̄, σ) of variance σ2 and k is a multiplicative sampling rate in scale σ.

Once a set of features has been detected, the image content surrounding each region (x̄i, σi) 

is encoded as a local appearance descriptor āi to compute feature correspondences between 

images. We adopt the 3D SIFT-Rank descriptor [35], where the image content about each 

region (x̄i, σi) is first cropped and normalized to a 11 × 11 × 11 voxel patch, after which 

local image gradients are grouped into a 64-element descriptor āi based 8 = 2 × 2 × 2 spatial 

bins and 8 orientation bins. Each image gradient sample increments a bin defined by 

location and orientation, and the bin is incremented by the gradient magnitude. Finally, this 

vector is rank ordered, where each element of āi takes on its index in a sorted array rather 

than the original gradient histogram bin value. Rank ordering provides invariance to 

monotonic deformations of image gradients and results in more accurate nearest-neighbor-

matched feature [40].

Feature matching

Let T : F → M be a spatial mapping between feature sets F = {fi } and M = {fj} in fixed and 

moving images, respectively. Feature-based registration seeks a maximum a posteriori 

(MAP) transform T* = argmaxT { p (T|F, M)}, which can be achieved by a 2-step image-to-

image feature matching process. First, a set of candidate feature correspondences (fi, fj) are 

identified between all features in the moving image and the fixed image based on minimum 

appearance descriptor difference. Descriptor difference is evaluated via the Euclidean 

distance d(āi, āj) = ||āi − āj||. Second, for each candidate matching feature pair (fi, fj), a 

hypothesis Ti j : gi → gj is estimated as to an approximate linear transform between images 

based on geometry descriptors (gi, gj). This can be viewed as maximizing the likelihood p(gi 

|Tij, gj), and as each feature incorporates a position, orientation and scale, a single pair of 

features contains sufficient information for estimating a scaled rigid transform hypothesis (or 

linear similarity transform) between images. Transform hypotheses estimated from all 

features pairs are generated and then grouped to identify a dense cluster of geometrically 

consistent pairs/transforms that are “inliers” of a single global transform at a specified 

tolerance level, where clustering is achieved via the robust mean-shift algorithm [28]. 

Intuitively, the transform hypothesis supported by the highest number of inliers represents 

the MAP transform T*, given a Gaussian mixture model over the appearance and geometry 

of individual features. The result of the matching process is the MAP transform T*, along 

with a set of inlier feature pairs represent valid image-to-image correspondences.

Feature-based registration

Deformable registration algorithms must often be initialized near the correct solution where 

initialization may take the form of an approximate, initial rigid or affine registration [41]. A 

12-parameter affine transformation was used to find a spatial transform that maps two 

ultrasound images. The most widely applied method for landmark-based non-rigid 
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registration is based on thin-plate splines as they have regularization properties that are, at 

least loosely, inspired by mechanics [42,43]. Thin-plate splines were used to get the 

deformation field between two ultrasound images.

Experiments

Patients

Nine patients (3 females, 6 males; mean age 44 years) scheduled for resection of suspected/

known primary or metastatic brain tumor in a multi-modality image-guided surgical suite 

[44] were included in this study. After histologic examination, it was determined that 4 

patients had low-grade gliomas, 4 had high-grade gliomas, and 1 had metastatic brain tumor. 

Mean tumor volume was 19.5 cm3, ranging from 0.1 to 57.0 cm3. Two of the cases were first 

operations, and seven were reoperations. All patients provided informed consent. Clinical 

details, including the demographics, pathologic diagnosis, volume and location of tumor, are 

shown in Table 1.

MR data acquisition

For preoperative planning and integration into the neuronavigation system, images were 

acquired on a 3-Tesla MR scanner after the administration of 0.1–0.2 mmol/kg of 

Gadabutrol (Gadavist, Bayer Schering Pharma, Germany). Intraoperative MR was 

performed on a 3-Tesla MR scanner (Siemens Healthcare GmbH, Erlangen, Germany). 

Postoperative brain MR protocols were identical to the preoperative acquisitions. Two 

patients did not have postoperative MR. Tumor volume was calculated on the iPlan Cranial 

3.0 software (Brainlab, Munich, Germany) using the contrast enhancing portion of the 

tumor.

Figure 2 shows the representative axial slices (T2 or T1 post-contrast) from the preoperative 

MR of the nine subjects.

US data acquisition

During surgery, two freehand ultrasound sweeps were acquired, before and after the opening 

of the dura membrane but before inducing other structural changes. After the first two 

acquisitions, the surgeon resected the tumor until what he thought was the maximum 

possible resection. For some patients, it was also possible to acquire iUS images during 

resection and prior to intraoperative MR. The ultrasound images were acquired by two 

neurosurgeons (attending and clinical fellow) with significant expertise in the use of intra-

operative tracked 3D ultrasound as it is a routine part of neurosurgical procedures in our 

institution.

The position of the ultrasound probe relative to the patient’s head was monitored via optical 

tracking using the VectorVision Sky neuronavigation system (target registration error equal 

to 1.13 ± 0.05 mm) (Brainlab, Munich, Germany) [45]. A touch-based pointer (Softouch, 

BrainLab) was used to collect a cloud of points from the surface of the head and facial 

region. A surface-based registration was used to determine the rigid body transformation 

from the coordinate system of the preoperative image to the coordinate system of the patient.
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Intraoperative ultrasound was acquired on a BK Ultrasound 3000 system (BK Medical, 

Analogic Corporation, Peabody, USA) that is directly connected to the Brainlab 

neuronavigation system. The BK craniotomy probe 8861 was used in the scanning B-mode 

with frequency range of 10–3.8 MHz. The stylus calibration error of the probe is less than 

0.5 mm.

An Epiphan USB video grabber was used to capture iUS images from the BK monitor. 

Image data were imported into 3D Slicer using OpenIGTLink [46] and reconstructed as 3D 

volumes using the PLUS library [47]. The volume reconstruction method in PLUS is based 

on the work of [48,49]. The first step of the procedure is the insertion of 2D image slices 

into a 3D volume. This is implemented by iterating through each pixel of the rectangular or 

fan-shaped region of the slice and distributing the pixel value in the closest 8 volume voxels. 

The voxel value is determined as a weighted average of all coinciding pixels. Slice insertion 

is performed at the rate the images are acquired; therefore, individual image slices do not 

have to be stored and the reconstructed volume is readily available at the end of the 

acquisition. Typically, sweeps contained between 100 and 300 frames of 2D ultrasound data 

and were reconstructed at a voxel size of 0.5 × 0.5 × 0.5 mm3. A typical example of pre- and 

partial post-resection ultrasound images and their initial misalignments is shown in Fig. 3. 

As most brain tumors have higher mass density and sound velocity than the surrounding 

normal brain [50], the ultrasound images can result in sharp interfaces as shown in Fig. 3.

Feature extraction and matching

For each 3D ultrasound image, 3D SIFT-Rank features were extracted and matched as 

explained in the “Methods” section. Figure 4 shows a collection of 3D SIFT-Rank features 

extracted from iUS acquired before opening the dura membrane.

Figure 5 shows examples of feature correspondences between iUS images acquired before 

opening the dura membrane and prior to iMR (after partial resection).

Table 2 shows the number of 3D SIFT-Rank feature correspondences found in each pair of 

3D ultrasound images. In this paper, pre-dura, post-dura, intraoperative and pre-iMR 

ultrasound images correspond to intraoperative ultrasound images acquired before opening 

the dura, after opening the dura, during tumor resection and prior to iMR, respectively.

Feature extraction and matching is a completely automated process that takes less than 30 s 

on average to extract and match features between two 3D ultrasound images using a 2.5 

GHz Intel Core 2 processor. Virtually, all feature-based alignment running time is due to 

Gaussian convolution during feature extraction, and this represents a one-time preprocessing 

step that could be significantly reduced via GPU optimization. With features extracted, 

feature-based alignment requires less than 1 s using the same processor.

Feature-based registration

3D Slicer software was used for image visualization and registration [51]. Figure 6 shows 

the alignment between the pre-resection and post-resection (prior to intraoperative MR) 

ultrasound images before registration and after nonlinear correction.
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Evaluation

Validation of SIFT-Rank correspondences via manual labeling

SIFT-Rank features were presented in the pre-resection volume. Each expert was then asked 

to manually locate the correspondence for pre-resection feature in a second volume that was 

acquired at a different stage of the surgery. The discrepancy between manually and 

automatically located correspondences in the second volume can thus be used to quantify the 

accuracy of automatic correspondence, where a low discrepancy would indicate high 

agreement between automatic and manual correspondence. A user interface for the manual 

validation was built using 3D Slicer [51]. The 3D Euclidean distance between manual labels 

in the second volume was used to determine the inter-rater variability. The 3D Euclidean 

distance between the SIFT-Rank feature and the manual labels in the second volume was 

determined to know the discrepancy between SIFT-Rank features and manual labels.

Registration validation using manual tags

The ultrasound–ultrasound alignment was defined by selecting corresponding anatomical 

landmarks in the ultrasound images. Registration accuracy was measured as a function of the 

distance between these landmarks before and after registration [52]. We use mean target 

registration error (mTRE) metric, which shows the average distance between corresponding 

landmarks. Let V1 and V2 represent two ultrasound volumes and x and x′ represent 

corresponding landmarks in the V1 and V2 respectively, then mTRE can be calculated by Eq. 

(2).

mTRE = 1
n ∑

i

n
‖T (xi) − x′i‖ (2)

where T is the deformation and n is the number of landmarks.

Qualitative registration evaluation by neurosurgeons

The quality of the alignment of the pre- and post-resection ultrasound volumes was visually 

assessed by 2 physicians with 2 and 5 years of experience in medical imaging. Cross 

sections of the post-resection ultrasound volume were overlaid on (1) the original pre-

resection ultrasound, (2) the pre-resection ultrasound after affine transform and (3) the pre-

resection ultrasound after thin-plate spline. The experts accessed the registration accuracy at 

(1) anatomical landmarks such as the sulcal patterns, vessels, choroid plexus, falx and 

configuration of ventricles and (2) the tumor boundary to subjectively determine quality of 

registration with “bad” reflecting grossly visible misregistration, “good” reflecting minor 

visible misalignments, and “great” reflecting near undetectable misregistration.

Other publicly available datasets

Our registration framework was also validated using pre- and post-resection ultrasound 

images from the BITE [53] and RESECT [54] publicly available databases. Previous works 

have reported non-rigid registration results on intraoperative 3D ultrasound using BITE: 
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RESOUND [23] presents a mTRE equal to 1.5 (0.5–3.0) mm, and, more recent, NSR (non-

rigid symmetric registration) [15] reported a mTRE equal to 1.5 (0.4–3.1) mm.

Results

Validation of SIFT-Rank correspondences via manual labeling

A total of 1620 correspondences were manually validated by eleven experts, including 

medical imaging experts, radiologists and non-radiologist physicians. Figure 7 shows the 

manual validation of feature correspondences for pre- and post-resection ultrasound, where 

71 feature correspondences were found. Given an automatically detected feature (circled in 

green), the experts were asked to locate the corresponding point in the second ultrasound 

volume (circled in orange).

For each feature correspondence, the 3D Euclidean distance was calculated between 

automatic and manually located features in the second volume. This distance measures the 

discrepancy between manually determined locations and automatically identified feature 

locations. This experiment was performed by 11 experts; each expert was randomly assigned 

a set of features to validate, and every feature correspondence was validated by at least 2 

experts. The median, maximum and minimum distances were calculated on a per-feature 

basis, and the mean distance was calculated across all features. Figure 8 shows the mean 

feature-expert distance, where each column represents feature-expert distances for all feature 

correspondences between a specific pair of ultrasound volumes. The average target 

localization distance across all patients was equal to 2.20 ± 0.43 mm. The inter-rater 

variability was found to be equal to 1.89 ± 0.37 mm.

A second experiment was performed where we presented a set of experts with the automatic 

feature from the first volume and then both the automatic and manual matched features in 

the second volume. A total of 800 feature correspondences were used in this experiment. 

The experts were asked to choose which one was a better match. To avoid bias, the experts 

were blinded to which of the displayed correspondences were identified via SIFT-Rank and 

which were manually specified correspondences. We found that experts preferred the 

automatically detected features over the manually located features 88% of the time.

Registration validation using manual tags

For each patient, 10 unique landmarks were identified. Eligible landmarks include deep 

grooves and corners of sulci, convex points of gyri and vanishing points of sulci. Table 3 

presents the number of landmarks and the mean, maximum and minimum initial 3D 

euclidean distance between landmark pairs. The mean, maximum and minimum distance 

after 3D SIFT-Rank-based affine and thin-plate spline are also presented.

The average initial mTRE for the 9 patients is 3.25 mm. This value was reduced to 1.75 mm 

using SIFT-Rank-based affine and to 1.54 mm using SIFT-Rank-based thin-plate spline. To 

determine whether the mean distances were statistically different, a variance analysis 

(ANOVA) was applied. This yielded F (1, 32) = 56.69, p < .001, indicating that the 

differences were significant. There was also a statistically significant improvement between 

the initial displacements and after the SIFT-based thin-plate spline (p < .001).
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Qualitative registration evaluation by neurosurgeons

For the 9 clinical cases, the neurosurgeons agree that the affine transform achieved 

acceptable registration in regions such as the falx and sulci (where deformation is expected 

to be small compared to the resection area) and thin-plate spline gave a good first 

approximation of the tumor boundary deformation. From a total of 20 pairs of ultrasound 

images, the alignment of 8 cases was classified as “good” and 12 cases as “great” after affine 

transform. After thin-plate spline, 4 cases were classified as “good” and 16 cases were 

classified as “great.”

Other publicly available datasets

Our registration framework was also validated using pre- and post-resection ultrasound 

images from the BITE [53] and RESECT [54] publicly available databases. Tables 4 and 5 

provide details on number of manually located anatomical landmarks of each dataset, and 

the mean, maximum and minimum initial 3D Euclidean distance between landmark pairs. 

The mean, maximum and minimum 3D Euclidean distance after SIFT-Rank-based affine and 

thin-plate spline are also presented. For each ultrasound image pair from BITE, 10 

homologous landmarks were manually located. The number of 3D SIFT-Rank feature 

correspondences used to guide the registration per 3D ultrasound image pair is also 

presented in the second column of Table 4.

The average initial mTRE value over the 13 patients from BITE dataset is 3.59 mm, which is 

reduced to 1.85 mm after SIFT-Rank-based affine and 1.52 mm after SIFT-Rank-based thin-

plate spline. To determine whether the mean distances were statistically different, a variance 

analysis (ANOVA) was applied. This yielded F (1, 24) = 9.86, p < .001, indicating a 

statistically significant improvement between the initial and the nonlinear transformation.

Our registration framework was also validated using pre-and post-resection ultrasound 

images from the RESECT [54] database.

The average initial mTRE value over the 17 patients from RESECT dataset was 3.54 mm. 

This was reduced to 1.54 mm after SIFT-based affine and 1.49 mm after SIFT-based thin-

plate spline deformation. To determine whether the mean distances were statistically 

different, a variance analysis (ANOVA) was applied. This yielded F (1, 32) = 20.42, p < .001 

indicating a statistically significant improvement between the initial and the nonlinear 

transformation.

Conclusions

We presented an efficient registration method for 3D iUS images achieved from a sparse set 

of automatically extracted feature correspondences. In this work, we focused mainly on 

intraoperative US registration in neurosurgery. The proposed methodology is particularly 

robust to missing or unrelated image structure and produces a set of feature correspondences 

that can be used to initialize more detailed and dense ultrasound registration. 3D SIFT-Rank 

features were shown to provide reasonable non-rigid registration of 3D iUS images while 

requiring low computational time for features extraction and matching. We found that our 

registration algorithm reduces the mTRE from an initial value of 3.3 to 1.5 mm (n = 9). Our 
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long-term goal is to use non-rigid registration to map pre-surgical image data (e.g., pre-

surgical MR) to intra-operative image data (e.g., iUS or MR) to correct for brain tissue 

deformations that arise from brain shift and surgical interventions.
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Fig. 1. 
Summary of feature-based registration for intraoperative 3D ultrasound images
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Fig. 2. 
Axial slices of 9 preoperative MR subject images showing tumor locations
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Fig. 3. 
Pre-resection (gray shades) and post-partial resection (warm shades) ultrasound images. 

Arrows indicate the falx and show its misalignment in images taken at different time points 

(far right)
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Fig. 4. 
3D SIFT-Rank features of a 3D ultrasound image representing a right-frontal anaplastic 

astrocytoma. Axial, sagittal and coronal views are presented from the left to the right. Each 

white circle overlaying the image represents the location x̄ and scale σ of an automatically 

detected local feature

Machado et al. Page 18

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
3D SIFT-Rank feature correspondences in a right-frontal anaplastic astrocytoma between 3D 

ultrasound images. In each of a–h white circles represent the local and scale of a single 

scale-invariant feature in three orthogonal image slices, automatically identified in two 

different ultrasound volumes (upper and lower triplets). Note the high degree of visual 

similarity in the upper and lower images, surrounding the feature of interest
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Fig. 6. 
Pre-resection (gray shades) and post-resection (warm shades) ultrasound images. A typical 

example of pre- and post-resection ultrasound images and their initial misalignments is 

shown on the left. Alignment after SIFT-Rank-based thin-plate spline (on the right) between 

two iUS images
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Fig. 7. 
3D SIFT-Rank features manual validation. The orange circles represent the locations of a 

feature as estimated manually by different human experts, and the green circles represent the 

location identified via automatic SIFT-Rank features matching. The upper row corresponds 

to three different views of the pre-dura volume, and the lower row corresponds to an 

ultrasound volume acquired prior to iMR
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Fig. 8. 
Feature-to-expert distances (mm) between each pair of ultrasound volumes and across 

different patients

Machado et al. Page 22

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Machado et al. Page 23

Ta
b

le
 1

C
lin

ic
al

 d
et

ai
ls

 o
f 

th
e 

gr
ou

p 
of

 p
at

ie
nt

s 
un

de
rg

oi
ng

 b
ra

in
 tu

m
or

 r
es

ec
tio

n

#
A

ge
G

en
de

r
D

ia
gn

os
is

L
oc

at
io

n
P

re
op

er
at

iv
e 

tu
m

or
 v

ol
um

e 
(c

m
3 )

P
os

to
pe

ra
ti

ve
 r

es
id

ua
l t

um
or

 v
ol

um
e 

(c
m

3 )

1
21

M
G

an
gl

io
gl

io
m

a
R

ig
ht

 te
m

po
ra

l
0.

1
0

2
30

F
A

na
pl

as
tic

 a
st

ro
cy

to
m

a 
W

H
O

 g
ra

de
 3

R
ig

ht
 f

ro
nt

al
18

.7
7.

9

3
69

F
M

et
as

ta
si

s 
(h

ig
h-

gr
ad

e 
se

ro
us

 c
ar

ci
no

m
a)

 (
re

cu
rr

en
t)

R
ig

ht
 f

ro
nt

al
3.

1
1.

1

4
36

M
O

lig
od

en
dr

og
lio

m
a 

gr
ad

e 
2 

(r
ec

ur
re

nt
)

L
ef

t p
ar

ie
ta

l
12

.2
0

5
61

M
G

lio
bl

as
to

m
a 

m
ul

tif
or

m
e 

gr
ad

e 
4

L
ef

t p
ar

ie
to

cc
ip

ita
l

39
.2

4.
6

6
45

M
G

lio
bl

as
to

m
a 

m
ul

tif
or

m
e 

gr
ad

e 
4 

(r
ec

ur
re

nt
)

R
ig

ht
 te

m
po

ra
l

57
.0

N
ot

 a
va

ila
bl

e

7
46

M
O

lig
od

en
dr

og
lio

m
a 

gr
ad

e 
2 

(r
ec

ur
re

nt
)

R
ig

ht
 f

ro
nt

al
11

.3
5.

0

8
27

M
D

ys
em

br
yo

pl
as

tic
 n

eu
ro

ep
ith

el
ia

l t
um

or
R

ig
ht

 f
ro

nt
al

10
.1

N
ot

 a
va

ila
bl

e

9
57

F
G

lio
bl

as
to

m
a 

m
ul

tif
or

m
e 

gr
ad

e 
4 

(r
ec

ur
re

nt
)

L
ef

t t
em

po
ro

pa
ri

et
al

24
.0

4.
1

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Machado et al. Page 24

Table 2

Number of 3D SIFT-Rank feature correspondences on pairs of ultrasound volumes acquired at different time 

points during surgery

US data Patient 1 Patient 2 Patient 7

Post-dura US/pre- iMR US 81 22 46

Pre-dura US/pre-iMR US 123 71 12

Pre-dura US/post-dura US 124 57 30

US Data Patient 3 Patient 4 Patient 8

Pre-dura US/post-dura US 84 14 37

US Data Patient 5 Patient 6

Pre-dura US/pre-iMR US 49 N/A

Post-dura US/pre-iMR US N/A 98

US Data Patient 9

Intraop US/pre-iMR US 250

Post-dura US/pre-iMR US 123

Post-dura US/intraop US 133

Pre-dura US/pre-iMR US 64

Pre-dura US/intraop US 50

Pre-dura US/post-dura US 151
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Table 4

BITE database: mTREs and range, in mm, of initial alignment between landmarks and after SIFT-Rank-based 

affine and SIFT-Rank-based thin-plate spline

Patient SIFT feature correspondences Initial After SIFT-based affine After SIFT-based TPS

1 No post-resection US

2 54 2.30 (0.57–5.42) 1.80 (0.39–5.16) 1.66 (0.38–4.07)

3 55 3.78 (2.80–5.09) 1.31 (0.63–2.33) 1.30 (0.38–2.15)

4 26 4.60 (2.96–5.88) 1.26 (0.53–3.00) 1.13 (0.42–2.74)

5 27 4.11 (2.58–5.26) 1.24 (0.59–1.77) 1.24 (0.50–1.70)

6 183 2.26 (1.36–3.10) 1.33 (0.63–2.34) 1.18 (0.59–2.11)

7 58 3.87 (2.60–5.07) 1.39 (0.56–2.31) 0.86 (0.39–1.38)

8 29 2.51 (0.67–3.93) 2.15 (0.60–3.83) 1.12 (0.49–3.08)

9 19 2.21 (1.00–4.59) 2.03 (0.70–3.95) 1.38 (0.44–3.71)

10 45 3.86 (0.98–6.68) 2.68 (0.78–5.65) 2.59 (0.72–3.51)

11 82 2.88 (0.76–8.95) 2.87 (0.74–7.95) 2.52 (0.48–3.23)

12 67 10.53 (7.85–13.06) 3.68 (0.67–8.06) 2.37 (0.14–3.74)

13 93 1.62 (1.33–2.21) 1.04 (0.53–2.76) 1.01 (0.29–2.03)

14 188 2.19 (0.59–3.99) 1.32 (0.27–2.66) 1.04 (0.25–2.40)

Grand means 3.59 (2.00–5.63) 1.85 (0.59–3.98) 1.52 (0.42–2.76)
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