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Abstract: Recently, the transformation from random to chaotic behavior in the statistics of
Fano–Feshbach resonances was observed in thulium atoms with rising ensemble temperature.
We performed random matrix theory simulations of such spectra and analyzed the resulting
statistics in an attempt to understand the mechanism of the transformation. Our simulations
show that, when evaluated in terms of the Brody parameter, resonance statistics do not change or
change insignificantly when higher temperature resonances are appended to the statistics. In the
experiments evaluated, temperature was changed simultaneously with optical dipole trap depth.
Thus, simulations included the Stark shift based on the known polarizability of the free atoms
and assuming their polarizability remains the same in the bound state. Somewhat surprisingly,
we found that, while including the Stark shift does lead to minor statistical changes, it does not change
the resonance statistics and, therefore, is not responsible for the experimentally observed statistic
transformation. This observation suggests that either our assumption regarding the polarizability of
Feshbach molecules is poor or that an additional mechanism changes the statistics and leads to more
chaotic statistical behavior.

Keywords: Fano–Feshbach resonances; random; chaotic

1. Introduction

Fano–Feshbach resonances play an important role in the control of interatomic interactions [1,2].
These resonances enable the scattering lengths of the elastic binary collisions [3–5] to be changed,
turning on and off specific interactions, making Fano–Feshbach resonances a key instrument in quantum
simulations [6–8]. In the case of lanthanide atoms, Fano–Feshbach resonances have recently attracted a
large amount of attention due to the theoretical and experimental demonstration of chaotic statistics in
the distribution of these resonances [9–11]. We note that, prior to the lanthanide, chaotic spectra were
considered in highly excited (Rydberg) states H and He [12] as well as complex atoms and ions [13].
The origin of chaos in Rydberg systems was attributed to the Coulomb interaction [14] or interaction
with external fields [15] and is likely not related to the case of lanthanide atoms.

Entropy 2020, 22, 1394; doi:10.3390/e22121394 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-4704-2297
https://orcid.org/0000-0002-4167-5085
http://www.mdpi.com/1099-4300/22/12/1394?type=check_update&version=1
http://dx.doi.org/10.3390/e22121394
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1394 2 of 8

Contrary to the case of erbium and dysprosium, in which chaotic behavior is an intrinsic property
of the atomic system, thulium atoms demonstrate both random and chaotic statistics, depending on
the temperature of the atomic ensemble [10], in experiments performed in an optical dipole trap (ODT)
when temperature was changed together with the trap depth.

Changing the temperature results in two effects: (1) on one side, resonance positions shift with
temperature [16], and (2) on the other side, new resonances associated with non-zero mutual angular
momentum in the open channel appear as the temperature rises [17–19]. Increasing resonance densities
could be responsible for the observed change in resonance statistics. Moreover, resonance shifts can
change the mutual spacing of the resonances, and therefore change the statistics. Finally, the fact
that the temperature changes simultaneously with ODT depth can cause an additional shift in the
resonance position, which can also affect the statistics. Such an additional shift in resonance position
was indeed detected in previous work [10].

In the present study, we performed random matrix theory (RMT) simulations of the Fano–Feshbach
resonances in atomic thulium and investigated the resulting transformations of resonant statistics
with changing temperature and ODT power. We show that the temperature-assisted emergence of
independent D resonances does not cause random to chaotic statistical changes with rising temperature.
Somewhat surprisingly, while demonstrating minor statistical effects within the ODT power range
investigated, the resonance shift associated with the Stark effect does not introduce a significant trend,
and therefore cannot be responsible for the experimentally observed transformation toward more
chaotic statistics.

2. Materials and Methods

The collisions of two atoms were considered in the center of a mass reference frame, where the
motion of these two atoms could be presented as a reduced mass that is falling at the origin. This way the
collision can naturally be considered from the point of view of the diatomic molecular potential. Due to
internal degrees of freedom, namely components of the total angular momentum MF, the molecule is
subject to integration within the external magnetic and electrical fields. In our experiments, each atom
was prepared in the lowest energetic state, mF = −4. The Feshbach resonance is observed when the
energy of the colliding atoms is equal to the energy of the molecular bound state, corresponding to a
different atomic mF value [20].

Such resonances can be categorized by the relative orbital momentum of the colliding particles,
or molecular orbital momentum l. Traditionally, for lanthanide atoms [9–11], the resonances are
characterized by open channels. Thus, S-resonances correspond to l = 0, and D–resonances correspond
to the next possible state of the bosons partial wave l = 2. Due to the so-called “centrifugal barrier” [21],
that value in general depends on the collision direction and is of the order from 200 to 300 µK,
while D-resonances appear only at relatively high temperatures, and S-resonances can be observed at
effectively low temperatures [10].

With this in mind, we have considered two experimentally observed [10] sets of resonances:
(1) the S-resonances obtained at 2 µK and (2) the S+D resonances observed at 12 µK. We note here that,
in the experiment, the temperature was changed together with ODT depth, and therefore the Stack
shift of the atomic levels should be considered along with other parameters.

RMT is a quite general approach that allows evaluation of the statistical properties of complex
system eigenstates [22]. It was initially developed to study complex scattering properties in nuclear
physics [23] and was recently used to examine the collisional properties of ultracold lanthanide
atoms [9,11,24]. The RMT approach uses an ensemble of random Hamiltonians, instead of an exact
Hamiltonian that is unknown, and preserves some of the statistical properties of the energy levels.
We use an adaptation of the approach presented in references [9,24] to model the molecular bound
states and corresponding Feshbach resonances of thulium atoms.
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The molecular Hamiltonian of diatomic Tm169 molecule is modeled in the atomic basis with full
atomic moments of each atom |F1, mF1〉|F2, mF2〉 together with partial wave angular momentum and
its projections |l, ml〉:

H = Hb + HZ + HS + Hcpl (1)

where Hb, Hz. and HS have only diagonal matrix entries. Hb and Hcpl correspond to the molecular
Hamiltonian of two interacting atoms in the free space, while Hz and HS stand for the Zeeman and
Stark shifts, respectively. In conjunction, Hz and HS shift the specific energy state of the two atoms.
Hcpl determines the off-diagonal entries and is responsible for anisotropic coupling originating from
the dipole-dipole and anisotropic part of the van der Waals dispersion interaction.

Following reference [24], entries of the matrix Hb were randomly sampled so that nearest-neighbor
spacings obey Exponential distribution (i.e., distribution of distances between adjacent elements in
sequence generated by Poisson process) and have mean value of ε. This corresponds to independent
resonance positions distributed according to Poisson distribution and assumes no chaos in the initial
distribution of energy levels. Taken as the perturbation term to atomic states, HS entries are given by:

HS = U(I, mF1, F1) + U(I, mF2, F2) (2)

where F is the total atom angular momentum quantum number and mF is its projection quantum
number, I is the peak intensity of the trapping laser beam, and is the Stark energy shift, which depends
on laser beam intensity and geometry as well as atom polarizability [25]. This assumes that the
experimentally determined [25] polarizability of free atoms remains the same in the weakly bound
molecular state. For each hyperfine component (i.e., F = 3 or F = 4), mF is chosen from [−F, F].
That leads to 16 states with equal probabilities corresponding to all possible total angular momentum
projections in both hyperfine sublevels (see detail in Supplementary Materials).

HZ entries are given by
HZ = MFgFµBB, (3)

where MF = mF1 + mF2, gF is the Lande g-factor depending on the hyperfine component, µB is the
Bohr magneton, and B is the magnetic field value that causes shift of initial and bound states energy
level through the Zeeman term.

Hcpl entries were sampled according to normal distribution with zero mean and vcpl variance,
where vcpl sets the strength of coupling. With the matrix entries distributed according to the Gaussian
orthogonal ensemble, this off-diagonal coupling Hamiltonian introduces chaotic component into
the random (Poissonian) distribution of the molecular bound states. In other words, the chaos is
arising from the anisotropic coupling. For each realization of the Hamiltonian H, we calculated
the corresponding eigenvalues on the magnetic field from 0 to 20 G, the same range used in the
experiment [10], and obtain a set of bound-state energies and magnetic field values. The Feshbach
resonance position was found by determining the magnetic field at which the energy of the bound
state is equal to the entrance channel energy.

3. Results

The initial state of thulium gas in our trap is F = 4, mF = −4 [26], meaning that the entrance
channel energy corresponds to two free mF = −4 atoms. Thus, we follow [9] and subtract the entrance
channel energy at each magnetic field value, so that the position of the eigenvalue crossing zero
corresponds to the Feshbach resonance position (see Figure 1).
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Figure 1. A characteristic molecular spectrum obtained using the RMT approach. The zero-energy 
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Figure 1. A characteristic molecular spectrum obtained using the RMT approach. The zero-energy
level is taken to be equal to the sum of energies of two noninteracting atoms in the dipole trap with a
projection of magnetic moments mF = −4. RMT simulation parameters used here are the same as for
simulation of ‘s-wave’ resonance statistics and summarized in the first row of Table 1.

Table 1. Summarized RMT simulation parameters and NNSFR analysis results for the case of S and D
resonances, alone, without Stark shift(s).

Mean Bound
States Energy
Spacings 2d

Coupling
Parameter,

Vcpl

Trapping
Beam Power,

W

Magnetic
Field Range

Magnetic
Field

Discretization

Number of
Simulations

Number of
Bound States Density, ρ Brody

Parameter,η

S 5.6 0.7 0 20 2000 30 500 2.1 ± 0.4 0.07 ± 0.03

D 10.7 2.9 0 20 2000 30 500 1.0 ± 0.2 0.18 ± 0.05

We characterized the chaotic behavior of the system by analyzing nearest-neighbor spacings
in the Feshbach resonance (NNSFR) spectra. In previous analyses of distributions of resonance
positions and transformation from random to chaotic statistics, the Berry–Robnik distribution [22]
was used. However, this distribution employs a complicated analytical expression and, therefore,
is not suitable for the analysis below. An alternative approach is to utilize the fully analytical Brody
distribution [9,11,24]. The Brody distribution is an empirical distribution allowing to quantify between
exponential and Wigner–Dyson distributions smoothly changing from purely Exponential at η = 0 to
purely Wigner–Dyson at η = 1.

The Brody distribution is given by [22,27]:

PB(s,η) = b(1 + η)sηexp(−bsη+1) (4)

Here, b is the normalization constant given by:
[
Γ
(
η+2
η+1

)]η+1
, where Γ is the Gamma function.

To gain insight into random to chaos transformations [10] in the statistics of Feshbach spectrum
resonances, the S and D resonances were modeled as independent spectra having their own mean
energy spacings, εS/h = 5.6 MHz for S-resonances and εD/h = 10.7 MHz for D-resonaces, respectively,
and coupling strength parameters, νS

cpl = 0.7 MHz and ηRMT
S = 0.07± 0.03νD

cpl/h = 2.9 MHz. Details of
the simulation, such as the number of included levels, discretization, etc., are summarized in Table 1.
These parameters were chosen so that the individual spectra generated using the RMT model would
reproduce the experimental S and D resonance spectra statistics with regard to nearest neighbor
spacings of Feshbach resonances’ distribution parameters, such as resonance densities, ρS

2.2µK = 2 and

ρD
12µK = 1, and Brody parameters, ηS = 0.08 and ηD = 0.21. The corresponding experimental NNSFR

empirical cumulative distribution function (ECDF) obtained for S and D resonances, alone, are shown
in Figure 2A,C. The corresponding modeled NNSFR distributions are depicted in Figure 2B,D and
have densities of resonances ρS

RMT = 2.1± 0.4G−1 and ρD
RMT = 1.0± 0.2G−1 and Brody parameters and

ηRMT
D = 0.18± 0.05, respectively.
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Figure 2. Comparison of the NNSFR distributions obtained by RMT simulations for S and D resonances.
(A) The empirical cumulative distribution function (ECDF) of NNSFR for the spectrum measured
at 2.2 µK fitted with Brody distribution (ηS = 0.08). (B) ECDF of the spectrum generated by RMT
simulations with mean energy spacing εS/h = 5.6 MHz and coupling constant νS

cpl/h = 0.7 MHz were

chosen to reproduce the density ρS
2.2µK and Brody distribution constant ηS obtained from the experiment.

(C) ECDF of NNSFR distribution for the D resonance alone, measured at 12 µK (S resonances subtracted
from all observed resonances) and fitted with Brody distribution (ηD = 0.21). (D) NNSFR ECDF of the
spectrum generated by RMT simulations with mean energy spacing εD/h = 10.7 MHz and coupling
constant νD

cpl/h = 2.9 MHz, chosen to reproduce the experimental density of D-resonances ρD
12µK and

the corresponding Brody parameter ηD. In (B,D) the shaded colors around the simulations represent
all realizations of RMT simulations, with the number of realizations being proportional to the opacity
of the shaded area.

Mixed spectrum analysis shows that the situation becomes more random, resulting in a Brody
parameter of ηRMT

S+D = 0.07 ± 0.03 (see Figure 3B). In contrast, experimental mixed spectra display
significantly more chaotic behavior, with a Brody parameter of ηS+D = 0.63 (see Figure 3A).
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Figure 3. Comparison of NNSFR distributions obtained using RMT simulations for S+D resonances.
(A) ECDF of NNSFR for the spectrum measured at 12 µK fitted with Brody distribution (ηS+D = 0.63).
(B) ECDF of the spectrum generated by the RMT model for an independent S and D set of resonances
with εs/h = 5.6 MHz and εD/h = 10.7 MHz values of mean energy spacing between molecular bound
states in corresponding Born-Oppenheimer molecular potentials.
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Previous research has proposed that the reason for statistics transformation may be a change
in the resonances caused by the Stark shift [10]. The tensor polarizability of the thulium atom is
quite substantial [25] and, therefore, can naturally repulse resonances. Thus, one could expect some
correlations between S- and D-resonance spectra due to the presence of the Stark shift in the optical
dipole trap. To address this possibility, we simulated spectra statistics using trapping beam power
values ranging from 0 to 5 W for both S- and S+D resonances and used the experimentally determined
polarizability of free atoms to calculate shifts in both opened and closed channels. The Brody parameter
was fitted for each trapping beam power level. The results (the Brody parameter η versus ODT beam
power) are presented in Figure 4. Simulation parameters and results corresponding to experimental
conditions are summarized in Table 2.
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Figure 4. Brody parameters calculated for various trapping beam powers. The blue curve represents
S-resonances only, and the orange curve represents S- and D-resonances. The gray area represents the
standard deviation of the calculated points. The red and green horizontal lines represent the Brody
parameters extracted from the experimental data for S- and S+D resonances, respectively [10].

Table 2. Summarized RMT simulation parameters and NNSFR analysis results for the S-resonances
and the sums of S+D resonances with a Stark shift at 0.15 W and a trapping beam power of 0.4 W,
corresponding with experimental conditions and results.

Mean Bound
States Energy
Spacings 2d

Coupling
Parameter,

Vcpl

Trapping
Beam

Power, W

Magnetic
Field

Range

Magnetic
Field

Discretization

Number of
Simulations

Number
of Bound

States

Density,
ρ

Brody
Parameter,
η (RMT)

Brody
Parameter, η

(Experimental)

S 5.6 0.7 0.15 20 2000 30 500 2.1 ± 0.4 0.1 ± 0.04 0.08

S+D 5.6, 10.7 0.7, 2.9 0.4 20 2000 30 500 3.1 ± 0.4 0.1 ± 0.03 0.63

4. Discussion

Figure 4 shows that, while a noticeable correlation exists with the experimental range of intensities,
the Brody parameter for each distribution does not change significantly. Thus, the experimentally
observed transformation from random to chaotic behavior could not be explained by modeling of S- and
D-resonances independently. A potential weakness in the above calculation is the use of the free atom
polarizabilities for both opened and closed channels. It is possible that the molecular polarizability
is considerably larger than the atomic polarizability, which would enhance the impact of the Stark
effect. However, this scenario is not very likely. In the simulations, the power was varied across a
much larger range than that utilized experimentally. So, if the polarizability were underestimated,
the effects would be revealed at larger power values. The Brody parameter seems, instead, to decrease,



Entropy 2020, 22, 1394 7 of 8

if it changes at all, at high ODT power values (see Figure 4). Therefore, we surmise that there is some
other mechanism responsible for the correlation between and/or within the S- and D-resonance spectra.

5. Conclusions

The RMT analysis of the Feshbach spectra of thulium atoms was performed in two cases:
(1) changes in resonance density due to the appearance of new resonances with rising temperature
and (2) changes in resonance density due to the Stark shift caused by changes in ODT power.
Assuming independent S- and D-resonances, our calculations were unable to explain the transformation
from random to chaotic statistics observed in the previously reported experiments. In all the
scenarios considered herein, the simulated Brody parameter η ≈ 0.1 is significantly smaller than the
experimentally observed value of η = 0.63. This suggests the existence of a significant correlation
between the S- and D-resonance spectra. Alternatively, it is possible, that some details of molecular
interactions not included in the rather common model appear to be important in the formation of the
chaos. Another possibility is that RMT does not provide a sufficient representation for anisotropic
interaction between Tm atoms in an ultracold regime.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1394/s1,
Supplementary Material for Random matrix theory analysis of a temperature.docx.

Author Contributions: Conceptualization, E.T.D. and A.V.A.; methodology, E.T.D. and V.A.K.; software, E.T.D.,
V.V.T., and V.A.K.; validation, E.T.D., V.V.T., V.A.K., and D.A.P.; formal analysis, E.T.D., V.V.T., V.A.K., and D.A.P.;
writing—original draft preparation, E.T.D.; writing—review and editing, E.T.D., V.V.T., V.A.K., D.A.P., and A.V.A.;
visualization, E.T.D.; supervision, A.V.A.; project administration, A.V.A.; funding acquisition, A.V.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Russian Science Foundation grant #18-12-00266.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Kotochigova, S. Controlling interactions between highly magnetic atoms with Feshbach resonances.
Rep. Prog. Phys. 2014, 77, 093901. [CrossRef]

2. Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010,
82, 1225–1286. [CrossRef]

3. Jochim, S.; Bartenstein, M.; Hendl, G.; Denschlag, J.H.; Grimm, R.; Mosk, A.; Weidemüller, M. Magnetic Field
Control of Elastic Scattering in a Cold Gas of Fermionic Lithium Atoms. Phys. Rev. Lett. 2002, 89.
[CrossRef] [PubMed]

4. Zenesini, A.; Huang, B.; Berninger, M.; Nägerl, H.-C.; Ferlaino, F.; Grimm, R. Resonant atom-dimer collisions
in cesium: Testing universality at positive scattering lengths. Phys. Rev. A 2014, 90, 022704. [CrossRef]

5. Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.-J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of
Feshbach resonances in a Bose-Einstein condensate. Nature 1998, 392, 151–154. [CrossRef]

6. Duarte, P.M.; Hart, R.A.; Yang, T.L.; Liu, X.; Paiva, T.; Khatami, E.; Scalettar, R.T.; Trivedi, N.; Hulet, R.G.
Compressibility of a fermionic mott insulator of ultracold atoms. Phys. Rev. Lett. 2015, 114.
[CrossRef] [PubMed]

7. Bloch, I.; Dalibard, J.; Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 2012,
8, 267–276. [CrossRef]

8. Baier, S.; Mark, M.J.; Petter, D.; Aikawa, K.; Chomaz, L.; Cai, Z.; Baranov, M.; Zoller, P.; Ferlaino, F.
Extended Bose-Hubbard models with ultracold magnetic atoms. Science 2016, 352, 201–205. [CrossRef]

9. Maier, T.; Kadau, H.; Schmitt, M.; Wenzel, M.; Ferrier-Barbut, I.; Pfau, T.; Frisch, A.; Baier, S.; Aikawa, K.;
Chomaz, L.; et al. Emergence of Chaotic Scattering in Ultracold Er and Dy. Phys. Rev. X 2015,
5, 041029. [CrossRef]

http://www.mdpi.com/1099-4300/22/12/1394/s1
http://dx.doi.org/10.1088/0034-4885/77/9/093901
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.89.273202
http://www.ncbi.nlm.nih.gov/pubmed/12513205
http://dx.doi.org/10.1103/PhysRevA.90.022704
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.114.070403
http://www.ncbi.nlm.nih.gov/pubmed/25763942
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1126/science.aac9812
http://dx.doi.org/10.1103/PhysRevX.5.041029


Entropy 2020, 22, 1394 8 of 8

10. Khlebnikov, V.A.; Pershin, D.A.; Tsyganok, V.V.; Davletov, E.T.; Cojocaru, I.S.; Fedorova, E.S.;
Buchachenko, A.A.; Akimov, A.V. Random to Chaotic Statistic Transformation in Low-Field Fano-Feshbach
Resonances of Cold Thulium Atoms. Phys. Rev. Lett. 2019, 123, 213402. [CrossRef]

11. Frisch, A.; Mark, M.; Aikawa, K.; Ferlaino, F.; Bohn, J.L.; Makrides, C.; Petrov, A.; Kotochigova, S.
Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature 2014, 507, 475–479.
[CrossRef] [PubMed]

12. Blümel, R.; Reinhardt, W.P. Chaos in Atomic Physics; Cambridge University Press: Cambridge, UK, 1997.
13. Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F. Statistics of electromagnetic transitions as a signature of

chaos in many-electron atoms. Phys. Rev. A-At. Mol. Opt. Phys. 1998, 58, 230–237. [CrossRef]
14. Flambaum, V.V.; Kozlov, M.G.; Gribakin, G.F. Coherent and stochastic contributions of compound resonances

in atomic processes: Electron recombination, photoionization, and scattering. Phys. Rev. A-At. Mol. Opt. Phys.
2015, 91, 052704. [CrossRef]

15. Friedrich, H.; Wintgen, H. The hydrogen atom in a uniform magnetic field—An example of chaos. Phys. Rep.
1989, 183, 37–79. [CrossRef]

16. Braaten, E.; Hammer, H.W. Universality in few-body systems with large scattering length. Phys. Rep. 2006,
428, 259–390. [CrossRef]

17. Suno, H.; Esry, B.D.; Greene, C.H.; Burke, J.P. Three-body recombination of cold helium atoms. Phys. Rev. A
2002, 65, 042725. [CrossRef]

18. Beaufils, Q.; Crubellier, A.; Zanon, T.; Laburthe-Tolra, B.; Maréchal, E.; Vernac, L.; Gorceix, O.
Feshbach resonance in d -wave collisions. Phys. Rev. A 2009, 79, 032706. [CrossRef]

19. Wang, J.; D’Incao, J.P.; Wang, Y.; Greene, C.H. Universal three-body recombination via resonant d-wave
interactions. Phys. Rev. A-At. Mol. Opt. Phys. 2012, 86, 1–8. [CrossRef]

20. Moerdijk, A.J.; Verhaar, B.J.; Axelsson, A. Resonances in ultracold collisions of Li6, Li7, and Na23. Phys. Rev. A
1995, 51, 4852–4861. [CrossRef]

21. Sakurai, J.J. Advanced Quantum Mechanics; Addison-Wesley Pub. Co.: Reading, MA, USA, 1967;
ISBN 0201067102.

22. Guhr, T.; Müller–Groeling, A.; Weidenmüller, H.A. Random-matrix theories in quantum physics:
Common concepts. Phys. Rep. 1998, 299, 189–425. [CrossRef]

23. Dyson, F.J.; Lal Mehta, M. Statistical theory of the energy levels of complex systems. IV. J. Math. Phys. 1963,
4, 701–712. [CrossRef]
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