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Norsk sammendrag 

MS er en kronisk nevrologisk sykdom som rammer sentralnervesystemet og medfører 

varierende grad av uførhet. MS er den vanligste årsaken til uførhet blant unge voksne foruten 

ulykker, og blir typisk diagnostisert i tidlig voksen alder. De siste 25 årene har vi gjennomgått 

et paradigmeskifte innen MS behandling, der utviklingen av effektive bremsemedisiner har 

medført en betydelig bedring av prognose for de med MS. I Norge i dag lever over 12 000 

personer med MS, omtrent halvparten av disse mottar behandling rettet mot å bremse 

sykdomsprogresjonen. Det har vært et økende fokus på tidlig diagnostikk og tidlig effektiv 

behandling, mens det også i de siste par årene har vært rettet spesielt fokus mot 

persontilpasset behandling.  

MR har over de siste tiårene fått en stadig større betydning for både diagnostikk og 

oppfølging av personer med MS. Tidlig på 80-tallet ble det vist at MR maskiner hadde en 

overlegen evne sammenliknet med konvensjonelle CT maskiner, til å oppdage de typiske 

lesjonene som kan oppstå i hjernen og ryggmargen hos personer med MS. Store 

forskningsgrupper har siden 80-tallet hatt stort fokus på MR forskning innen MS. Det er den 

visuelle undersøkelsen av MR bildene gjort av en erfaren radiolog eller nevroradiolog, som 

gir vurderingen av MR bildene som utføres som ledd i utredning og oppfølging av personer 

med MS. I tillegg så er det de siste årene, gjennom MAGNIMS konsortiet, blitt definert gitte 

kriterier for spesielt diagnostiseringen av MS. Det er imidlertid et kjent paradoks at de typiske 

MR forandringene man ser hos MS pasienter ikke nødvendigvis korrelerer med graden av 

uførhet hos pasienten, også kjent som det «klinisk-radiologiske paradokset». 

I mitt doktorgradsarbeid har jeg undersøkt ulike MR markører hos personer med MS 

som er i tidlig fase av sykdommen. Vi har fulgt 76 nydiagnostiserte personer med MS, fra 

kort tid etter diagnose og fem år frem i tid. Pasientene har blitt undersøkt i 

forskningssammenheng ved totalt tre anledninger. Både klinisk nevrologisk undersøkelse, 

kognitive tester, MR undersøkelse, selvrapporteringsskjemaer, forskningsundersøkelser, 

øyeundersøkelser, blodprøver og genetiske analyser har blitt utført. 

I min første artikkel benyttet vi data fra første undersøkelsestidspunkt med en 

funksjonell MR sekvens og undersøkte sammenhenger med depressive symptomer og grad av 

fatigue. Vi undersøkte spesifikt hvordan aktiviteten i hjernens hvilemodusnettverk ble 

påvirket av grad av fatigue og depressive symptomer. I et forsøk på å dele opp effektene av de 

ulike symptomene, benyttet vi en prinsipalkomponent-analyse på våre data. Vi fant at det var 

en sammenheng mellom økte symptomer av både fatigue og depressive symptomer med en 
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overaktivering av hjernens hvilemodusnettverk. I tillegg fant vi, ved hjelp av 

prinsipalkomponent-analysen, en sammenheng for en undergruppe av studiedeltakerne der 

liten byrde av depressive symptomer og høy grad av fatigue var assosiert med økt aktivitet i 

hjernens hvilemodusnettverk. 

I min andre artikkel etablerte vi en maskinlæringsmodell for estimering av hjernealder 

ved hjelp av 1118 MR mål fra strukturelle sekvenser, basert på 3208 friske kontroller, til å 

kunne appliseres på hele vårt longitudinelle MS materiale. Ved hjelp av ytterligere 235 

matchede friske kontroller beregnet vi, for hver MR undersøkelse fra MS deltakerne, om 

hjernen tilsvarte en yngre, lik eller eldre hjerne enn tilsvarende den kronologiske alderen til 

deltakerne med MS. Vi laget en egen estimeringsmodell for hele hjernen, i tillegg til syv 

estimeringsmodeller for spesielle hjerneområder for å kunne undersøke også de regionale 

forskjellene i hjernealder hos personene med MS. Våre resultater viste at personer med MS 

som i gjennomsnitt var 40 år, ved hjelp av våre modeller for å estimere hjernealder i snitt var 

4.4 år eldre enn deres kronologiske alder. I tillegg viste vi at ved hjelp av de longitudinelle 

dataene kunne estimere at hjernealdringen i gjennomsnitt var økt med 41% sammenliknet 

med forventet kronologisk aldring. Vi fant også at det var store regionale forskjeller i estimert 

hjernealder for personene med MS, der lillehjernen og subkortikale områder syntes å eldes 

tidligere og mer markant. 

I min tredje artikkel benyttet vi de allerede etablerte hjernealderestimatene til 

deltakerne med MS, og undersøkte om vi fant noen sammenhenger med de kognitive testene 

som ble utført i forløpet av hele studien. Vi fant signifikante forbedringer av de kognitive 

testresultatene over tid, som også i stor grad kan tilskrives læringseffekter. Vi undersøkte de 

overordnete kognitive domene for eksekutive funksjoner, hukommelse og 

prosesseringshastighet. Vi fant en signifikant sammenheng der tregere prosesseringshastighet 

var assosiert med økt hjernealder. Til sammenlikning, fant vi også at reduserte hastigheter for 

en annen test for prosesseringshastighet var signifikant assosiert med mindre volumer av 

thalamus. Talamus er kjent for å være et område i hjernen som ofte viser sammenheng 

mellom størrelsen av talamus og spesielt kognitive funksjonstester, noe vi også fant i våre 

resultater. 

I alle mine artikler har vi funnet flere mulige MR markører som potensielt kan 

benyttes i en klinisk setting for å bedre hjernehelsen til personer med MS. Videre studier er 

nødvendig for å kunne bekrefte og utvide våre funn.  
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1. Preface 
 
 
 
 

An investment in knowledge pays the best interest 
(Benjamin Franklin, “The Way to Wealth”, 1758) 

 
The greater our knowledge increases, the more our ignorance unfolds 

(John F. Kennedy, “We choose to go to the Moon…”, 1962) 
 
 
 
 

The technological advances in recent decades have enabled researchers to exploit increasingly 

more of the data acquired from magnetic resonance imaging (MRI) scans of the human brain. 

However, to translate this vast body of information into clinical use in order to improve the 

brain health of people with multiple sclerosis (MS) has proven a major challenge. 

 

I faced the challenge of translating MRI data to something meaningful during the period when 

I conducted my research as a doctoral candidate from December 2015 to 2020 at the Institute 

of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway. This thesis is based 

on my investigation of different MRI markers in the brain, specifically brain connectivity 

based on functional MRI and estimated brain age using state-of-the-art machine learning 

methods. 

 

I hope you enjoy reading this thesis. 

 

 

Einar August Høgestøl 

 

Oslo, 19 March 2020 
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4. Introduction 

4.1   The history of MS 

One of the first recorded multiple sclerosis (MS) relapses was that of Lidwina van Shiedam, 

who fell while skating on 2 February 1396, when she was 15 years old (1). The fall itself and 

her broken rib are not the interesting part of the record, but rather the subsequent neurological 

symptoms of walking difficulties, pain in her teeth, and headache in the wake of the 

aforementioned injury, which are well documented. Before her death on 14 April 1433, 

Lidwina van Shiedam had experienced several periods of increased neurological symptoms, 

but also periods with partial improvements were recorded. Those periods with improved 

walking and vision were thought to have been due to contact with ‘God’ and ‘the Angels’, 

and she was therefore later made a Saint by the Church (1). 

Jean Cruveilhier and Robert Carswell were the first persons to describe and illustrate 

MS, in 1835 and 1838 respectively (2). Later, the renowned Dr Jean-Martin Charcot named 

the disease ‘sclerose en plaques’ after finding plaque in the post-mortem brain of a young 

female who had previously been treated for tremor and difficulty speaking, and thereafter he 

linked the pathological findings to the neurological symptoms (3). The name of the disease 

describes the early descriptions of pathological changes with multiple hard lesions (sclerosis) 

in the central nervous system (CNS). The myelin sheath covering the axons was discovered in 

1878 (4). In the 19th century, a new study concerning the aetiology of MS shifted the 

understanding of MS as a viral infection to MS developing because of an immune response 

when Thomas Rivers successfully induced experimental autoimmune encephalomyelitis 

(EAE) in rodents and monkeys (4, 5). 

In 1959, it was discovered that the B and T-cell lymphocytes were closely associated 

with EAE, and later the human leukocyte antigen (HLA) locus was linked to MS in 1972 (6-

11). When it was found that relatives of patients with MS were more often affected by the 

HLA risk factor than were the general population (12), the race for the genetic underpinnings 

intensified and finally led to the first genome-wide association study in MS, in 2007 (13). 

Today, the updated genetic MS map includes 238 genetic variants that are associated with MS 

(Fig. 1) (14). As history has revealed, many important research milestones have enlightened 

us on the ‘why’ and ‘how’ questions of MS. 

However, those who treat people with MS see how debilitating the disease can be 

despite extensive MS research efforts during the past centuries. The next research 

breakthroughs will hopefully improve overall MS care by shedding light on myelin repair 
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drugs, personalized treatment approaches, improved biomarkers, and the application of 

artificial intelligence utilizing big data (15). 

 

 

Fig. 1. The current genetic map of MS. The map, from 2019, is based on 47,351 MS subjects and 68,284 

healthy controls. Reproduced with permission from the International MS Genetics Consortium (14), in 

accordance with International Public License CC-BY-ND 4.0. 

 

4.2   Epidemiology 

In 2013, MS International Federation estimated that about 2.3 million humans in the world 

had MS, resulting in a global prevalence of 33 per 100,000 (16). The MS International 

Federation expects to have a comprehensive update of its atlas of MS finished in 2020. 
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Norway is among the countries with the highest reported prevalence of MS, with 203 per 

100,000 persons, although this is still lower than the prevalence in the Orkney Islands, 

Scotland, which is 403 per 100,000 (17, 18). Fig. 2 shows how the reported incidences of MS 

vary worldwide. Thus, both the prevalence and incidences of MS vary geographically around 

the world. 

 

 
Fig. 2. Worldwide incidences of people with MS in 2013. The estimates were based on reported numbers 

for the years 2008 to 2012 inclusive. The colour codes indicate incidences per 100,000 inhabitants. 

Reproduced with permission from the Multiple Sclerosis International Federation (16). 

 

Earlier demographic data showed increased MS susceptibility in white adults (19), but this 

finding has been challenged by recent reports of increased prevalence in black adults living in 

the USA (20, 21). 

Although the latitude has not been reported as having an effect on MS prevalence in 

Norway (18), previous epidemiologic reports have provided evidence of a gradient of 

increasing MS risk from the Southern Hemisphere to the Northern Hemisphere (22). 
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Furthermore, two publications, dating from 2010 and 2011, report findings of latitude effects 

in some parts of the world, but not in others (23, 24). 

An increasing female-to-male ratio has been reported for people with MS, from 1.4:1 

in 1955 to 2.3:1 in 2000 (22). The main reason for the increased gender ratio is believed to be 

increased smoking by females in the 20th century, while reproductive factors are 

hypothesized to contribute to the gender ratio (22). 

 

4.3   Risk factors in MS 

To date, a specific trigger for MS is unknown, although several risk factors have been 

identified as contributing to MS susceptibility without being the cause of the development of 

MS (Fig. 3) (25). The relationship between MS and exposure to sunlight has been extensively 

investigated (26, 27). Several studies have demonstrated a relationship between the 

prevalence of MS and the disease activity of MS, serum vitamin D levels, exposure to 

ultraviolet (UV) sunlight, and sun exposure (27-31). 

The optimal blood levels of 25-OH vitamin D for MS patients is still subject to debate, 

although a higher level than considered optimal for the general population is widely accepted 

in the latest studies (32-34). The resulting vitamin D serum levels for people with MS is a 

complex interaction of several factors, such as the expected variation over time, exposure to 

sunlight, immunoregulatory effects, and intake through diet (26, 32). New large randomized 

controlled trials on vitamin D supplements in MS will hopefully provide more knowledge of 

how to improve MS care with vitamin D supplements. 
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Fig. 3. Some of the environmental factors that contribute to the risk of MS. Known factors that affect 

the risk of developing MS include exposure to sunlight, viruses such as the Epstein-Barr virus, smoking, 

and obesity. Source: Multiple Sclerosis Research Group, Oslo University Hospital. 

 

Smoking cigarettes increases the risk of developing MS (increased odds ratio of 1.54) (26, 35-

38). There is also moderate evidence indicating an accelerated disease course for MS for 

people who smoke (26, 35). 

Obesity (body mass index (BMI) > 30) in early life increases a person’s risk of 

developing MS by a factor of two (37). Further research is needed to validate to what extent 

the increased risk observed in young obese persons is still evident after accounting for lower 

vitamin D levels (37). 

The Epstein-Barr virus is considered a strong risk factor for the development of MS, 

but the mechanisms are not known (37, 39-42). In an article published in 2016, Ascherio et al. 

estimate that almost two-thirds of future MS cases could potentially be avoided by reducing 

smoking, Epstein Barr Virus (EBV). infection, and obesity in the young, and by taking 

vitamin D supplements (37). There is now a collective body of evidence that should 

encourage societies to focus on preventing these modifiable risk factors for

The most recent International MS Genetics Consortium (IMSGC) genetic study found 

that 238 genetic variants were significantly associated with MS, each of which very modestly 

contributes to MS susceptibility (14) (Fig. 1). A large contribution to the genetic risk is 

conferred by genes encoding molecules in the immune system (HLA-DRB1*15:01, IL2 and 
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IL7R). To understand the complex interplay of these genetic variants and other omics data, 

advanced mathematical models have been and are continuing to be applied to large MS 

datasets, for instance the ongoing collaborations MultipleMS (44) and Sys4MS (45). These 

projects use a systems biology approach to disentangle the underlying biology in MS. 

Pathway analyses now enable identification of the most functionally associated gene 

per region and cell type, which can open new methods to integrate past and future genetic 

data in order to elaborate the functional aspects of disease aetiology and possibly discover 

new MS phenotypes (46). Also, systems biology approaches in conjunction with all available 

genetic data are proving useful to identify and interpret the genetic underpinnings of MS (46). 

 

4.4   Pathophysiology in MS 

MS is assumed to be an immune mediated chronic inflammatory disease that affects the CNS 

(47). MS is believed to be triggered by the environmental risk factors mentioned in the 

preceding section (Section 4.3) in a complex interplay in genetically susceptible people (47, 

48). The pathophysiological process of MS includes a temporary destruction of the blood–

brain barrier (BBB), multifocal inflammation, demyelination, oligodendrocyte loss, reactive 

gliosis, and axonal degeneration (49, 50). Immune cells migrate across the BBB. Macrophage 

and microglial activation induce proinflammatory cytokine, oxygen and nitric oxide radicals, 

leading to demyelination and possible axonal loss (50). 

 

4.4.1 Immune pathophysiology 

Immune cells enter the CNS through the blood vessels of the BBB, the subarachnoid space 

(SAS) and the choroid plexus (Fig. 4) (38). In MS relapses, cells from both the innate and 

adaptive immune systems, such as CD4+ and CD8+ T cells, B cells and myeloid cells, 

infiltrate CNS parenchyma around post-capillary venules to cross through the BBB (38). 

These immune cells, together with locally activated microglia and astrocytes, contribute to 

oligodendrocyte injury, demyelination and neuroaxonal injury through cell contact-dependent 

mechanisms and the secretion of soluble factors (38). In late MS, the episodic infiltration of 

immune cells into the CNS is reduced. Mechanisms contributing to tissue injury in late MS 

include neurodegeneration (neuroaxonal, astrocyte and oligodendrocyte damage), due to acute 

or chronic oxidative stress promoted by innate and adaptive immune cell activation, 

mitochondrial dysfunction, extracellular free iron accumulation, loss of myelin trophic 

support, hypoxia, altered glutamate homeostasis, and a pro-inflammatory environment, with 
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involvement of cytotoxic factors and complement activation (38). Chronic inflammation is 

potentially mediated both by ongoing CNS compartmentalized inflammation involving 

meningeal immune cell infiltrates (e.g. B cells) that can form lymphoid-like structures and by 

local CNS innate cells (e.g. microglia) (38). 

 

Fig. 4. Overview of the dysregulation of the immune system in both early and late MS within the 

CNS. Reproduced from Filippi et al. (2018) (38), with permission from Springer Nature Ltd., obtained 8 

August 2019. 
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4.4.2 White matter lesions 

The pathological hallmark of MS is the perivenular inflammatory lesions, which in turns lead 

to demyelinating MS lesions (51). In the early phases of MS, it is common to find 

demyelinating lesions, with lymphocyte infiltration by major histocompatibility complex 

(MHC) Class I restricted CD8+ T cells, CD20+ B cells, but also plasma cells, activated 

microglia, macrophages, and large, reactive astrocytes. This leads to oligodendrocyte 

destruction and demyelination (48). In the early phases of MS, the axons themselves are 

usually preserved, although if the disease progresses, the patient with MS will develop 

irreversible axonal damage. 

The progressive phenotypes of MS tend to be characterized more by inactive CNS 

lesions. These lesions are commonly sharply delineating, hypocellular and have defined 

demyelination, decreased axonal thickness, reactive astrocyte gliosis, fluctuating microglial 

activation isolated in periplaque white matter, and a lower quantity of lymphocytes than 

active lesions (38). The discrimination between active and inactive lesions in the progressive 

phenotypes is not clear-cut. Also, inflammatory mechanisms may play an important role in 

the immune pathophysiology in both primary progressive MS (PPMS) and secondary 

progressive MS (SPMS). There is no distinct histological difference between the MS 

phenotypes (48). Active and mixed (both active and inactive) lesions account for up to 57% of 

all lesions in the progressive phenotypes of MS (38). Active lesions in PPMS and SPMS seem 

to be associated with a more progressive disease course (38). 

Furthermore, with the use of advanced imaging techniques and microscopic analyses, 

the macroscopic non-affected white matter (WM), referred to as normal-appearing WM 

(NAWM), exhibits features of both widespread inflammation and neuroaxonal damage (38). 

NAWM damage is more pronounced in the progressive forms of MS and includes 

macrophage infiltration, widespread microglial activation, gliosis, small round cell 

infiltration, axonal degeneration, and demyelination (38). 

 

4.4.3 Grey matter lesions 

Cortical demyelination in the forebrain and cerebellum that is already evident from the pre-

clinical stage of the disease process can also be seen in autopsies of people with MS (38, 52, 

53). Cortical demyelination is more prominent in the progressive phenotypes of MS. Grey 

matter (GM) lesions can occur in the deep GM nuclei and the GM in the spinal cord. Cortical 

lesions are usually located in the cortical sulci and in the deep invaginations on the surface of 
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the brain, often associated with inflammatory infiltrates of the meninges (38). Studies indicate 

that lesions in the cortex are driven by pro-inflammatory mediators from the meninges or 

from the cerebrospinal fluid (CSF). The presence of reduced synaptic density in MS patients 

is also, evident in normal-appearing GM in autopsies, which is suggestive of an independent 

finding in addition to focal demyelination in the cortex. Lesions in the cortex show less 

contrast enhancement in MRI scans, less oedema, a reduced degree of inflammation, and 

more efficient myelin repair, which indicates the presence of unique processes in the grey 

matter (38, 54). 

Cortical lesions within the GM can be divided into four different subtypes: Type I 

lesions are located at the cortico-subcortical border affecting both GM and WM; Type II 

lesions are small perivenular intracortical lesions that do not affect either WM or the pial 

surface of the brain; Type III lesions (most frequent in patients with MS, and related to 

meningeal inflammatory infiltrates) extend inward from the subpial layers of the cortex; and 

Type IV lesions stretch through the whole thickness of the cortex but without bridging over to 

the WM (38, 55-57). 

It has been demonstrated that remyelination is far more common in GM lesions (up to 

90%) than in WM lesions (40–50%) (38). The extent to which a lesion is remyelinated has 

been found associated with several factors, including age, lesion location, disease duration, 

axonal integrity, and the existence of oligodendrocyte progenitor cells (38). Furthermore, 

remyelination is more common in the RRMS than in the progressive phenotypes (38). 

Remyelination, which occurs both in MS and in other neuroinflammatory and 

neurodegenerative diseases, has recently been in focus as a candidate process for targeted 

treatment (58). Recent studies indicate that optimal remyelination requires death of pro-

inflammatory microglia followed by the replacement of microglia in a pro-regenerative state 

(58). Specifically, one study highlighted the CNS region-specific consequences of interferon 

(IFN) signalling in the WM, where it was found that positively regulated Type 1 IFN 

signalling promoted microglia repopulation (58). 

 

4.5   MS diagnosis 

George A. Schumacher and other leading MS researchers reached consensus on the diagnostic 

criteria and definition of MS in 1965 (59). The criteria for diagnosing MS were revised in 

1983 by Charles M. Poser and colleagues (60), and updated in 2001, 2005, 2010, and 2017 

(Fig. 5) (61-64).  
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Fig. 5. Overview of the practical implications of the 2017 revisions to the diagnostic criteria for MS. 

Lesion(s) refers to an area of hyperintensity on a T2-weigthed or proton-density weighted MRI scan that is 

at least 3 mm in longitudinal axis. Reproduced from De Angelis et al. (2019) (65), with permission from 

BMJ Publishing Group Ltd., obtained 12 August 2019. 

 

As summarized by De Angelis et al. in 2019 (65), the main requirements for the diagnosis of 

MS should be based on the following: 

• Objective clinical evidence of CNS involvement 

• Evidence of lesions disseminated in time (DIT) and space (DIS) 

• Exclusion of other conditions that could better explain the findings. 

 

The 2017 revision of the MS criteria established unmatched CSF oligoclonal bands (OCBs) as 

a validation of dissemination in time (Table 1). When a patient presents at a clinic with a 
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clinically isolated syndrome (CIS), the presence of OCBs in CSF will act as a marker for 

dissemination in time. This in turn will allow both for an earlier diagnosis of MS if all other 

requirements for the MS diagnosis are met, and for the start of early and effective treatment 

(66). In previous revisions of the MS diagnostic criteria, a distinction was made between 

symptomatic and asymptomatic MRI lesions, but this was removed in the 2017 revision. In 

addition, MRI lesions in the cortex were added as a possible area that would be considered as 

dissemination in space (67). 

 
Table 1. Overview of the 2017 revisions to the diagnostic criteria for MS. Reproduced from Filippi et 

al. 2018 (38), with permission from Springer Nature Ltd., obtained 8 August 2019. 

 

 
 

MRI images and their assessments were discussed as part of the diagnostic criteria for MS in 

the early 1980s, as a potential paraclinical tool for clinicians (60). The pivotal role of MRI in 

the diagnosis and follow-up of people with MS has since been confirmed. Since 1990, the 

Magnetic Resonance Imaging in MS (MAGNIMS) network and others have made major 

contributions to defining the central role of MRI in both the diagnosis of MS and monitoring  
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its treatment (68). 

MAGNIMS’ consensus guidelines are partly incorporated into the 2017 revised 

diagnostic criteria for MS (also known as the McDonald guidelines) (69). Notable 

discrepancies between these two hallmark publications in terms of MRI are inclusion of the 

optical nerve as a location for DIS and the requirement of > 3 periventricular lesions (Fig. 6). 

The revised McDonald guidelines state that incidental periventricular lesions in persons > 50 

years of age or with established vascular risk factors should first be evaluated for other 

diagnoses than MS. The authors encourage increased research efforts to validate visual 

evoked potentials (VEPs), optical coherence tomography (OCT) and MRI in fulfilling either 

the DIS or DIT criteria in support of an MS diagnosis. 

 

 
Fig. 6. Different subtypes of MS shown in the 2017 diagnostic criteria for MS. 

a–e – Dissemination in space (DIS) can be illustrated by > 1 T2 hyperintense lesion in > 2 typical areas of 

the CNS (arrows); a – Periventricular lesions, b–c – Cortical or juxtacortical lesions to define juxtacortical 

involvement, d – Infratentorial lesions, e – A spinal cord lesion, f–j – Dissemination in time (DIT) 

illustrated by the simultaneous presence of gadolinium-enhancing and non-enhancing lesions – a new 

finding can be demonstrated by a simultaneous presence of gadolinium-enhancing and non-enhancing 

lesions (f–g) at any time, a new T2-hyperintense and/or gadolinium-enhancing lesion on follow-up MRI 

compared with a baseline MRI (h–j), irrespective of the timing of the baseline MRI, or the presence of 

cerebrospinal fluid-specific oligoclonal bands (OCBs), which are not visible in the serum (k). Several white 

matter lesions are visible on the fluid-attenuated inversion recovery (FLAIR) sequence (f): one shows 

enhancement (arrowhead) on the post-contrast sequence (g), whereas the majority are non- enhancing 

(dots). Compared with the baseline FLAIR sequence (h), a new T2 hyperintense and gadolinium-enhancing 

lesion (circled) are visible on follow-up FLAIR (i) and on post-contrast sequences (j). Reproduced from 

Filippi et al. 2018 (38), with permission from Springer Nature Ltd., obtained 8 August 2019 
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MRI has undergone extensive technical and software advances since 2010. The 

implementation of ultra-high-field 7.0T imaging increases the amount of visible details, 

provides higher resolution and enables visualization of the association between lesions and 

the vasculature (e.g. central vein sign) (69). 

As previously mentioned (in Section 4.5) one of the requirements in a diagnostic 

setting of MS is the exclusion of other conditions (70). MS mimics have become easier to 

differentiate as the specificity of MRI assessment has improved. One such MS mimic is 

neuromyelitis optica spectrum disorders (NMOSDs), which share many of the common 

symptoms and findings as MS (71). Recent advances in defining MRI characteristics and in 

serum antibodies have improved the diagnostic guidelines for these disorders (71). In 

addition, elderly people with non-specific white matter lesions are often diagnosed with 

vascular lesions after thorough examination (70). 
 

4.6   Natural history of MS 

At diagnosis, people with MS are commonly in the age range 20–40 years (40, 48). The 2017 

revision of the McDonald criteria for diagnosis of MS enables earlier MS diagnosis because 

the presence of OCBs can fulfil the DIT criteria (48, 64). A study reported that the prevalence 

of ‘asymptomatic’ and unknown MS was 0.1% (40). 

In clinical settings, an MS relapse becomes acute or subacute over the course of hours 

to days and persists for > 24 hours (38, 48). The clinical features of a relapse usually persist 

over several weeks and the patient gradually recovers with or without persisting symptoms. A 

true relapse should occur in the absence of infection, fever or encephalopathy (48). A pseudo-

relapse is seen when new or known neurological symptoms occur in the presence of infection, 

fever or reduced general health. Patients with a suspected pseudo-relapse with new 

neurological symptoms often undergo MRI and clinical examination to rule out true relapses. 

Lublin and colleagues describe four different MS phenotypes (72). The most common 

MS phenotype is the relapsing-remitting form (RRMS), which is seen in 80–90% of the 

people diagnosed with MS (73). The natural history of RRMS patients has gradually changed 

in recent decades. The median time from MS diagnosis until requiring a cane to walk 

(expanded disability status scale (EDSS) of > 6), has recently increased to above 20 years (40, 

73). Usually, the disease course for people with RRMS gradually develops into a SPMS 

phenotype characterized by slowly progression of their disability (Fig. 7) (72). The life 

expectancy of people with MS has increased by 20 years over the past 70 years (73). In 

Norway, a recent population study found an expected shorter life expectancy of 7 years for 
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people with MS compared with the general population (74). The improvements in the disease 

course of people with RRMS are thought to be due to a complex interplay of implemented 

guidelines for care and follow-up of MS patients, the increase in available disease modifying 

therapies (DMTs), the possibility of establishing an earlier diagnosis of MS, earlier treatment 

with highly efficient DMTs, and improved diagnostics (38, 48, 66, 75). 

 

 
Fig. 7. The different stages of multiple sclerosis. MS often starts with a preclinical disease course. The 

first clinical symptom can be termed a clinically isolated syndrome, but can in some instances fulfil the 

revised McDonald criteria for diagnosis of MS. The relapsing-remitting disease course is illustrated by 

episodes of increased disability, followed by an improvement in function. The MRI markers of MS are 

illustrated with visible gadolinium-enhancing lesions, the accumulation of T2 lesions and brain atrophy. 

Reproduced from Baecher-Allen et al. (2018) (47), with permission from Elsevier Inc., obtained 5 August 

2019. 

 

The PPMS phenotype affects a minority of MS patients (5–20%), where the onset and follow-

up are typically constituted by accumulation of progressive disability over time (48, 76). 

People with PPMS usually have one dominant neuronal system affected, described as unique 



 29 

patterns such as progressive spastic paraparesis, progressive visual loss, cognitive deficit, and 

sensory or cerebellar ataxia (38, 77). 

The terms ‘benign MS’ and ‘malignant MS’ have previously been used to describe the 

severity of the retrospective progression of the disease course (72). However, these illustrative 

terms have since been discarded from the revised McDonald guidelines for the diagnosis of 

MS. 

Since 2013, the disease course has been considered as either active or inactive, as 

defined by clinical or imaging features (76). In addition, the 2010 revision of the McDonald 

guidelines for the diagnosis of MS implemented the importance of the progression of 

disability over time as an important factor (76). The differences between the 1996 and 2013 

MS subtypes and phenotypes are illustrated in Fig. 8. 

 

 
Fig. 8. Overview of the definitions of the clinical course in MS and the change from 1996 to 2013. 

* Activity is determined by clinical relapses assessed at least annually and/or MRI activity (contrast-

enhancing lesions; new and unequivocally enlarging T2 lesions). ** CIS, if subsequently clinically active 

and fulfilling current MS diagnostic criteria, becomes RRMS. *** Progression is evaluated clinically, at 

least annually. CIS – clinically isolated syndrome; MS – multiple sclerosis, PP – primary progressive; PR – 

progressive relapsing; RRMS – relapsing-remitting MS; SP – secondary progressive. Source: Multiple 

Sclerosis Research Group, Oslo University Hospital and based on Lublin et al. (2014) (76). 

 

With the increasing availability of MRI scanners in the Western world there has been an 

increase in the incidental discovery of asymptomatic subjects with apparent MRI findings 
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suggestive of MS, and these findings are referred to as radiologically isolated syndrome (RIS) 

(38, 48). Typically, individuals with RIS are referred for MRI due to headaches or head 

injury. When investigated, a substantial proportion of people with RIS have shown signs of 

cognitive impairment and brain volume loss, which has led to the hypothesis that the 

neurodegenerative and inflammation processes are present even in the pre-clinical stages of 

MS. It is estimated that up to 34% of people with RIS will develop a clinical attack within 

five years (38, 48). 

 

4.7   Symptoms in MS 

In theory, the clinical presentation of MS would be unique to each patient based on the 

location(s) of the demyelinating lesion(s) (Fig. 9). The disease typically starts with a clinical 

attack. If the requirements for DIS and DIT are present, the diagnosis of MS can be set after a 

thorough examination to rule out other possible conditions, based on the 2017 revised criteria 

for the diagnosis of MS (64). MS often presents with an episode of optic neuritis, when 

typically there is found partial or complete visual loss in one eye with a central scotoma, loss 

of colour vision and most often associated with pain or pressure behind the eye that worsens 

with movement of the affected eye (38, 78-81). Approximately 70% of all MS patients 

experience an episode with optic neuritis during their disease course, and 25% of MS patients 

will present with an episode of optic neuritis (38). It is estimated that for 34–75% of people 

with optic neuritis, MS will develop as a certain diagnosis within the next 10–15 years after 

onset of the optic neuritis (38). 

The initial clinical attack can, as previously mentioned in Section 4.6, be located in all 

areas of the CNS, and present as either typical or atypical findings. It has been estimated that 

motor deficits (pyramidal signs, paresis and spasticity) are the first MS-symptom in 30–40% 

of MS cases, while sensory symptoms (paraesthesia, Lhermitte sign, loss of vibration and 

sensation of joint position, and reduced perception of light touch and pain) are the initial 

symptoms in as many as 43% of people with MS (38). Examples of less typical presenting 

signs of MS are epileptic seizures, acute urinary retention, trigeminal neuralgia, photophobia, 

headache, bulbar weakness, and severe pain. 
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Fig. 9. Common symptoms in MS. Reproduced from Giovannoni et al. 2016 (66), with permission from 

Oxford Pharma Genesis Ltd. © 2016, obtained 8 August, 2019. 

 

During the course of MS, usually additional neurological symptoms accumulate. Up to 70% 

of people with MS experience symptoms from the brainstem and cerebellum (impairment of 

eye movements, diplopia, ataxia and gait imbalance, dysmetria, impaired speech, and 

dysphagia). In total, 34–99% of MS patients experience neurological symptoms of sphincter 

or sexual dysfunction (urinary urgency, hesitancy, urge incontinence, constipation, faecal 

incontinence, erectile dysfunction, and impotence) (38). 

Other common neurological symptoms related to MS are sleep disorders (affecting up 

to 54% of people with MS), cognitive impairment (evident in 40–70% of people with MS), 

affective abnormalities (affecting up to 67% of people with MS), and pain (reported by up to 

43% of MS patients) (Fig. 9) (38). 

For a large proportion of people with MS, their former neurological symptoms 

resurface when their body temperature is increased, either during warm summer days or 
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during episodes of fever. This experience of MS disease worsening is referred to as the 

Uhthoff’s phenomenon. 

A focused awareness of all the invisible symptoms of MS and their impact on quality 

of life for the majority of the MS population is important. Examples of invisible symptoms 

are fatigue, cognitive deficits, sphincter and sexual dysfunctions, pain, spasms, dizziness, 

visual loss, depression, heat sensitivity, brain fog, and swallowing issues (82). 

 

4.7.1 Measuring disability in MS 

In order to evaluate people with MS and systematically report their disability status, John F. 

Kurtzke produced the disability rating scale in 1955 (83), which later was renamed the 

Disability Status Scale (DSS). There have been several modifications to the DSS, but since 

1983 the Expanded Disability Status Scale (EDSS) system has remained unchanged and 

accepted as the most widely used grading system for MS disability, based on a standard 

clinical neurological examination (84, 85) (Table 2). The EDSS grading tool scores the 

disability of MS patients on a scale from 0 to 10, where 0 is normal and 10 is death due to MS 

(Table 2). Eight subscales, called functional system (FS) scores, are used to cover different 

parts of the CNS commonly affected by MS: pyramidal, cerebellar, brain stem, sensory, 

bowel & bladder, visual, cerebral or mental, and other functions. All FS groups, except ‘other 

functions’, are given a grade from 0 (normal function) to 5 or 6 (complete impairment). 

EDSS is the most common tool for assessing clinical disability in people with MS. 

Especially for the lower parts of the scale (< 4.0), the clinical neurological examination is 

important to investigate and uncover specific symptoms from all parts of the CNS (84). EDSS 

scores between 4.5 and 7 reflect the gait ability, while scores > 7 are mostly dependent on the 

subject’s ability to execute regular activities of daily living unaided by others. 

Several methods for improving the EDSS have been discussed and aspects of the scale 

have been criticized (66). First, the scoring may vary depending on the subjective nature of 

the clinical neurological examination and the dynamics of MS, especially on the lower parts 

of the scale, namely scores < 4.0 (85). Second, the steps on the scale do not reflect the true 

nature of the gradual disease progression observed. Third, the importance of upper body 

function, mood, cognitive function, quality of life, and fatigue are not addressed in a 

proportional manner for EDSS scores > 4 (66). 
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Table 2. Overview of the expanded disability status scale and the scoring. Adapted from Kurtzke 

(1983) (84) and the Multiple Sclerosis Trust (86). 

 
 

4.7.2 Cognitive deficits in MS 

Epidemiological research have shown that up to 70% of all subjects with MS have cognitive 

deficits, which often are associated with reduced quality of life, psychiatric symptoms and the 

ability to participate in work-related and social activities (87). Most frequently, the cognitive 

domains of information processing speed and memory are affected in MS patients. In 

addition, reduction in verbal fluency, visuospatial processing and executive functions are 

common domains associated with MS (88-90). Symptoms of cognitive deficits may be 

evident even early in the disease course of MS, and only show weak associations with 

physical impairment (91, 92). 

 

Score Description
0 No disability
1.0 No disability, minimal signs in one FS
1.5 No disability, minimal signs in more than one FS
2.0 Minimal disability in one FS
2.5 Mild disability in one FS or minimal disability in two FS
3.0 Moderate disability in one FS, or mild disability in three or four FS. No impairment to walking
3.5 Moderate disability in one FS and more than minimal disability in several others. No impairment to walking
4.0 Significant disability but self-sufficient and up and about some 12 hours a day. Able to walk without aid or rest for 500m

4.5
Significant disability but up and about much of the day, able to work a full day, may otherwise have some limitation of 
full activity or require minimal assistance. Able to walk without aid for 300m

5.0
Disability severe enough to impair full daily activities and ability to work a full day without special provisions. Able to 
walk without aid or rest for 200m

5.5 Disability severe enough to preclude full daily activities. Able to walk without aid or rest for 100m
6.0 Requires a walking aid – cane, crutch, etc. – to walk about 100m with or without resting
6.5 Requires two walking aids – pair of canes, crutches, etc. – to walk about 20m without resting

7.0
Unable to walk beyond approximately 5m even with aid. Essentially restricted to wheelchair; though wheels self in 
standard wheelchair and transfers alone. Up and about in wheelchair some 12 hours a day

7.5
Unable to take more than a few steps. Restricted to wheelchair and may need aid in transfering. Can wheel self but 
cannot carry on in standard wheelchair for a full day and may require a motorised wheelchair

8.0
Essentially restricted to bed or chair or pushed in wheelchair. May be out of bed itself much of the day. Retains many 
self-care functions. Generally has effective use of arms

8.5 Essentially restricted to bed much of day. Has some effective use of arms retains some self-care functions
9.0 Confined to bed. Can still communicate and eat
9.5 Confined to bed and totally dependent. Unable to communicate effectively or eat/swallow
10.0 Death due to MS

Expanded Disability Status Scale (EDSS) 

Scoring is based on an examination by a neurologist. A functional system (FS) represents a network of neurons in the brain with responsibility for particular tasks. Each FS is scored on a scale of 
0 (no disability) to 5 or 6 (more severe disability). The EDSS is based on measures of impairment in eight FS:
pyramidal – muscle weakness or difficulty moving limbs
cerebellar – ataxia, loss of balance, coordination or tremor
brainstem – problems with speech, swallowing and nystagmus
sensory – numbness or loss of sensations
bowel and bladder function
visual function - problems with sight
cerebral functions - problems with thinking and memory
other
EDSS steps 1.0 to 4.5 refer to people with MS who are able to walk without any aid
EDSS steps 5.0 to 9.5 are defined by the impairment to walking.
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4.7.3 Depressive symptoms in MS 

People with MS are generally two to three times more likely to acquire a depressive disorder 

than the general population, with the lifetime prevalence as high as 50% (93-95). Depression 

is a robust determinant of quality of life, along with other associated symptoms such as 

fatigue and anxiety (95). Studies of MS have revealed a complex interaction in which both 

cognitive deficits and fatigue are overlapping features in MS patients with depression (95). 

The basis for depression in MS is not fully understood, yet studies suggest a multifactorial 

etiology, including common psychological, biological (structural damage to frontoparietal 

brain regions and consequently functional disconnection within the hippocampal-centred 

network) and social factors (95-101). Based on current evidence, people with both MS and a 

depressive disorder benefit from standard treatment of depression such as antidepressant 

medication and cognitive behavioural therapy (95). 

 
4.7.4 Fatigue in MS 

The most common symptom in a MS population is fatigue, which affects up to 80–95% of all 

people with MS (102-104). Fatigue is most often described as a feeling of excessive tiredness 

or exhaustion (103). There is a distinction between the central and peripheral origin of fatigue 

(105). Peripheral fatigue is often explained as performance fatigability or muscle fatigability. 

Whereas peripheral fatigue is often relieved by rest, this is not usually the case for central 

fatigue (105). The exact cause of fatigue is unknown, and fatigue is very common in other 

disorders such as cancer, and autoimmune and psychiatric disorders (105). Some studies show 

that MS fatigue could be sustained due to a dysfunction of cortico-subcortical connections in 

the CNS (38, 106). 

Quantitative neuroimaging studies have found associations between fatigue and 

damage to selected grey matter and white matter structures in subjects with MS (106, 107). 

Further, the importance of damage to the cortico-striato-thalamo-cortical loop is supported by 

associations between fatigue and general damage to the thalamus, selected cerebral cortical 

areas and the striatum (106). Also, disconnections between deep GM structures and the 

cortex, such as the cortico-thalamic or cortico-striatal tracts, may contribute to the 

development of MS (106). Damage to the corpus callosum have been associated with fatigue, 

which suggests that a disconnection between the left and right cortico-striato-thalami-cortical 

areas is potentially crucial in the development of fatigue (106, 108). Studies of resting state 

functional MRI (rs-fMRI) in RRMS found that MS subjects showed evidence of altered 
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functional connectivity in the posterior cingulate cortex and anterior cingulate cortex (108, 

109). 

 

4.8   Conventional neuroimaging in MS 

The clinical adaptation of MRI on a clinical platform was released in 1980. MRI of the brain 

and spinal cord was mentioned as a possible paraclinical tool for MS in 1983 (60). In the early 

1980s, MRI of the brain was shown to be far superior in terms of sensitivity to detect MS 

lesions than the established computerized tomography (CT) brain scans (110). Finally, MRI 

was included in the 2001 revised criteria for MS diagnosis (60, 61). Today, MRI assessment 

is deeply integrated into the diagnostic criteria for MS (64, 69, 111, 112). Neuroradiological 

evaluation of MS is currently based on a thorough visual inspection of MRI scans and 

compared with previous MRI scans if possible. Using validated scales, neuroradiologists can 

measure the degree of atrophy with the global cortical atrophy (GCA) scale, a validated 4-

point scale used to estimate widening of sulci and gyral volume loss by visual evaluation 

(113). Standard MRI acquisition protocols have been proposed to address carefully 

harmonizing MRI acquisitions and assessments from people with MS in regards to the visible 

number of lesions, new lesions, contrast-enhancing lesions, the locations of the lesions, and 

brain atrophy (114). Also, to distinguish MS more clearly from its clinical and imaging 

imitators, an MRI scan provides a sensitive tool for use by trained and experienced 

neuroradiologists (70). 

 

4.8.1 Understanding MRI physics 

A standard MRI system comprises a control centre with the screens for visual interface, a 

separate room for the electronics, power and cooling system, and a third room for the machine 

itself, with the board to lie on surrounded by a main magnet coil (made of a super-conducting 

metal alloy), three gradient coils (representing the three orthogonal directions, x, y, z, for a 

functioning coordinate system), shim coils, and an integral radio frequency transmitter coil 

(115). In clinical practice, the main magnet usually maintains a stable magnetic field of either 

1.5T or 3T, although some research scanners achieve a magnet field of 7T or even >10T 

(115). 

The main signal used for MRI originates from the hydrogen nuclei, where data derived 

from the relaxation after manipulating the spin, direction and the time to normalization of the 

protons in the hydrogen nuclei are used to generate different images (115). A T1-weighted 
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MRI sequence is generated by the differences in tissue T1 relaxation time, and show fat as 

bright and intense, whereas CSF is typically dark (115). In addition, there is the possibility to 

add a gadolinium-enhancing contrast agent and to do another T1-weighted scan to enhance 

the visualization of newly acquired lesions. T2-weighted images are generated by T2 

relaxation time and typically show CSF as bright (115). To distinguish more clearly between 

normal and pathological CNS signals, a fluid-attenuated inversion recovery (FLAIR) 

sequence is often applied to suppress the CSF signal (115). The FLAIR sequence enables T1- 

and T2-weighted contrast to delineate lesions and subtle tumours more clearly (115). 

Since 1990, it has been possible to use an imaging surrogate marker using the signal 

generated by changes in oxygen concentration in the brain in order to capture regional 

changes in brain metabolism (116). This blood oxygen level dependent (BOLD) signal 

derives from changes in the magnetic field covering the haemoglobin, depending on the levels 

of oxygen within the cells. The BOLD signal is dependent on the regional blood flow and the 

local blood oxygen level, and constitutes the basis for functional MRI (fMRI). FMRI 

sequences are usually task based, whereby a person performs either mental tasks or specific 

motor tasks within the scanner or while in a resting state (rs-fMRI), when the subject lies still 

with their eyes open. 

New MRI sequences with improved sensitivity and specificity with regards to certain 

tissues or disorders have been subject to vast research efforts to show specific utility and 

superior performance (54, 117). 

 

4.8.2 Gadolinium-enhancing contrast agents in MS 

Gadolinium-enhanced MRI is a sensitive method used to visualize active MS lesions (118). 

Gadolinium serves as a marker for BBB disruption and is associated with the histologically 

inflammatory state of lesion evolution (118). New MS lesions typically exhibit contrast 

enhancement for two to six weeks, and very rarely for more than six months. The different 

patterns (ring-like, nodular) of enhancement are considered to be of clinical importance (118). 

An article published in 2014 reported increased signal intensity in the globus pallidus 

and dentate nucleus on T1-weighted MRI images without contrast in subjects with MS who 

had undergone MRI scans with gadolinium-based contrast agents (119). As a consequence, 

the scientific community, health institutions, industries, and regulatory agencies worldwide 

have changed their recommendations to exclude linear gadolinium contrast agents and instead 

recommend the use of macrocyclic gadolinium agents in MRI (120). A recent longitudinal 

study that included both healthy subjects and participants with MS found that gadolinium 
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deposition (globus pallidus, dentate nucleus and thalamus) in early MS was associated with 

past gadodiamide exposure (a linear gadolinium-based contrast agent, Omniscan ©), but 

without radiological or clinical correlates of more aggressive disease (120). 

Other severe adverse events, such as nephrogenic systemic fibrosis and acute allergic 

reactions, warrant specific guidelines on restricting the use of gadolinium-enhancing contrast 

agents in MS and other disorders (120-123). Suggestions for revising the MRI diagnostic 

guidelines constitute a more targeted approach to the use of contrast agents (in the diagnostic 

setting of MS, when a clinical relapse is suspected or in specific cases with known complex 

MRI findings) (124). 

 

4.9   Experimental neuroimaging in MS 

Despite important MRI correlations with MS, there is still heavy reliance on the visual 

assessment by a neuro-radiologist of the MRI scans in a clinical setting (69). Some MRI 

features, such as the central vein sign, cortical lesions, brain volume, and atrophy, are already 

incorporated in a research setting when evaluating MS patients on a group level (125). The 

application of reliable quantitative MRI markers for atrophy and lesions in a clinical setting 

are not feasible in individual patients, due to the lack of standardized methods, validation 

studies and technical improvements (117, 125). 

The main target for experimental MRI studies in MS is to be able to predict future 

response to treatment and future disability progression (54, 117, 126). One study used high-

dimensional statistical models incorporating a wide multiplicity of imaging features, and the 

researchers found that their models outperformed the standard conventional models in 

detecting an imaging response to treatment in MS (126). In 2018, MAGNIMS produced a 

positional paper for unravelling treatment response in a real-world MS setting (117). In a 

separate expert review advanced MRI techniques are discussed as a tool to monitor both 

therapeutic and rehabilitative treatment in MS, where recent advances in MRI research are 

described as fundamental progress towards personalized medicine and individual treatment 

decisions (54). 

There are already available third-party services offering automated quantitative brain 

MRI analyses, such as MSmetrix and NeuroQuant (with LesionQuant for MS) (127). 

Furthermore, some studies that used data procured by these third-party services have been 

published showing comparable results with standard MRI assessment, and raise the question 

as to when these methods for automatic quantification of MRI brain scans can be 

implemented in a clinical setting (128, 129). Studies have highlighted that improved MRI 
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technology will lead to improved visual interpretation of suspected MS lesions by allowing 

consideration of the central vein sign, lesional rims and subpial demyelination (114). 

Many large international collaborations and institutions are involved in experimental 

neuroimaging research, such as UK Biobank, the ENIGMA (Enhancing Neuro Imaging 

Genetics through Meta Analysis) Consortium, the Human Connectome Project, the 

Norwegian HUNT project, and the ABCD cohort. 

 

4.10   Treating MS 

The search for a cure for MS has not yet been successful, although many DMTs have been 

successfully developed and implemented into standard MS care (47). There is strong evidence 

that time to diagnosis and time to treatment start, are essential factors in the long-term 

prognosis of MS (66). Moreover, early treatment with potent agents within the time of MS 

onset has been shown to reduce disease progression (130). For this reason, an international 

guideline for MS care from the Delphi Panel (21 neurologists from 19 countries) incorporates 

these goals to reduce disease activity in MS and improve MS care (75). When treating MS 

patients, it is necessary to consider all features of the disease in terms of vitamin D 

supplements, smoking cessation, physical activity, and other lifestyle factors for healthy 

brains (75). People with MS can have a variety of neurological symptoms derived from 

accumulated CNS lesions, such as urinary and faecal incontinence, depressive symptoms, 

fatigue, muscle spasms, pain, dizziness, and cognitive deficits (75). Also, when deficits occur, 

it is necessary to consider the possibility of rehabilitation, equipment to aid specific deficits 

(e.g. a wheelchair or a car with the possibility to rely only on the hands when driving), 

personal assistance, residence in a nursing home, physiotherapy, and referral to other medical 

specialties if appropriate (75). 

 
4.10.1 Disease-modifying therapies in MS 

From the first successful studies of the use of Interferon beta-1b to slow the rate of MS 

progression in the early 1990s (131, 132) to the most recently implemented MS drug 

Ocrelizumab (133, 134), an increasing number of people with MS have received therapy 

designed to decrease the long-term destruction of their CNS. Ocrelizumab, as the first DMT 

ever, is also a treatment option approved for people with PPMS with disease activity (134). 

Treatment options in MS have specific mechanisms for targeting the immune system, 

including modulation of immune activation, alteration of immune cell trafficking and 

depletion of immune cell populations (47, 135). DMTs have different modes of 
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administration, as subcutaneous injections (interferons), tablets (Fingolimod, Dimethyl 

fumarate, Glatirameracetate) or infusions (Natalizumab, Alemtuzumab, Rituximab, 

Ocrelizumab), and are to be taken at different time intervals, ranging from twice per day to 

once every sixth months (136). Also, there are different approaches to modulate the immune 

system, either by continuous suppression or by induction therapy (Cladribine, Alemtuzumab, 

hematopoietic stem cell transplantation (HSCT)). 

In Norway, a section of the national health system, called Hospital Procurement 

(Sykehusinnkjøp), is appointed to negotiate with the pharmaceutical companies on the prices 

of some selected groups of drugs. Each year, Hospital Procurement receives discounted prices 

from the pharmaceutical companies providing MS drugs and update the national guidelines 

for MS treatment. The appointed MS specialist group in Norway provides counsel and 

discusses future treatments for MS (Table 3). 

 
Table 3. Current MS therapy guidelines in Norway. Adapted from the Sykehusinnkjøp guidelines for 

2019 (137).  

Overview of current Norwegian MS guidelines for DMT as of 19 March 2020 

Group 1: High efficacy Group 2: Oral Group 3: Injectables 
1. Cladribin tablets 1. Teriflunomide 1. Glatirameracetate 

  2. Dimethyl fumarate 2. Interferon beta-1b 

    3. Peginterferon beta-1a 

    4. Interferon beta-1a 

      

Others:     

Natalizumab – as of 1 December 2019, not approved, for economic reasons 

Fingolimod – as of 1 December 2019, not approved, for economic reasons 

Rituximab – off-label, has to be registered in the national MS registry 

Alemtuzumab – currently not advised as the first treatment of choice, or with comorbidities 

HSCT – as a study participant or in special circumstances   
DMT – disease-modifying therapy, HSCT – hematopoietic stem cell transplantation. 

 

Due to a recent safety review of Alemtuzumab by the European Medicines Agency (EMA), in 

Norway there is careful selection of the people who start this treatment (138, 139). Also, 

Norway is one of the few Western countries where Ocrelizumab has not been taken into use 
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and, as of 1 December 2019, Natalizumab and Fingolimod are similarly not available for new 

MS treatment, based on a national assessment of all aspects of MS treatment (140). 

Rituximab is a widely used off-label chimeric anti-CD20 monoclonal antibody drug in 

many neurological disorders, but there are no current standardized treatment guidelines (141). 

The topic of B-cell depletion in MS has been extensively discussed since the unblinding of 

the Phase II trial of Rituximab study in September 2006 and its implications for MS treatment 

(47, 142, 143). Due to the growing use of Rituximab in Sweden (144), and more recently in 

some parts of Norway, the increased use of Rituximab has enabled large register-based 

studies in a real-world population to challenge current standards for defining the model of 

DMT use in MS (141, 145). 

 

4.10.2 Hematopoietic stem cell transplantation in MS 

In MS, a ‘reset’ of the immune system by autologous HSCT has proven superior to 

conventional DMT for people with an aggressive disease course in MS (135). The intense 

HSCT regime is associated with high levels of morbidity and previous reports of mortality 

(135). Initial prospective cohort studies and registry-based data were positive towards HSCT 

as an option for younger patients with MS, although premature menopause for women and 

other side-effects were significant (135).  

A recent study with an international multicentre, blinded, randomized trial of 110 MS 

patients who had undergone HSCT revealed less disease progression, fewer relapses, reduced 

MRI lesion load, a higher share of patients maintaining no evidence of disease activity 

(NEDA, characterized by the coexisting features of no relapse, no clinical progression and no 

new MRI changes), and increased quality of life (146). However, several severe aspects of 

undergoing HSCT are highlighted as problematic (146). It is still not clear which subgroup of 

MS patients benefits most from HSCT, although younger MS patients with severe progression 

and failure to maintain NEDA status when receiving DMT seems a possible target group 

(147). 

Large international studies with the aim of comparing HSCT with DMT are currently 

ongoing. Among them is RAM-MS, an international study aiming to include 100 MS patients, 

which is organized from Bergen, Norway, in collaboration with other European countries 

(148). RAM-MS aims to report the differences in MS outcome measures between HSCT and 

currently available high-efficacy DMTs by randomizing eligible patients into one of the 

groups. 
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4.10.3 Myelin repair in MS 

Despite all the advances made in DMT in recent decades, currently there is no effective 

therapy for the inevitable axonal degeneration and neuronal loss occurring after a clinical 

relapse in MS (149). Many researchers therefore rightfully point to the implementation of 

regenerative treatment approaches in MS as the next goal in MS pharmacotherapy (150). 

Already, many agents have shown potential in promoting oligodendrocyte precursor cells 

(clemastine, opicinumab, biotin, simvastatin, quetiapin, and anti-GNbAC) (150). Also, 

possible new targets for promoting remyelination have recently been proposed, such as 

promoting microglia necroptosis and repopulation to boost remyelination (58). All findings 

have led to recommendations for future translational and clinical research to establish new 

targets for myelin reconstruction in MS. 

 

4.11   Markers and prognostic factors in MS 

Markers associated with conversion from CIS to MS and disability progression are diverse 

and are found within the environmental, genetic, clinical, laboratory, and imaging domains 

(38). Female gender is associated with higher risk of conversion from CIS to MS, while male 

gender is associated with worse prognosis in people with MS (38). MRI features associated 

with poor prognosis are the presence of spinal cord lesions, new T2 lesions within the first 

five years of MS diagnosis, infratentorial lesions, and higher T2-hyperintense lesion volume 

and number (38). In addition, increased levels of the John Cunningham virus (JC virus) are 

known to raise the risk of developing progressive multifocal leukocencephalopathy (PML) for 

patients taking Natalizumab and Dimethyl fumarate (151). 

Recent advances in sensitive blood analyses have made it possible to measure 

neurofilament light (NfL) chains reliably also in peripheral blood, most commonly using an 

ultrasensitive singe-molecule array called Simoa® (by Quanterix®) (152, 153). NfL is a 

segment of the axonal cytoskeleton and is released into the CSF following axonal damage, 

and proportionally transferred over to the peripheral blood (47, 152-154). Serum NfL (sNfL) 

is increased in people with MS compared with healthy controls (HCs), positively associated 

with T2 and gadolinium enhancing lesions in the brain and spinal cord, increased in MS 

patients with recent relapses or worsening of disability, and decreased with longer treatment 

duration with DMT (153). Already in 2017, sNfL was suggested as a biomarker to evaluate 

tissue damage and the effects of DMT in patients with MS (153). 
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4.11.1 No evidence of disease activity 

In 2014, a new composite endpoint in MS was proposed, based on experiences within 

rheumatology (155). The reasons for suggesting a new endpoint in MS care were the low 

relapse rates in many clinical trials and a call for a more sensitive measure (155). Therefore, 

the concept of NEDA was put forward, originally termed ‘disease activity free status’ 

(DAFS). Later, more levels of NEDA were added to encompass more domains. Currently, the 

most used NEDA measure contains the following requirements: (1) no relapses, (2) no 

confirmed disability progression measured by EDSS scores, (3) no new or enlarging T2-

weighted CNS lesions, and (4) no new gadolinium-enhancing CNS lesions. The 

aforementioned NEDA classification is usually termed NEDA-3, whereas NEDA-2 lacks the 

MRI aspect and NEDA-4/5 additionally encompass normalizing brain atrophy loss and 

normalizing of CSF NfL levels (47). 
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5. Thesis aims 

My overall objective for this thesis was to investigate how state-of-the-art MRI post-

processing methods could be used in a sample of early MS subjects to give new insights into 

disease pathophysiology and possibly serve as an imaging marker for disease activity. To 

achieve the objectives for my thesis, I aimed at exploring the complete five-year Oslo 

longitudinal MS sample (Fig. 10). If possible, we hoped to use our results to gain valuable 

new pathophysiological insights to MS and to encourage future studies in order to improve 

MS brain health. 

The MS sample is based upon a prospectively collected sample of subjects with MS, 

originally funded as part of doctoral research work by my co-supervisor Gro O. Nygaard. As 

part of my own research for my doctoral thesis I have examined the same subjects at time 

point 3 (Fig. 10). From the MS sample at this third time point we have collected blood 

samples, MRI scans, self-report questionnaires and investigated the subjects by cognitive 

testing, eye examinations, neurological testing, and other experimental tests. 

 

 
 
Fig. 10. An overview of the prospectively collected Oslo longitudinal MS sample. 
 

My specific research objectives were: 

 

1. To investigate how the default mode network connectivity is affected by depressive 

symptoms and symptoms of fatigue in subjects with early MS, using cross-sectional 

rs-fMRI data from time point 1. 
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2. To establish a method for brain age estimation in a longitudinal sample of MS subjects 

and to compare the brain age estimates from the MS subjects with a matched sample 

of healthy controls. An additional aim was to explore possible associations between 

clinical variables and both global and regional brain age estimates in a sample of early 

MS subjects. 

 
3. To evaluate the longitudinal cognitive performance by the MS subjects, to assess 

whether there were any associations between the cognitive test performance and brain 

age estimates in the longitudinal MS sample, and to compare established structural 

MRI features with brain age in terms of sensitivity to cognitive performance. 
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6. Summary of the thesis 
6.1   Paper I (Study 1) 

‘Symptoms of fatigue and depression is reflected in altered default mode network 

connectivity in multiple sclerosis’ 

In Study 1, reported in Paper I, we only used cross-sectional data from time point 1 to 

investigate how the brain connectivity, as measured with resting-state functional MRI (rs-

fMRI), correlated with depressive symptoms and fatigue. We specifically investigated a brain 

network termed the default mode network (DMN), which is known to be a critical hub for 

both flow and integration of information in the brain. Using principal component analysis 

(PCA), we tried to disentangle some of the complicated interactions between fatigue and 

depressive symptoms. Our findings suggest that increasing symptoms of both fatigue and 

depression are associated with over-activation of the DMN. In addition, the PCA revealed a 

subgroup of subjects with a low burden of depressive symptoms and high scores on fatigue, 

which were associated with increased connectivity in the DMN. This suggests that there 

might have been different subgroups within our MS sample, an observation that was often 

reflected upon in the follow-up of MS patients. Our findings do not point to any specific 

aetiology underlying the DMN connectivity disturbances, and we only considered variations 

within the MS sample itself without comparing them to healthy controls. 

 
6.2   Paper II (Study 2) 

‘Cross-Sectional and Longitudinal MRI Brain Scans Reveal Accelerated Brain Aging in 

Multiple Sclerosis’ 

Study 2, which is reported in Paper II, included data from all time points. Paper II is the first 

paper to establish the method of brain age estimation in MS a. Using advanced machine 

learning methods, based on a training set of brain scans from 3208 healthy subjects, we 

trained a model to provide accurate estimations of brain age, based on 1118 features from an 

ordinary structural brain MRI scan. We included a global brain age estimate and seven 

regional brain age estimates to capture the morphological pattern of brain aging in our 

subjects. We found that MS patients aged 40 years had, on average, brains that were 4.4 years 

older than the brains of matched healthy controls. In addition, we found a 41% accelerated 

brain aging process over the five-year observational period compared with the expected 

chronological brain aging process. 
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6.3   Paper III (Study 3) 

‘Brain age estimation is a sensitive marker of processing speed in the early course of 

multiple sclerosis’ 

Study 3, which is reported in Paper III, investigated the relationship between brain age and 

cognitive performance in our complete dataset. It is known that specific cognitive deficits are 

evident also in the early course of MS, and mainly affect memory and information processing 

speed. We found a significant association between slower information processing speed and 

increased brain age estimates in our sample. As a comparison, we also investigated the 

thalamus in association with the cognitive tests, and found that reduced performance using a 

different test for information processing was significantly associated with smaller thalamus 

volumes. 

In all our studies combined, we found several possible MRI markers that could 

potentially be applied in a clinical setting to improve the brain health of patients with MS. 

Future studies are needed to confirm and elaborate on our findings. 
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7. Considerations regarding materials and methods 

We conducted clinical quantitative research, applying appropriate statistical methods to assess 

whether or not our preformed null-hypotheses could be abandoned (156). For this kind of 

research to be valid, we had to consider a number of several aspects, including the following: 

the statistical methods should report appropriate effects sizes including measures of 

uncertainty, the measures used should be relevant and correct, and the sample tested should 

encompass the suited composition to enable us to test our research hypotheses (157). 

 

7.1 Study design 

In the prospective cohort of MS patients, we selected our potential study subjects in advance, 

based on our hospital registries, so that our study sample would exhibit a high level of internal 

validity (if the sample reflected the population investigated). A good study design will mean 

that the results will have the potential of being transferable, in our case to other MS 

populations, which is referred to as external validity (157). 

The cumulative data available from the MS subjects were prospectively collected over a 

course of five years, including baseline, first and second follow-up (Fig. 10 and Fig. 11). We 

aimed at including subjects early in their MS disease course, thus limiting the time since 

diagnosis to less than four years. 

The three studies conducted as part of the research for this thesis were all 

observational in terms of not exposing the subjects to experimental treatments and not 

interfering with their MS treatment. However, in Study 2 (Paper II) and Study 3 (Paper III) 

we included results from specific study-related examinations that were not part of a standard 

neurological examination for MS patients. At all three time points, we included self-report 

questionnaires to capture known confounders and other possible features that might have been 

of interest; we used the Short Form Health Survey (12 items) (SF-12), the Beck Depression 

Inventory, version II (BDI-II), the Fatigue Severity Scale (FSS), and a collection of 

demographic and environmental questions. 

Study 1 had a cross-sectional design, mainly because it was a project that I could begin 

at the same time as I was examining the subjects for the second follow-up in the study. For 

Study 2 and Study 3, the full longitudinal dataset was utilized. For Study 1 we did not have 

any healthy control (HC) datasets available, mainly due to ethical restrictions relating to the 

HC dataset used in studies done previously based on the MS dataset (158, 159). For Study 2 

we had a cross-sectional HC dataset for the second follow-up, carefully matched for the 3T 
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MRI scans. For Study 3 we used some of the acquired MRI features from Study 2 to 

investigate longitudinal cognitive data. Hence, although the MRI data were correlated with 

HC, we did not have a control group for the cognitive data. The cognitive data have been 

compared with HC at baseline, as previously mentioned in this paragraph (159), although the 

same ethical restrictions made it impossible to use the longitudinal HC data from the same 

dataset. 

With regard to internal validity, there are many possible confounders (157). In the case 

of Study 1, it might be questioned how the self-report questionnaires for depressive symptoms 

and fatigue truly reflected the subjects’ clinical symptoms. There are known disadvantages, 

especially in the case of the FSS (160), for which there are issues in capturing severe fatigue-

related disability (161), and many overlapping questions concerning other disorders and 

symptoms with the method for reporting depressive symptoms using BDI-II (162). 

 

7.2   Patients and controls 

7.2.1 Patient recruitment and follow-up 

As previously mentioned, the prospective cohort was founded by my co-supervisor Gro O. 

Nygaard as part of her doctoral thesis work. Inclusion criteria were established to capture the 

main part of the RRMS population that was being treated with DMT (RRMS diagnosis in the 

period 2009–2012, age range 18–50 years, affiliated with the Department of Neurology, Oslo 

University Hospital, Ullevål). As shown in Fig. 11, only nine patients declined to participate 

(11%). In addition, some patients were not contacted due to finite MRI slots (21%), and a 

large share of the initial MS subjects discovered in the hospital registries (28%) fulfilled at 

least one exclusion criteria (uncertain diagnosis, lack of fluency in Norwegian, neurological 

or psychiatric disease, drug abuse, previous head trauma, pregnancy, or previous adverse 

reaction to MRI contrast agents). 

We had to consider the fact that 29% of the subjects (31 of 108 eligible subjects) 

either denied to participate or were not included due to low availability of the MRI scanner 

and that might have contributed to selection bias in our data. For the longitudinal data with 

two follow-up investigations, the missing subjects also had to be considered as a selection 

bias. From the first and second follow-up, the subjects mainly stated five reasons for not 

being able to contribute: (1) pregnancy or young children at home, (2) they had moved to 

another city or country, (3) they were hospitalized, (4) lack of time, (5) or they simply did not 

want to participate in the study. We were very flexible in the second follow-up in terms of 
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adapting our calendars so that the subjects could continue to be part of the study, and even 

examined them at the weekends if necessary. 

 
Fig. 11. Patient selection and follow-up at all time points. Adapted from Nygaard et al. (2015) (158). 

 
7.2.2 Healthy controls and training set 
For Study 2, we included both a HC group and a training set for the machine learning 

analyses and brain age adjustments. In the case of the HCs, NORMENT (Norwegian Centre 

for Mental Disorders Research) gave us access to make a careful selection of an age and 

gender matched selection from their in-house collected HC samples (TOP and StrokeMRI). 

We selected 235 HCs (mean age 40.8±7.3 years, 72% female) to match our 58 MS subjects 

(mean age 40.7±7.6 years, 72% female) with 3T MRI scan at the second follow-up. The two 

groups were recruited to two parallel studies after stratified random selection from Norway’s 

National Population Register or from newspaper advertisements (163, 164). Exclusion criteria 

MS patients age 18-50, diagnosed in 2009-2012
(n=151)

Identified from the hospital registry in 2011 and 2012 and/or reported by the treating clinicians 

Not contacted due to limited MRI capacity
(n=23)

Eligible

(n=108)

Invited

(n=85)

Time point 1
2012/2013

(n=76)

Uncertain diagnosis/ non-fluency in Norwegian/ 
neurological or psychiatric disease/ drug abuse/ 

head trauma/ pregnancy/ previous adverse 
gadolinium reaction

(n=40)
Moved/ no contact on phone

(n=3)

Declined to participate
(n=9)

Time point 2
2013/2014

(n=72)

Time point 3
2016/2017

(n=62)

Moved, pregnancy or hospitalized
(n=4)

Moved, pregnancy, hospitalized or declined
(n=14)
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included a history of neurological or psychiatric disease, estimated IQ (intelligence quotient) 

< 70, and current medication significantly affecting the nervous system (165). 

The training set for the brain age estimation model was carefully set up to fulfil certain 

requirements: (1) the included datasets should be easily accessible in terms of ethical consent 

and intellectual rights, (2) the inclusion of as many subjects as possible in the age range 20-50 

years, and (3) a wide age range to ensure a reliable prediction model across the life span. In 

total, we included MRI scans from 3208 HCs aged >12 years (mean age 47.5±19.8 years, 

54% female) in the range 12–95 years. The samples were obtained from several publicly 

available datasets (Fig. 12) and processed in the same MRI pipeline as the HC and MS scans. 

 

 
Fig. 12. Overview of the age distribution for the training set and the different samples included. 

Information concerning the sample cohorts (CAMCAN, DLBS, IXI, OASIS, SALD, STROKEGE750, 

STROKEMRI, TOP3T, TOP3TGE750, and ds000222) is available in an article by Kaufman et al. (2019) 

(166). 
 

7.3   MS diagnosis 

All MS patients included at baseline were originally diagnosed at the time by experienced 

clinicians at the Department of Neurology, Oslo University Hospital (OUH), Ullevål between 

2009 and 2012, who used the 2005 or 2010 revised McDonald diagnostic criteria for MS (62, 
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63). During the second follow-up, two of the subjects were classified as RRMS instead of 

CIS. These changes in MS phenotype were due to the revision of the MS diagnostic criteria in 

2017 (64). 

The revisions to the diagnostic criteria for MS have been made when the research 

community has achieved sufficiently more novel insights to be able to shorten the delay from 

disease onset to diagnosis, yet at the same time maintain the high standards of sensitivity and 

specificity previously achieved. In sum, the improvements in the diagnostic criteria during our 

longitudinal study would have made it possible back at baseline to include more subjects with 

RRMS phenotype. Some subjects who lacked DIT were mainly classified as CIS, especially 

before the 2010 revisions the diagnostic criteria for MS. Therefore, it might be hypothesized 

that with the same parameters, a similar inclusion made today with the 2017 revisions would 

include more MS subjects with shorter disease duration and lower disability. 

 

7.4   Clinical assessments 

During all three time points, only three investigators were involved in the clinical 

neurological assessment of the MS subjects. All investigators were Neurostatus certified to 

adhere to the then current research standards (167). This was a strength of the longitudinal 

study, as it lessened the risk of investigator bias, and to some extent evaded the question of 

inter-rater variability. Across all time points we achieved very high intra-rater variability, as 

the median EDSS was 2.0 at all time points (range 0-6). As described in detail in the 

Introduction (Section 4.7.1), EDSS is the most common tool for assessing clinical disability in 

people with MS. Especially for the lower parts of the scale (< 4.0), the clinical neurological 

examination is important in order to investigate and uncover specific symptoms from all parts 

of the CNS (84). 

 

7.4.1 Neurological assessment 

For all study visits, we estimated the EDSS score after thorough and focused neurological 

examinations. The EDSS score has many limitations; an example of a normal distribution of 

patients with MS is shown in Fig. 13, which shows the bimodal distribution of the EDSS 

scores in a general MS population (85). By implication, Fig. 13 shows that the rate of increase 

in EDSS is highly dependent on the EDSS score at baseline. Some researchers have discussed 

possible limitations regarding whether the scale is responsive to changes in disability over 
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time in patients, especially in their early course of MS. Also, several aspects such as cognitive 

function, energy level, quality of life, and mood, are not included in the FS of the EDSS. 

 

 
Fig. 13. Schematic overview of the Expanded Disability Status Scale (EDSS). The different 

neurological symptoms contributing to the different parts of the EDSS eventually determine the final EDSS 

score. The distribution of patients with MS is shown according to their EDSS score. Reproduced from van 

Munster et al. (2017) (85), with permission from Springer Nature ltd, obtained 5 September 2019. 

 

Both the Multiple Sclerosis Severity Score (MSSS) (168) and the Age Related Multiple 

Sclerosis Severity Score (ARMSSS) (169) have been suggested as replacements for the 

EDSS. While MSSS encompasses the speed of the increase in EDSS, ARMSSS switches age 

for disease duration. In addition, many other scales and scores have been investigated and 

validated in larger datasets as superior to EDSS, such as the Multiple Sclerosis Functional 

Composite (MSFC) (including walking speed, hand function, processing speed, and working 

memory) (170, 171) and the MS Disease Severity Scale (MS-DSS), the Combinatorial 

Weight-adjusted Disability Score (CombiWISE) which switches age with disease duration 

(172). Yet, EDSS is still the single most used MS-disability scale in both the clinical and 

research setting. 
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7.4.2 Cognitive assessment 

For many years cognitive impairment was not a prioritized research area or clinical focus in 

MS care, although this situation shifted after a correlation between MRI findings and 

neuropsychological testing in MS was published in 1989 (173). Not long thereafter, Rao et al. 

introduced the Brief Repeatable Battery (BRB) for both clinical and research purposes in MS 

(87, 174). Later, the Minimal Assessment of Cognitive Function in MS (MACFIMS) was 

introduced and used for many years (175). More recently, in 2011, a large international 

consensus group lead by Dawn Langdon proposed a simple and robust assembly of cognitive 

tests called the Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS), 

performed in just 15 minutes per subject (176, 177). The BICAMS test battery has been 

validated though international validation studies in a great number of countries (178), 

including Italy (179), Canada (180), Belgium (181), Japan (182), and recently also in Norway 

(183). 

When we prepared the cognitive test battery before the first assessment in our MS 

sample, we relied on support from clinical neuropsychologists to ensure that the test battery 

was comprehensive. However, for the two follow-up investigations we reduced the number of 

cognitive tests. The reduction in cognitive tests was made as a consequence of feedback from 

our test subjects. In close collaboration with clinical neuropsychologists, we aimed to reduce 

the overall strain of research tests imposed on the subjects participation in the study. An 

overview of our complete cognitive tests is shown in Fig. 14. 

 

 
Fig. 14. Overview of the complete cognitive test battery for all time points in the MS sample. Tests 

marked in bold font were performed throughout the study period, except for PASAT, which was not 

performed at time point 2. BVMT-R – Brief Visuospatial Memory Test – Revised, COWAT – Controlled 
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Oral Word Association Test, CVLT-II – California Verbal Learning Test – II, D-KEFS CWIT – Delis-

Kaplan Executive Function System Colour-Word Interference Test, MMS – Mini Mental Status, PASAT – 

Paced Auditory Serial Addition Test, RCFT – Rey Complex Figure Test and Recognition Trial, SDMT – 

Symbol Digit Modalities Test, WASI – Wechsler’s Abbreviated Scale of Intelligence. 

 

In previous publications on the Oslo Longitudinal MS sample authors report comparisons of 

the cognitive test results from the first two time points, when they also used healthy control 

samples to compare specific cognitive domains. Especially for the California Verbal Learning 

Test – II (CVLT-II), they discuss how both the MS and HC samples performed better than the 

norms for the same data (158). Both samples might have been confounded by selection bias, 

since they were both recruited from young, urban, well-educated, mainly female persons. 

In Study 3 we focused on the complete longitudinal MS dataset and therefore only 

including the cognitive tests with longitudinal data (shown in bold font in Fig. 14). We 

included all longitudinal cognitive data to ensure that we would not have any effect of 

publishing bias. The Paced Auditory Serial Addition Test (PASAT) 3 seconds version, for 

which the total number of correctly performed calculations is reported, was the only test not 

performed at all assessments, since we did not include it at time point 2 (156). We excluded 

the Attention Network Task (ANT) due to complexity of the raw data and the time it would 

require to process the data in a proper way. The results of PASAT, the Symbol Digit 

Modalities Test (SDMT) (184), the Colour-Word Interference Test (CWIT) subtest from the 

Delis-Kaplan Executive Function System (D-KEFS) (185), with time to completion of the 

Colour Naming and Word Reading conditions, were assessed to evaluate information 

processing speed and working memory. 

To evaluate verbal memory we used the Norwegian version of the CVLT-II (186, 

187), with the total number of correctly recalled words in each condition. Visuospatial 

memory was evaluated using the Brief Visuospatial Memory Test – Revised (BVMT-R) 

(188), with the total number of points earned in the three immediate recall conditions. Verbal 

fluency was assessed using the Controlled Oral Word Association Test (COWAT) (189). 

Lastly, executive functions were measured using the D-KEFS CWIT, with time to completion 

of the Inhibition and Inhibition/Switching conditions. We did not have a comparable healthy 

control dataset for this longitudinal dataset, for to the same reasoning as stated earlier (Section 

7.1), namely missing ethical approval and consent to share data with us. 

The SDMT is known as a hallmark test for processing speed and working memory in 

MS, where each of the numbers 1–9 is correlated with an abstract symbol in a symbol-number 
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key (184). The test subject is able to see the key at all times, and is supposed to tell the 

corresponding number for as many symbols as possible in the course of 90 seconds, where 

only correct numbers are counted (184). As suggested by the updated BICAMS 

recommendations, we changed the SDMT instructions before the last assessment so that the 

subjects performed the SDMT test orally. The purpose was to eliminate any confounding 

effect of neurological disability in terms of writing performance. The changed instruction 

might have improved our SDMT results for time point 3, although no significant difference 

was found in the test performance of the SDMT between the last two assessments (time point 

2 and 3). However, neurological deficits affecting speech have been found to affect also the 

oral version of the SDMT (190). 

The SDMT has shown satisfactory to excellent reliability in persons with and without 

MS when tested over a wide span of time intervals in several different countries (191). Based 

on the test results, studies have shown that the SDMT is superior compared to other tests of 

processing speed in terms of differentiating HCs from people with MS (191), where 

sensitivity and specificity of 82% and 60% respectively have been found for SDMT (192). 

Additionally, the SDMT has been found to be a sensitive test for longitudinal changes in 

processing speed (193-195). Due to its psychometric abilities, the SDMT has been 

recommended as the single preferred surrogate measure of processing speed (191), as a study 

endpoint (196), and for screening and monitoring of longitudinal cognitive functioning in 

subjects with MS (197). Standard MRI measures have been found to have a moderate to 

strong correlation between the SDMT in a meta-analysis of a mixed MS sample, especially 

T2 lesion volume (r = -0.45, p < 0.001) and atrophy (r = -0.54, p < 0.001) (198). The 

researchers in the same study also favoured the SDMT over PASAT using binomial tests. 

The list of words used in the Norwegian version of the CVLT-II (199) has been shown 

to encompass the most important psychometric strengths as the original version (200). In a 

report published in 2014 the Norwegian Directory of Health (Helsedirektoratet) concludes 

that the CVLT-II constitutes adequate abilities as a measure of verbal learning and memory 

(201). For all longitudinal cognitive tests, we used alternative forms and tests whenever 

possible to avoid practice-related effects in a retest setting. For example, in the BVMT-R the 

six geometric figures were different at all time points. However, tests on healthy subjects have 

shown similar adversity for the same figures in comparison with different figures (188). 

Although the lists and figures in the cognitive tests were different, the set-up and instructions 

were the same, thus making practice effects evident, as seen in the case of Study 3. 
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Differences between countries have been found with respect to the use of the 

BICAMS test battery, and therefore any systematic effects on the resulting performance 

cannot be excluded (183, 202). When assessing the cognitive data, we used the raw test scores 

from all cognitive tests, mainly because this had been evaluated as the most appropriate 

approach in a longitudinal setting. We corrected for confounding effects of age, gender, 

disease duration, and educational level at time point 1 without any significant effects in the 

MS sample. In any sense, the use of raw scores can be beneficial when striving to avoid 

overcorrection of resulting cognitive tests. 

 

7.4.3 Assessment of fatigue and depression through self-report questionnaires 

For all time points, we used the self-report questionnaire Fatigue Severity Scale (FSS) (160), 

with nine subscores to capture the different dimensions of fatigue. FSS was already well 

established and had been shown to be associated with structural and brain connectivity 

changes (107, 108). In addition, we collected the completed Norwegian version of BDI-II 

questionnaires from the subjects, with a total of 21 subscores to encompass various features of 

depression (162). In Study 1, FSS mean score ≥ 4 was categorized as clinically significant 

fatigue, while BDI-II sum score ≥ 14 was categorized as clinically significant depression 

(160, 162, 203). Both tools are well-established in the context of capturing the symptoms of 

MS comorbidity with fatigue and depressive symptoms. The reasons for including the 

questionnaires and especially not a more comprehensive tool for depressive symptoms or the 

Fatigue Scale for Motor and Cognitive Functions (FSMC) were pragmatic and were decided 

prior to the first assessment. The FSMC has been shown to distinguish better between 

symptoms of motor and cognitive fatigue in MS compared with FSS (108, 204). To evaluate 

the feasibility of the FSS and FSMC in our MS cohort, we collected the FSMC scores at the 

second time point. However, the results are not yet published. A recent study using 

longitudinal assessment of fatigue with the Modified Fatigue Impact Scale (MFIS) found 

evidence of biologically meaningful phenotypes of fatigue in MS (205-207). With regard to 

BDI-II, the participants in the HC dataset had already used this questionnaire, and therefore to 

be able to compare the BDI-II data from subjects in our MS sample we adhered to their plan 

and have performed the BDI-II at all time points. There were some incomplete data in terms 

of the questionnaires. For data from time point 3, I contacted the subjects with missing data 

and was able to update the information by filling in all missing data in the questionnaires. The 

fact that the study subjects filled in the self-report questionnaires at home might have 
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influenced their answers to some degree, depending on both their home environment and the 

time they needed to complete the task. 

 

7.5   MRI acquisition 

All subjects in the five-year longitudinal MS sample were scanned using the same MRI 

scanner at all three time points throughout the period. However, there were several possible 

confounders with respect to the acquisition of images from the scanner. First, degradation of 

the magnet might have influenced the images longitudinally and caused deterioration in the 

quality of the images. Second, software upgrades might have influenced the acquisition and 

resulting data quality. Third, the positioning of the subjects inside the scanner and the 

positioning of the acquisition window might have influenced the resulting output data, which 

were especially relevant when analysing the rs-fMRI data in cases where the field of view did 

not cover the complete area of interest. Fourth, when collecting longitudinal patient data, the 

following have to be considered as possible confounders: changes in the state and health of 

the subjects during the course of the follow-up, hydration status, how rested the subjects were, 

what time of day their scan was done, comorbidities, gender, genetics, and their state of mind 

in terms of rs-fMRI. 

 

7.5.1 Siemens 1.5T scanner 

All of our MS subjects were scanned at up to three time points between January 2012 and 

August 2017 in a combined clinical and study setting to avoid unnecessary MRI scans for the 

participants. The same 1.5T scanner (Avanto, Siemens Medical Solutions, Erlangen, 

Germany) equipped with a 12-channel head coil was used throughout the study period. Minor 

software updates were installed whenever necessary during that period. Structural MRI data 

were collected using a 3D T1-weighted MPRAGE (Magnetization Prepared Rapid Gradient 

Echo) sequence, with the following parameters: TR (repetition time)/TE (echo time)/flip 

angle/voxel size/FOV (field of view)/slices/scan time/matrix/time to inversion = 2400 

ms/3.61 ms/8°/1.20 × 1.25 × 1.25 mm/240/160 sagittal slices/7:42 minutes/192 × 192/1000 

ms. The MPRAGE sequence was kept identical during the scanning period. FLAIR (fluid-

attenuated inversion recovery), T2 and pre- and post-gadolinium 3D T1 sequences were 

attained and used for neuroradiological evaluation (158). For the rs-fMRI sequence in Study 1 

we used a T2* weighted echo-planar imaging (EPI) sequence with the following parameters: 

TR/TE flip angle/voxel size/FOV =3000 ms/70 ms/90°/3.44 × 3.44 × 4 mm/220, descending 
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acquisition, GeneRalized Autocalibrating Partial Acquisition (GRAPPA) acceleration factor = 

2), 28 transversally oriented slices, no gap, with a scan time of 7 minutes and 30 seconds, 

yielding 150 volumes. Three dummy volumes were collected to avoid T1 saturation effects. 

At time point 3 we did not perform gadolinium contrast enhancing sequences on the 1.5T 

scanner as this had been done just two days prior to the use of the 3T scanner, to avoid 

redundant exposure to the gadolinium contrast agents. 

 
7.5.2 GE 3T scanner 

A total of 58 MS subjects were scanned using a 3T GE 750 Discovery MRI scanner with a 

32-channel head coil at time point 3 between August 2016 and June 2017, two days prior the 

1.5T scan. HCs were scanned solely on the 3T scanner at one time point to provide cross-

sectional data. Structural MRI data were collected using a 3D high-resolution IR (inversion 

recovery)-prepared FSPGR (fast spoiled gradient echo) T1-weighted sequence (3D BRAVO) 

with the following parameters: TR/TE/flip angle/voxel size/FOV/slices/scan time =8.16 

ms/3.18 ms/12°/1 × 1 × 1 mm/256 × 256 mm/188 sagittal slices/4:42 minutes. The reason for 

performing the two scans just two days apart at the last assessment was to enable direct 

comparison of scanner effect when estimating brain age. We knew from previous work that 

the scanner effect on the resulting brain age estimates would be substantial (166), and we 

wanted to exploit the unique opportunity to investigate the topic in the specific study setting. 

 

7.5.3 Training set using multiple MRI scanners 

The training set comprised several local or publicly available MRI datasets (CAMCAN, 

DLBS, IXI, OASIS, SALD, STROKEGE750, STROKEMRI, TOP3T, TOP3TGE750, and 

ds000222), both to provide detailed imaging data from 3208 healthy participants across a 

wide age range and to provide a robust machine learning model for estimating age (see Fig. 

12, in Section 7.2.2). The training set consisted of MRI scans from several different MRI 

scanners and magnet strengths in order to provide a generalizable estimation model to 

perform well across most other datasets. 

 

7.6   Image analysis 

All image analyses were performed at NORMENT, using established international pipelines 

for the desired MRI sequences and processing methods. 
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7.6.1 Post-processing pipeline 

FreeSurfer is a free open source software package widely used in imaging research across the 

whole neuroscience research field. The software enables the transformation of raw structural 

brain MRI data for both volume-based and surface-based analysis (208, 209). The FMRIB 

Software Library (FSL) is used to analyse functional and diffusion MRI imaging data relating 

to the brain (210-212), while also taking into account the structural background, for which in 

the MS field a specific integrated package called SienaX is used (211, 213). We used mainly 

FreeSurfer and FSL for our imaging analysis, based on previous experience and the current 

state-of-the-art methods. 

 

7.6.2 FreeSurfer analysis and lesion filling 

The structural features used in all three studies were acquired using the T1-weighted scans to 

provide cortical reconstruction and volumetric segmentation using FreeSurfer 5.3 (208). To 

optimize our longitudinal dataset in Study 2 and Study 3, these images were processed with 

the longitudinal stream in FreeSurfer (214). For each subject we created an unbiased within-

subject template space and image using robust inverse consistent registration (215). Then we 

performed a set of processing steps for skull stripping, Talairach transforms, atlas registration, 

parcellations, and the creation of spherical surface maps based on the individual scans 

accounting for the within-subject template to increase power and reliability (214). Manual 

quality control of the MRI scans was performed by me, after thorough training, to edit or 

exclude scans according to a given set of criteria. Lesion filling using the lesion filling tool in 

FSL (212) was performed, utilizing already acquired lesion masks based on Cascade (216). 

The Cascade method achieved high sensitivity (90%) and specificity (99.5%) compared with 

manual delineation of white matter lesions (216). The lesion masks were assessed and edited 

by a trained neuroradiologist. Replacement of white matter lesions in MS with computed 

brain tissue has been shown to improve tissue class measurements (217). 

 

7.6.3 Processing of the rs-fMRI data 

Our fMRI analysis for Study 1 is described in detail in Paper I. Briefly, we used an 

established method with the FMRI Expert Analysis Tool (FEAT) Version 6.00, from FSL 

(211, 212). We corrected for head motion, removed non-brain tissue, and examined for image 

artefacts or bad coverage of the desired brain areas (218-220). The subjects’ fMRI volumes 

were registered to the Montreal Neurological Institute (MNI) 152 standard template using the 
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T1-weighted scan as an intermediate, which had the non-brain tissue removed prior to the use 

of procedures for automated volumetric segmentation in FreeSurfer (208). 

Later, single-session independent component analysis (ICA) was performed for all recorded 

data using Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components (MELODIC) (221). The single-session ICA were submitted to FIX, which 

attempts to auto-classify ICA components into "good" vs "bad" components (222), to check, 

improve and distinguish between noise compartments and signal. Data cleaning and 

consideration were performed by me and the third author of Paper I. 

The processed MNI-conformed rs-fMRI datasets were submitted to temporal 

concatenation group independent component analysis (gICA) using MELODIC (221) with a 

model order of 30. The group level spatial components were then used as spatial repressors 

against the original rs-fMRI datasets to estimate subject-specific components and associated 

time series (dual regression (223)). After careful consideration, we had to exclude eight 

different group ICA components. The second group ICA component, encompassing the 

regions of the renowned DMN including the PCC (posterior cingulate cortex), angular gyrus 

and mPFC (medial prefrontal cortex), was thresholded at z > 4 and used as a mask for 

extracting the mean DMN connectivity value from the subject-specific Dual Regression maps. 

Due to our limited data, we considered it most efficient to combine all of the involved 

subregions of the DMN into one subregion for the analyses in Study 1. 

 
7.6.5 Brain age estimation 

Brain age estimation is done using machine learning on a large training set of MRI data from 

HCs to develop a model that can accurately estimate the individual age from brain scans (166, 

224-227). Utilizing sensitive measures of MRI-based brain morphometry, brain age 

estimation provides a robust and novel imaging-based biomarker with potential to yield 

insights into similarities and differences of disease pathophysiology across brain disorders 

(166, 227-229). In Study 2 and Study 3 we applied the extreme gradient boosting (XGBoost) 

package in R (230) to train a prediction model for each sex for the whole brain, using the 

training sample described in Section 7.5.3 (learning rate eta = 0.01, optimal number of rounds 

determined in a nested cross-validation loop within the training set, other parameters as 

default). To encompass the regional specificity of the brain, we used the lobe parcellation 

labels from FreeSurfer (208) to identify features that overlapped with a given lobe and made 

unique prediction models for the insula, cingulate, parietal, temporal, frontal, occipital, and 

subcortical/cerebellar brain regions. XGBoost was chosen on the basis of its resource 
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efficiency and demonstrated superior performance in previous machine learning competitions, 

and due to our data being highly monotonic (231). A 10-fold cross-validation of the resulting 

brain age estimates within the training set validated the good performance of the model and 

generalizability, with correlation between age and estimated age on r=0.91, before applying 

the model on our MS data. 

To capture the structural integrity of the whole brain, we used an established 

multimodal cortical parcellation method to extract cortical thickness, volume and area for 180 

regions of interest (ROI) per hemisphere (232). We also extracted a set of standard outputs 

from cerebellar, subcortical and cortical summary statistics (233). This yielded a total set of 

1118 structural brain imaging features, 360 each for cortical thickness, volume, and area, and 

38 from cerebellar, subcortical and cortical summary statistics. 

Imaging-based brain age has been shown to be reliable both within and between MRI 

scanners (166). Our MS dataset comprised only two different MRI scanners, which allowed 

us to estimate the scanner coefficient by pooling the data into linear mixed-effects (LME) 

models, for the whole brain and all regional estimation models in Study 2. The specific 

scanner coefficients between the 1.5T and 3T scanners in our sample for all brain age 

estimation models are listed in Table 4. Systematic difference between scanners is a known 

confounder in imaging research, and therefore it is important to account for such differences 

in imaging research that incorporate several MRI scanners (234). 

 
Table 4. The calculated scanner coefficients for the brain age estimation models between the 1.5T 

and 3T MRI scanner. 

1.5T versus 3T scanner coefficients for MS patients 
Brain region Brain age difference 1.5T vs. 3T Correlation (r) 
Full brain 9.69 0.78 
Occipital 3.34 0.68 
Temporal 10.20 0.67 
Frontal 10.60 0.74 
Parietal 9.21 0.72 
Cingulate -6.08 0.74 
Insula -0.43 0.71 
Subcortical/Cerebellar -3.54 0.86 

 

Using linear regressions, we removed the common variance with age, age2 and sex to account 

for confounding factors before submitting the residualized version of brain age to further 

analyses (235). We estimated brain age and calculated the difference between chronological 
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age and brain age for all subjects, defined as the brain age gap. Several approaches to brain 

age estimation utilize information from a variety of brain regions (e.g. the hippocampus, 

subcortical structures, and grey matter and white matter (163)) or from MRI sequences (e.g. 

T1, T2, diffusion tensor imaging (DTI), and functional MRI) to inform the estimation model 

(226, 228). It has already been shown that an older-appearing brain is associated with many 

diseases across both the neurodegenerative and the neurodevelopmental domains, and with 

worse outcomes in terms of a number of aspects of disability, functioning and quality of life 

(166). To summarize, the quantitative information derived from brain MRI can be compressed 

into a single individual measure by using machine learning methods to estimate brain age, 

comprising advanced imaging information from the whole brain to convey complex data into 

a single output (227, 236). 

 

7.7   Statistical considerations and illustrations (Figures) 

We used R (R Core Team, Vienna, 2018), MATLAB Version 9.2 (The MathWorks Inc., 

Natick, MA, 2017) and IBM SPSS Statistics 25 (SPSS, Chicago, IL) for statistical analyses. 

SPSS was mainly used to organize the data for all three studies. MATLAB was used in Study 

1 in the early phases of my doctoral research, with assistance from co-author Dag Alnæs, for 

the statistics and generating the two Figures in Paper I. For the revision of Paper I, I did the 

remaining statistical analyses with R. For Study 2 and Study 3, R was used for the statistical 

analyses and to generate all Figures. The main Figures included in Papers II and III were 

made using the ‘ggplot2’ (237) and ‘cowplot’ packages in R, and adapted to visualize our 

results in a meaningful way. 

 
7.7.1 Descriptive statistics and normality tests 

We inspected histograms, Q-Q plots and calculated Pearson’s correlations to assess the 

quality of the data, to check for normal distribution, and to address outliers. For the 

descriptive statistics, we used the ‘summary’, ‘sd’, ‘view’, and ‘lm’. To assess the reliability 

of data across time we computed the intraclass correlation coefficient (ICC) using the R 

package ‘irr’. 

For Study 2, we first explored the commonly accepted ‘MatchIt’ package in R to 

select the matched HC, but found it was not as selective and precise as we had aimed for 

(238). A newly designed script made for R by an international research colleague in the 

Sys4MS collaboration was explored. This script focuses on matching the gender distribution 
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first and then later the age distribution, thus maximizing the included HC compared with 

MatchIt. 
 
Table 5. Overview of the MS-MRI datasets at time point 3 and the matched HC in Study 2. 

  Time point 3, 1.5T scanner Time point 3, 3T scanner Healthy controls, 3T scanner 
Number n=58 n=58 n=235 
Age (SD) 40.8 (7.3) 40.8 (7.3) 40.8 (7.6) 

Female (%) 72% 72% 72% 
 

7.7.2 Principal component analysis 
A principal component analysis (PCA) utilizes an orthogonal transformation to transform data 

of possibly correlated features into several principal components that are linearly 

uncorrelated. The resulting principal components are then reported back in a hierarchical 

manner, where the first principal component explains the largest portion of the variance in the 

original data. Every succeeding principal component then has to be orthogonal to the already 

reported principal components. The number of principal components with enough statistical 

power to be used in further analyses varies greatly, depending on the size and structure of the 

data. 

We used PCAs in Study 1 and Study 3. For Study 1 we used an in-house MATLAB 

script from NORMENT. For Study 3 we used the R package ‘factoextra’ and the embedded R 

package ‘stats’. For Study 1, all the BDI-II and FSS subscores for all subjects were included 

in the PCA. We also included seven subjects who were missing rs-fMRI data, to increase the 

statistical power of the resulting principal components. Based on the size of the MS cohort 

and the interpretation of the component loading coefficients, we included the two highest 

ranked PCA components for further analyses. The PCA also reported individual component 

subject scores for each of the two highest ranked principal components. There were no 

missing data among the data included for Study 1. 

In Study 3 we performed a PCA based on data from all 13 cognitive tests for all 

subjects at all time points, imputing all missing data with the median value for the specific 

test at the specific time point to increase the statistical power of the PCA analysis. 

 

7.7.3 Effect sizes 

The clinical usefulness of p-values are of limited value, and therefore researchers are 

encouraged to report effect sizes too whenever possible (239). To improve statistical 

interpretation of the significance of our results, we included Cohen’s f2 estimates (Study 1) 
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and Cohen’s d estimates (Study 2) to address the resulting effect sizes (240). For Study 1, we 

used MATLAB to estimate Cohen’s f2, while for Study 2 we used the R package ‘cohen.d’ to 

estimate Cohen’s d. The formulae for both estimates are: 

 

	𝑪𝒐𝒉𝒆𝒏’𝐬	𝒇𝟐 =	
𝑹𝟐

𝟏 − 𝑹𝟐 	, where R2 is the squared multiple correlation. 

 

 𝑪𝒐𝒉𝒆𝒏’𝒔	𝐝 = 	
𝒕(𝒏𝟏 +	𝒏𝟐)

√𝒏𝟏𝒏𝟐	6𝒅𝒇
	,	based on estimated contrast t-statistics. 

 

7.7.4 Linear mixed-effects models and longitudinal analyses 

To analyse the longitudinal data in Study 2 and Study 3, we applied LME models to be able to 

account for the intrasubject correlations in a longitudinal setting (241-243). The LME models 

accounted for both fixed and random effects, while also enabling us to incorporate and make 

use of all the available information in the data. The statistical method with LME models 

allows for a robust approach to assess the relative importance of general versus individual-

specific contributions to observed variability in data. All LME models accounted for age, 

age2, sex, and scanner (244), and the models were run using the R package ‘lme4’. 

In Study 2, the annualized rate of change in brain age gap (BAG) was calculated by 

dividing the total change in BAG by the time interval between the time points. Using this set-

up, 0 rate of brain aging would indicate that the rate of chronological and estimated brain 

aging is similar. Compared with chronological aging, positive and negative values of brain 

aging correspond to accelerated and decelerated brain aging, respectively. We included the 

longest possible time interval between time points. Eight MS subjects were excluded due to 

lack of longitudinal data. Also, to evaluate different rates of brain aging between two groups, 

we extracted the coefficients from regular linear models in which BAG was used as the 

dependant variable, while also accounting for age, age2, sex, and DMT as independent 

variables. Annual brain atrophy was extracted by comparing the estimated total brain volume 

from the FreeSurfer output (BrainSegVolNotVent) between time points. 

 
7.7.5 Type 1 and Type 2 errors 

Discussions regarding the significance level of 0.05 have been frequent and important (239). 

Also, the clinical relevance of a statistically significant finding needs to be accounted for and 

elaborated with confidence intervals, effect sizes and discussion of possible explanations. 
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Non-significance is often mistaken for no effect, and there is a need to emphasize estimates 

and their uncertainties in open science (239). 

Typically, a Type 1 error in the context of performing a hypothesis test is understood 

as discarding the null-hypothesis even though the hypothesis is true. A Type 2 error would 

correspond to accepting a null-hypothesis even though it is wrong (156). All results reported 

in this thesis were based upon a significance level of 0.05. This p-value corresponds to a 5% 

chance that reported significant results were due to chance, even though the results were not 

true. To counter sample size issues in our data, we strived for robust methods with good 

precision. 

In Study 2, we adjusted all resulting p-values using false discovery rate (FDR) 

procedures implemented in the R package ‘p.adjust’ to control for multiple testing (245). To 

adjust for multiple testing in Study 3, we calculated the degree of independence between the 

resulting cognitive data by making a 13 × 13 correlation matrix based on the Pearson’s 

correlation between all pairwise combinations of the cognitive data. Utilizing the ratio of 

observed eigenvalue variance to its theoretical maximum, the estimated equivalent number of 

independent traits in our analyses was 9.0 (246). To control for multiple testing, our 

significance threshold was therefore adjusted accordingly from 0.05 to 5.6 × 10-3 (246). 
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8. Ethical Considerations 
 
8.1 Ethical approvals 

The research project with the Oslo Longitudinal MS sample on which this thesis is based was 

carried out in accordance with the recommendations of the Regional Committee for Medical 

and Health Research Ethics – South East Norway (REC South East Norway). The subjects 

received updated written and oral information regarding the project, and later all subjects gave 

written informed consent in accordance with the Declaration of Helsinki prior to the 

assessments of the second follow-up visit (247). We regularly update our research protocols, 

participant information and consent forms to meet the demands set forth by REC South East 

Norway. 

Data collection, storage and usage were done in a collaborative environment, in which 

we adhered to all imposed precautions to secure proper handling. Overall, we gave priority to 

ensuring proper ethical treatment of every subject included in the project. All concerns before, 

during and after the project were discussed and addressed accordingly. 

 
8.2 Clinical and cognitive assessments 

In the prospective cohort, all of our study subjects were invited for a second follow-up. Based 

on previous experience, we sought to reduce unnecessary visits and time-consuming 

examinations to a minimum. We made a structured pipeline for the follow-up, meaning a 

maximum of two visits, with the main part of the examinations happening on the first visit 

during daytime. We examined up to three subjects during the first study visit, which involved 

the following: taking blood samples, filling out self-report questionnaires, clinical 

examination, MRI scans, eye-examinations, and specific research tasks such as a walking test 

and a cognitive test battery. To ensure that subjects would continue to participate in the 

project, we kept in close contact and sent mobile messages (SMSs) to remind them about a 

planned research visit a few days ahead of the scheduled visit. 

All subjects received the same invitation, and those who did not respond were 

contacted by telephone in the hope that we would secure a response and could plan for their 

follow-up visit in the project. In total, 14 subjects were unable to attend the second follow-up 

examination, with valid reasons in all cases. Since fatigue is such an important feature of the 

MS disease, we tried to make individual adjustments whenever necessary, to ensure that all 

eligible subjects would attend the follow-up study. We also arranged transport by taxi, both 

between locations at the hospital and back and forth to their home address if subjects reported 
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difficulties with walking from one test location to another. Lastly, we made sure to give 

positive responses throughout the two planned study visits, to ensure a positive experience for 

all our test subjects. 

When we discovered clinically important findings, for example with MRI reports of 

new lesions, new neurological symptoms, experience of reduced cognitive function, or high 

levels of depressive symptoms, we reported back to the treating clinician so that the findings 

would be considered shortly after being discovered. 

 

8.3 MRI safety 

Today, both standard and research-related MRI assessments are regarded as safe. However, 

there are several minor concerns and some possible major risk factors that need to be taken 

into account. The main concern is the strong magnetic field produced by the scanner’s 

magnets, which can lead to magnetic objects causing damage if the safety regulations are not 

followed. Also, MS subjects can experience heat-related Uhthoff’s phenomenon due to the 

induced heating of the subjects caused by the radio frequency pulse during some MRI scan 

sequences. A prolonged research MRI scan causes increased discomfort in comparison with a 

shorter standard MRI assessment, as well as prolonged exposure to the noise generated by the 

MRI scanner. For some patients, the prolonged exposure might lead to increased 

claustrophobia, with resulting fear and anxiety. In our case, we tried to accommodate the 

subjects with established claustrophobia by giving them shorter pauses during their MRI scan. 

Some subjects with severe claustrophobia also took prescribed drugs beforehand to reduce the 

level of stress and discomfort they experienced during the MRI scan. Only one subject 

declined to participate in the project due to severe claustrophobia. 

There has been an increasing focus on sustained gadolinium enhancement in the brain 

following serial MRI assessments (Section 4.8.2). At Oslo University Hospital we use 

macrocyclic gadolinium injections only, thus significantly lowering the occurrence of 

gadolinium accumulation. There is a trend towards excluding gadolinium in most follow-up 

MRI assessments, although this is still not implemented as a guideline in our clinical practice. 

In addition, the 3T MRI scans were done as part of the routine clinical assessments and were 

to be included in a European MS project for which gadolinium sequence was a requirement. 

Two subjects did not receive gadolinium injection due to previously reported allergic 

reactions to gadolinium. For the second follow-up of our MS sample, the 1.5T MRI 

assessment was performed only two days after the first 3T MRI assessment. However, this 
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MRI protocol was kept to a minimum, in addition to not including gadolinium injection. All 

MRI images acquired as part of the project were reviewed by an experienced neuroradiologist 

and included in the patient journals so that they would be available to the treating neurologist 

and other health care workers. 

 

8.4 Drawing blood 

Before starting the project, we made sure to have a standard operating procedure for drawing 

blood, to ensure the safety and efficacy for all subjects. We were allowed to take nine tubes of 

full blood, in total 40 ml of blood, at the third time point. The blood samples were taken by 

me, successfully for all but one subject. The amount of blood is considered to be a low 

volume, and would not have affected the subjects to a great extent. We received no reports of 

local infections or other complications due to the needlestick. 
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9. Discussion 

MRI is an important tool to diagnose and follow-up people with MS. The results of studies 

using standard MRI sequences are leading to the unravelling of the evolution and the effect of 

treatment in MS (38, 66). Advanced MRI sequences lead to the acquisition of important data, 

which in turn contribute to increase our understanding of the underlying mechanisms of MS. 

Research targeted towards the brain often attracts large interest in the general 

population. From the beginning of life, we start an aging process. A robust imaging marker 

with the ability to measure the aging process and the inevitable deviations from chronological 

aging of the brain will be of great value in a research setting. 

Visual MRI interpretation is still the gold standard when assessing MRI scans of MS 

subjects in a clinical setting. Quantitative MRI techniques in MS have been heavily 

investigated, with the aim of supporting clinical decisions in MS by implementation in MS 

guidelines. With the collection of big data and the development of machine learning methods 

in MS, several quantitative MRI methods are closer to clinical use than ever before. 

During the PhD project, I had responsibility for re-examining a group of MS patients 

that had been investigated on two previous occasions. In parallel to the new follow-up of 

these patients, we used data from the first time point to investigate the interplay between 

depressive symptoms and fatigue, looking for associations with default mode network 

connectivity measured by resting state fMRI (Study 1). After the follow-up was completed, 

we used the whole longitudinal MS cohort and adapted state-of-the-art machine learning 

methods to estimate individual brain age based on structural T1-weighted MRI images (Study 

2). Lastly, we used the acquired brain age marker to explore cognitive performance in 

comparison with other known structural MRI markers in our MS dataset (Study 3). 

In taking an overview of the topic of my thesis and including the domains covered by 

the objectives for Studies 1–3, in the next section I discuss in broader terms the state of 

quantitative MRI in MS and its feasibility as possible biomarkers for clinical use. 

 
9.1   MRI as an MS biomarker 

The main objective for this thesis was to study the imaging data in the Oslo longitudinal MS 

cohort using state-of-the-art MRI post-processing methods to discover imaging markers for 

disease activity. The term ‘biomarker’ has been defined by a study group from the National 

Institute of Health as: ‘a characteristic that is objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to 
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a therapeutic intervention’ (248). Biomarkers are commonly perceived as biological markers, 

such as measuring infection by counting neutrophil leucocytes in the peripheral blood. 

Recently, studies investigating NfL from serum have provided results indicating that it might 

serve as an easily accessible biomarker of both treatment response and disease progression 

(152, 153, 249-251). However, neurofilament light chain lacks specificity as a biomarker and 

confounding factors need to be accounted for, such as BMI and blood volume (252). 

Imaging markers in MS are needed to enable improved personalized treatment of 

multiple sclerosis and individual treatment selection (54, 253, 254). Clinically relevant 

imaging markers will need to fulfil required characteristics as relevant markers for disease 

activity, namely sensitivity to the imaging feature, reliability and specificity of the marker to 

other imaging features. An MRI marker for diagnostic purposes in MS will need to exclude 

all other possible differential diagnoses by having high levels of specificity, and ideally 

support early diagnosis. An imaging marker designed to evaluate treatment response should 

be reliable in a longitudinal setting and sensitive to subtle fluctuations in the imaging features. 

Advanced imaging markers that can be used to evaluate subtle and early microstructural 

damage, functional changes and metabolic differences will enable observation of treatment 

effects by reducing the consequences of neurodegeneration and neuroinflammation (54). New 

imaging tools will open up opportunities to study the true effects of brain plasticity, tissue 

repair and accumulation of damage (54). 

 

9.1.1 Quantitative T1 and T2 MRI imaging markers 

For decades, MS lesions and brain atrophy have been evaluated with increased sensitivity as 

image quality and processing methods have improved (54, 254, 255). The McDonald criteria 

for MS diagnosis include number, locations and presence of gadolinium-enhancing lesions as 

important imaging features, yet more advanced MRI markers have not been included (64). 

The ‘clinico-radiological paradox’ is understood as the lack of highly significant associations 

between observed disability and imaging markers in MS. The explanation for the ‘clinico-

radiological paradox’ has shown to be either the lack of specificity in disability scores or lack 

of sensitivity concerning the imaging features (256). 

Brain atrophy is the most commonly applied advanced imaging marker in MS (54, 

254). Studies have found that improved methods for measuring brain atrophy have resulted in 

better correlations between MRI atrophy and clinical features (54). However, the term brain 

atrophy summarizes a variety of factors such as myelin loss, inflammation, reactive gliosis, 

and axonal loss, and a study has shown that confounding factors either overestimate or 
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underestimate many of the aforementioned factors (257). Other confounding factors are MRI 

acquisition and harmonization across scanners, image processing, pseudoatrophy, hydration 

status, and BMI. Especially for young adults, normal annual atrophy rates for total brain 

volume are very low (0.1–0.3%), hence the discrepancy between normal and pathological 

brain atrophy rates in MS ( > 0.4–0.5%) requires robust and sensitive methods for brain 

atrophy measurement (54, 258). Several ongoing Phase II and Phase III MS trials and clinical 

MS studies are including brain atrophy as a secondary imaging outcome. Future research will 

aid in improving the normative values and cut-off scores for pathological brain atrophy in 

MS, potentially enabling the inclusion of brain atrophy in future MS guidelines (254). 

Recently, regional structural or other specific imaging features in MS have been 

studied to reflect specific anatomical areas of interest, such as grey matter atrophy, cortical 

lesions, leptomeningeal inflammatory infiltrates, central vein sign, iron rim lesions, deep grey 

matter, magnetization transfer ratio, and myelin water imaging (54, 254). Interestingly, 

studies show that deep grey matter atrophy drives the disability progression in MS, also 

highlighting unique patterns of atrophy across MS phenotypes (259, 260). In a recently 

published overview of brain atrophy markers in MS, the authors state that the current state-of-

art-methods for robust measuring of grey matter atrophy are not sufficiently reproducible for 

clinical use (261). A recent methodological study investigated automated hippocampal 

subfield segmentation in 11 healthy controls scanned on two different scanners, and 

highlighted the high sensitivity and reliability across MRI scanners (262). State-of-the-art 

deep grey matter segmentation allows for robust measures in a cross-sectional and 

longitudinal setting, enabling a sensitive method for measuring deep grey matter atrophy 

(262, 263). Convincing results for fast and robust unsupervised identification of MS and other 

lesions and longitudinal changes have been found using specific algorithms (264, 265). 

Some regional MRI features, such as iron rim lesions, cortical lesions and central vein 

sign, are highly dependent on high-resolution images from ≥ 7T MRI scanners in order to be 

visualized, thus rendering these imaging markers unavailable for clinical use at present (54, 

254). There is an unmet need for a robust imaging method to capture the dynamics of the 

chronic, low-grade inflammation in people with MS (266). Studies have revealed subtle 

differences in lesion formation, including important differences between MS phenotypes, 

where slowly expanding T2 hyperintense lesions and lesions with high susceptibility-

weighted MRI signals in the rims were more frequent in progressive MS (PMS) than in 

RRMS (266). 
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Still, none of the above-mentioned imaging markers are in clinical use, and future 

studies will need to provide new insights into sensitivity, specificity, reproducibility, clinical 

utility, and feasibility of these candidate imaging markers (54, 254). 

 

9.1.2 Other candidate imaging markers 

A large body of evidence has highlighted alterations in brain perfusion in MS (261, 267). 

Specifically, perfusion MRI of the brain is a promising tool for detecting areas with focal 

inflammatory activity (267). When capturing brain perfusion using MRI, we indirectly 

quantify the delivery of blood to the arteries and capillaries in the brain (267). Perfusion MRI 

is usually measured either by using a paramagnetic contrast agent (dynamic susceptibility 

contrast and dynamic contrast-enhanced (DCE)) or by a labelling inflowing spin with a 

radiofrequency pulse, named arterial spin labelling (ASL) (267). Perfusion imaging in MS has 

been proposed as a supplement to boost early discovery of relapses, the formation of new 

lesions, and the effects of the different therapies in MS (267). 

A research study showing increased innate immune activation in MS using 

translocator protein positron emission tomography (PET) is promising, although the current 

cost of PET scans is preventing the transition onto the clinical stage of MS care (266). Several 

studies of proton magnetic resonance spectroscopy (1H-MRS) have explored mitochondrial 

dysfunction and other metabolites responsible for neurodegeneration in MS (254). Recently, 

the possibility of sodium imaging has emerged as a possible technique to assess mitochondrial 

dysfunction, to serve as a marker for neuroaxonal dysfunction preceding neurodegeneration 

(254). MR elastography of the brain has demonstrated an association between brain stiffness 

and neurodegeneration in two studies that compared MS patients with healthy subjects (268). 

Furthermore, many studies have highlighted the utility of OCT as an imaging marker, where 

ganglion cell layer thickness and loss of retinal fibre thickness correlate with clinical 

parameters (269, 270). Performing OCT is quick, easy to perform, well-tolerated, and offers 

detailed imaging information on unmyelinated axons and retinal structures, as well as the 

possibility of acquiring oximetry data. 

Enabling the identification of neurodegenerative processes preceding irreversible 

neurodegeneration is the optimal scenario for a biomarker in MS (271). Recent findings from 

neurochemistry and advances in imaging techniques are positive with respect to the progress 

made in metabolic and molecular imaging to identify energy dysfunction, cerebral 

hypoperfusion, and neurofilaments as a biochemical end-stage product of axonal damage 

(271). 
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9.2   Is brain age estimation a potential biomarker for MS? 

Brain age is a candidate imaging marker for quantifying the pathological deviations from 

chronological age and normal aging of the brain (236). In the last decade (i.e. since 2010), a 

vast number of studies have been conducted on brain age, using machine learning methods 

and using mainly structural MRI sequences, for many diseases and groups of subjects, such as 

those with epilepsy, those with Alzheimer’s disease, mothers, stroke patients, and those with 

psychiatric disorders (166, 225, 227-229, 272, 273). In Study 2 and Study 3, we investigated 

the possibility of estimating brain age by using machine learning methods based on structural 

MRI data, in our longitudinal MS cohort. At the time, only one abstract on reduced brain age 

following Natalizumab treatment in MS subjects had been published (274). In addition, only 

one previous study had explored longitudinal imaging data with brain age estimation using 

machine learning models (275). In line with the previously published results our results 

demonstrated good reliability of the brain age estimates across all time points, with intraclass 

correlation coefficient ranging from 0.78 to 0.92 using the residualized brain age estimates. 

We found that, in comparison with matched healthy controls, our MS subjects had 

significantly increased brain age. We also assessed the region-specific variety with eight 

unique brain age models, to show apparent patterns of brain aging in MS subjects. Lastly, our 

results suggested an accelerated brain aging for the MS subjects in comparison with 

chronological aging. Interestingly, when exploring the impact of lesion filling on the resulting 

brain age estimates, we did not find any significant differences. A recent study has 

highlighted that brain volumetric measurements in MS, provided by FreeSurfer, are not 

affected by lesion filling (276). 

We have supplied overlapping MS data to the largest brain age study conducted to 

date, which is by Kaufmann et al., and similarly highlights the increased brain age gap 

observed for MS subjects in comparison with other disorders (166). Kaufmann et al. have also 

found a significant correlation between brain age gap and disability measured with EDSS 

(r=0.23), but we were not able to replicate the finding in our more modestly sized MS sample. 

Converging results from the two published MS studies (166, 277) on brain age estimation 

highlight the regional sensitivity and specificity for increased brain age gap. As reported in 

Paper II, the cerebellar/subcortical region showed the most evident sign of increased brain age 

gap, which was already present at baseline. However, the temporal region, and to some degree 

also the frontal and parietal brain regions, showed no signs of increased brain age. When the 

results of Study 2 and Study 3 were evaluated, we found a significant correlation with 

increased brain age and reduced processing speed. An earlier study investigating a large 
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cross-sectional MS sample found substantially weaker associations between structural brain 

damage and functional cognitive impairment in early MS patients with low disease burden, 

and these associations are supported by our findings (278). A systematic review of 

investigated associations between white matter lesion burden and cognitive function found a 

weak cumulative correlation (r=-0.30) (279). The authors highlight the need for simultaneous 

evaluations of multiple components of the complex pathology using selected cognitive and 

MRI features (279). Our cohort of early MS patients was modestly powered and exhibited 

low counts of disability progression over the course of five years (median EDSS 2.0 at all 

time points). We hypothesize that we need a longer follow-up period to be able to capture the 

dynamics of MS progression, and thus also uncover the individual trajectories. 

Accelerated brain aging showed significant correlations with brain atrophy and change 

in white matter lesion load, which is understood as a proof-of-principle that our brain age 

method also encompasses the characteristics of two of the hallmark imaging markers in MS. 

In general, any change in the estimated brain morphometric variables between time points 

will inevitably influence the brain age estimates. Although we performed a thorough manual 

quality control (QC) of all images included in the brain age estimation, we cannot rule out 

that some of the changes in brain age between time points were partly driven by noise 

characteristics (subject motion, MRI artefacts, technical changes between acquisitions), in 

particular if the real biological changes were negligible, which is likely to have been the case 

for the relatively young and well-functioning MS subjects. 

Recently, a preprint by Cole et al. found that MS and CIS subjects had older-appearing 

brains compared with healthy controls (brain-predicted age difference (brain-PAD) 11.8 

years) (226). In total, 1204 MS/CIS subjects and 150 healthy controls were included in their 

preliminary study. There were significant differences between MS subtypes, with the most 

increased brain-PAD for the SPMS subjects. Increased brain-PAD was associated with 

increased EDSS, longer disease duration and younger age at diagnosis. The study by Cole et 

al. also found that lesion filling had no significant impact on the resulting brain age estimates 

(r = 0.99, p < 0.0001), and this result supports findings in our study. Cole et al.’s preliminary 

results validated our findings that brain-PAD in MS and CIS patients increased faster than 

chronological age. Moreover, their findings highlighted that the ‘brain age paradigm’ in MS 

has potential value for: (1) monitoring MS, (2) harmonizing an imaging marker across centres 

and different scanners, (3) conveying complex anatomical data in an intuitive and simple 

manner, (4) serving as an imaging marker of brain health with potential prognostic value, and 

(5) enabling the use of brain age as a surrogate outcome measure in MS (226). 
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Conventional brain age estimation requires standard T1-weighted structural MRI 

images, but recent publications have also explored the added value of other sequences for the 

model performance (280, 281). 

Several possible machine learning algorithms are available. Due to the strong and 

often highly monotonic signal in the data, age prediction is a relatively simple task compared 

with several other applications (typically case-control classification), and in our experience 

the specific algorithm or implementation only marginally influences the results. In the 

analyses of our recent large-scale study of brain age (166), we evaluated different machine 

learning algorithms and found converging results with different models. We decided to 

choose XGBoost as the main method for our brain age studies, as it has been the lead solution 

in many machine learning competitions in the field (231). We also performed a shrinkage 

linear model (slm) and found converging results on brain age estimates by XGBoost, although 

our XGBoost model performed slightly better than the shrinkage linear model. In our work on 

the large-scale study we also investigated how sample size affected the performance of the 

brain age estimation model and found our training sample of 3208 subjects was acceptable 

(Fig. 15). We achieved a correlation of 0.91 between estimated brain age and chronological 

age in the training set, mean the absolute error was 6.4 years. 

 

 
Fig. 15. The impact of sample size on brain age estimation model performance. Increasing the sample 

size will improve model performance and improve the variation. Reproduced from Kaufmann et al. (2019) 

(166), with permission from Springer Nature Ltd., obtained 4 February 2020. 
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Multimodal approaches in terms of imaging features in combination with high-dimensional 

statistical methods have been shown to outperform conventional unimodal approaches to 

imaging data, and are proving increasingly important in MS, for which sensitive methods for 

uncovering imaging responses to disease progression and treatment response are crucial 

(126). In addition to machine learning approaches, recent advances in computational methods 

have enabled deep learning methods for brain age estimation. In a recent study, a deep 

learning method based on structural T1-weighted MRI images was used and slightly 

outperformed the conventional machine learning models (282). 

To summarize, our ‘brain age paradigm’ highlights the application of a sensitive tool 

that is able to capture individual trajectories for the neurodegenerative processes in the brain. 

Brain age estimation condenses all the complex structural MRI features into a single 

comprehensive estimate, enabling reliable longitudinal assessment, independent of lesion 

filling and sensitive to subtle changes, to address the effect of disease modifying treatments 

and predict future disability progression in MS. The article by Kaufmann et al. shows 

promising evidence of disease specificity, as the neurodegenerative and neurodevelopmental 

disorders showed different regional patterns, although we must acknowledge that many brain 

imaging features are common and not specific (166, 236). 

 
9.3   Functional connectivity and clinical relevance 

In Study 1 we tried to disentangle symptoms of depression and fatigue in subjects with early 

MS by analysing DMN connectivity acquired by an rs-fMRI sequence in a cross-sectional 

setting. Our findings with significant associations between DMN connectivity and both 

common and unique symptoms of fatigue and depressive symptoms further add to existing 

knowledge (109). By performing a multivariate decomposition analysis of all of the subscores 

for fatigue and depressive symptoms, we applied a novel approach that enabled the findings 

of unique DMN patterns in different MS subgroups to reflect the heterogeneity in the clinical 

presentation of the MS subjects. As expected, we found that high scores on both depressive 

symptoms and fatigue were associated with increased DMN connectivity. Interestingly, and 

clinically relevant, we found that MS subjects with high scores on fatigue and low scores on 

depressive symptoms were associated with DMN hyperconnectivity. We did not find any 

significant confounding effects when testing for associations with processing speed, 

disability, lesion volume, brain atrophy, and DMT. Other studies of MS have investigated the 

different regional components of the DMN and found distinct patterns of functional 

connectivity changes (109). Converging evidence that both fatigue and depression are 
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associated with increased activation of the DMN has been found in previous studies (96, 283). 

Our novel approach suggests that unique clinical patterns are addressed by performing a 

multivariate decomposition of the underlying clinical data, to enhance the disentanglement of 

the complex interplay of associated symptoms in MS. 

A large body of evidence has demonstrated that the application of functional MRI in 

MS is able to capture the dynamic processes of functional reorganization (54). These changes 

in functional connectivity are present early in MS and are correlated with the extent of 

damage to the central nervous system (54). Studies have shown that functional brain 

plasticity, both by increased or decreased functional connectivity, can potentially commit to 

lessen the clinical consequences of structural damage to the brain (54). Conversely, findings 

from other studies suggest that the failure of these functional adaptations to compensate for 

neurological deficits is responsible for several neurological symptoms such as cognitive 

impairment and fatigue (54). 

By capturing the connectivity of different networks in the brain by functional MRI 

acquisition, it is possible to measure indirectly neuronal activation and its pattern of activity 

in the brain (54). The fMRI sequence enables the location and measurement of the activation, 

as well as the connectivity of specific areas in the brain and identification of connectivity 

networks. Functional MRI acquisition can be captured either as resting state or task-based 

(visual, cognitive, sensorimotor), depending upon the topic of investigation. With task-based 

fMRI, MS patients have been found to have adaptive changes in which recruitment of 

additional motor areas and frontoparietal areas were thought to compensate for the loss of 

motor signal (284). Also, maladaptive changes observed on task-based fMRI show the 

abnormal recruitment and connectivity of both classical and non-classical sensorimotor and 

motor areas of the brain (284). 

Interpreting the results of fMRI studies and cognition in MS has been one of the major 

challenges during the last decade (i.e. since 2010) (285, 286). Especially, since cognitive 

dysfunction have been linked to both decreased and increased DMN connectivity (285). The 

major point of discussion has been whether the increased functional connectivity in 

cognitively preserved MS patients is beneficial or whether it is damaging in a longitudinal 

setting (285). To address the issue of increased functional connectivity in MS, there is a need 

for longitudinal fMRI studies of MS (283, 285). A recent study with two-year follow-up data, 

including rs-fMRI from CIS patients, revealed early differences between CIS patients and 

healthy controls, suggestive of early protective mechanisms that minimized clinical disability 

(287). In terms of cognition in MS, rs-fMRI has been suggested as one of the important 
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neuroimaging modalities to enable increased understanding, preferably in large prospective 

longitudinal studies (88). 

 
9.4   The challenge of investigating early MS patients 

Early MS subjects exhibit a large variety of clinical presentations, most of them with low 

disease burden. Studies with a short follow-up period have not found robust associations 

between imaging markers and clinical data (256, 278). A previous study has found mainly 

low correlations (r < 0.30) between structural imaging markers and cognitive and clinical 

metrics (278). Previous publications relating to our MS cohort highlight the favourable 

clinical progression and the high cognitive performance of the MS subjects in comparison 

with healthy controls (159). A more modern treatment approach to MS, with early treatment 

and more treatment with highly effective DMTs is thought to delay the neurodegenerative 

processes, thereby slowing the rate of disease progression (48, 66). Our five-year 

observational period did not enable us to report any significant disease progression. This 

indicates the need for a longer observational period in our longitudinal MS cohort, to enable 

the establishment of individual MS trajectories. We have already collected new follow-up 

data for MS subjects almost seven years after diagnosis, and plan a 10-year follow-up study of 

the same cohort. 

 

9.5   Methodological considerations 

Several methodological considerations should be taken into account when interpreting the 

results of Studies 1–3, reported in Papers I–III respectively, and when assessing the 

generalizability of our results. These considerations are discussed in more detail in the 

following sections. 

 
9.5.1 Imperfect healthy controls 

The healthy controls used for both the training set and our matched controls for the brain age 

estimations were most likely affected by selection bias. This is a known issue when inviting 

healthy volunteers and is hard to avoid in general. In addition, as shown in Fig. 12 (Section 

7.2.2), some age groups are harder to recruit than others. This was especially important in the 

case of our MS sample, since the majority of our subjects were in the age range 20–50 years, 

which is known as the most difficult age group to include as healthy controls (166). 

Study 1 was a cross-sectional study to access changes in connectivity in the default 

mode network in association with symptoms of depression and fatigue. As always in most 
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scientific research questions, it is a strength to control for group differences between a study 

sample with a healthy control sample. In the presentation of our results in Paper I, we do not 

state that our findings are specific to MS patients, but rather that we built our analyses on 

within-group differences in DMN connectivity for the MS subjects. Changes in DMN 

connectivity within MS patients is an interesting topic, mainly due to the complex interactions 

and overlap in fatigue and depressive symptoms. MS patients are extremely heterogeneous in 

their clinical presentations, and this fact encouraged us to look into DMN connectivity on the 

basis of fatigue and depression. We consider our results representative of a typical MS cohort, 

and that our within-group analysis was worth the effort to explain some of the variance in 

symptoms burden. The lack of healthy controls was a concern, but in Paper I we argue that it 

is not a necessity to give novel insights. 

For both Study 2 and Study 3, we lacked longitudinal healthy controls. Recruitment 

and follow-up of longitudinal controls has not been the focus of our MS research group to 

date, and for this reason, we have been dependent on healthy control sets from other 

collaborators. We are currently collecting a longitudinal cohort of healthy controls in our MS 

research group. 

 
9.5.2 MRI harmonization and image processing 

Software upgrades to the MRI scanners during the course of the study period might have 

affected the longitudinal MRI data. In addition, the magnet coil of an MRI scanner 

deteriorates over time and will inevitably affect longitudinal MRI data. 

For the brain age estimation model, we had to address the scanner differences, as our 

MS subjects were scanned on a 1.5T MRI scanner longitudinally, but for time point 3 they 

were scanned both on a 1.5T scanner and a 3T scanner with two days between the scans. The 

matched healthy controls were scanned solely on the 3T MRI scanner, which induced some 

statistical considerations when we assessed the longitudinal MS data from the 1.5T scanner. 

Therefore, we included a scanner coefficient in the brain aging analyses to enable longitudinal 

assessment of brain aging, also inducing some confounding statistical implications. 

Any change in the estimated brain morphometric variables between time points will 

inevitably influence the brain age estimates. As is the case for any clinical assessments, 

changes in morphometric variables based on MRI will be partly driven by biological 

differences in the brain and partly by differences in noise characteristics, as discussed 

previously (Section 9.2). Brain atrophy represents the final common result of different 
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pathophysiological substrates, including neuroaxonal and myelin loss, while reactive gliosis 

and inflammation have the potential to mask considerable tissue loss (54). 

 

9.5.3 Clinical evaluations and statistical considerations 

The fact that the investigators were not blinded for the MS subjects might have affected the 

resulting disability assessments. Also, different investigators for all time points could have 

affected the resulting clinical evaluations. 

For the cognitive evaluations, we carried out a comprehensive investigation at time 

point 1 (Fig. 14). For the following two investigations, we selected a more specific cognitive 

battery, mainly so that the time needed to complete the cognitive follow-up was reduced in 

order to increase the likelihood of the MS subjects attending the follow-up. The selection in 

cognitive tests might have affected our results. In addition, the cognitive testing was mainly 

performed late evenings, which could have affected the resulting cognitive performance of the 

subjects. Most of the large practice-related learning effects observed in Study 3 are 

statistically significant, yet the lack of longitudinal healthy controls prevents any 

interpretation as to whether these longitudinal changes were as might be expected in the 

setting or if they were worse. 

An understanding of the underlying mechanisms in the machine learning models of 

brain age estimation is highly relevant when interpreting the results (226). However, this has 

not been as straightforward as we had expected, and the results cannot be directly interpreted 

without considerable drawbacks (288). Machine learning models tend to be biased towards 

the mean, resulting in older people being underestimated and younger people being 

overestimated. To counter this confounding effect, we regressed out gender, age and age2 

from the raw brain age estimates in accordance with several previous studies (166, 229, 289). 

In our statistical models, we accounted for confounding effects and multiple testing to the best 

of our knowledge. 
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10. Conclusions and future research 

This thesis is based on a longitudinal MS cohort of early MS subjects, which was studied 

using data from rs-fMRI and structural T1-weighted MRI sequences to evaluate the clinical 

utility of imaging markers. Fatigue, depressive symptoms, clinical tests and cognitive test 

performances were investigated to explore specific aspects of MS. The candidate imaging 

markers and our results indicated that our methods were promising for application in larger 

and future studies with longer follow-ups. Especially, brain age estimation using machine 

learning serves as a candidate imaging marker to incorporate the complexity of brain imaging 

features into a single comprehensive measure. It will become important to incorporate 

artificial intelligence methods in MS in order to achieve improved diagnostic precision and 

better estimation of individual trajectories (280). 

MS is a complex disease with large heterogeneity, and therefore a well-defined MS 

population with extensive data collection will enable researchers to evaluate long-term 

trajectories of important domains such as fatigue, depressive symptoms, disability, and 

cognition. Quantitative MRI offers the opportunity to establish imaging markers with high 

sensitivity, specificity and reproducibility. Such markers have yet to be validated for clinical 

use in MS. 

In Study 1, a correlation was identified between increased connectivity in the DMN 

and increased symptoms score for fatigue and depressive symptoms. Utilizing a statistical 

approach by PCA, attempts were made to disentangle the complex interplay of fatigue and 

depressive symptoms with some success. In Study 2 and Study 3, state-of-the-art machine 

learning methods were applied to complex structural imaging data from a training set of 

several thousand controls, to estimate individual brain age in MS subjects in a longitudinal 

setting. The candidate imaging marker were found reliable, sensitive and not affected by 

lesions. In Study 3, significant longitudinal learning effects were found in most cognitive 

domains, as well as significant correlations between imaging markers of brain age and 

thalamus volume with processing speed. 

Overall, the findings support correlations of DMN connectivity with fatigue and 

depressive symptoms. Functional MRI will need to be addressed in larger longitudinal studies 

to enable the assessment of functional reorganization in brain plasticity in MS. Longitudinal 

fMRI studies will also enable studies to assess whether early increased connectivity is just a 

form of compensation to increase brain function or a detrimental process accelerating 

neurodegeneration in MS. Also, the concept of brain age as a high-dimensional marker of 
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brain health is promising and needs to be validated in future studies. To apply quantitative 

MRI markers in clinical use for MS, there is a need to harmonize MRI protocols and data 

processing, establish robust cut-off scores compared with healthy controls, apply imaging 

markers in multicentre studies, and include imaging markers in revised MS guidelines. 

The next decades of MS research will hopefully include improved markers for early 

diagnosis, improved personalized treatment approaches and the possibility of better 

estimating future disability progression. Treatments will need to be approved for the 

progressive stages of the disease, in addition to new targeted treatments for remyelination in 

MS to reduce MS subjects’ degree of disability in the future. Patient-reported outcome 

measures have to be incorporated in future studies to reflect the patient perspective in a better 

way. Collaborative efforts to acquire larger longitudinal datasets in MS will enable the 

application of sensitive and robust artificial intelligence methods to improve our 

understanding of MS (Fig. 16). With the increasing focus on patient-reported outcome 

measures, the implementation of the patient aspect in MS research will improve the quality of 

research and the quality of life for people with MS and their families. 

 

 
Fig. 16. The iceberg of discovering disease activity in MS. Gd – gadolinium, NAGM – normal-appearing 

grey matter, NAWM – normal-appearing white matter, NO – nitric oxide. Source: MS Research group, 

with assistance from Dag Bøgeberg.  
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Abstract

Background
Fatigue and depression are frequent and often co-occurring symptoms in multiple sclerosis

(MS). Resting-state functional magnetic resonance imaging (rs-fMRI) represents a promis-

ing tool for disentangling differential associations between depression and fatigue and brain

network function and connectivity. In this study we tested for associations between symp-

toms of fatigue and depression and DMN connectivity in patients with MS.

Materials andmethods
Seventy-four MS patients were included on average 14 months after diagnosis. They under-

went MRI scanning of the brain including rs-fMRI, and symptoms of fatigue and depression

were assessed with Fatigue Severity Scale (FSS) and Beck Depression Inventory II (BDI).

A principal component analysis (PCA) on FSS and BDI scores was performed, and the com-

ponent scores were analysed using linear regression models to test for associations with

default mode network (DMN) connectivity.

Results
We observed higher DMN connectivity with higher scores on the primary principal compo-

nent reflecting common symptom burden for fatigue and depression (Cohen’s f2 = 0.075, t =

2.17, p = 0.03). The secondary principal component reflecting a pattern of low fatigue scores

with high scores of depression was associated with lower DMN connectivity (Cohen’s f2 =

0.067, t = -2.1, p = 0.04). Using continuous mean scores of FSS we also observed higher

DMN connectivity with higher symptom burden (t = 3.1, p = 0.003), but no significant associ-

ations between continuous sum scores of BDI and DMN connectivity (t = 0.8, p = 0.4).
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Conclusion
Multivariate decomposition of FSS and BDI data supported both overlapping and unique

manifestation of fatigue and depression in MS patients. Rs-fMRI analyses showed that

symptoms of fatigue and depression were reflected in altered DMN connectivity, and that

higher DMN activity was seen in MS patients with fatigue even with low depression scores.

Introduction
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system (CNS) with

typical age of disease onset between 28 and 31 years [1]. One of the most common symptoms

in multiple sclerosis (MS) is fatigue, affecting up to 90% of all MS patients [2–4]. Fatigue may

have a large impact on the daily life of MS patients and may impair both quality of life and abil-

ity to work [2–4]. Depression is also a common symptom in MS with a lifetime prevalence of

40–60% [2, 3, 5]. The pathophysiology of these symptoms in MS is not fully understood [2–4,

6–8].

Structural MRI studies have shown different patterns of cortical thickness in MS patients

who have either fatigue, depression or both depression and fatigue, but these cortical under-

pinnings only explain a proportion of the total variance of the neuropsychiatric symptoms [9].

Diverse results are reported concerning the presence and severity of fatigue in relation to

structural MRI findings in MS (lesions, normal appearing white matter damage or grey matter

damage) [3, 7, 10, 11]. Some have reported changes in regional cortico-subcortical pathways

such as in the prefrontal cortex, thalamus and basal ganglia in patients with MS-related fatigue,

while studies using utilizing whole-brain approaches have mostly been inconclusive [4, 7, 8,

11]. Both structural MRI and functional MRI (fMRI) have been applied in many studies with

the aim to understand mechanisms responsible for clinical disability, depression, fatigue and

cognitive impairment in MS [3, 7, 8, 10–13].

Functional connectivity (FC) can be conceptualized as the interaction between two differ-

ent brain regions. Disconnection caused by white matter damage in MS leads to brain network

dysfunction, named a disconnection syndrome [3]. Regional damage to the white and grey

matter in MS patients is likely to disrupt brain network connectivity within cortical and sub-

cortical networks [14]. fMRI has made it possible to assess the integration of activity across dis-

tant brain regions and has provided insight into functional brain networks.

Resting-state (rs) fMRI in MS has mainly been used to study the intrinsic functional archi-

tecture and connectivity of the brain and relation to disease progression and clinical

impairment [14, 15]. In particular, rs-fMRI has highlighted the role of the default mode net-

work (DMN) as a critical hub for both integration and flow of information [16]. The DMN

comprises the precuneus, the posterior cingulate cortex (PCC), the angular gyrus, the medial

prefrontal cortex (mPFC) and the inferior parietal regions [3, 14]. The DMN is most active

when a person is not focused on a specific task, often referred to as wakeful rest [16]. Assuming

a role of the DMN in introspection and rumination, DMN changes in MS patients have been

proposed to be linked with cognitive dysfunction and depression [16–18].

Some fMRI studies have reported cortico-subcortical dysfunction in MS patients with

fatigue, also specifically involving fronto-parietal regions and the basal ganglia [3, 4, 19, 20].

Another fMRI study reported that fatigue was mainly associated with rs-FC changes of the

DMN, although with different components of the DMN uniquely involved [12]. A recent rs-

fMRI study found that specific thalamo-cortical connections explained different components

Altered default mode network connectivity in multiple sclerosis patients with fatigue and depression
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of fatigue in MS patients [19]. Thus, there is evidence of altered DMN connectivity in MS

patients with symptoms of both depression and fatigue. Although related, these symptoms do

not always co-occur, and little is known about the different patterns of DMN alterations with

different symptom burden [9]. On this background, we aimed to study the common and dif-

ferential associations between symptoms of fatigue and depression and DMN connectivity

using rs-fMRI in MS.

Materials andmethods

Participants

We included in total 74 MS patients at Oslo University Hospital for a prospective longitudinal

study. Some other data from this study have been published earlier [21, 22]. All participants

were diagnosed between January 2009 and October 2012 with relapsing-remitting MS (RRMS)

according to the revised McDonald Criteria [23] and were referred to brain MRI between Jan-

uary 2012 and January 2013. Seven participants did not perform the rs-fMRI sequence, and

the remaining 67 participants were used in the current imaging analyses. The time intervals

between MRI scans and clinical tests were for all except one patient within 11 days (mean 0.2,

median 1, SD 3.0). One patient had to delay MRI and performed the scan two months after

testing, but with no clinical relapse in that period. Exclusion criteria included age< 18 years

or> 50 years, uncertain diagnosis, non-fluency in Norwegian, neurological or psychiatric dis-

ease, steroid intake or clinical relapse within the last six weeks, drug abuse, head trauma, preg-

nancy and previous adverse gadolinium reaction. Two patients were treated with the same

selective serotonin reuptake inhibitor at the time of testing for their depressive symptoms.

None of the patients received any medical treatment to improve their fatigue. The project was

approved by the regional ethical committee of South Eastern Norway (REC ID:2011/1846),

and all participants received oral and written information and gave their written informed

consent.

All participants completed a comprehensive neurological examination, including expanded

disability status scale (EDSS) by a Neurostatus certified medical doctor (http://www.

neurostatus.net/) and symbol digits modalities test (SDMT) within the same week as their

MRI examination. All participants also completed self-reported questionnaires concerning

fatigue (Fatigue Severity Scale, FSS) [24], with 9 subscores covering the different dimensions of

fatigue, and depressive symptoms (Beck Depressive Inventory II, BDI) [25] with a total of 21

subscores to encompass various features of depression. FSS mean score� 4 was categorized as

clinically significant fatigue, while BDI sum score� 14 was categorized as clinically significant

depressive symptoms [25].

MRI acquisition

The participants were scanned using the same 1.5 T scanner (Avanto, Siemens Medical Solu-

tions; Erlangen, Germany) equipped with a 12-channel head coil. For rs-fMRI we used a T2
�

weighted echo-planar imaging (EPI) sequence (repetition time (TR) = 3000 milliseconds (ms),

echo time (TE) = 70 ms, flip angle (FA) = 90˚, voxel size = 3.44 x 3.44 x 4 millimetre (mm),

field-of-view (FOV) = 220, descending acquisition, GeneRalized Autocalibrating Partial

Acquisition (GRAPPA) acceleration factor = 2), 28 transversally oriented slices, no gap, with a

scan time of 7 minutes and 30 seconds, yielding 150 volumes. Three dummy volumes were col-

lected to avoid T1 saturation effects. Structural MRI data were collected using a 3-D

T1-weighted Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence with the

following parameters: TR / TE / time to inversion / FA = 2400 ms / 3.61 ms / 1000 ms / 8˚,
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matrix 192 × 192, field of view = 240. Each scan lasted 7 minutes and 42 seconds and consisted

of 160 sagittal slices with a voxel size of 1.20 × 1.25 × 1.25 mm.

FLAIR sequence parameters: TR / TE / time to inversion/ FA = 6000 ms / 3.33 ms / 2200

ms / variable T2, matrix 256 × 204, field of view = 260. Each scan lasted 7 min 02 sec and con-

sisted of 176 sagital slices, with a slice thickness of 1 mm and a voxel size of 1.0 × 1.0 × 1.0 mm.

fMRI pre-processing and analysis

fMRI analysis was performed using FMRI Expert Analysis Tool (FEAT) Version 6.00, from

FMRIB’s Software Library [26, 27]. Head motion was corrected using MCFLIRT [28] before

linear trends and low-frequency drifts were removed (high-pass filter of 0.01 Hertz). Image

sequences were examined for excessive head motion causing image artefacts. FSL Brain extrac-

tion tool [29] was used to remove non-brain tissue. Spatial smoothing was performed using a

Gaussian kernel filter with a full width at half maximum (FWHM) of 6 mm [30]. FMRIB’s

Nonlinear Image Registration tool (FNIRT) was used to register the participants fMRI volumes

to Montreal Neurological Institute (MNI) 152 standard template using the T1-weighted scan

as an intermediate, which had the non-brain tissue removed using procedures for automated

volumetric segmentation in Freesurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) [31].

Single-session independent component analysis (ICA) was performed for all runs using

Multivariate Exploratory Linear Optimized Decomposition into Independent Components

(MELODIC) [32]. The single-session ICA were submitted to FIX [33] for automatic classifica-

tion into signal and noise components, in order to remove noise components from fMRI data.

Data cleaning also included correction based on the estimated motion parameters for each

run, using linear regression. FIX has been shown to effectively reduce motion induced variabil-

ity, outperforming methods based on regression of motion parameters or spikes in the dataset

[34].

The cleaned and MNI-conformed rs-fMRI datasets were submitted to temporal concatena-

tion group independent component analysis (gICA) using MELODIC [32] with a model order

of 30. These group level spatial components were then used as spatial repressors against the

original rs-fMRI datasets to estimate subject-specific components and associated time series

(dual regression [35]). The second group ICA component, encompassing the regions of the

canonical DMN including the PCC, angular gyrus and mPFC, was thresholded at z>4 and

used as a mask for extracting the mean DMN connectivity value from the subject specific dual-

regression maps (Fig 1). The threshold z>4 (p = 0.00006) was pragmatically chosen based on

previous experience.

Brain morphometry

Using the T1-weighted scans we performed cortical reconstruction and volumetric segmenta-

tion with FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) [31]. Several processing steps,

such as skull stripping, Talairach transforms, atlas registration as well as spherical surface

maps and parcellations were then initialized to increase reliability and power [36].

Manual quality control of the MRI scans from patients was performed by trained research

personnel to identify and edit segmentation errors where possible (n = 17 MRI scans). Lesion

filling was performed utilizing automatically generated lesion masks from Cascade [37] with

the lesion filling tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/lesion_filling) in FSL [27]. The

lesion masks were assessed by a trained neuroradiologist and normalized to MNI space using

FLIRT [28], with the corresponding T1 image as an intermediate. A probabilistic representa-

tion of the lesions across all patients is shown in S1 Fig. We estimated total brain volume from

the Freesurfer output after lesion filling was performed (BrainSegVolNotVent) and extracted
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mean cortical thickness across the two hemispheres. Lesion volume was measured based the

already mentioned lesion masks from Cascade, encompassing lesions in the whole brain.

Statistical analyses

We used MATLAB version 9.2 (The MathWorks Inc., Natick, MA, 2017) and R [38] (R Core

Team, Vienna, 2018) for statistical analyses. BDI and FSS subscores for all participants were

submitted to PCA, decomposing the data into orthogonal components. To increase the statisti-

cal power of the PCA, we kept the seven MS patients missing fMRI data. The PCA yielded

component loading coefficients for each questionnaire as well as component subject scores,

resulting in a ranked list of PCA components with their associations to each BDI and FSS

Fig 1. Associations between clinical symptoms and DMN connectivity. The correlation between adjusted DMN connectivity with the PCA components in A
and B, and between adjusted DMN connectivity with FSS and BDI continuous scores in C and D. The grey tones for each subject represent clinical categories
in C and D as described and shown in Table 1, and individual subject scores in A and B. (A) Increased PCA1 (high burden of both fatigue and depression) is
positively correlated with DMN connectivity. (B) Decreased PCA2 (low burden of fatigue and high burden of depression) is negatively correlated with DMN
connectivity. (C) Mean FSS correlated with DMN connectivity. (D) BDI sum scores correlated with DMN connectivity. Shown in E is the DMN component
from the group independent component analysis (gICA). The component z-statistic map was thresholded at z>4. Depicted in three axial slices the posterior
cingulate cortex (PCC) and the medial prefrontal cortex (mPFC) are masked out in red and yellow colours bilaterally.

https://doi.org/10.1371/journal.pone.0210375.g001
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subscores (Fig 2). The subject scores for the two highest ranked PCA components were

extracted for further analysis to test for associations with DMN connectivity.

Associations between DMN connectivity and clinical PCA scores were investigated using

linear models, adjusting for age and sex. To evaluate effect sizes, we calculated Cohen´s f2, also

taking into account age and sex. For Cohen´s f2 test, effect sizes are considered small (> 0.02),

medium (> 0.15) and large (> 0.35). For clinical validation and comparison, we also estimated

associations between DMN connectivity and the BDI and FSS continuous sum scores using

multiple regression, adjusting for age and sex, and compared extreme groups based on con-

ventional clinical thresholds (see above). To account for disability and cognitive impairment

we also investigated the associations from the previously mentioned linear models with SDMT

and EDSS scores.

Results

Participant demographics and characteristics

Table 1 summarizes demographic and clinical characteristics of the 74 included MS patients.

The majority of the participants were women (70%), mean age was 35.0 years (range 21–49

years). The majority of the participants received disease modifying treatment (DMT), whereas

20% of the participants were never treated. The participants were included on average 14.1

months after the date of diagnosis and disease duration was on average 73.0 months (range

5–272 months).

Fig 2. PCA from FSS and BDI subscores. PCA based on 30 clinical subscores (nine FSS and 21 BDI) for all participants. Left: The
cumulative and individual explained variance of each PCA of the total variation in the clinical subscores. Right: A heatmap showing the first
six PCA factors and their item loading on each component. Yellow and green boxes indicate association with high scores, while the blue
boxes indicate association with low scores. The first PCA component (PCA1) captures common variance across BDI and FSS, while the
second PCA component (PCA2) captures a pattern of covarying low FSS with high BDI scores.

https://doi.org/10.1371/journal.pone.0210375.g002
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Fifty-five percent of all participants had clinically significant fatigue based on the FSS mean

scores (FSS� 4), and 31% of all participants had clinically significant depressive symptoms

based on BDI sum scores (BDI> 14). There were no significant differences in FSS and BDI

scores between patients with and without rs-fMRI. The first PCA component (PCA1), which

reflected common variance across depression and fatigue (high FSS and BDI scores), explained

Table 1. Demographic and clinical characteristics of the participants.

(a) Demographic characteristics Patients (n = 74)

Female, n (%) 52 (70)

Age, mean years (range) 35.0 (21–49)

Education

Years, mean (range) 14.9 (9–21)

� 15 years education n (%) 51 (69)

Working status

Unemployed or 100% sick leave, n (%) 7 (9)

Working (part- og full-time), student or maternity leave, n (%) 67 (91)

(b) Clinical and MRI characteristics Patients (n = 74)

Neurological disability

EDSS, mean (range) 2.0 (0–6.0)

Number of total attacks, mean (range) 1.8 (0–5)

DMT

No DMT, n (%) 15 (20)

Active DMTs, n (%) 48 (65)

Highly active DMTs, n (%) 11 (15)

Months on treatment before study, mean (range) 9.4 (0–34)

Months since diagnosis, mean (range) 14.1 (1–34)

Disease duration, mean months (range) 73.0 (5–272)

Cognitive disability

SDMT, mean (range) 52.4 (30–80)

MRI

Brain volume, mean cm3 (SD, range) 1134.3 (98.2, 925.3–1356.6)

Lesion volume, mean cm3 (SD, range) 8.58 (4.8, 2.5–26.1)

Lesion load, mean % (SD, range) 0.75 (0.39, 0.24–2.18)

Cortical thickness, mean mm (SD, range) 2.42 (0.09, 2.17–2.62)

(c) Self-reported questionnaires Patients (n = 74)

FSS

FSS, mean (standard deviation (SD)) 4.2 (1.7)

Clinically significant fatigue (FSS mean� 4), n (%) 41 (55)

BDI

BDI sum, mean (SD) 9.1 (6.7)

Clinically significant depressive symptoms (BDI sum� 14), n (%) 23 (31)

FSS and BDI status

No fatigue (FSS mean< 4) and no depression (BDI sum< 14), n (%) 32 (43)

Fatigue (FSS mean� 4) and no depression (BDI sum< 14), n (%) 19 (26)

No fatigue (FSS mean< 4) and depression (BDI sum � 14), n (%) 1 (1)

Fatigue (FSS mean� 4) and depression (BDI sum� 14), n (%) 22 (30)

EDSS, Expanded Disability Status Scale; DMT, disease modifying treatment; SDMT, symbol digits modalities test;

FSS, Fatigue Severity Scale; BDI, Beck Depression Inventory

https://doi.org/10.1371/journal.pone.0210375.t001
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34% of the total variance in all FSS and BDI items (Fig 2). The second PCA component

(PCA2), which reflected a characteristic pattern of low FSS with high BDI scores, explained

10% of the total variance in all FSS and BDI subscores (Fig 2).

Associations between clinical scores and DMN connectivity

Linear models revealed a significant positive correlation between PCA1 and DMN connectiv-

ity with small effect size (Cohen’s f2 = 0.075, t = 2.17, p = 0.03), indicating higher DMN con-

nectivity with higher symptom burden. PCA2, which reflected a characteristic pattern of low

FSS scores with high BDI scores, showed a significant negative correlation with DMN connec-

tivity with small effect size (Cohen’s f2 = 0.067, t = -2.1, p = 0.04) (Fig 1). Linear models

revealed a significant positive correlation between FSS continuous mean scores correlated

with DMN connectivity (t = 3.1, p = 0.003), and a non-significant positive association for BDI

continuous sum scores correlated with DMN connectivity (t = 0.8, p = 0.39).

Confounding effects in the cohort

Symbol digits modalities test. SDMT showed no significant association with DMN con-

nectivity (t = 1.7, p = 0.09). The positive association between PCA1 and DMN connectivity

remained significant (t = 3.0, p = 0.0045) when including SDMT in the model. The same

model revealed a positive association between DMN connectivity and SDMT (t = 2.6,

p = 0.011). The association between PCA2 and DMN became non-significant (t = -1.9,

p = 0.061) when including SDMT in the model. The same model revealed a non-significant

positive association between DMN connectivity and SDMT (t = 1.6, p = 0.12).

Expanded disability status scale. EDSS showed no significant association with DMN

connectivity (t = 0.3, p = 0.77). The positive association between PCA1 and DMN connectivity

remained significant (t = 2.2, p = 0.031) when including EDSS in the model. The same model

showed a non-significant association between DMN connectivity and EDSS (t = -0.51,

p = 0.61). The negative association between PCA2 and DMN connectivity remained significant

(t = -2.0, p = 0.049) when including EDSS in the model. The same model revealed a non-signif-

icant positive association between DMN connectivity and EDSS (t = 0.25, p = 0.81).

Disease modifying treatment. DMT level showed a weak negative association with DMN

connectivity (t = -1.8, p = 0.07). The positive association between PCA1 and DMN was

reduced (t = 1.9, p = 0.06) when including DMT level in the model. The same model showed

no association between DMN connectivity and DMT (t = -1.6, p = 0.12). The negative associa-

tion between PCA2 and DMN connectivity remained significant (t = -2.1, p = 0.035) when

including DMT level in the model. The same model revealed a weak negative association

between DMN connectivity and DMT level (t = -2.0, p = 0.05).

Lesion volume. Lesion volume showed no significant association with DMN connectivity

(t = -1.1, p = 0.27). The positive association between PCA1 and DMN connectivity remained

significant (t = 2.1, p = 0.04) when including lesion volume in the model. The same model

showed a non-significant association between DMN connectivity and lesion volume (t = -1.1,

p = 0.30). The negative association between PCA2 and DMN connectivity was reduced (t =

-1.8, p = 0.07) when including lesion volume in the model. The same model revealed no associ-

ation between DMN connectivity and lesion volume (t = -0.65, p = 0.52).

Brain volume. Brain volume showed no significant association with DMN connectivity (t

= -0.14, p = 0.89). The positive association between PCA1 and DMN connectivity remained

significant (t = 2.2, p = 0.03) when including brain volume in the model. The same model

showed no association between DMN connectivity and brain volume (t = 0.57, p = 0.57). The

negative association between PCA2 and DMN connectivity remained significant (t = -2.0,
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p = 0.05) when including brain volume in the model. The same model revealed a weak associa-

tion between DMN connectivity and brain volume (t = -0.28, p = 0.78).

Cortical thickness. Mean cortical thickness across the two hemispheres showed no signif-

icant association with DMN connectivity (t = 1.1, p = 0.29). The positive association between

PCA1 and DMN connectivity remained significant (t = 2.4, p = 0.02) when including cortical

thickness in the model. The same model showed no association between DMN connectivity

and cortical thickness (t = 1.5, p = 0.15). The negative association between PCA2 and DMN

connectivity was reduced (t = -1.8, p = 0.07) when including cortical thickness in the model.

The same model revealed no association between DMN connectivity and cortical thickness

(t = 0.72, p = 0.47).

Associations with PCA1, PCA2, FSS and BDI sum scores. Linear models with PCA1

revealed significant associations between brain volume (t = -2.7, p = 0.01), EDSS (t = 3.1,

p = 0.003) and SDMT (t = -2.5, p = 0.02), while not between lesion volume (t = -0.3, p = 0.74),

DMT (t = -1.3, p = 0.21) and cortical thickness (t = -1.2, p = 0.25).

Linear models with PCA2 showed significant associations between lesion volume (t = 2.0,

p = 0.05), but not between brain volume (t = -0.5, p = 0.61), DMT (t = -0.3, p = 0.75), EDSS

(t = -0.2, p = 0.82), SDMT (t = -0.7, p = 0.49) or cortical thickness (t = -1.6, p = 0.12).

Linear models with FSS revealed significant associations with EDSS (t = 3.2, p = 0.002),

SDMT (t = -2.1, p = 0.04) and brain volume (t = -2.2, p = 0.03), but not for DMT (t = -1.2,

p = 0.25), lesion volume (t = -1.1, p = 0.27) and cortical thickness (t = -0.4, p = 0.72).

Linear models with BDI revealed significant associations with EDSS (t = 2.3, p = 0.02),

SDMT (t = -2.2, p = 0.03) and brain volume (t = -2.7, p = 0.009), but not for DMT (t = -1.2,

p = 0.22), lesion volume (t = 0.79, p = 0.44) and cortical thickness (t = -1.8, p = 0.07).

Discussion
To understand the variability and mechanisms of fatigue and depression is a key clinical ques-

tion in MS. This study is to our knowledge among the first to study the complex interaction of

fatigue and depression in patients with MS by multivariate decomposition analyses of these

symptoms in relation to DMN connectivity measured by rs-fMRI.

Fatigue and depression represent common and strong predictors for quality of life in

patients with MS, yet the pathophysiological mechanisms of fatigue and depression in MS

patients are poorly understood. Converging lines of evidence have suggested associations

between different symptoms (such as fatigue, cognitive impairment, depression) and the orga-

nization and synchronization of large-scale brain networks as measured by fMRI [3]. Here,

using multivariate decomposition of symptoms scores and rs-fMRI data we report significant

associations between DMN connectivity and both common and unique symptoms of depres-

sion and fatigue in patients with MS. The symptoms presenting in MS patients vary between

individuals and is assumed to result primarily from demyelination and microscopic CNS tissue

damage [3]. Structural MRI studies have found diverse regional correlates with different MS

symptoms [9–11]. Our results show correlation between DMN FC and FSS and BDI scores in

MS, which support and further adds to previous knowledge.

One third of the participants in our study had both fatigue and depression, in line with

other studies of MS patients [9]. It is important to underline, that in this study, as in most MS

papers, depressive symptoms are evaluated by self-reported psychometric scales, and no formal

diagnosis of depressive mood disorder has been made [5]. Some previous studies have

excluded MS patients with depressive symptoms when investigating the associations between

symptoms of fatigue and FC changes [7, 11, 12], while a diffusion tensor imaging study ana-

lysed MS patients in subgroups based on the presence of depressive symptoms and fatigue [8].
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Here, we wanted to disentangle the complex interaction between symptoms of depression and

fatigue by multivariate decomposition analyses, enabling a novel approach in the study of

fatigue and depression in MS.

We found a significant positive correlation between DMN connectivity and the burden of

fatigue and depression (PCA1 in Fig 1). DMN hyperconnectivity has been demonstrated in

depression [39]. A recent study investigated FC changes in MS patients with depression and

suggested a functional link between depression and cognitive impairment [18]. A functional

link between depression and Alzheimer’s disease has also been reported [40]. The same study

proposed that depression in MS patients is a result of the demyelination and microscopic CNS

tissue damage itself, and not a secondary symptom [18]. A study on primary and secondary

progressive MS patients found associations between cognitive impairment and reduction in

resting state connectivity [41]. Our findings support the hypothesis that symptoms of depres-

sion and fatigue are associated with altered DMN connectivity in MS, possibly influencing the

normal function of the DMN as a critical hub of integration and flow of information.

We found that the second PCA component (PCA2) reflecting low burden of fatigue and a

high burden of depressive symptoms was negatively correlated with DMN connectivity, indi-

cating that the clinical presentation of fatigue with no depression was associated with DMN

hyperconnectivity. DMN hyperconnectivity in fatigue has been demonstrated in a group of

breast cancer survivors, where enhanced intrinsic DMN connectivity with the frontal gyrus

was associated with persistent fatigue after completed treatment [42]. Our results indicate

hyperconnectivity in fatigued MS patients unrelated to depression, possibly caused by the

inflammation or structural damage in the brain. Our findings of different DMN patterns

depending on the symptom burden of fatigue and depression, may reflect the heterogeneity of

symptoms in MS patients, as also reported in a recent review [4]. It has also been reported that

fatigue in MS patients, in the absence of depressive symptoms, may be driven by rs-FC changes

in the DMN [12]. This study also uncovered that unique components of the DMN was associ-

ated with different FC changes. Such regional DMN analyses were beyond the scope of our

study.

When adjusting our findings for cognitive impairment, the positive correlation of the first

PCA component with DMN connectivity increased while the negative correlation with the sec-

ond PCA component were slightly decreased. Disability did not have a confounding effect on

the correlation between the PCA components and DMN connectivity. Yet we found a signifi-

cant positive correlation between both BDI and FSS and EDSS, indicating higher disability

with higher symptoms of fatigue and depression. Patients with more effective DMTs showed a

trend towards decreased symptom burden of fatigue and depression. Adjusting our findings

for DMT level weakened our results with PCA1 and DMN connectivity, while the results

between PCA2 and DMN connectivity remained significant. Furthermore, adjusting for cogni-

tive impairment seemed to only strengthen our results, while when adjusting for disability our

results remained the same. Including whole-brain volume and cortical thickness, which are

sensitive indices of brain morphometry, in the analyses did not affect the correlations between

the PCA components and DMN connectivity. Lower brain volume was associated with higher

scores of both FSS and BDI. When we controlled for lesion volume in our analyses between

the PCA components and DMN connectivity, the second PCA component was reduced, while

the first PCA component remained significant. Lesion volume was not associated with neither

FSS or BDI scores.

Our sample size is modest, but the participants were very thoroughly characterized and

comprise a relatively homogenous group in terms of age, cognitive and physical disability, dis-

ease duration, education and clinical course. Concerning fatigue, the participants in our study

scored a mean of 4.2 for FSS, which is lower than reported in some larger studies [43].

Altered default mode network connectivity in multiple sclerosis patients with fatigue and depression

PLOSONE | https://doi.org/10.1371/journal.pone.0210375 April 1, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0210375


However, the FSS scores for the participants included in this study were in line with a recent

Norwegian MS study [6]. Fatigue may impair the quality of life and contribute to the establish-

ment and maintenance of depressive symptoms [4]. The mean BDI sum score in our dataset

was 9.1, which is lower than reported in some studies [5], but comparable with a Swedish

study [44]. Possible reasons for the relatively low BDI sum score in our sample include the low

age, newly diagnosed RRMS, short disease duration and few brain lesions in our MS patients

[21].

Adjusting our results for whole-brain volume, cortical thickness, DMT level, lesion volume,

SDMT or EDSS did not alter our observed associations significantly. A more detailed analysis

of structural MRI and rs-fMRI data could give further insights into the pathophysiology of

depression and fatigue in MS. The associations between the two most prominent PCA compo-

nents and DMN connectivity identified by rs-fMRI in our study suggest separate underlying

alterations in the functional connectome. Previous studies assessing cortical morphometry in

an overlapping patient sample reported regional associations between cortical surface areas

and several clinical manifestations, where the most prominent structural association were

smaller cortical surface area and volume significantly associated with depressive symptoms

[21].

In addition to our modest sample size, other limitations should be considered when inter-

preting our results. We did not include lesion filling as part of the fMRI analysis pipeline, but

have included both lesion volume and brain volume (after lesion filling) in our analyses to

account for confounding effects. In MS patients, permanent damage affects the white matter

of the CNS and can cause disconnection syndromes [3]. The FC and large-scale networks

depend on structural connections, and inter-individual variability in DMN connectivity, and

its association with clinical traits, might be mediated by degree of demyelination, atrophy of

both the grey and white matter and microscopic CNS damage [17]. The lack of healthy con-

trols in our study does not allow us to test for specificity, i.e. to which degree any associations

between brain connectivity and clinical symptoms generalize to other groups. Yet, our results

only focus on the DMN connectivity changes in relation to neuropsychiatric symptoms within

the MS group. Future studies are needed to test if our results can be generalized to other

populations.

Conclusion
In conclusion, multivariate decomposition of FSS and BDI symptom data supported that the

clinical manifestations of fatigue and depression in patients with MS reflect both overlapping

and unique variability in the FSS and BDI subscores. The observed differential correlations

between symptoms of fatigue and depression and DMN connectivity underline the heteroge-

neity and complexity of fatigue and depression in MS. Our analyses revealed that high burden

of both fatigue and depression was associated with DMN hyperconnectivity, while we also

found hyperconnectivity in DMN to be associated with high burden of fatigue in absence of

depression. Effect sizes were in general relatively small, and further investigations into the

mechanisms of fatigue and depression in MS are warranted. Multivariate decomposition anal-

yses of MS symptoms in relation to default mode network (DMN) connectivity measured by

resting-state-fMRI (rs-fMRI) is a promising method to pursue these questions.
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Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. By

combining longitudinal MRI-based brain morphometry and brain age estimation using

machine learning, we tested the hypothesis that MS patients have higher brain age

relative to chronological age than healthy controls (HC) and that longitudinal rate of brain

aging in MS patients is associated with clinical course and severity. Seventy-six MS

patients [71% females, mean age 34.8 years (range 21–49) at inclusion] were examined

with brain MRI at three time points with a mean total follow up period of 4.4 years

(±0.4 years). We used additional cross-sectional MRI data from 235 HC for case-control

comparison. We applied a machine learning model trained on an independent set of

3,208 HC to estimate individual brain age and to calculate the difference between

estimated and chronological age, termed brain age gap (BAG). We also assessed the

longitudinal change rate in BAG in individuals with MS. MS patients showed significantly

higher BAG (4.4 ± 6.6 years) compared to HC (Cohen’s D = 0.69, p = 4.0 × 10−6).

Longitudinal estimates of BAG in MS patients showed high reliability and suggested an

accelerated rate of brain aging corresponding to an annual increase of 0.41 (SE = 0.15)

years compared to chronological aging (p= 0.008). Multiple regression analyses revealed

higher rate of brain aging in patients with more brain atrophy (Cohen’s D = 0.86,

p = 4.3 × 10−15) and increased white matter lesion load (WMLL) (Cohen’s D = 0.55,

p = 0.015). On average, patients with MS had significantly higher BAG compared to HC.

Progressive brain aging in patients with MS was related to brain atrophy and increased

WMLL. No significant clinical associations were found in our sample, future studies are

warranted on this matter. Brain age estimation is a promising method for evaluation of

subtle brain changes in MS, which is important for predicting clinical outcome and guide

choice of intervention.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating
disease of the CNS. The pathophysiology of MS can be
divided into acute inflammation during a relapse and chronic
inflammation thought to continuously perturb neuroaxonal
homeostasis and drive neurodegeneration (1). Development
of robust brain imaging markers that can parse between-
subject heterogeneity of the clinical trajectories, predict future
progression of disability, and monitor the effects of treatment for
MS patients, is a major aim with important clinical implications
(2, 3). Current imaging markers with relevance for MS are
associated with disease activity and progression, and include,
among other features, number or volume of hyperintense
brain lesions visible on T2-weighted MRI images, contrast-
enhancing T1 lesions, increased annual brain volume loss and
T1-hypointense “black holes” (2, 4, 5). Increased rate of total
brain volume loss, which is best captured using longitudinal
designs (6), reflects accelerated neurodegeneration (7), and
regional analyses may boost the correlations between estimated
brain atrophy and disability (2).

However, identifying robust associations between clinical
outcomes and MRI measures has been challenging (8). This
clinico-radiological paradox in MS is likely explained by a
combination of lack of sensitivity and specificity both in
the clinical and imaging domain. Brain age estimation uses
machine learning to train a model that can accurately predict
the individual age from brain imaging data (9–11). Utilizing
sensitive measures of MRI-based brain morphometry, brain age
estimation provides a robust imaging-based biomarker with
potential to yield novel insights into similarities and differences
of disease pathophysiology across brain disorders (11, 12).
Such imaging-based brain age has been shown to be reliable
both within and between MRI scanners, and is a candidate
biomarker of an individual’s brain health and integrity (10–12).
Different approaches to brain age estimation exploit information
from a variety of brain regions (e.g., hippocampus, subcortical,
gray matter, and white matter) or MRI sequences (e.g., T1,
T2, diffusion tensor imaging and functional MRI) to inform
the model (12). An older appearing brain, which is related
to advanced physiological and cognitive aging and mortality
(12, 13), has been found across several brain disorders, and
region specific brain age patterns in patient cohorts have shown
potential differential genetic effects, including genetic pleiotropy
between global brain age and MS (11). To our knowledge, only
two preprint manuscripts (11, 14) and one abstract (15) have
reported brain age estimations in MS, and all reported older
appearing brains in patients with MS compared to HC.

Here, combining cross-sectional and sensitive measures of
MRI-based regional and global brain morphometry in MS and
HC (cross-sectional only), we tested the hypothesis that MS

Abbreviations: BAG, Brain Age Gap; Cereb., Cerebellar; DMT, Disease Modifying

Treatment; EDA, Evidence of Disease Activity; HC, Healthy Controls; ICC,

Intraclass Correlation Coefficient; MS,Multiple Sclerosis; MSSS, Multiple Sclerosis

Severity Scale; NEDA, No Evidence of Disease Activity; Subcort., Subcortical;

WMLL, White Matter Lesion Load.

patients have higher brain age than HC. Next, using longitudinal
MRI data inMS patients we tested the hypothesis that brain aging
accelerates in MS and that the rate of acceleration is associated
with a more severe clinical outcome.

MATERIALS AND METHODS

Participants
We recruited 76MS patients at Oslo University Hospital (16, 17).
All patients were diagnosed with MS between January 2009 and
December 2012 according to the revised McDonald Criteria (18)
and were enrolled in the study on average 14 months (±11.8)
after the date of diagnosis (time point 1). Exclusion criteria
included age < 18 years or > 50 years, uncertain diagnosis,
non-fluency in Norwegian, neurological or psychiatric disease,
drug abuse, head trauma, pregnancy, and previous adverse
gadolinium reaction. Most patients also participated in two
follow-up examinations on average 26months (±11.7, time point
2, n = 60) and 66 months (±13.3, time point 3, n = 62)
after the date of diagnosis. At each visit, all patients completed
a neurological examination by a Neurostatus certified medical
doctor (http://www.neurostatus.com) within the same week as
their MRI scan. Disease-modifying treatments were categorized
into the following groups; 0: no treatment; 1: glatiramer
acetate, interferons, teriflunomide, or dimetylfumarate; and 2:
fingolimod, natalizumab, or alemtuzumab. Many patients (n =

58) were also included in a partly overlapping study with a larger
cross-sectional MS group (n= 254) (11).

The HC group was recruited through newspaper ads or
after a stratified random selection drawn from the Norwegian
National Population Registry to two parallel studies (13, 19).
Exclusion criteria included estimated IQ (intelligence quotient)
<70, history of neurologic or psychiatric disease and current
medication significantly affecting the nervous system (20).

This study was carried out in accordance with the
recommendations of the Regional Committee for Medical
and Health Research Ethics with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the South East Regional Committee for Medical and
Health Research Ethics.

MRI Acquisition
All MS patients were scanned at up to three time points
between January 2012 and August 2017 in a study setting, using
the same 1.5 T scanner (Avanto, Siemens Medical Solutions;
Erlangen, Germany) equipped with a 12-channel head coil.
Structural MRI data were collected using a 3D T1-weighted
MPRAGE (Magnetization Prepared Rapid Gradient Echo)
sequence, with the following parameters: TR (repetition time)/TE
(echo time)/flip angle/voxel size/FOV (field of view)/slices/scan
time/matrix/time to inversion = 2,400 ms/3.61 ms/8◦/1.20
× 1.25 × 1.25 mm/240/160 sagittal slices/7:42 min/192 ×

192/1,000ms. The MRI sequence was kept identical during the
scanning period. FLAIR (Fluid attenuation inversion recovery),
T2 and pre- and post-gadolinium 3D T1 sequences were attained
and used for neuroradiological evaluation (17).
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Fifty-eight of the MS patients were also scanned at Oslo
University Hospital on a 3 T GE 750 Discovery MRI scanner
with a 32-channel head coil at time point 3 between August
2016 and June 2017 during the same week they were scanned
at the 1.5 T scanner for time point 3. HCs were scanned solely
on the 3 T scanner at one time point to provide cross-sectional
data. Structural MRI data were collected using a 3D high-
resolution IR-prepared FSPGR (fast spoiled gradient echo) T1-
weighted sequence (3D BRAVO) with the following parameters:
TR (repetition time)/TE (echo time)/flip angle/voxel size/FOV
(field of view)/slices/scan time = 8.16 ms/3.18 ms/12◦/1 × 1 ×

1 mm/256× 256 mm/188 sagittal slices/4:42 min.

MRI Pre- and Post-processing
Using the T1-weighted scans we performed cortical
reconstruction and volumetric segmentation with FreeSurfer
5.3 (http://surfer.nmr.mgh.harvard.edu/) (21). To extract
reliable volume and thickness estimates, images included in
the longitudinal 1.5 T MRI dataset were processed with the
longitudinal stream in FreeSurfer (22). Specifically an unbiased
within-subject template space and image was created using
robust, inverse consistent registration (23). Several processing
steps, such as skull stripping, Talairach transforms, atlas
registration as well as spherical surface maps and parcellations
were then initialized with common information from the
within-subject template, increasing reliability and power (22).

Manual quality control of the MRI scans from patients
was performed by trained research personnel to identify and
edit segmentation errors where possible (n = 43 MRI scans)
and exclude data of insufficient quality (n = 6 MRI scans).
In addition, eight brain scans were removed due to missing
sequences of the 263 MRI scans from MS patients. Lesion filling
was performed utilizing automatically generated lesion masks
from Cascade (24) with the lesion filling tool (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/lesion_filling) in FSL (25). The lesion masks
were assessed by a trained neuroradiologist and normalized to
MNI space using FLIRT (26), with the corresponding T1 image
as an intermediate. A probabilistic representation of the lesions
across all patients is shown in Supplementary Figure 1.

Brain Age Estimation Model
The training set for brain age estimation included MRI scans
from 3,208 HC >12 years (54% women, mean age 47.5 (±19.8),
age range 12–95) obtained from several publicly available
datasets (Supplementary Figure 2) and processed in the same
MRI pipeline.

We trained one machine learning model for each sex to
predict brain age following a recent implementation (11). The
features were derived from the Human Connectome Project
parcellation of the cortex (27), comprising 180 regions of interest
per hemisphere for thickness, area, and volume, respectively. In
addition, we used subcortical and cerebellar parcellations from
Freesurfer. The full set comprised 1,118 features in total. We
used extreme gradient boosting, “xgboost” package in R (28),
as the main method for our brain age studies as it has been
the lead solution on many machine learning competitions in the
field and due to our data being highly monotonic. We compared

xgboost to shrinkage linear models (https://cran.r-project.org/
package=care) and found converging results, although xgboost
performed slightly better in our data (Supplementary Table 1).
We trained one extreme gradient boosting tree machine learning
model per sex on the training set to predict age using the
28 brain imaging features (learning rate eta = 0.01, optimal
number of rounds determined in a nested cross-validation
loop within the training set, other parameters as default).
A 10-fold cross-validation confirmed good performance and
generalizability in the combined model for females and males
(Supplementary Figure 3, r = 0.91).

Next, for all patients and HC in the test set, we estimated
brain age and calculated the brain age gap (BAG, defined as the
difference between chronological age and imaging-based brain
age). Using linear regressions, we removed any common variance
with age, age2 and sex to account for confounding factors before
submitting the residualized version of BAG to further analyses
(29). When pooling estimates of BAG from the 1.5 T and 3 T
scanners, we adjusted BAG for scanner effect on BAG estimates
by extracting the scanner coefficient from a LME (linear mixed
effects) model. When comparing BAG between patients and
matched HCs we report the actual adjusted difference in BAG
between these two groups.

In addition to the estimation of brain age based on features
from the whole brain, we also performed brain age estimation of
regional subsets of features (11, 13).We used the lobe parcellation
labels from Freesurfer (21) to identify features that overlapped
with a given lobe and performed similar machine learning
procedures sets as described for the whole brain using occipital,
frontal, temporal, cingulate, insula, and subcortical/cerebellar
features alone, respectively.

Statistical Analyses
We used R (R Core Team, Vienna, 2018) for statistical analyses.
All LME models accounted for age, age2, sex, and scanner
(30). We estimated annual change in BAG by dividing the
total change in BAG by the relevant time interval. We utilized
the longest time interval between time points and excluded
MS patients lacking longitudinal data (n = 8). A score of 0
indicates that the rate of brain aging corresponds to chronological
aging, and positive and negative values correspond to accelerated
and decelerated brain aging compared to chronological aging,
respectively. For each brain region we tested the relative rate
of brain aging on a group level by performing one-sample t-
tests on BAG with 0 as test value. We estimated the annual
global brain atrophy by comparing estimated total brain volume
from the Freesurfer output (BrainSegVolNotVent) between time
points. Based on Freesurfer volumetric output, we also compared
the volumetric and normalized measurements (divided by
estimated total intracranial volume) betweenMS patients andHC
(Supplementary Table 2).

To assess reliability of brain age across time we computed the
intraclass correlation coefficient (ICC) using the R package “irr”
(https://CRAN.R-project.org/package=irr). Figures were made
using “ggplot2” (31) and “cowplot” (https://CRAN.R-project.
org/package=cowplot) in R. To control for multiple testing
we adjusted the p-values using false discovery rate (FDR) (32)
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procedures implemented in the R package “p.adjust” (http://
stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.
html). The LME models were performed using the R package
“nlme” (https://CRAN.R-project.org/package=nlme).

RESULTS

Participant Demographics and
Characteristics
Table 1 summarizes the demographic and clinical characteristics
of all MS patients. Key demographic variables regarding HC are
summarized in Supplementary Table 2. The majority of the MS
patients were women (71%), 96% had relapsing-remitting MS
and mean age at inclusion was 34.8 years (±7.2). On average
they were examined 1.2, 2.2, and 5.5 years after diagnosis. Most
patients used first line treatment; 65, 48, and 37% at time point
1, 2, and 3, respectively. Second line treatments were used by
13, 23, and 32% of the MS patients at time point 1, 2, and 3,
respectively. At time point 2 and 3, 53 and 44% of the patients
were categorized as having NEDA (No Evidence of Disease
Activity)−3 (no clinical progression, no new lesions observable
in MRI and no new attacks). At time point 2, 43% of the patients
with EDA (Evidence of Disease Activity) had changed their
disease modifying treatment (DMT). At time point 3, 77% of the
patients with EDA had changed their DMT.

Cross-Sectional Case-Control Analyses
(3 T)
At time point 3 (3T data) we found significantly higher BAG for
the MS group compared to matched HC for all brain regions
except the temporal region (Figure 1; Supplementary Table 4).
The most prominent differences in BAG were 4.4 years for global
BAG (Cohen’s D = 0.69) and 6.2 years for subcortical and
cerebellar brain regions (Cohen’s D= 0.72).

At time point 3, 58MS patients underwent one MRI scanning
in the 1.5 T and one in the 3 T scanner with 2 days apart.
Whereas, absolute estimates of brain age varied between
scanners for all brain regions except insula (BAG scanner
difference −6.08 to 10.60 years, see Supplementary Table 3;
Supplementary Figures 4), brain age estimates from the
two scanners were highly correlated for global BAG and
all brain regions (r = 0.67–0.86, p < 0.001), supporting
the reproducibility.

Volumetric data showed no significant differences in
measures of whole brain, gray matter and white matter. When
using normalized measurements (divided by estimated total
intracranial volume), we found significant differences between
normalized whole brain (Cohen’s D = 0.45) and gray matter
(Cohen’s D= 0.46) volumes (Supplementary Table 2).

Longitudinal MS Sample (1.5 T)
The correlations between chronological age and global brain age
were r = 0.71 for time point 1, r = 0.70 for time point 2, and r
= 0.69 for time point 3. After adjusting for scanner effects mean
global BAG was 2.8 (±9.0) for time point 1, 3.3 (±9.4) for time
point 2, and 4.6 (±9.8) for time point 3 in the longitudinal MS
sample (Supplementary Figures 5A,B). Some patients exhibited

TABLE 1 | Demographic and clinical characteristics of the multiple sclerosis

patients.

Time point 1 Time point 2 Time point 3

(a) Demographic

characteristics

n = 76 n = 75 n = 62

Female (%) 54 (71) 54 (72) 44 (71)

Age, mean years (SD) 34.8 (7.2) 35.8 (7.2) 40.0 (7.3)

≥15 years education (%) 53 (70) NA 50 (81)

Disease duration, mean months

(SD)

71.7 (63.0) 79.7 (57.1) 125.1 (60.2)

Age at first symptom, mean years

(SD)

29.3 (6.7)

Months since MS diagnosis, mean

(SD)

14.0 (11.8) 26.3 (11.7) 66.2 (13.3)

Positive OCB status (%) 69 (91)

Disease modifying treatment

None (%) 17 (22) 22 (29) 19 (31)

First line (%) 49 (65) 36 (48) 23 (37)

Second line (%) 10 (13) 17 (23) 20 (32)

(b) Clinical evaluation

Multiple sclerosis classification

RRMS (%) 73 (96) 72 (96) 60 (95)

PPMS (%) 2 (3) 2 (3) 1 (2)

SPMS (%) 1 (1) 1 (1) 2 (3)

Neurological disability

EDSS, median (SD, range) 2.0 (0.9, 0-6) 2.0 (0.9, 0-4) 2.0 (1.3, 0-6)

MSSS (SD) 4.9 (1.9) 4.5 (2.0) 2.6 (1.8)

Number of total attacks, mean

(SD)

1.8 (1.0) 2.0 (1.0) 2.6 (1.3)

Nine hole peg test

Dominant hand, mean seconds

(SD)

20.0 (3.1) NA 20.6 (8.4)

Non-dominant hand, mean

seconds (SD)

20.8 (2.8) NA 21.1 (5.9)

Timed 25 feet walk test, mean

seconds (SD)

4.0 (0.7) 3.9 (0.8) 4.0 (1.1)

(c) NEDA assessment

NEDA-3 (%) 40 (53) 27 (44)

NEDA-4 (%) 17 (30) 18 (32)

OCB, oligoclonal bands; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary

progressive multiple sclerosis; SPMS, secondary progressive multiple sclerosis; EDSS,

expanded disability status scale; MSSS, multiple sclerosis severity scale; NEDA, no

evidence of disease activity.

reduced estimates of brain age over time, likely partly explained
by an effect of MRI noise characteristics (subject motion, MRI
artifacts or any other technical changes between acquisitions),
while in the same period the biological changes were negligible.

We found a significant annual increase in global BAG of
0.41 (SE = 0.15) years (p = 0.008) in patients with MS
(Figure 2; Supplementary Tables 6, 7). No regional measures
showed significantly decreasing or increasing BAG at the group
level (Supplementary Tables 7, 8). Our dataset included a low
number of other MS phenotypes than RRMS, and we did not find
significant correlations between brain atrophy rates or annual
change in global BAG among these.
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FIGURE 1 | Cross-sectional comparison of brain age gap between multiple sclerosis patients and healthy controls. The distribution of brain age gaps across brain

regions based on the cross-sectional 3 T MRI data from matched HC and multiple sclerosis patients at time point 3. We found increased brain age gaps for all brain

regions except from the temporal brain region. Brain age gaps are residualized for age, age2, and sex. Cohen’s D effect sizes for the brain age gap between HC and

multiple sclerosis patients are depicted using the color bar. All BAG estimates are depicted as black circles on the x-axes.

FIGURE 2 | Longitudinal changes in brain age gap across brain regions. The distribution of brain age gaps across brain regions based on the longitudinal 1.5 T MRI

sample. Brain age gaps from the MS sample are compared with the cross-sectional 3 T HC sample and residualized for age, age2, sex, and scanner. The full brain

estimates showed a significant accelerated rate of brain aging compared to chronological aging [annual increase in brain age gap 0.41 (p = 0.008)]. Cohen’s D effect

sizes for the brain age gap between MS and HC are depicted using the color bar. All BAG estimates are depicted as black circles on the x-axes.

We found no significant difference in BAG between
the raw and the lesion filled MRI scans, and the BAG
scores from the two versions were highly correlated BAG
(r = 0.98). Data processed with the longitudinal stream
in FreeSurfer had significantly lower BAG than the cross-
sectionally processed MRI scans (mean difference in BAG
4.9 years, p < 0.001) and lesion filled MRI scans (difference
in BAG 5.1 years, p ≤ 0.001) (Supplementary Figures 6, 7;
Supplementary Tables 4, 5).

ICCs for all brain regions across all time points varied from
0.79 to 0.94 for residualized BAG and 0.78–0.95 for predicted
age. Cerebellar and subcortical brain regions showed highest
reliability with an ICC of 0.94 for BAG and 0.95 for predicted
age (Supplementary Table 9).

Mean annualized estimated change in global brain
volume from all three time points. from Freesurfer was
−0.30% (SD = 0.53%). ICC for global brain volume was
0.97–0.99. Mean annualized change in WMLL was 504
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mm3 (±28 mm3). ICC for WMLL at time point three
was 0.93–0.99.

Associations Between Global Brain Age
and Clinical Outcomes
Table 2 (BAG) and Table 3 (annual rate of brain aging) show
summary statistics from the multiple regressions testing for
associations with demographic, clinical, and MRI variables in
the longitudinal MS group (Supplementary Tables 10, 11). After
accounting for multiple testing, significant associations were
found between BAG and WMLL (Cohen’s D = −1.23, p= 3.0×
10−4) and global brain atrophy (Cohen’s D = −0.07, p = 0.01),
respectively, indicating higher BAG at baseline with higher
WMLL at time point three and increased brain atrophy over time.
Further, changes in BAG over time was significantly associated
with brain atrophy over time (Cohen’s D = 0.86, p = 4.3 ×

10−15) and change in WMLL (Cohen’s D = 0.55, p = 0.015),
indicating higher rates of brain aging in patients with higher
levels of brain atrophy and more progressive changes in WMLL.
WMLL also showed a significant correlation with BAG for
cerebellar and subcortical regions (Cohen’s D = −1.23, p = 3.2
× 10−3).

DISCUSSION

Using cross-sectional and longitudinal MRI data as basis
for brain age estimation based on machine learning, we
tested the hypotheses that patients with MS on average
show higher brain age than healthy controls, and that the
rate of brain aging is associated with clinical trajectories.
Cross-sectional analysis revealed higher brain age gap
in patients with MS compared to healthy controls, and
longitudinal analysis showed increased rates of brain
aging in patients with higher rates of brain atrophy and
increasing WMLL.

MS patients had on average 4.4 years higher BAG compared
to HC (Cohen’s D = 0.68), in line with preliminary findings
in a partly overlapping cross-sectional sample (11). To our
knowledge, other studies comparable to ours are not yet
available, and further studies are warranted. Global brain age
differences may disguise relevant regional effects. Indeed, for
subcortical and cerebellar brain regions we found a higher
BAG in MS compared with HCs (BAG 6.2 years, Cohen’s
D = 0.72), which was already evident at time point 1
(BAG 5.7 years, Cohen’s D = 0.63). The regional variability
may reflect differential affinity of MS pathology across the
brain, which is also supported by lesion probability maps in
MS (2, 33).

In our longitudinal patient sample, the average annual
rate of brain aging for global BAG exceeded that of
chronological aging by 0.41 years per year (p = 0.008).
Although further studies are needed, this apparent accelerated
aging of the brain may partly be explained by chronic
inflammatory processes that drive neurodegeneration in
MS (1).

As expected, we found relatively robust associations
between brain atrophy and brain aging (r = 0.79, p =

4.3 × 10−15). Of notice, regional brain aging and BAG is
sensitive to subtle brain changes that may not necessarily
be picked up in the global brain atrophy measures.
Indeed, the associations between change in WMLLs and
annual rate of brain aging were significant for occipital,
temporal, and parietal brain regions in addition to the global
estimate (Supplementary Table 10). For BAG we did indeed
only see significant associations with brain volume and
BAG for occipital, frontal, parietal, and cingulate regions
(Supplementary Table 11). This shows that regional brain
age estimation may capture regional specificity of MS
pathology (10–12, 33).

Multiple regression analyses revealed only nominally
significant (p < 0.05, uncorrected) associations between some
clinical, cognitive, and imaging variables and BAG as well
as brain aging for specific brain regions. However, these
associations did not survive correction for multiple testing,
and further studies are needed to assess the robustness of these
observations. A previous study in healthy individuals reported
significant associations between BAG and performance on
specific cognitive tests, including spatial Stroop and symbol
coding, with poorer performance in individuals with an
over-estimated age (13). Preliminary results from a partly
overlapping cross-sectional sample revealed a significant
association between BAG and Expanded Disability Status
Scale (Fisher z = 0.23) (11), indicating that patients with
higher clinical disease burden have older appearing brains.
Further studies are needed to test the generalizability
and robustness of these findings, both in clinical and
healthy samples.

Brain age estimation is a useful framework that allows us
to leverage large scale brain imaging databases for training
robust machine learning models and apply automated
prediction on the individual level. Further, whereas the
approach builds on the vast amount of previous atrophy and
lesion research, it contributes beyond that by downsampling
a lot of information from the entire brain into a single
holistic score in an automated fashion. As an example, in
our data, we found no association between brain atrophy
and change in Multiple Sclerosis Severity Scale (MSSS) (r
= 0.03, p = 0.80), yet our brain age estimation approach
revealed associations with change in MSSS for brain aging
of the cerebellar & subcortical regions (r = 0.36, p = 5.1
× 10−3, not significant after correcting for multiple testing)
(Supplementary Table 12).

Some limitations should be considered when interpreting
the results. First, although the cross-sectional case-control
comparison and the within-patient longitudinal analysis jointly
suggest accelerated brain aging in patients with MS, a
longitudinal sample of HCs would have enabled us to directly
compare the rate of brain aging between patients and controls.
Next, the current brain age model was exclusively based on gross
morphometric features, and extending the range of brain imaging
features, including indices of white matter microstructural
properties and myelin integrity, may increase sensitivity to
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TABLE 2 | Pearson’s correlations between brain age gap and relevant clinical and MRI variables.

Fullbrain Frontal Parietal Cereb. / Subcort.

Clinical variables cor. p cor. p cor. p cor. p

9HPT Non-dominant 0.36 5.8 × 10−3 0.03 0.80 0.16 0.22 0.28 0.030

Change in 9HPT Non-dominant 0.28 0.035 0.05 0.68 0.14 0.31 0.21 0.12

DMT Level 0.01 0.93 0.03 0.80 −0.05 0.70 0.26 0.046

Gender −0.28 0.031 0.05 0.68 −0.18 0.17 −0.04 0.78

MRI variables cor. p cor. p cor. p cor. p

WMLL 0.46 3.0 × 10−4 0.19 0.16 0.24 0.07 0.38 3.2 × 10−3

Change in WMLL 0.30 0.022 0.12 0.34 0.20 0.13 0.34 9.6 × 10−3

Brain volume −0.25 0.06 −0.43 8.8 × 10−4
−0.35 7.3 × 10−3 −0.24 0.07

Brain atrophy −0.33 0.011 −0.31 0.017 −0.37 4.7 × 10−3 −0.13 0.32

ICV −0.01 0.94 −0.29 0.027 −0.20 0.13 −0.02 0.87

Significant associations are highlighted with bold (p < 0.05). Associations which were still significant after adjusting for false discovery rate are underlined. Cereb., cerebellar; Subcort.,

subcortical; 9HPT, nine hole peg test; Cor., correlation; DMT, disease-modifying therapies; WMLL, white matter lesion load; ICV, intracranial volume.

TABLE 3 | Pearson’s correlations between annual rate of brain aging and relevant clinical and MRI variables on time point 3.

Fullbrain Frontal Parietal Cereb. / Subcort.

Clinical variables cor. p cor. p cor. p cor. p

EDSS 0.09 0.49 −0.01 0.95 −0.15 0.25 0.22 0.08

Change in EDSS 0.16 0.23 0.09 0.50 −0.03 0.83 0.29 0.026

MSSS −0.03 0.84 −0.09 0.47 −0.21 0.11 0.17 0.20

Change in MSSS 0.17 0.21 0.10 0.46 0.05 0.68 0.36 5.1 × 10−3

9HPT Non-dominant 0.29 0.028 0.15 0.27 0.01 0.92 0.30 0.021

Change in 9HPT Non-dominant 0.31 0.017 0.20 0.14 0.08 0.53 0.32 0.014

DMT Level −0.28 0.031 −0.22 0.09 −0.17 0.21 −0.08 0.54

MRI variables cor. p cor. p cor. p cor. p

WMLL 0.29 0.026 0.21 0.11 0.19 0.16 0.01 0.96

Change in WMLL 0.30 0.015 0.19 0.12 0.35 4.3 × 10−3 0.00 0.98

Brain volume −0.01 0.93 −0.08 0.54 −0.03 0.83 0.10 0.44

Brain atrophy −0.79 4.3 × 10−15
−0.79 1.6 × 10−15

−0.72 1.1 × 10−11 −0.07 0.57

Significant associations are highlighted with bold (p<0.05). Associations which were still significant after adjusting for false discovery rate are underlined. Cereb., cerebellar; Subcort.,

subcortical; Cor., correlation; EDSS, expanded disability status scale; MSSS, multiple sclerosis severity score; 9HPT, nine hole peg test; DMT, disease-modifying therapies; WMLL, white

matter lesion load.

clinical trajectories in MS. When analyzing clinical associations
with estimates of brain age gap we include clinical tests which
relies heavily on the spine, although morphometric data from
the spine are not included in our brain age estimation model.
Finally, although prospective data is a substantial strength of
our study, our design does not allow for causal inference (e.g.,
related to treatment status). Data from analyses of brain age
compared to disease modifying treatments are provided in
Supplementary Figure 8, and Supplementary Tables 10, 11, 13.
Our current brain age estimation model aimed at identifying
deviations from healthy aging trajectories, future studies could
potentially benefit from establishing unique models based on
disease specific training sets.

In conclusion, using advanced cross-sectional imaging data
and machine learning we report higher brain age in patients
with MS compared to healthy controls. Longitudinal analysis

suggested accelerated brain aging in MS patients with higher
levels of brain atrophy and longitudinal progression of changes
in WMLL. Brain age estimation is a framework that allows
us to downsample the complex brain imaging features into
a single individual “score” using automated machine learning,
enabling us to gain new insights into the complex brain structure.
Jointly, these results corroborate that brain age estimation is
a promising and intuitive tool with potential to establish a
comprehensive measure of brain health which may guide a
personalized treatment approach in MS.
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