
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

Received May 9, 2019, accepted June 19, 2019, date of publication June 24, 2019, date of current version July 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924479

Latent-Space-Level Image Anonymization With
Adversarial Protector Networks
TAEHOON KIM AND JIHOON YANG, (Member, IEEE)
Data Mining Research Laboratory, Department of Computer Science and Engineering, Sogang University, Seoul 121-742, South Korea

Corresponding author: Jihoon Yang (yangjh@sogang.ac.kr)

This work was supported by the Institute for Information and Communications Technology Promotion (IITP) Grant funded by the Korea
Government (MSIT) (A Development of Deidentification Technique Based on Differential Privacy) under Grant 2017-0-00498.

ABSTRACT Along with recent achievements in deep learning empowered by enormous amounts of training
data, preserving the privacy of an individual related to the gathered data has been becoming an essential part
of the public data collection and publication. Advancements in deep learning threaten traditional image
anonymization techniques with model inversion attacks that try to reconstruct the original image from the
anonymized image. In this paper, we propose a privacy-preserving adversarial protector network (PPAPNet)
as an image anonymization tool to convert an image into another synthetic image that is both realistic and
immune to model inversion attacks. Our experiments on various datasets show that PPAPNet can effectively
convert a sensitive image into a high-quality and attack-immune synthetic image.

INDEX TERMS Adversarial learning, data privacy, deep learning, differential privacy, generative adversarial
networks, machine learning, model inversion attacks.

I. INTRODUCTION
Stimulated by recent achievements in deep learning in dif-
ferent research domains such as video recommendation [9],
facial recognition [36], andmedical diagnosis [15], [39], [43],
many companies and researchers are interested in using their
own data to train state-of-the-art machine learning models.
Well-known benchmark datasets [10], [25], [28], [41] might
be enough for researchers to compare the performance of
their model with others, but this cannot lead to applications of
their model in the real world. Because there is no free lunch,
it is essential for companies to re-train MLmodels using their
own dataset for the best performance before applying it to
commercial services. This is where privacy issues come into
effect.

Datasets including collections of images, speech, or videos
from millions of individuals are ripe with privacy risks.
Chaudhuri et al. [6] states that simply releasing only statistics
or pre-trained machine learning models on sensitive datasets
may not be sufficient to preserve privacy. They propose objec-
tive perturbation as a privacy-preserving machine learning
algorithm design based on the sensitivity method proposed
by Dwork et al. [12]. Their algorithm is private under the
ε-differential privacy definition defined by Dwork et al.

Synthetic data generation [4], [27], [42] is another tech-
nique in which sensitive data is partially or fully replaced
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with synthetic data before it is published. Synthetic data
generation has taken the focus in recent years as a fun-
damental solution for privacy-preserving data publication.
Beaulieu-Jones et al. [4] apply an objective perturbation [6]
on ACGAN [33] to generate shareable biomedical data. How-
ever, the idea of applying objective perturbations to gener-
ative adversarial networks (GAN) [2], [5], [17], [33], [34],
[44]while training the networkwith image datasets [25], [26],
[28], [41] easily led to mode collapse [17], [34] in our prior
attempts.

Instead of doing the hard work of trying to apply objective
perturbations on GAN to generate a synthetic image in a
differentially private way, we developed an advanced mech-
anism for traditional image anonymization, adding noise to
an image. Recent research by Fredrikson et al. [16] suggests
that it is possible to recover (up to a certain degree) individual
faces from images that are blurred-out to protect anonymity
using model inversion attacks. Our approach gives a solution
to this problem by randomly manipulating features of an
image rather than its pixels. In this work, we propose a
privacy-preserving adversarial protector network (PPAPNet)
as a tool to anonymize an image at the latent space level to
simultaneously provide privacy and utility. PPAPNet consists
of three networks: protector, critic, and attacker, as shown
in Figure 1.

Latent space representation of an image is a vector that con-
tains important features of an image, such as hair, skin color,
and facial expression. Convolutional autoencoders [19], [37]
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FIGURE 1. Proposed PPAPNet. The protector attempts to anonymize the input into a new image that is realistic and immune to privacy attacks.

FIGURE 2. Comparison between image blurred at the pixel level and
image anonymized using PPAPNet on CelebA.

are widely used to extract this representation. While adding
noise to a pixel just removes details of an image, we can
directly modify important features of an image by manipu-
lating its vector representation. Radford et al. [34] demon-
strate that it is possible to change features of an image
by applying vector arithmetic to its latent space represen-
tation. Taking everything into consideration, protector is a
encoder-decoder network that encodes an image, Figure 2a,
into its vector representation (z), manipulates the z vec-
tor, and decodes the manipulated z into a new anonymized
image (Figure 2c). To train and make the anonymized image
more realistic, additional mechanisms are required. Similar
to Mariani et al. [29], we first initialize protector with a
pre-trained convolutional autoencoder to start the training
from a more stable point. Then, we adversarially train the
protector with a WGAN-GP [18] critic. The WGAN-GP
critic guides the protector to generate a realistic image by
evaluating its quality. To ensure that the anonymized output of
a PPAPNet is safe from model inversion attacks [16], we also
add another encoder-decoder network, attacker, that tries to
reconstruct the original, Figure 2a, from the anonymized
image, as shown in Figure 2c. During the training process
of a PPAPNet, protector defends from an attacker’s inversion
attack by adding noise to the z vector. However, simply
adding random noise with various scales could allow attacker
to successfully reconstruct the original image, as shown
in Figure 3a. In addition, this could even lead protector to
a mode collapse, as shown in Figure 3b. PPAPNet has a
noise amplifier inside protector that learns optimal noise
scaling parameters for each dimension of the z vector. A noise
amplifier helps protector create images that are both realistic

FIGURE 3. Original image (left), anonymized image from PPAPNet
(middle), and reconstructed image from attacker (right) when trained
with CelebA.

and immune to privacy attacks, as shown in Figure 3c. The
main contributions of our work are as follows:
• We propose an image anonymization deep neural net-
work, PPAPNet, that transforms an image into another
synthetic image by adding optimized noise to the origi-
nal image’s latent space representation.

• We introduce an overall training strategy that enables
PPAPNet to generate a realistic image that cannot be
distinguished from real images in the same domain and
that protects the sensitive image from privacy attacks.

• We evaluate the proposed PPAPNet methodology with
various image datasets.

Experimental results empirically demonstrate that our
proposed PPAPNet leads to a higher level of image
anonymization.

II. BACKGROUND
In this section, we briefly introduce important concepts of
model inversion attacks, generative adversarial networks,
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and differential privacy mechanisms. Although our work
is not differential privacy guaranteed, we utilize the
noise generation concept of Laplace and the Gaussian
mechanism [12]–[14] in our noise amplifier.

A. MODEL INVERSION ATTACK
Fredrikson et al. [16] explore privacy issues in modern
machine learning APIs, showing that confidential informa-
tion can be exploited by adversarial clients in order to mount
model inversion attacks. They also provide model inversion
algorithms that can be used to infer sensitive features from
decision trees or to extract images of training subjects from
face recognition models.

The deblurring attack [16] is a type ofmodel inversion (MI)
attack that can reconstruct the original image from the blurred
image. Let us assume an adversary has an image containing
a blurred-out face and wishes to learn the identity of the
corresponding individual. The adversary uses the blurred
image as side information in a series of MI attacks to recover
the original image up to a certain degree such that it can be
classified correctly with face recognition models. This means
that simply blurring an image at the pixel-level is vulnerable
toMI attacks. In this paper, wemainly focus on the deblurring
attack and propose an alternative way to anonymize an image
that is different from simply blurring and noising.

B. GENERATIVE ADVERSARIAL NETWORKS
In recent years, generative adversarial networks (GANs) [2],
[5], [17], [33], [34], [44] have been used as powerful tools
to generate realistic images. The underlying idea is to train a
generator and a discriminator in an adversarial mode. This
idea is the most powerful concept so far among genera-
tive models. GAN is a two-player minimax game between
a generator and a discriminator. From another perspective,
GAN tries to minimize a distance or divergence between
the model distribution (Pθ ) and the real distribution (Pr ).
Nowozin et al. [32] states that any f -divergence can be used
as the objective function. Using an appropriate f -divergence
prevents mode collapse, which is a well-known problem
when GAN’s generator only draws one or a few foolish
examples. Wasserstein GAN [2] and its improved version
WGAN-GP [18] use the Earth Mover (EM) distance for the
objective function and achieve state-of-the-art performance.

GANs are also widely used in the area of style trans-
fer [7], [22], [23], [45]. Kim et al. [23] use deep convolutional
encoder-decoder networks as generators to find mappings
between two different image domains and a DCGAN [34]
discriminator to evaluate the quality of mapped images. Parts
of our work are focused on finding a certain mapping that
can convert an image to another image in the same domain.
Similar to Kim et al. [23], we use deep convolutional encoder-
decoder networks to find this mapping. For better perfor-
mance, we use aWGAN-GP critic (discriminator) to stabilize
the training process. In Section 4, we also show that simply
using this mapping to anonymize an image makes it vulnera-
ble to an MI attack that tries to find the mapping between the

original and the anonymized image using denoising autoen-
coders. We thus emphasize the importance of latent-space-
level anonymization with a noise amplifier.

C. DIFFERENTIAL PRIVACY
Differential privacy was first introduced by Dwork et al.
[12]–[14] and has been a strong standard for privacy guar-
antees for algorithms on aggregate databases. According to
Dwork et al. [12], differential privacy intuitively captures the
increased risk to one’s privacy incurred by participating in a
database. It was originally defined for two adjacent datasets
that differ by a single element:
Definition 1: A randomized mechanism, M : D → R,

with domainD and rangeR satisfies (ε, δ)-differential privacy
if for any two adjacent inputs d, d ′ ∈ D and for any subset of
outputs S ⊆ R, it holds that:

Pr[M (d) ∈ S] ≤ eε Pr[M (d ′) ∈ S]+ δ (1)

Laplace and Gaussian noise mechanisms are commonly
used to approximate a deterministic real-valued function,
f : D→ R, via additive noise calibrated to f ’s sensitivity sf ,
which is defined as the maximum of the absolute distance
|f (d)− f (d ′)|, where d and d ′ are adjacent inputs.
The Laplace noise mechanism is defined by:

M (d) , f (d)+ Lap(0, b) (2)

where Lap(0, b) is the Laplace distribution with location
0 and scale b. This satisfies ε-differential privacy if b
is sf

ε
[12].

The Gaussian noise mechanism is defined by:

M (d) , f (d)+ N (0, σ 2) (3)

whereN (0, σ 2) is a normal (Gaussian) distributionwithmean
0 and standard deviation σ . This satisfies (ε, δ)-differential
privacy if σ is

√
2 log(1.25/δ) sf

ε
[12].

An interesting part of the Laplace and Gaussian noise
mechanisms is that we can easily manage the intensity of
noise by changing the privacy budgets ε and δ. Since the
location or mean is always set to 0, it is easy to amplify the
random noise sampled from Lap(0, 1) or N (0, 1) to the noise
sampled from Lap(0, b) or N (0, σ 2). This is the key concept
of the noise amplifier inside the proposed PPAPNet.

III. PPAPNET
Recent advances in deep learning threaten traditional image
anonymization techniques with deep learning based MI
attacks that try to reconstruct the original image from the
anonymized image. The proposed PPAPNet methodology
aims to convert an image into another synthetic image that is
both realistic and immune to MI attacks. The model structure
is depicted in Figure 1. PPAPNet consists of the protector P,
the attacker A, and the critic C . P obtains an image x and
anonymizes it into a new image x̃. A tries to reconstruct x
from x̃. C evaluates the quality of x̃.
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Algorithm 1 PPAPNet Training With Default Values of λ = 10, ncritic = 5, nattacker = 1, α = 0.0001, β1 = 0.5, and β2 = 0.9.
Require: Initial protector parameters, θ0, initial critic parameters, wc0, and initial attacker parameters, wa0.
Require: Number of critic iterations and attacker iterations per protector iteration, ncritic and nattacker .
Require: Batch size, m, gradient penalty coefficient, λ, Adam hyperparameters, α, β1, and β2.
1: while θ has not converged do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample real data sets x ∼ Pr and x ′ ∼ Pr and a random number ε ∼ U [0, 1].
5: x̃ ← Pθ (x)
6: x̂ ← εx ′ + (1− ε)x̃
7: L(i)c ← Cwc(x̃)− Cwc(x ′)+ λ(‖∇x̂C(x̂)‖2 − 1)2

8: wc← Adam(∇ 1
m

∑m
i=1 L

(i)
c ,wc, α, β1, β2)

9: for t = 1, . . . , nattack do
10: for i = 1, . . . ,m do
11: Sample real data set x ∼ Pr .
12: x̃ ← Pθ (x)
13: L(i)a ← ‖x − Awa(x̃)‖2
14: wa← Adam(∇ 1

m

∑m
i=1 L

(i)
a ,wa, α, β1, β2)

15: for i = 1, . . . ,m do
16: Sample real data set x ∼ Pr .
17: x̃ ← Pθ (x)
18: L(i)p ←−Cwc(x̃)− ‖x − Awa(x̃)‖2
19: θ ← Adam(∇ 1

m

∑m
i=1 L

(i)
p , θ, α, β1, β2)

A. MODEL ARCHITECTURE
The protector P and the attacker A take an image of size
n × n × k and feed it through an encoder-decoder pair. The
encoder parts ofP andA are composed of 5 convolution layers
with 5 × 5 and a stride size of 2, each followed by a batch
normalization [21] and a leaky ReLU [40]. The decoder part
is composed of 5 deconvolution (transposed convolution) [31]
layers with 5 × 5 and a stride size of 2, each followed by a
batch normalization and ReLU [30]. For the last activation
function of the decoder, we used a sigmoid instead of ReLU to
set the final image output range between [0, 1]. The protector
network also has an additive noise layer and a noise amplifier
between the encoder and the decoder. The final output of the
encoder is connected to a fully-connected layer and reduced
to a 128-dimensional vector z. The noise amplifier adds noise
to z and projects it to the same size as the decoder input.

The critic C takes an image of size n× n× k and decides
whether it is real or fake. C is composed of 4 or 5 convolution
layers with 5×5 and a stride size of 2, each followed by a layer
normalization [3] and a leaky ReLU. We use 5 convolution
layers for an image of size 64×64×3 and 4 for other images.
The discriminator has an additional fully connected layer to
follow the Wasserstein distance metric.

B. ADVERSARIAL TRAINING
To analyze the performance of A, we define a new term,
privacy loss Lpriv, as the reconstruction loss between x and
x̃. We apply the l2 loss for the reconstruction loss of Lpriv.

Lpriv = ‖x − x̃‖2 (4)

The critic C attempts to label x ′ as real and x̃ as fake.
Although x and x ′ are both sampled from the real data dis-
tribution, we distinguish x and x ′ for better understanding
of our critic loss Lc. For better convergence of Lc, we use
WGAN-GP’s critic loss [18] instead of the original GAN’s
discriminator loss [17]. All considered, our final critic loss
becomes:

Lc= E
x̃∼Pp

[C(x̃)]− E
x ′∼Pr

[C(x ′)]+λ E
x̂∼Px̂

[(‖∇x̂C(x̂)‖2 − 1)2]

(5)

where Pr is the data distribution and Pp is the model distri-
bution implicitly defined by x̃ = P(x). Gulrajani et al. [18]
apply a gradient penalty to the WGAN critic with x̂ = εx ′ +
(1− ε)x̃ where ε is a random sample from U[0, 1]. We apply
a gradient penalty on C with λ = 10.

The protectorP has to return an image that maximizesC(x̃)
and Lpriv.

LP = − E
x̃∼Pp

[C(x̃)]− Lpriv (6)

The attacker A just tries to minimize Lpriv.

LA = Lpriv (7)

When the PPAPNet modules are initialized, all the weights in
the protector, attacker, and critic are fine-tuned by carrying
out an adversarial training in Algorithm 1.When the protector
parameter θ converges, P is optimized to convert an image
into a synthetic image that is realistic enough to fool the
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TABLE 1. Noise amplifier parameters used in our experiments. PPAP-None is a model without any additive noise mechanism. Normal stands for a normal
(Gaussian) distribution and Laplace stands for a Laplace distribution. se is the approximate sensitivity of the protector’s encoder output.

FIGURE 4. Samples from PPAPNet trained on CelebA. PPAPNet
anonymizes an image (top) into a new image (bottom).

critic C and strong enough to defend against model inversion
attacks by the attacker A.

C. NOISE AMPLIFIER
The noise amplifier 6 is placed in between the encoder EP
and the decoder DP of the protector. EP encodes an image in
its latent space representation in the form of a d-dimensional
vector zd . For each dimension of zd , 6 tries to find the
optimal scale factor σ ∗ for random noise n sampled from a
probability distribution. For σ ∗, 6 manipulates zd forming
z̃d where z̃d = zd + σ ∗n and returns z̃d to DP. 6 is a neural
network that approximates σ ∗ with a noise amplifier function
σ and its d-dimensional weight parameters. As wementioned
in Section 2, we utilized the Laplace and Gaussian noise
mechanisms to design our noise amplifier.We canmake noise
sampled from Lap(0, 1) to follow Lap(0, b) by multiplying
the scale factor b by the original noise. Noise sampled from
N (0, 1) also follows N (0, σ ) if it is multiplied by σ . In our
experiment, wemainly use two types of6, σ (se; ε) =

se
ε
with

a weight parameter of ε and σ (se; ε, δ) =
√
2 log(1.25/δ) se

ε
with weight parameters ε and δ where se is the approximate
sensitivity of EP.

It is impossible to find the exact sensitivity of the unknown
EP during the training. Instead, we initialize the encoder
EP and decoder DP with a pre-trained autoencoder using
all the images in the training set. In this work, we apply
the l2 loss minimization for the autoencoder training. After
initialization, we freeze all the layers ofEP so that the weights
of EP will not change during the training. The approximate
sensitivity se is defined by:

se = max
xi∼St

EP(xi)− min
xj∼St

EP(xj) (8)

where xi and xj are images sampled from the training set, St .
Another way to cope with the sensitivity issue is to normalize
z in the range [−1, 1] using tanh. This allows us to assume
that the upper bound of EP is 2 and use it as se. In Section 4,

TABLE 2. Detailed information about datasets.

TABLE 3. Inception scores on unsupervised CIFAR-10.

we evaluate two sensitivity approximation techniques and
their privacy-preserving performances.

Now, the ith value of the modified vector z̃i becomes:

z̃i = zi + σ (se)n0 (9)

where the zi is the ith value of the original vector zd , n0 is
the initial noise, se is the approximate sensitivity, and σ is the
noise amplifier function. The values of ε and δ are initialized
to 1 and 1e−8, respectively, and optimized throughout the
training using gradient descent in the direction of maximiz-
ing Lpriv.

D. IMPLEMENTATION DETAILS
Our implementation is done using TensorFlow [1].We trained
our network with the Adam optimizer [24] with a learning
rate of 0.0001, β1 = 0.5, and β2 = 0.9. We trained our model
using a single NVIDIA Titan V GPU with a mini-batch size
of 256. In our experiments, we use models with 5 different
types of initial noise n0 and noise amplifier function σ listed
in Table 1. For CelebA and LSUN bedroom, we center-
cropped and resized images to 64 × 64 × 3. More details
regarding each dataset are shown in Table 2. We only use test
images for fair evaluations and demonstrations.

IV. EXPERIMENTS
We experimentally demonstrate our model’s performance
using the MNIST [26], the CIFAR-10 [25], the CelebA [28],
and the LSUN [41] bedroom datasets. We first evaluate the
sample diversity of PPAPNet with an Inception score [35]

84996 VOLUME 7, 2019



T. Kim, J. Yang: Latent-Space-Level Image Anonymization With Adversarial Protector Networks

FIGURE 5. Samples from PPAPNets trained on CIFAR-10. Original
images (top), anonymized samples (middle), and reconstruction
results (bottom) of the adversary are shown in each subfigure.

on unsupervised CIFAR-10. We also show the importance
of the noise amplifier in PPAPNet by comparing the pri-
vacy gain with different experimental setups. Sample images
anonymized with PPAPNet are provided in Figure 7.

A. SAMPLE DIVERSITY ON UNSUPERVISED CIFAR-10
We measure the Inception score of PPAPNet trained with
unsupervised CIFAR-10 and compare with other published
GAN models. In Table 3, the Inception scores of our models
are much lower than those of all other published models.
Low Inception scores usually mean higher rates of mode col-
lapse. However, we do not find significant instances of mode
collapse in our models. Samples from PPAPNets trained on
CIFAR-10 are shown in Figure 5. Considering the fact that
our basic model structure is similar to DCGAN [34] and
WGAN-GP [18], we find the main cause of this phenomenon
is our latent-space-level anonymizationmechanism. Since we
use an encoder that is pre-trained with an autoencoder to
extract important features of an image, the output vector z of
the protector’s encoder contains meaningful features that can
distinguish an image from others in the same domain. How-
ever, themain objective of the anonymization is tomanipulate
distinct features of an image to protect the privacy of an
individual from adversarial attacks. PPAPNet accomplishes
this objective bymaking the original feature indistinguishable
from others with its differential privacy (DP) oriented additive

noise mechanism. This makes the Inception network work
harder to correctly classify the anonymized image lowering
the Inception score.

B. PRIVACY GAIN
To evaluate the privacy preserving performance of different
noise amplifiers, we use a denoising autoencoder as an adver-
sary to perform attacks on the PPAPNets shown in Table 1.
The adversary tries to reconstruct the original image from
the PPAPNet-anonymized image. The term privacy gain
is the l2 loss between the original image and the recon-
structed image. Higher privacy gain means better anonymiza-
tion performance. In our experiment, we use the attacker
A’s model architecture for the adversary and train it using
the MNIST, CelebA, and LSUN bedroom datasets. After
training the adversary with training images and its PPAPNet-
anonymized version, we measure the privacy gain of each
model in Table 1 with test images. The results are shown in
Tables 4a, 4b, and 4c. Models with sensitivity approximation
mechanisms (8) perform best in most of the cases with the
exception ofMNIST. The difference between PPAPNet-None
and other models show that the noise amplifier module is an
essential part of the PPAPNet architecture.

We also train the adversary with blurred CelebA images to
visualize the degree of privacy gain. We train the adversary
on different sets of images blurred with a Gaussian filter
with different standard deviations (σ ) ranging from 1 to 15.
Evaluated with the trained adversary and blurred test images,
the Gaussian filter with σ = 15 shows 1.24 × 10−2 of
privacy gain, while the maximum privacy gain of PPAPNet
trained on CelebA is 5.53× 10−2 (PPAP-se-(ε) in Table 4b).
More detailed relationships between values of σ and their
corresponding privacy gains are demonstrated in Figure 6.
The overall results state that simply blurring an image at
the pixel-level is vulnerable to reconstruction attacks with
denoising autoencoders and that our proposed PPAPNet is a
solution.

C. ANONYMIZED SAMPLES
We present the anonymized image samples along with their
original and the reconstruction attack result of an adver-
sary (explained in Section 4.2) in Figure 7. Although every
PPAPNet model successfully generates realistic outputs, their
performances on privacy preservation are quite different. The
Adversary trained against PPAP-None easily finds the inter-
nal mapping of PPAP-None and successfully reconstructs the

FIGURE 6. Blurred images with Gaussian filters (top) and images reconstructed by the adversary (bottom). The σ of the Gaussian filter ranges from
1 to 15 (left to right). The minimum amount of privacy gain is 6.26× 10−3 (σ = 1) and the maximum is 1.24× 10−2 (σ = 15).
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FIGURE 7. Samples from PPAPNets trained on various datasets. Original images (top), anonymized samples (middle), and reconstruction results (bottom)
of the adversary are shown in each subfigure.

TABLE 4. Privacy gain on different datasets.

original image, while the adversary trained against PPAPNet
with the noise amplifier only omits similar meaningless
images. Even if the adversary finds the internal mapping and
reconstructs the modified feature vector z̃ it fails to extract the
real feature vector z from z̃.

V. CONCLUSION
In this work, we present a methodology to anonymize the
latent space representation of an image. In the proposed
PPAPNet framework, the protector and the attacker are
trained in adversarial mode to find the best way to protect the
image from possible privacy risks. The noise amplifier inside
the protector plays an important role in noise optimization
for effective image anonymization. We evaluate the proposed
PPAPNet with different metrics and datasets to demonstrate
its powerful performance. In the future, we hope to apply the

latent-space-level anonymization methodology to a broader
range of data domains including video, text, and speech.
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