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Abstract: Iterative learning control (ILC) of continuous-time nonlinear plants with periodic
sampled-data inputs is considered via an extremum seeking approach. ILC is performed without
exploiting knowledge about any plant model, whereby the input signal is constructed recursively
so that the corresponding plant output tracks a prescribed reference trajectory as closely as
possible on a finite horizon. The ILC is formulated in terms of a non-model-based extremum
seeking control problem, to which local optimisation methods such as gradient descent and
Newton are applicable. Sufficient conditions on convergence to a neighbourhood of the reference
trajectory are given.
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1. INTRODUCTION

Iterative learning control (ILC) is a learning based method
for achieving the objective of tracking a prescribed trajec-
tory. It performs the same task multiple times in succession
with respect to iteratively updated control inputs while
improving the tracking performance by learning from pre-
vious executions (Moore, 1993; Moore et al., 1992; Xu and
Tan, 2003). ILC is known to achieve good performance in
the presence of repeating disturbances and certain model
uncertainty due to its iteratively learning feature. For
instance, ILC has been applied to motion planning in
gait modelling (Srinivasan and Ruina, 2006) and stroke
rehabilitation (Freeman et al., 2012, 2015), where the
repeating nature of the patients’ tasks is exploited to
improve performance and respond to physiological changes
by learning from past clinical trials.

The vast majority of optimisation-based ILC methods in
the literature rely on prior knowledge about the models.
For example, the updating control laws as well as con-
vergence of the ILC methods in Gunnarsson and Norrlöf
(2001); Owens and Hätönen (2005) depend on the precise
knowledge of the nominal model. Owens. et al. (2009)
assumes the modelling uncertainty is multiplicative and
bounded and proposes a robust monotone gradient-based
scheme for ILC of linear time-invariant (LTI) systems. The
case where an LTI model is subject to noisy disturbances
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is investigated in Schoellig et al. (2012) with a consoli-
dated model-based Kalman filter and convex optimisation
approach to ILC. A primal barrier method to ILC of LTI
systems is proposed in Mishra et al. (2011). It relies on the
availability of knowledge about the gradient and Hessian
of the quadratic cost function, which in turn is dependent
on the models.

This paper proposes an extremum-seeking based frame-
work in which periodic sampled-data iterative learning
control of continuous-time time-varying nonlinear systems
on finite horizon is performed without relying on knowl-
edge of the models. The control laws are restricted to
being periodic sampled data signals (piecewise constant in
time), as is implementable in digital control with a zero-
order hold device. Extremum seeking is used to locate an
optimum without exploiting knowledge about the under-
lying mathematical models describing the dynamics of the
systems (Ariyur and Krstić, 2003; Zhang and Ordóñez,
2011). Difficulty in modelling complex nonlinear systems
may give rise to the unavailability of such knowledge.
Several approaches to extremum seeking control can be
found in the literature. They include the adaptive control
methods (Krstić and Wang, 2000; Tan et al., 2006; Nešić
et al., 2010; Ghaffari et al., 2012; Guay and Dochain,
2015), nonlinear programming methods (Teel and Popović,
2001), and global optimisation methods (Khong et al.,
2013a,b). Stochastic approximation based methods are
considered in Khong et al. (2015) in the presence of output
measurement noise.
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2011). Difficulty in modelling complex nonlinear systems
may give rise to the unavailability of such knowledge.
Several approaches to extremum seeking control can be
found in the literature. They include the adaptive control
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methods (Krstić and Wang, 2000; Tan et al., 2006; Nešić
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Abstract: Iterative learning control (ILC) of continuous-time nonlinear plants with periodic
sampled-data inputs is considered via an extremum seeking approach. ILC is performed without
exploiting knowledge about any plant model, whereby the input signal is constructed recursively
so that the corresponding plant output tracks a prescribed reference trajectory as closely as
possible on a finite horizon. The ILC is formulated in terms of a non-model-based extremum
seeking control problem, to which local optimisation methods such as gradient descent and
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1. INTRODUCTION

Iterative learning control (ILC) is a learning based method
for achieving the objective of tracking a prescribed trajec-
tory. It performs the same task multiple times in succession
with respect to iteratively updated control inputs while
improving the tracking performance by learning from pre-
vious executions (Moore, 1993; Moore et al., 1992; Xu and
Tan, 2003). ILC is known to achieve good performance in
the presence of repeating disturbances and certain model
uncertainty due to its iteratively learning feature. For
instance, ILC has been applied to motion planning in
gait modelling (Srinivasan and Ruina, 2006) and stroke
rehabilitation (Freeman et al., 2012, 2015), where the
repeating nature of the patients’ tasks is exploited to
improve performance and respond to physiological changes
by learning from past clinical trials.

The vast majority of optimisation-based ILC methods in
the literature rely on prior knowledge about the models.
For example, the updating control laws as well as con-
vergence of the ILC methods in Gunnarsson and Norrlöf
(2001); Owens and Hätönen (2005) depend on the precise
knowledge of the nominal model. Owens. et al. (2009)
assumes the modelling uncertainty is multiplicative and
bounded and proposes a robust monotone gradient-based
scheme for ILC of linear time-invariant (LTI) systems. The
case where an LTI model is subject to noisy disturbances

� This research was supported in part by the Institute for Math-
ematics and its Applications with funds provided by the National
Science Foundation and the Australian Research Council.

is investigated in Schoellig et al. (2012) with a consoli-
dated model-based Kalman filter and convex optimisation
approach to ILC. A primal barrier method to ILC of LTI
systems is proposed in Mishra et al. (2011). It relies on the
availability of knowledge about the gradient and Hessian
of the quadratic cost function, which in turn is dependent
on the models.

This paper proposes an extremum-seeking based frame-
work in which periodic sampled-data iterative learning
control of continuous-time time-varying nonlinear systems
on finite horizon is performed without relying on knowl-
edge of the models. The control laws are restricted to
being periodic sampled data signals (piecewise constant in
time), as is implementable in digital control with a zero-
order hold device. Extremum seeking is used to locate an
optimum without exploiting knowledge about the under-
lying mathematical models describing the dynamics of the
systems (Ariyur and Krstić, 2003; Zhang and Ordóñez,
2011). Difficulty in modelling complex nonlinear systems
may give rise to the unavailability of such knowledge.
Several approaches to extremum seeking control can be
found in the literature. They include the adaptive control
methods (Krstić and Wang, 2000; Tan et al., 2006; Nešić
et al., 2010; Ghaffari et al., 2012; Guay and Dochain,
2015), nonlinear programming methods (Teel and Popović,
2001), and global optimisation methods (Khong et al.,
2013a,b). Stochastic approximation based methods are
considered in Khong et al. (2015) in the presence of output
measurement noise.
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Optimisation-based extremum seeking algorithms are ap-
plied to ILC in this paper. It is shown that the proposed
ILC framework is amenable to a broad range of local
optimisation methods. This allows the complexity of im-
plementation and convergence speed of the algorithms to
be taken into consideration in the control synthesis phase.
For instance, Newton-based methods can be employed if a
quadratic convergence rate is sought after within a neigh-
bourhood of the minimiser at the expense of heavier com-
putational load than first-order methods. Furthermore,
the convergence properties of ILC can be analysed using
standard tools from the field of optimisation. Sufficient
conditions for ultimately bounded asymptotic stability of
local minima is demonstrated, where the cost function is
defined as the distance between the system output and the
reference trajectory.

The work presented in this paper has strong relevance to
the theory of optimal control, which is an important area
of systems theory in which the problem of finding a control
law for a given system to achieve a certain optimality crite-
rion is tackled. When the dynamics are linear and the cost
is quadratic in the state and input, the problem reduces to
the so-called the linear quadratic regulation, which can be
constructed by solving a Ricatti equation (Kalman, 1960).
In other cases, the optimal control law can be derived using
the Pontryagin’s minimum principle or by solving the
Hamilton-Jacobi-Bellman equation, the former of which is
a necessary condition for optimality and the latter also suf-
ficient (Liberzon, 2012). In all of the cases above, a model
of the system is required. A first attempt at employing
extremum seeking for obtaining an optimal control law
in the absence of a system model can be found in Fri-
hauf et al. (2013), where linear discrete-time systems with
quadratic costs are considered. Other works on optimal
control of unknown discrete-time systems include the neu-
ral networks based (Dierks et al., 2009) and the reinforced
learning based (Yang and Jagannathan, 2012). In Khong
(2014), the problem of computing periodic sampled-data
control laws satisfying saturation constraints for nonlin-
ear continuous-time systems and generic cost functions is
considered via an extremum seeking approach.

The paper is structured as follows. The problem of
sampled-data ILC of nonlinear systems is formulated in
the next section. An extremum seeking approach to ILC
based on local optimisation methods is introduced in Sec-
tion 3. Gradient based methods which are compatible
with the extremum seeking framework are described in
Section 4. Concluding remarks are provided in Section 5.

Some basic notation is introduced here. A function γ :
R≥0 → R≥0 is of class-K (denoted γ ∈ K) if it is
continuous, strictly increasing, and γ(0) = 0. If γ is also
unbounded, then γ ∈ K∞. A continuous function β : R≥0×
R≥0 → R≥0 is of class-KL if for each fixed t, β(·, t) ∈ K and
for each fixed s, β(s, ·) is decreasing to zero (Khalil, 2002).
Given any subset X of Rm and a point x ∈ Rm, define the
distance of x from X as ‖x‖X := infa∈X ‖x− a‖2.

2. ITERATIVE LEARNING CONTROL

2.1 Reference tracking

The class of nonlinear, possibly infinite-dimensional, sys-
tems that we consider in this paper is introduced in this
section. We begin with the following notational definitions.
The natural and real numbers are denoted by N and R,
respectively. The Euclidean norm is denoted | · |. Let X be
a Banach space whose norm is denoted ‖ · ‖X . Let T > 0
denote the finite length of the time horizon of interest.
Define

X := {x : [0, T ] → X | x is measurable}
and

U := {u : [0, T ] → [a, b] | u is measurable}.
where the compact interval [a, b] with a, b ∈ R denotes
the input space of interest. This is motivated by the
ubiquity of control input saturation constraints in physical
systems (Khalil, 2002).

Definition 1. Let the state of a dynamical system be
represented by x ∈ X . The input to the system is denoted
by u ∈ U . Let x(·, x0, u) denote the state of the dynamical
system starting at x(0) = x0 ∈ X with input u ∈ U that
is Lipschitz continuous in x0 and u. The output of the
system is given by

y(t) = h(x(t, x0, u)) ∀t ∈ [0, T ],

where h : X → R is a locally Lipschitz function.

An example satisfying the definition above is given by the
following nonlinear time-varying finite-dimensional state-
space system

ẋ = f(t, x, u) x(0) = x0

y = h(x),
(1)

where f : R × Rn × R → Rn and h : Rn → R are locally
Lipschitz functions in each argument.

Let r : [0, T ] → R denote the reference trajectory.

Definition 2. Given a system described in Definition 1
with initial condition x0 ∈ X , define the cost function
Jr : U → R≥0 to be

Jr(u) = ‖r − y‖,
where ‖ · ‖ denotes the L2 norm

‖z‖ :=

(∫ T

t=0

‖z(t)‖22 dt
) 1

2

and y : [0, T ] → R is the output of the system with respect
to the initial condition x0 and input u ∈ U .

Note that by Definition 1, Jr is Lipschitz continuous in the
sense that there exists an L > 0 such that

|Jr(u)− Jr(u
′)| ≤ L‖u− u′‖∞

:= L ess sup
t∈[0,T ]

|u(t)− u′(t)|

for all u, u′ ∈ U . Denote by h > 0 a real number by which
T is divisible, i.e. there exists anK ∈ N such thatKh = T .
An h-periodic sampled-data control law u : [0, T ) → [a, b]
is given by

u(t) := ui, t ∈ [(i− 1)h, ih) (2)
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for i = 1, 2, . . . ,K and some u1, . . . , uK ∈ [a, b]. Denote
by Uh the set of all such control laws. Since JT is
continuous and Uh is a compact subset of {u : R≥0 →
R | u is measurable} with respect to the metric induced by
‖·‖∞, it follows that JT admits a global minimum over Uh

by the extreme value theorem (Rudin, 1976, Thm. 4.16).
The finite-horizon sampled-data optimal reference tracking
problem can thus be stated as

u∗(h) := argmin
u∈Uh

Jr(u). (3)

Note that the number of decision variables in the optimi-
sation problem above is K. In the case where X is a finite-
dimensional space, say Rn as in (1), the initial condition
x0 can also be incorporated in the above optimisation
formulation if n is known a priori. That is, both the input
and the initial condition are decision variables to be chosen
to minimise the difference between the system output and
the reference trajectory. The extremum-seeking approach
introduced in the following section can accommodate such
a reformulation straightforwardly, at the expense of in-
creasing the problem complexity by n variables.

An alternative formulation, in contrast to the sampled-
data control law introduced in (2), is to parameterise
the control input with a finite number of basis functions
and select the minimising control signal over the set
of parameters. Commonly used basis functions include
Bezier polynomials of finite order, finite sums of sinusoids
with variable frequencies and magnitudes, and piecewise
linear functions with variable slopes. These formulations
all boil down to choosing a finite number of variables for
optimal reference tracking and can also be approached
using the extremum-seeking framework introduced next
in the paper. Mathematically, let ψi : [0, T ] → R, i =
1, . . . ,K be measurable functions and

Uψ :=

{
u : [0, T ] → R

∣∣∣∣∣ u =

K∑
i=1

θiψi, θi ∈ [a, b]

}
.

The finite-horizon reference tracking problem can be posed
as

u := argmin
u∈Uψ

Jr(u) = argmin
θi∈[a,b]

Jr(u).

2.2 Iterative learning control for reference tracking

Iterative learning control (ILC) is a recursive learning
based algorithm for solving the reference tracking prob-
lem (Moore, 1993; Moore et al., 1992; Xu and Tan, 2003).
The basic idea of ILC is to use previous iteration informa-
tion to update the control signal for the next iteration so
that the optimal control is found to within some tolerance
after a sufficiently large number of ILC trials. Within the
ILC formulation, it is possible to use temporal information
that would be non-causal in standard control provided
it is generated on a previous iteration. Indeed, if such
information is not present the control law is equivalent
to feedback action. A common ILC algorithm takes the
following form:

uj+1(t) = uj(t) + Υ(r, yj)(t) t ∈ [0, T ],

where j = 0, 1, . . . denotes the iteration number and Υ is
a possibly non-causal operator. By running this algorithm

for a system satisfying Definition 1, the limit of uj is
expected to converge to a neighbourhood of u∗ in (3).

Different ways of exploiting information from past iter-
ations in the update via Υ results in different ILC al-
gorithms. A more general form of ILC is to include in-
formation from a finite number s of previous iterations
in the computation of the current iteration control, i.e.
uj , uj−1, . . . , uj−s+1 and yj , yj−1, . . . , yj−s+1. This is well
known — termed higher-order ILC — and by having s > 1
the control law in this paper has this structure. Higher-
order ILC has long history and in general it is not known
how to decide when this gives advantages over s = 1 or
what value of s should be used. Besides being applicable
to infinite-dimensional nonlinear time-varying systems (cf.
Definition 1), the extremum-seeking based ILC proposed
in the next section employs optimisation algorithms as
part of its operation, and is hence naturally a higher-
order ILC scheme. By the same token, its convergence
properties can be analysed using well-known methods from
optimisation.

3. AN EXTREMUM SEEKING FRAMEWORK

The majority of the ILC literature is focused on discrete-
time finite-dimensional linear systems (Moore, 1993; Bris-
tow et al., 2006; Ahn et al., 2007). Such systems are
often analysed using the lifted-system approach and super
vector notation, i.e. by considering the time series as a
vector. The discrete-time controllers and analysis methods
do not readily have natural counterparts in the continuous-
time setting. On the contrary, the proposed extremum-
seeking-control framework in this section is applicable to
the nonlinear time-varying ILC problem introduced in the
previous section and is built upon the well-studied area of
operations research.

It is first demonstrated that the sampled-data optimal
reference tracking problem in (3) can be transformed into a
problem of static optimisation. To this end, the following
operations are useful. Given a vector v ∈ RK , where K
satisfies Kh = T , define the demultiplexer D : RK → Uh

by

D(v) = u

u(t) = vi t ∈ [(i− 1)h, ih).
(4)

Similarly, given a z ∈ Uh, define the multiplexer M : Uh →
RK by

v = M(u)

vi = u((i− 1)h) i = 1, . . . ,K.
(5)

The demultiplexer and multiplexer are useful for analyti-
cally relating the behaviour of the plant with the optimi-
sation method.

Given a system Σ satisfying Definition 1 with initial
condition x0 ∈ X , reference trajectory r : [0, T ] → R,
and θj ∈ RK , let Q : RK → R be defined as

Q(θj) := Jr(uj) = ‖r − yj‖
= ‖r − h(x(·, x0, uj)‖, (6)

where uj := D(θj) ∈ Uh, for j = 0, 1, . . .. Note that Q is
locally Lipschitz continuous. The process above transforms
the problem of ILC to one of static optimisation, to which
a broad array of local and global algorithms is applicable.
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The basic idea of ILC is to use previous iteration informa-
tion to update the control signal for the next iteration so
that the optimal control is found to within some tolerance
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that would be non-causal in standard control provided
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where j = 0, 1, . . . denotes the iteration number and Υ is
a possibly non-causal operator. By running this algorithm
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known — termed higher-order ILC — and by having s > 1
the control law in this paper has this structure. Higher-
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how to decide when this gives advantages over s = 1 or
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part of its operation, and is hence naturally a higher-
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tow et al., 2006; Ahn et al., 2007). Such systems are
often analysed using the lifted-system approach and super
vector notation, i.e. by considering the time series as a
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do not readily have natural counterparts in the continuous-
time setting. On the contrary, the proposed extremum-
seeking-control framework in this section is applicable to
the nonlinear time-varying ILC problem introduced in the
previous section and is built upon the well-studied area of
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by
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RK by
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and θj ∈ RK , let Q : RK → R be defined as
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In particular, θj+1 can be designed iteratively based on
some update relationship

θj+1 = Γ(Jr(uj), . . . , Jr(uj−s), θj , . . . , θj−s)

and applied to Σ via the demultiplexer D. Figure 1
illustrates the extremum seeking based approach to ILC.
Notice that the demultiplexer accepts as its input a vector
of real numbers from the optimisation method and outputs
a corresponding control input signal to the plant.



r − yjDemultiplexer D

θj

yjuj
Q

Plant Σ(x0)

Fig. 1. An extremum seeking based framework for iterative
learning control.

Consider the following static function optimisation prob-
lem:

z∗ := min
θ∈Ω

Q(θ), (7)

where Q : RK → R is continuously differentiable and

Ω :=
{
u ∈ RK | ui ∈ [ai, bi] ⊂ R, i = 1, 2, . . . ,K

}
is compact. Assume that the Jacobian ∇Q = 0 in a
nonempty, compact set C ⊂ RK , i.e. Q achieves its
minimum on C. A local optimisation method Γ may
generate its update according to

θj+1 = Γ(θj , . . . , θj−1, zj , . . . , zj−s),

where zi = Q(θi). A broad class of gradient-based optimi-
sation algorithms can be shown to satisfy the following
assumption provided that they are properly initialised.
Some of these algorithms are described in Section 4.

Assumption 3. The optimisation method Γ, when applied
to (7), possesses the following properties:

(i) Denote by {θj}∞j=0 ⊂ Ω ⊂ RK the output sequence
Γ generates based on inputs to Γ, {zj}∞j=1, where
zj := Q(θj). Γ is causal in the sense that the output
θN at any time N ∈ N is determined based only on
θj and zj for j = 0, 1, . . . , N − 1, i.e. the past probe
values to Q and the corresponding measurements.

(ii) There exists a class-KL function β such that for any
initial point θ0 ∈ Ω and some δ ≥ 0,

‖θj(θ0)‖C ≤ β(‖θ0‖C , j) + δ ∀j ≥ 0. (8)

Note that Assumption 3(ii) states that the sequence θj
converges asymptotically to a δ-neighbourhood of C. The
convergence result of the proposed ILC in Figure 1 is in
order. In the following, recall the demultiplexer D and
multiplexer M defined in (4) and (5) respectively.

Theorem 4. Given a nonlinear plant Σ with initial condi-
tion x0 ∈ X described in (1) and a reference trajectory
r : [0, T ] → R, the feedback interconnection shown in
Figure 1 with the optimisation method Γ satisfying As-

sumption 3 has the following convergence property: there
exists a class-KL function β such that for any initial point
θ0 ∈ Ω and for some δ ≥ 0,

‖M(uj)‖C ≤ β(‖M(u0)‖C , j) + δ ∀j ≥ 0, (9)

where Q : Ω ⊂ RK → R is as defined in (6), whose
Jacobian is zero on C ⊂ Ω.

Proof. Note that by the setup of the feedback intercon-
nection in Figure 1, uj = D(θj) for all j = 0, 1, . . .. By
applying Γ to Q, it follows from Assumption 3 that there
exists a class-KL function β such that for any initial point
θ0 ∈ Ω and some δ ≥ 0,

‖θj‖C ≤ β(‖θ0‖C , j) + δ ∀j ≥ 0.

This is equivalent to (9) via the relationship M(uj) = θj ,
as claimed.

Theorem 4 gives sufficient conditions under which the iter-
ations on uj are convergent to a δ-neighbourhood of local
minima of the function Q defined in (6), which measures
the size of the tracking error. The next section describes
certain optimisation algorithms that satisfy Assumption 3.
Tradeoffs between the speed of convergence and computa-
tional complexity can be taken into account by the user
when choosing an optimisation method for implementation
in the proposed extremum-seeking based iterative learning
control framework.

4. GRADIENT OPTIMISATION METHODS

Gradient optimisation methods generally employ estima-
tions about the (first or higher order) derivatives of the
cost function in their updates. This section describe some
of the optimisation algorithms that can be used in the
extremum seeking based framework introduced in the
previous section. In particular, we mention two of the
most well-known methods (Boyd and Vandenberghe, 2004;
Polak, 1997) in the field of optimisation which satisfy
Assumption 3. They are (i) the gradient descent method :

θj+1 = θj − λj∇Q(θj), (10)

where λi denotes the step size which can be computed by,
say, the Armijo method (Polak, 1997, Alg. 1.3.3) and (ii)
the Newton’s method :

θj+1 = θj − λ∇2Q(θj)
−1∇Q(θj), (11)

where ∇Q(·) and ∇2Q(·) denote, respectively, the Jaco-
bian and Hessian of Q. It can be readily seen that the
gradient and Newton methods satisfy the causality prop-
erty in Assumption 3(i). The following result can be found
in Polak (1997); Boyd and Vandenberghe (2004).

Proposition 4.1. Suppose Q : Ω → R is twice Lipschitz
continuously differentiable and strictly convex on S ⊂ Ω,
whereby there exist M, M̄ ∈ R such that

MI ≤ ∇2Q(θ) ≤ M̄I for all θ ∈ S.
Furthermore, suppose there exists a minimiser θ∗ ∈ S such
that ∇Q(θ∗) = 0. Let {θj}∞j=0 be the sequence generated
by the gradient or Newton method with respect toQ. Then
there exists a class-KL function β such that for any θ0 ∈ S,

‖θj − θ∗‖2 ≤ β(‖θ0 − θ∗‖2, j) ∀j ≥ 0. (12)

Note that the rate of convergence for the gradient descent
method is linear while that for Newton is quadratic when
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the input lies within a sufficiently small neighbourhood of
the minimiser.

Proposition 4.1 states the convergence conditions for the
gradient descent and Newton method when exact values
of the Jacobian ∇Q(θj) and Hessian ∇2Q(θj) are known.
In practice, they need to be estimated from several past
measurements. This can be achieved by using the Euler
methods, trapezoidal method, or the more sophisticated
Runge-Kutta methods (Press et al., 2007); see Figure 2.

Optimisation Algorithm Γ







Fig. 2. An extremum seeking controller paradigm involving
a derivative estimator and a gradient method.

To be more specific, let the initial output of the optimisa-
tion method be θ0 := τ0. As determined by the derivative
estimator, the following length-p sequence of step com-
mands {θj}p−1

j=0 can be used to probe Q along the desired
directions:

(τ0 + d1(τ0), . . . , τ0 + dp(τ0)), (13)

where di : Ω → RK , i = 1, . . . , p denote the dither
signals. The corresponding outputs of Q are then collected
by the derivative estimator to numerically approximate
the Jacobian ∇Q(θ0). Exploiting this information, the
optimisation algorithm can then update its next probing
point τ1, and the series of steps described above can be
repeated to generate {θj}2p−1

j=p . Note that to obtain an

estimate of ∇Q(·), p is required to be at least K + 1 in
general.

Suppose the use of the derivative estimates (by contrast
to their precise values) in Figure 2 introduces a bounded
additive error term in the update of the gradient and
Newton methods:

θj+1 = θj − λj∇Q(θj) + e1(j, θj) and

θj+1 = θj − λ∇2Q(θj)
−1∇Q(θj) + e2(j, θj),

(14)

where
‖e1(j, θj)‖2 ≤ l1 + q1α(‖θj‖C) and

‖e2(j, θj)‖2 ≤ l2 + q2α(‖θj‖C), (15)

for some l1, l2, q1, q2 ≥ 0. This can be ensured by appropri-
ately choosing the step sizes in the approximation meth-
ods. It follows from the non-vanishing perturbation results
for discrete-time systems in Cruz-Hernández et al. (1999)
that for sufficiently small l and q, the gradient/Newton-
based extremum seeking controller in Figure 2 satisfies the
ultimately bounded asymptotic stability Assumption 3(ii).
In particular, there exist a class-K function α and a class-
KL function β such that

‖θj‖C ≤ β(‖θ0‖C , j) + α(l) ∀j = 0, 1, . . . .

Furthermore, if there exists an αd ∈ K such that the dither
signals in (13) satisfy for each i = 1, . . . , p,

‖di(θ)‖2 ≤ αd(‖θ‖C),
then it follows that the step size used in estimating
the derivatives converges to zero as θj approaches the
minimising set C. This implies that the magnitudes of
the error terms e1 and e2 in (15) tend to zero as j →

∞, i.e. l1 = l2 = 0. That is to say the perturbations
are vanishing and the extremum seeking controller is
asymptotically stable as in Assumption 3(ii) with δ =
0 (Cruz-Hernández et al., 1999). Note that an extremum-
seeking based iterative learning control scheme described
in Figure 1 using either the gradient descent or Newton
methods together with a derivative estimator in Figure 2
naturally results in an higher-order update law of the form

uj+1(t) = uj(t) + Υ(r, yj , yj−1, . . . , yj−s)(t) t ∈ [0, T ].

Though not discussed here, many other optimisation al-
gorithms such as coordinate descent and quasi-Newton
methods can also be used within the extremum seeking
based iterative learning control framework. Usual tradeoffs
between speed of convergence, computational complexity,
and required smoothness on the objective functions can
be taken into consideration while selecting an optimisation
algorithm for a class of problems.

5. CONCLUSIONS

This paper proposes an extremum-seeking scheme for
sampled-data iterative learning control of nonlinear time-
varying systems with the objective of locating an input
that gives rise to the plant output that tracks a pre-
scribed reference trajectory. The proposed scheme, as is
standard in the extremum seeking literature, does not rely
on the underlying model for the dynamics of the plant.
Optimisation algorithms for which convergence is well
understood can be used off-the-shelf within the extremum
seeking framework, from which convergence of iterative
learning control can be concluded. Future research direc-
tions may involve investigating optimising over an infinite-
dimensional space of input signals, such as the class of
smooth functions.
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the input lies within a sufficiently small neighbourhood of
the minimiser.

Proposition 4.1 states the convergence conditions for the
gradient descent and Newton method when exact values
of the Jacobian ∇Q(θj) and Hessian ∇2Q(θj) are known.
In practice, they need to be estimated from several past
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methods, trapezoidal method, or the more sophisticated
Runge-Kutta methods (Press et al., 2007); see Figure 2.

Optimisation Algorithm Γ







Fig. 2. An extremum seeking controller paradigm involving
a derivative estimator and a gradient method.
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