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Abstract: In face-to-face and online learning, emotions and emotional intelligence have an influence
and play an essential role. Learners’” emotions are crucial for e-learning system because they promote
or restrain the learning. Many researchers have investigated the impacts of emotions in enhancing
and maximizing e-learning outcomes. Several machine learning and deep learning approaches have
also been proposed to achieve this goal. All such approaches are suitable for an offline mode, where
the data for emotion classification are stored and can be accessed infinitely. However, these offline
mode approaches are inappropriate for real-time emotion classification when the data are coming in
a continuous stream and data can be seen to the model at once only. We also need real-time responses
according to the emotional state. For this, we propose a real-time emotion classification system
(RECS)-based Logistic Regression (LR) trained in an online fashion using the Stochastic Gradient
Descent (SGD) algorithm. The proposed RECS is capable of classifying emotions in real-time by
training the model in an online fashion using an EEG signal stream. To validate the performance
of RECS, we have used the DEAP data set, which is the most widely used benchmark data set for
emotion classification. The results show that the proposed approach can effectively classify emotions
in real-time from the EEG data stream, which achieved a better accuracy and F1-score than other
offline and online approaches. The developed real-time emotion classification system is analyzed in
an e-learning context scenario.

Keywords: e-learning; emotion classification; real-time emotion classification; online training; logistic
regression; stochastic gradient descent

1. Introduction

Emotion, human intellect and learning have made intertwined relations. Emotions
affect the learner’s concentration, exert their enthusiasm for learning and influence their self-
regulated learning [1]. The effects of emotion, especially positive emotions, have a deeper
influence on academic excellence through self-regulation of learning and motivation [2,3].
Most of the time, it is observed in electronic learning that the same lectures or even
courses end up becoming boring for students. All the efforts of the instructor and their
support have become wasted. Emotion promotes the activation of the associative material
in the long-term memory that facilitates retrieval. Thus, during the e-learning process,
it is important that the emotions of a learner are positive, which impacts learners to
become more attentive and empowering to learning. As a consequence, positive emotions
will enhance learner’s abilities to discover more and perform excellently in assessments,
gather thorough knowledge and outshine in their career path. This convoluted relation
between emotion and learning has attracted many researchers towards the study of emotion
recognition in e-learning.
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Conventional classroom learning has radically revolutionized into e-Learning with
the aid of advanced technologies such as Massive Online Open Courses (MOOC) and
Learning Management Systems (LMS). Such environments aid in the effective transfer of
information. It is an important factor to consider and react accordingly to the students’
affective conditions, and traditional teaching in a classroom is a success there. In traditional
classroom teaching, a teacher can change his/her strategy of teaching by observing the
students’ facial expressions, emotions and body movements. Nevertheless, in e-Learning
or online learning contexts, this becomes challenging.

In human society, the appearance of individual perceptions and responses is called
emotions. It is an elemental part of the individual that affects their behavior, decision-
making, ability to think, adaptability, well-being and the way they interact with each
other [4,5]. Emotions have a significant impact on human actions in individual and so-
cial cultures and need to be examined in human practices, such as e-learning [6]. In [7]
researchers investigated the influence of experimentally induced positive and negative
emotions on multimedia learning (education context). Their result has shown that learners
having the highest prior knowledge or working memory capacity have compensated the
emotional impact on learning outcomes.

Recognizing and responding appropriately to the affective conditions of students is
an essential aspect, and conventional classroom teaching is successful. Teachers may adjust
their teaching strategy in traditional classroom learning by observing the behavior, facial
expressions, and body gesture of the students. Nevertheless, this is quite difficult for the
e-Learning context. According to [8,9], it is not just learning but the inter-dependency
between learning and emotion that is mediated in the e-learning context of social learning
(teachers, students and learning). From the learners’ point of view, the desired favorable
outcomes are proper decision making, learning activities management and time manage-
ment; combining all these outcomes will enhance students’ attention, motivation and desire
to learn.

Human emotions are identifiable using behavior, vocal, facial expression or phys-
iological signals. However, facial expression, behavior and speech are subjective [10].
For instance, a subject can purposefully mask their true emotion, which may be conflicting.
In contrast, physiological signals are more reliable and unbiased in emotion recognition.
One such very popularly used signal for human emotion recognition is electroencephalog-
raphy (EEG). EEG signals are produced by the Central Nervous System (CNS) and respond
more rapidly with respect to the emotion change. Besides, EEG signals have been used
because they provide valuable features for emotion recognition.

1.1. Research Problem

Emotion recognition in e-learning is the domain of application where conventional
Machine Learning (ML) approaches have primarily been used in offline mode, where
data can be scanned unlimited times. These approaches have limitations in e-learning
perspective, such as

*  Emotion classification in e-learning needs real-time classification, but offline ML
approaches are incapable of doing so.

¢ Offline ML emotion classifiers are data-hungry, and to perform complicated emotion
recognition, appropriate training data are needed. Those training data are immutable,
meaning it can be viewed indefinitely. Researchers use the historical data in current
research to train the ML model (i.e., offline mode training) and then use trained
models to evaluate emotions. In real-time emotion classification scenarios, such cases
will be costly and infeasible.

The aim of this research study is to develop a real-time emotion classification system
that can classify the emotional states using a physiological data stream. We propose a real-
time emotion classification system (RECS), which is developed by using Logistic Regression
(LR) trained in online fashion using the Stochastic Gradient Descent (SGD) algorithm.

Specifically, our motivation and aims are as follows:
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e  To circumscribe the study in the field of online classifiers for emotion classification
from an EEG data set.

¢ To refer and compare to existing research works that used the DEAP data set, which
is a commonly used data set in the field of emotion classification.

e To build a lightweight emotion classifier that could be very efficient so that emotions
can be classified in real time and so could be used in real life contexts where time
dimension is of importance, such as in e-Learning.

e To build a lightweight emotion classifier useful for practical applications in a realistic
scenario of a client-server distributed system: the client is the EEG sensor, while the
server is a smart phone, any edge/fog computing device “close” to the user, where
data are generated.

¢ The achieved accuracy of our approach is deemed reasonable in our context of the
augmented workspace project where our emotion classifier will be incorporated.

1.2. This Paper Makes the Following Contributions

1.  We have developed a real-time emotion classification system that uses Logistic Regres-
sion (LR) trained in an online fashion using the Stochastic Gradient Descent (SGD)
algorithm. In our case, we have used EEG data as the physiological data stream.
The EEG data come in a stream, and the emotional state is classified in real-time.

2. We have demonstrated that our proposed RECS classifier can outperform state-of-the-
art online streaming classifier approaches; namely, we have considered five online
classifiers: Hoeffding Tree (HT), Adaptive Random Forest (ARF), Dynamic Weighted
Ensemble (DWE), Additive Expert Ensemble (AEE) and Hoeffding Adaptive Tree
(HAT). We have also compared eight offline mode machine learning approaches,
including Support Vector Machine (SVM), Multi Layer Perceptron (MLP) and Decision
Tree (DT), which are implemented by ourselves, and five online classifiers from the
literature (Naive Bayes, SVM, Hidden Markov Model (HMM) and K-NN) from
the literature. It is to be noted here that comparing with offline classifiers is not the
primary objective of this work, and therefore, we have not considered computationally
heavy learning approaches such as ones based on deep learning.

3.  We have analyzed the proposed approach in the context of an application scenario
(e-learning application) where real-time emotion classification from an EEG data
stream can be incorporated.

The rest of the paper is organized as follows: in Sections 2 and 3, related works and
preliminaries of various concepts such as data stream and emotion representation are
introduced, respectively. In Section 4, materials and methods related to our proposed
approach are presented. Analysis of results and evaluations are presented in Section 5.
An application scenario is presented in Section 6. Section 7 draws the conclusion. Finally,
in Section 8 the limitations and future scope of our work are discussed.

2. Related Works

EEG streaming has become popular in the research field of emotion detection and
classification in various contexts. In the following we refer to research works that are
related to our work because they classified emotions for use in e-Learning and education
contexts. Most of them used an EEG data set, although in some cases the EEG data set
was used as part of a multi-modal approach, where other data such as facial expressions,
movement and body gestures are used for emotion classification. In addition, different
classification methods are employed such as Fuzzy-based, SVM, KNN or ANN.

In [11], EEG signals and facial expressions have been used to recognize emotions.
Researchers used a method of 3D fuzzy feature engineering to excerpt characteristics
from EEG signal and video. It is called a 3D Fuzzy GIST. To collect emotion features and
low-level video details (color, orientation), researchers have used their proposed approach.
The 3D fuzzy tensor has been utilized to retrieve emotion features from EEG for subjective
awareness of emotions. For concatenating two modalities, the feature-fusion approach
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has been utilized. The Adaptive Neuro-Fuzzy Inference System has been utilized in their
research to classify two emotional states, positive valence or negative valence, on the
basis of the feedback emotions deduced by a film clip from the subject. The proposed
system has been integrated into a cognitive architecture where a humanoid robot interacts
with humans.

In [12], a multi-modal emotion recognition system that has used video (an external
channel) for facial expression and EEG (as internal channel) signals. To reduce the dimen-
sionality, researchers have used a sequential floating forward scan method, and the emotion
classification has been performed using two machine Learning (ML) approaches called
Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). Finally, a fusion between
external and internal networks has been performed to the level of function and decision to
evaluate emotions in the arousal dimension for multi-modal emotion recognition.

In [13,14], the authors have shown that by integrating emotional states into the learning
management system, learners’ understanding, engagement and motivation will improve.
Additionally, emotional information opens up the possibility to extend the use of edu-
cational technology and to offer potential incentives for enhancing e-learning outcomes
(such as new and easily understandable content preparation, customized and personalized
learning). It should be stressed that the authors in [13,14] did not process an EEG data set,
yet their experiment is useful for integrating the EEG-based emotion classifiers into an
e-Learning management system.

In [15], researchers have focused on how students can be engaged in e-learning for
a more extended period. The emotional state recognition offers adaptive content about a
learner’s emotion status, subject knowledge, profile and feedback. The learners” emotion
recognition been performed using facial expressions, movement, body gestures and EEG
signals. Their study on recognizing the emotional state has shown that the bio-signal is a
reliable channel for predicting learners” emotional states. The authors use Feed-Forward
Neural Network with back propagation for their emotion classifier.

Recently in [16], we have introduced data stream processing approaches for emotion
classification, and we also reviewed various emotional states, which are mostly studied for
the e-Learning context. Furthermore, we have identified the most appropriate data channels
for emotion recognition. A brief analysis of emotion classification using physiological data
(EEG) stream using Massive Online Analysis (MOA) [17] is also presented.

Finally, we refer to some recent works [18,19] where new types of EEG sensors are
presented. These works are interesting in our context because they present a new generation
of EEG sensors, namely EEG head band. The use of EEG head band is much more friendly
and acceptable by users (e-Learners in our context) than traditional EEG artifacts. Different
versions of EEG head band exist, and some of the most popular are the Emotiv Insight, Muse
InteraXon, Emotiv Epoc+ and Neurosky Mindwave (refer to Section 6 for some pictures).
In [18], researchers have used the EEG for human activity recognition. A Deep Learning-
based framework is proposed to classify EEG data, based on a person’s physiological
activity. In their deep learning framework, a Convolutional Neural Network and a Long
Short-Term Memory Recurrent Neural Network are used to classify raw EEG signals based
on the EEG artifacts. In [19], authors have explored the utility of lightweight, affordable
and easy-to-set-up EEG systems to use in school-based research with children. The effects
of a deep-breathing-for-test-anxiety intervention on brain electrical activity in eleven-year
students are examined. Their study is based on power spectral analyses.

2.1. Other Related Work

We have analyzed various other works in the literature for offline approaches based
on deep learning, CNN, RNN, etc. These works are indeed very interesting and could
outperform our online classifier, but these are deemed computationally heavy methods
and are not suitable for lightweight online classifiers.

Among such works, there are the following ones.
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The authors in [20] have proposed a six-layer biologically inspired feed-forward Neu-
ral Network. For evaluation, they do not consider the DEAP data set, which is generated
ad hoc from the authors and is different from the standard DEAP data set. It should also
be noted that the e-Learning context was not considered in their work. Actually, the output
of the study is that the radial basis function provided the best performance in their Neural
Network approach. Their approach is therefore not suitable for online classification as it is
computationally costly due the complex layered model used.

In [21], emotional states are classified from EEG data using a Long Short-Term Memory
(LSTM) network. The researchers have used the DEAP data set for their study. However,
there are two aspects to point out here: the e-learning context was not considered, and they
present a model based on LSTM, which is more complex than standard recurrent nets and,
therefore, has increased complexity.

In [22], authors aimed to classify emotions automatically for brain-inspired robot inter-
action with humans. Their novel framework for emotion recognition using multi-channel
EEG consists of a linear EEG mixing model and an emotion timing model. The Stacked
Auto Encoder (SAE) is used for the linear EEG mixing model, and for the emotion timing
model, a combined Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) is
used. Their proposed framework has achieved better accuracy for emotion classification
from the DEAP data set. However, the considered model is complex, and heavy compu-
tation time is required to train and test those models, making the model unsuitable for
online classification.

In [23], 3D-Convolution Neural Network (CNN) is used for emotion classification
from EEG data. In their approach, they have developed a data augmentation phase to
enhance the 3D-CNN model’s performance. It should be noted that the considered CNN
model, along with the data augmentation phase, makes the model more complicated and
of high time complexity. Therefore, their approach is unsuitable for online classification.

In [24], the authors have used a multi-column CNN model for emotion classification
from EEG signals from the DEAP data set. Their best results are achieved after considering
many columns (about 7) in the CNN architecture. The main noticeable point here is that
CNN is a Deep Learning approach with many convolution layers and fully connected
layers stacked into it. The proposed model is not suitable for online classification because
its complex structure makes the computation more expensive.

3. Preliminaries

In this section, preliminaries of various concepts related to the data stream, learning
from the data stream and most relevant emotional models are introduced.

3.1. Data Stream

A data stream (DS) is a potentially unbounded, ordered sequence of data items,
which arrive continuously at a speed. The main characteristics of data streams, according
to [25], include

¢  Continuous flow: tuples are arriving one after another;

*  Volume: huge data volume (i.e., infinite length);

®  Velocity: fast arrival means relatively high speed with respect to the processing speed;
*  Variety: data distributions generating may change on the go (dynamic change).

The data stream can be formally defined as a sequence of data samples or observations:
DS = {xq, x3,...,x¢,...}, where x; is the i" arrived observation of data or data object.
In this work we consider the case of labeled data streams, where each data sample or
observation x; has a class label y; € Y = {y1, y2,...... Yt

3.2. Learning from a Data Stream

In stream learning, a model learns gradually from the tuples as soon as they arrive,
and a single pass through them is performed [26] (see Figure 1). Here it is important to note
the time dimension in Figure 1, where different tuples arrive in a stream mode at different
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points in time (t3, tp,...). Thus, there is one model that processes the stream. As soon
as the data arrive, the model will be tested using the previous model. Then, the training
will be performed based on the error, and a new model will be there for the next data;
this process will go on as long as the data stream is arriving. In the beginning the model
will perform very poor because the model has no knowledge, and gradually it will learn
and update itself from the data stream and perform better in classification. In addition,
the model can be evaluated at any point in time, and there will be no loop back over any
portion of the data set.

Time
s ~ .
(x1.y1) Online update Model trained
) 1] on Emotion class
tl et Prediction
' (X1,y1)
\. J
s ~
(x2,y2) Online update Model trained
t i 34 on Emotion class
2 [ et ® Prediction
' (X2,y2)
\. J
- N
(Xg,)ﬁ) Online update Model trained .
o 44 T Emotion class
t3 et v o Prediction
(X3,¥3)
) ~ O

Figure 1. Online emotion classification from a data stream.

3.3. Emotion Representation

Defining various emotions in a meaningful way is essential, and it has been a constant
challenge for emotion researchers. The number of categories of emotion representation has
always been controversial in psychology [10]. Researchers have focused widely on two
emotion representation models deployed by psychologists: categorical or discrete emotion
model (CEM) and dimensional emotion model (DEM) [27].

This dimensional emotion model (DEM) holds human emotion in dimension structure,
where each dimension represents a characteristic of emotion. In multi-dimensional space,
each emotion can be placed as a continuous and coordinated point in 3D or 2D. Instead
of choosing discrete emotional state labels, a person’s impression can be indicated on a
variety of continuous or discrete scales such as pleasant-unpleasant, attention-rejection
or valence—-arousal-dominance (VAD) [28]. The most widely used model under DEM is
VAD, where valence is a satisfaction varying from positive to negative, arousal reflects the
strength of feelings ranging from calm to excited, and dominance is the degree of control
that varies from controlled to in control. Dominance is difficult to calculate and is mostly
omitted, leading to the two-dimensional valence-arousal (VA) space commonly used [29].
Apart from these, there are many multi-dimensional emotional models present in literature.
Typical examples are

*  Russel’s early circle 2D model: arousal and valence are used for plotting emotion labels;

®  Whissell’s continuous 2D space: dimensions are evaluation and activation;

*  Schloberg’s 3D emotion model: attention and rejection dimensions are added to the
2D model.

The commonly used model in DEM is Russell’s 2D emotion model. Figure 2 represents
a schematic view of 2D model/ VA space model.
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Figure 2. The Russel 2D valence-arousal (VA) space emotion model.

4. Materials and Methods

As stated earlier, the objective of this works is to build an online classifier for the
emotional states of learners and analyze its performance in comparison with other online
and offline classifiers in the literature. To this end, we consider the Logistic Regression as
a learning method trained in an online fashion using Stochastic Gradient Descent. The
classifier uses the DEAP data set, which has become a standard data set in this field. The
performance of the proposed online classifier is then compared to the state-of-the-art in
the field.

Next, we present the DEAP data set [30], the working principles of LR, the stochastic
gradient descent (SGD) optimizer and incremental SGD and feature extraction from EEG
signals. Furthermore, we describe in detail the proposed methodology, the experimental
setup and finally the performance metrics for model evaluation.

4.1. Data set Description

For emotion analysis and recognition, the DEAP (https://www.eecs.qmul.ac.uk/
mmv/datasets/deap/ accessed on 19 February 2021) [30] (Database for Emotion Analysis
using Physiological Signals) is a widely used, free, multimodal data set among emotion re-
searchers. The data set contains EEG, peripheral and video signals. The data were recorded
at two distinct locations Geneva (Switzerland) and Twente (Netherlands). The experiment
was conducted on 32 participants in which 16 were male and 16 female. Participants 1-22
were recorded in Twente and participants 23-32 in Geneva. Each participant watched
40 different music videos of 60 s in length. In the experiment, a total of 48 channels includ-
ing 32 EEG channels, 12 peripheral channels, 3 unused channels and 1 status channels were
used to record the raw data. After finishing each video, each participant was asked to give
the rating in terms of valance, arousal, dominance and familiarity ranges from 1 to 9 and
liking ranges from 1 to 5. There are 32 files, one file for each participant’s recordings. Each
trial contains 63 s signals, the first 3 s are the baseline signals. The data were down-sampled
from 512 Hz to 128 Hz, and a bandpass frequency filter from 4.0-45.0 Hz was applied.
Each data file is stored in a 3D matrix representation (40 x 40 x 8064), which represents
video/trial x channel x data. The emotion labels are stored in a 2D matrix (40 x 4) in the
same file.

4.2. Logistic Regression

Here we start by presenting the working principle of the Logistic Regression (LR)
method. At the end of this subsection, we highlight the main reasons and the motivation
for using LR as a basis for our online emotion classifier.

Logistic Regression (LR) is considered as a generalized linear model because the
output always depends on the sum of the inputs and parameters. Let us consider a
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labeled data set D, where an m dimensional feature vector of n data points presents
D = {(x;,yi)|xi € R",y; € {—1,1}}I". x; is the m dimensional feature vector, and y; is the
corresponding class labels. In logistic regression, instead of minimizing the linear objective
function (e.g., sum of squared error (SSE)), a log-likelihood objective function is minimized.
The sigmoid function, which outputs the conditional probabilities of the prediction (the
class probabilities) is as follows:

1
= 1
0(z) = 1= M
where z is defined as the inputs and can be formulated as:
Z = wWoXg +wixy+...... + WpXy
n
= ) Wi @)
i=1
=W'X

The sigmoid function takes z and then transforms it into the range of [0,1]. After
model fitting, or in other words model training, by adjusting the weights by minimizing
the cost or objective function [31], the step function converts the output from the activation
function into binary class levels(y) as follows:

y_{ 1if ¢(z) > 0.5 3)

0 else

An objective function is a single scalar value that is formulated from a set of design
responses (https://abaqus-docs.mit.edu/2017 /English/SIMACAEANLRefMap/simaanl-
c-optobjectives.htm accessed on 19 February 2021). The log-likelihood objective function of
logistic regression can be formulated as follows [32]:

:i —y1og (9 1)) — (i = y) (1 - ¢(z1)) (4)

w) = { ~log(¢(z)) ify=1
st ={ T o ©

Here we minimize the logistic objective function (Equations (4) and (5)) of LR so that
we can develop an accurate model for classification with minimum error. Basically, the cost
function measures how well our parameter w is doing on the data. So, it seems natural to
minimize the cost function for minimal error across the data set to find w. In the streaming
scenario, the LR model will be trained incrementally, i.e., the error will be minimized based
on the arrived data stream, and the model’s performance will improve gradually.

For our Real-time Emotion Classification System development, we have considered
LR as the base emotion classifier, which will be tested and trained in an online fashion.
The main reasons for choosing LR for our emotion classifier in online learning are as follows:

e  Itrequires the observations to be independent of each other. In the RECS scenario the
participants are watching different videos, and the corresponding EEG recordings are
independent from each other;

e It makes no assumption about the distributions of classes in feature space;

¢ ltis efficient at classifying unknown records;

e Itis very efficient in training and is a less complex model (less computation required);
therefore, it is well suited for online learning;

¢ In the literature of emotion recognition from physiological data the LR model has
been widely used.

¢  Finally, our RECS approach follows the development of other similar online learning
approaches that were evolved from offline learning approaches. For instance, Adap-
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tive Random Forest, Hoeffding Tree and Hoeffding Adaptive Tree are online versions
based on offline methods of Random Forest and Decision Tree. Thus, here we are
proposing RECS as an online classifier evolving from an LR offline classifier.

4.3. Stochastic Gradient Descent

In supervised learning, each data point in data set D represents a pair (x, y) consisting
of input features x and scalar class labels y. An objective function £(,y) is considered
to measure the difference between neural network predicted class labels (considered as
) and the actual class labels y. A family F of functions f;,(x) is parameterized by weight
vector w. The function f € F minimizes the loss or error Q(D, w) = L(fw(x),y) averaged
on the training samples [33].

m

Enf) = ) £(f(x) ) ©
1=1
The empirical risk E,, (f) is to be minimized. It tests the efficiency of the model on the
training set.
In practice, most often the empirical risk (E;; (f)) is minimized by the gradient descent
(GD) approach. The weights w are updated based on the gradient of the empirical risk
(Em(f)). The weight change is formulated as follows:

1 m
Wi =wr =1 Y VW Q(Dji w;) (7)
i=1

where ¥ signifies the learning rate or step size. In practice, the learning rate value is
set between 0 and 1. Researchers have noticed that a large learning rate (1) makes the
convergence too fast, having less exploration, which implies bad generalization; on the
other hand, small # makes the algorithm converge too slow, which means more exploration
and implies good generalization but less exploitation. Therefore, in practice, researchers
try to balance exploration and exploitation by setting the learning rate (17) properly. Mostly,
it is selected with experiments, but the range should be between 0 and 1.

When the training data set is large the gradient descent algorithm is most likely to
be ineffective. The ineffectiveness is rectified using the Stochastic Gradient Descent (SGD)
algorithm. The stochastic version of the GD algorithm is SGD. In SGD, the gradient of
Enm(f) is not calculated exactly; instead, the gradient is estimated based on the randomly
selected single data sample D; in each iteration:

w1 = wr — 7tV Q(Dj, w;) 8)

The stochastic process {wy, t =1,...... } depends on randomly selected data samples
in each iteration.

4.4. Incremental Stochastic Gradient Descent

In practice, to train a model properly in supervised learning one need to pass through
the training data set multiple times (called epochs). The batch mode gradient descent
approach may be infeasible and create an overhead in an environment where data are non-
stationary, i.e., for streaming data. Because in streaming data the number of observations
increases and data have velocity, batched mode gradient descent operations are expensive
to perform in an online scenario [34].

w; = Wi—1 — ')’Z'VV(<T/UI‘,1, xti>/ yti) (9)

The main difference with the stochastic gradient method is that here a sequence ¢;
is chosen to decide which training point is visited in the i*" step. Such a sequence can be
stochastic or deterministic.

To train the LR in an online fashion, we have used an incremental SGD trainer. In
RECS we use EEG stream data where the classifier can be trained exactly once. Incremental
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SGD is therefore appropriate in this scenario because the LR model will be trained once,
and it calculates the gradient on exactly one data sample to decrease the error so that the
performance of the classifier will increase gradually.

4.5. EEG Feature Extraction

Feature extraction is crucial for extracting information from EEG, which reflects the
emotional state very effectively. Then, those extracted features are used to train methods
for emotion classification.

Wavelet decomposition (WD) is a standard, feasible and most effectively used time-
frequency analysis method. It is the most popularly used feature extraction method applied
on EEG signals because of its localized analysis approach that uses time as well as a
frequency window, multi-rate filtering, multi-scale zooming, and is best suitable for non-
stationary signals [35]. The multi-scale analysis of EEG signals provides both details and
approximations of the EEG signal at different wavelet scales [10]. It also provides a series
of wavelet coefficients at different scales. All these coefficients are capable of describing
the original signal’s complete characteristics; that is why these are considered features of
the signal.

Let us consider a given signal X (t); its WD can formulated as follows:

X = Y Cup(@) K+ Y D2 22 — k) 10)

k=—c0 j=lk=—o0

where

C,, x represents kth approximate component of nth level of wavelet decomposition;
D;x denotes the kth detail component of jth level of decomposition;

P (t) is the wavelet function. In general it is denoted as ¢ (-) and is formulated as follows:

voslt) = 7 ( 57 an

where a and b represent the scale factor and time shift, respectively;
¢(t) represents the correction coefficient.

There is a huge variety of wavelet base functions, and those functions have dis-
tinct characteristics in terms of smoothness, symmetry, compact factor and orthogonal-
ity. Most commonly, wavelet base functions are Meyer wavelet, Morlet mother wavelet,
Haar mother wavelet and Daubechies wavelet [36].

In the literature, the most significant features extracted from an EEG signal from
each channel using the wavelet coefficients of each sub-band include wavelet energy
(Equation (12)), wavelet energy ratio (Equation (13)) and wavelet entropy (Equation (14)),
which are formulated as follows:

E(i) = i D}; (12)
j=1
R(i) = 2 13)
X E(j)
j=1
Ws = Y R() In(R(0) 14)

i=

where D; ; denotes the corresponding level’s wavelet coefficients shown in Equation (10).
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4.6. Experimental Study

In this section, the working procedure of real-time emotion classification using an
EEG sensor data stream is presented. In addition, the schematic view of our proposed
approach is shown in Figure 3. The experimental study is divided into the following steps:

Step 1:

Data set consideration and data rearrangement: To make the EEG signal stream
possible we have considered the pre-processed DEAP data [30]. As mentioned
earlier, the DEAP data are stored in 3D matrix format, so for better understanding
and readability we have rearranged the EEG signals into the one-dimensional
(1D) matrix format as follows:

[participant, video, channel no, channel data, valence class, arousal class]

In this experiment, we have used the EEG data to classify emotions such as
high/low valence and arousal. Thus, while streaming the valence and arousal
scores present in the DEAP data set, an automatic scaling is done. For example,
if valence is greater than or equal to 5, the class is high valence (i.e., 1); otherwise,
the class is low valence (i.e., 0). A similar scaling is done for arousal class labels.
In Table 1, the valence and arousal class distributions are shown.

Table 1. Valence and arousal class distributions in the DEAP data set.

Emotion Class Labels Number of Instances in High Number of Instances in Low

Valence 808 472
Arousal 816 464

Step 2:

Step 3:

Step 4:

Step 5:

From Table 1 it can be seen that the data set is slightly imbalanced.

Stream simulation: In the EEG stream simulation, we have considered a time
window of 60 s for every participant. The reason for making the 60 s time win-
dow is that the videos are 60 s in length, and in DEAP data emotion labels are
available for the corresponding video. We have considered that each participant
is watching one video at a time, and the corresponding participant’s EEG signal
stream is coming continuously. The data stream rate is 2 Mb/60 s. The stream-
ing simulation system is developed using WebSockets, where from the client
side continuous EEG data streams are coming to the server, and the server is
processing the streams for real-time emotion classification.

Feature extraction from the EEG signal stream: In our experiment, features
are extracted from an EEG signal stream from each channel using the wavelet
coefficients of each sub-band. The important features extracted are wavelet
energy (Equation (12)), wavelet energy ratio (Equation (13)) and wavelet entropy
(Equation (14)). In our experiment, we have used Daubechies wavelet and the
near-optimal Wavelet Daubechies 4 (Db4) wavelet base as the wavelet base
function to decompose the EEG signal into five levels.

Emotion classification model: For emotion classification from the EEG stream we
used a Logistic Regression model for high/low valence and arousal classification.
Model test and training: The Logistic Regression model is trained in incremental
learning using Stochastic Gradient Descent algorithm (Algorithm 1). The inter-
leaved test-then-train [17] approach is used because this technique does not need
separate memory for a test set and makes maximum use of the available data;
the testing and training performance of the classifier can be examined with the
most detailed possible resolution for each example. The meaning is that each
individual example can be used to test the model before it is used for training,
and from this the accuracy, FM score and confusion matrix are updated. The
model is thus always being tested on examples it has not seen. In the initial
phase (for the first data tuple) of interleaved test-then-train, the model will return
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nothing as it has no knowledge of the data, so the accuracy and F1-score will be
zero. Then, gradually the accuracy and F1-score will increase by seeing more
data tuples. The model is trained one time (i.e., the epoch is 1) for each EEG
signal stream because, in streaming, the model can see the data once.

The following pseudo code is our proposed approach:

Algorithm 1: Pseudo code for the proposed real-time emotion classification
using EEG stream

Result: Emotion Class (Valence (high/low) and arousal(high/low))
Require: EEG signal stream;
Function train-once (model, error):
| use Incremental SGD to minimize the cost function mentioned in Equation (4).
return
while Stream-has-next-values() > 0 do
Define-once: Logistic-Regression();
sig <— current-time-signal;
features <— Wavelet-Analysis(sig);
for all features do
test-once(Logistic-Regression(features));
update(performance-metric());
train-once(Logistic-Regression(), error));

end
Partition(D, splitA);
end
d |
Channels 5 fl fz i 3
Ay —
1
£ ]
learner g 3 \\ 2 Feature matrix :
EEG R oo i i
Stream ] Data Stream

Classification

Py

= 7=

“Machine learning "

(LR-SGD) i
A3 model L

Incremental learning

X of ML model
Single pass et
Interleaved test-then-
train method Emotion class
prediction

Figure 3. The framework of our proposed work.

4.7. Experimental Setup

It is to be noted here that we have analyzed various other research works in the
literature that build offline classifiers based on Deep Learning (see Section 2.1), CNN or
RNN and that outperform our classifier, but these are computationally heavy methods,
not suitable for lightweight online classifiers. Therefore, we have not included such offline
classifiers in our comparison study.
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Next, the machine setup, models used for comparison, model development and the

parameter setup are presented.

1.

Machine configuration: The machine configuration is Ubuntu 18.04 64 bit OS, proces-
sor core-i7-7700HQ with RAM 16 Gb-2400 MHz and 4Gb-Nvidia GTX-1050 graphics.
Compared models: To establish the performance of our model we have compared it
with different popular offline mode ML-based emotion classifiers. We have considered
Support Vector Machine (SVM) [37], Multi Layer Perceptron (MLP) [38] and Decision
Tree (DT) [39] algorithms for the comparison. The reason for choosing the specified
offline classifiers for our comparison is because these are the most popularly used
emotion classifiers in the literature [10].

To make the comparison more effective and clear, we have used five different stream-
ing approaches for emotion classification using EEG data stream. All these approaches
are effective for data stream classification approaches. The considered approaches are
Hoeffding Tree (HT) [40], Adaptive Random Forest (ARF) [41], Dynamic Weighted
Ensemble (DWE) [42], Additive Expert Ensemble (AEE) [43] and Hoeffding Adaptive
Tree (HAT) [44]. The reason for choosing these approaches is that all these approaches
are state-of-the-art online stream data classifiers. These approaches are the online
version of Decision Tree and Random Forest (mostly used for offline mode emotion
classifier). For instance, both HT and HAT are online versions of DT. Similarly, ARF is
an online version of the Random Forest approach. We also did not come across any
online emotion classifier that could be fairly compared to our approach. Therefore,
we have considered these specified online approaches for emotion classification and
compared them with our proposed model.

Algorithms development: The environment for RECS was developed from scratch
using Python 3.7. Offline machine learning approaches (SVM, DT and MLP) were
developed using Scikit-learn [45]. The online or streaming approaches (HT, DWE,
ARF, AEE and HAT) were developed using a streaming Scikit-multiflow library [46].
Parameter setup: The considered machine learning approaches have various param-
eters that need to be configured. The parameters setup for offline classifiers (SVM,
MLP and DT) were taken directly from emotion classification research papers [47-49].
The parameter setups are the following:

¢ SVM: For SVM, the C (regularization parameter) is set to 1.0 and radial basis
kernel (rbf) is used as specified in [49].

e MLP: For MLP, one hidden layer with 20 neurons and sigmoid activation function
is used. Stochastic Gradient Descent is used to optimize the MLP where the
learning rate is 0.001. The maximum epoch is set to 200.

e DT For DT, everything is set to default as specified in [48].

¢  RECS approach: In our approach, the learning rate for SGD is 0.05, and it is fixed
throughout the emotion classification. To set the learning rate, we have done
a Cyclical Learning Rates (CLR) [50] on one subject using RECS, where we have
varied the learning rate for SGD from 0 to 1 with a step size increment of 0.01.
The selection criterion for the learning rate of SGD is in which learning rate the
RECS approach has less error (see Figure 4). From the plot, we can see that for
the 0.05 learning rate of SGD, the RECS approach had 0.175 error, which is less
in comparison to other errors. Note that the epoch is 1 because the model can
see the data only once.

e  For all considered online approaches (HT, DWE, ARF, AEE and HAT) the param-
eters are set as specified in the corresponding papers [40-44].
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Figure 4. Learning rate vs model error.

4.8. Performance Metrics

For evaluating the classifiers performance in an imbalanced data set, even though
our data set is slightly imbalanced, most popular performance metrics are F-measure
(F1-score), balanced accuracy (Acc), confusion matrix and misclassification rate (mr) [51,52].
These metrics are calculated as follows:

sensitivity + specificity

Acc = 1
cc 5 (15)
Pre x Rec
F1— =2 _ 1
score X (Pre T Rec) (16)
__ (FP4FN) )
T

where sensitivity = Tpﬂ%, specificity = pp-bry, Precision(Pre) = TPLEFP, Recall(Rec) =
TpiipFN and T; is total number of samples.

®  True positives (TP): actual class is positive and predicted class is positive.

®  True negatives (T'N): actual class is negative and predicted class is negative.
¢  False positives (FP): actual class is negative and predicted is positive.

¢  False negatives (FN): actual class is positive and predicted is negative.

F1-score is the weighted average of Precision (Pre) and Recall (Rre). Therefore, this score
takes both false positives and false negatives into account. F1-score score ranges from 0 to
1: 0 means the worst classifier, and 1 interprets the best classifier.

A confusion matrix is a tabular way of visualizing the performance of the classifier.
For binary classification, each entry in the principal diagonal of the confusion matrix
denotes the number of predictions made by the model where it classified the classes
correctly, and other entries denote that the classifier has classified the classes incorrectly.

For offline approaches, we have used 10-fold cross-validation, and for our proposed
approach, we have tested 10 times to make the comparison very transparent. The average
Fl-score and Acc metrics are prioritized to establish the effectiveness of the proposed
approach when it is compared with offline approaches. While comparing with streaming
approaches, we have considered F1-score, Acc, confusion matrix and misclassification rate
as our performance evaluation metrics.

5. Results and Discussion

In this section, we reported the comparison among traditional offline mode machine
learning approaches, which are most frequently used for emotion classification, and we
have utilized five different popular streaming approaches for valence arousal emotion
classification from the DEAP data set.
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It should be emphasized that we did not modify EEG data streams for using them in
the offline algorithms. Indeed, while reading and processing the whole data stream already
stored in the disk, we have stored the extracted features into the disk, and later, with the
same extracted features, we trained and tested the offline approaches. Thus, the offline
approaches see all data consisting of already all extracted features. On the other hand, for
the online classifier, the feature extraction is done from the arrived data tuple from the
stream, and then the classifier is tested and then trained (interleaved test-then-train) using
the extracted feature. The whole process is repeated as long as the data stream is arriving.
Therefore, in both offline and online approaches we are processing exactly the same stream,
which makes the comparison reasonable.

5.1. Comparison with Online Streaming Approaches

In online or streaming approaches, the feature extraction approach (Wavelet decom-
position) from the EEG data stream is the same for all considered online classifiers as
well as our RECS approach. The classified emotions are valence (high/low) and arousal
(high/low). In Figures 5 and 6 the balanced accuracy and F1-score are presented for valence
and the arousal emotion classification, respectively.
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Figure 5. Valence classification comparison among different online classifiers. In (a) shows the
accuracy and (b) shows the F1-score comparison.

Figure 5a and Table 2 show the balanced accuracy for valence emotion classification.
The RECS achieved 15.87%, 12.26%, 10.16%, 9.81% and 14.67% better accuracy than HAT,
AEE, DWE, ARF and HT, respectively. Thus, RECS is has performed better in terms of
valence emotion classification than other online classifiers. In addition, in the F1-score
comparison (Figure 5b, Table 2), RECS outperformed HT, AEE and HAT classifiers in
valence emotion classification. However, ARF and DWE achieved slightly better F1-scores
of 0.35% and 0.18% than RECS.

Table 2. Accuracy and F1-score comparison among different online classifiers for valence classification.

Performance Measures

Online Approaches
Balanced Accuracy F1-Score
HT 51.66 0.6532
ARF 56.52 0.7031
DWE 56.17 0.7014
AEE 54.07 0.6283
HAT 50.46 0.6898

RECS 66.33 0.6995
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Figure 6. Arousal classification comparison among different online classifiers. In (a) is shown the
accuracy and (b) shows the F1-score comparison.

From Figure 6a and Table 3, the balanced accuracy for arousal emotion classification
the RECS achieved 10.9%, 4.24%, 7.16%, 9.85% and 11.11% better accuracy than HT, ARF,
DWE, AEE and HAT, respectively. Thus, RECS is has performed better in terms of arousal
emotion classification than other online classifiers. In addition, from the F1-score com-
parison (Figure 6b, Table 3) for arousal emotion classification RECS outperformed other
online classifiers.

Table 3. Accuracy and F1-score comparison among different online classifiers for arousal classification.

Performance Measures

Online Approaches
Balanced Accuracy F1-Score

HT 53.6 0.6769
ARF 59.6 0.6974
DWE 56.73 0.6834
AEE 54.04 0.6773
HAT 52.78 0.6598
RECS 63.89 0.6987

In Figures 7 and 8, the confusion matrix of different online classifiers as well as the
RECS for valence and arousal emotion classification are presented, respectively. The prin-
cipal diagonal elements in the confusion matrix show the correctly classified emotion
classes, and other elements show the misclassified emotion classes. In the DEAP data set,
the total number of valence classes was 1280, and for arousal 1280 classes. By referring
Figures 7 and 8, the misclassification rate in valence and arousal emotion classification was
calculated for all online classifiers. The misclassification rates are shown in Table 4.

Table 4. Misclassification rate comparison among online classifiers.

Online Classifiers Misclassification Rate for Valence Misclassification Rate for Arousal
HT 0.4562 0.4273
ARF 0.4031 0.3789
DWE 0.4062 0.4039
AEE 0.4445 0.4242
HAT 0.4523 0.4398

RECS 0.3335 0.3515
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Figure 8. Confusion matrix comparison among different online classifiers for arousal classification

with our proposed RECS.

From the misclassification rate, Table 4, it can be seen that the RECS had lower
misclassification rates of 12.27%, 6.96%, 7.27%, 11.1% and 11.68% than HT, ARF, DWE,
AEE and HAT, respectively, for valence classification. For arousal classification RECS also
showed lower misclassification rates of 7.58%, 2.74%, 5.24%, 7.27% and 8.83% than HT,
ARF, DWE, AEE and HAT, respectively. Thus, from the comparison, it can be concluded
that RECS performed better in terms of real-time valence and arousal emotion classification
from EEG data stream because the misclassification rate of RECS was lesser than those of
other online approaches considered for comparison.
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5.2. Comparison with Offline Emotion Classifiers

We considered a total of eight offline classifiers for the purpose of the comparison
study. These are organized into two groups: three offline classifiers (SVM, MLP and DT)
implemented by ourselves and five online classifiers from the literature (Naive Bayes, SVM,
Hidden Markov Model (HMM) and K-NN.)

5.2.1. Comparison with Our Own Implemented Offline Classifiers: SVM, MLP and DT

The traditional machine learning approaches are trained and tested in offline mode,
where the EEG signal is available for infinite time, with no memory restriction, no process-
ing time restrictions, and multiple passes. Our proposed emotion recognition approach
RECS is trained in an online fashion, where the EEG signal is coming as a stream, and the
model can be trained using the data stream exactly once. The feature extraction approach
(Wavelet decomposition) is the same for traditional ML approaches as well as our RECS.

We have considered for the sake of comparison three offline classifiers, namely, SVM,
MLP and DT, which are commonly used for building online emotion classifiers. In this
case, these methods are implemented by ourselves using Python libraries.

In Tables 5 and 6, a comparison among all considered offline emotion classifiers with
our proposed RECS in terms of average accuracy and F1-score is reported, respectively. In
those tables, average (mean), maximum (max), minimum (min) and standard deviation
(Std) are reported to show the models” robustness. Lower Std indicates the model’s
consistency in classification. The best accuracy and F1-score values are highlighted in bold.

Table 5. Accuracy comparison between offline emotion classifiers with our proposed RECS.

) . Valence Arousal
Emotion Classifier
Mean Max Min Std Mean Max Min Std
SVM (offline) 52.83 55.10 4998 0.02 51.25 55.70 4562 0.03
MLP (offline) 5548 62.79 50.66 0.03 49.89 5541 4559 0.02
DT (offline) 5482 6049 49.17 0.03 53.74 5852 4957 0.02
RECS (online) 6796 6896 6749 0.004 64.83 6520 64.35 0.002

Table 6. F1-score comparison between offline emotion classifiers with our proposed RECS.

. g Valence Arousal
Emotion Classifier
Mean Max Min Std Mean Max Min Std
SVM (offline) 0.72 0.76 0.67 0.03 0.69 0.74 0.63 0.02
MLP (offline) 0.71 0.77 0.65 0.03 0.65 0.69 0.62 0.02
DT (offline) 0.60 0.67 0.54 0.04 0.58 0.64 0.54 0.03
RECS (online) 0.71 0.72 0.71 0.003 0.71 0.71 0.70 0.002

From the accuracy comparison in Table 5, our proposed RECS achieved 15.13%,
12.48% and 13.14% better average accuracy than SVM, MLP and DT, respectively, for
valence classification. For arousal classification RECS achieved 13.58%, 14.94% and 11.09%
better average accuracy than SVM, MLP and DT, respectively. Another point to note is
that for valence and arousal classification the Std was lower in our RECS than other offline
classifiers, and with this we can conclude that our RECS is a robust model. Thus, in
terms of average accuracy comparison our RECS approach has outperformed those offline
emotion classifiers.

In Table 6, for valence classification, our proposed RECS achieved a better mean
F1-score than DT and a similar mean F1-score with MLP, but in comparison with SVM, RECS
achieved a slightly lower mean F1-score. In arousal classification, RECS outperformed all
the offline emotion classifiers. In terms of model robustness, our RECS is much more robust
than other offline approaches. Based on mean and Std of accuracy and F1-score, it is evident
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that RECS outperformed all the offline approaches for arousal emotion classification using
EEG signal, and RECS is much more robust for emotion classification.

One reason that RECS has performed better than the compared methods is due
to the imbalance data set. In the DEAP data set, the valence and arousal class labels
are imbalanced (shown in Table 1). In [53,54] researchers have studied the effect of an
imbalanced data set (i.e., class imbalance) on offline ML models. They have concluded that
the class imbalance degrades the performance of ML /DL approaches. The same problem
has happened in the offline classifiers, which are used for comparison. However, for the
streaming cases, data are coming one by one, so there is no such case of data imbalance.

It is to be pointed out that in traditional SVM the class imbalance problem exists,
and it impacts the classifier’s performance. However, the class-weighted SVM tackles the
imbalance set issue. In our case, we have used traditional SVM with no class imbalance
treatment. Similarly, for MLP class imbalance does affect the performance [55].

5.2.2. Comparison with Offline Classifiers from the Literature

Our proposed RECS is compared with recent emotion recognition models presented
in the literature [30,56-59], namely Naive Bayes, SVM, Hidden Markov Model (HMM) and
K-NN. The state-of-the-art research articles are selected based on following criteria:

¢ In all these articles DEAP data set is used for emotion classification. The emotions are
recognized from EEG data.
*  Emotion classification of two classes (high/low valence and arousal) are done.

In [30], a Naive Bayes classifier is used to classify high/low valence and high/low
arousal emotion classes from EEG data. Support Vector Machine classifier is used to classify
high /low valence and arousal in [56,57]. In [59] a Hidden Markov Model is used to classify
the valence and arousal emotions. An unsupervised approach called K-Nearest neighbor is
used to classify the valence and arousal emotion class labels present in [58].

The comparison is shown in Table 7. The best results are boldfaced in the table.

Table 7. Emotion recognition accuracy (%) comparison with recent models present in the literature.

Previous Research Valence Arousal
Accuracy F1-Score Accuracy F1-Score

Naive Bayes [30] 57.60 0.563 62.00 0.583
SVM [56] 62.00 0.6845 62.67 0.7097
SVM [57] 64.90 0.5140 65.00 0.508
K-NN [58] 58.05 - 64.56 -
HMM [59] 58.75 - 55.0 -

RECS 67.96 0.71 64.83 0.71

From the comparison presented in Table 7, we can see that RECS has outperformed
the state-of-the-art methods in the literature.

5.2.3. Considerations for Other Deep Learning Based Approaches

There are other offline classifiers for emotion classification (please see Section 2.1)
based on Deep Learning reported in literature. It should be mentioned these classifiers
tend to be the most efficient ones, when compared to other more traditional classifiers, yet
they are more complex and computationally expensive.

For Deep Learning approaches, as can be seen from Table 8 ([24]) Model for Emotion
Recognition from EEG Signals. Sensors 2019, 19, 4736.), accuracy values of their Deep
NN offline classifier are around 80%, on average, which outperforms our online classifier.
However, for non-deep learning methods based on handcrafted features, their valence is
at 71% on average, and arousal is 69% on average, which are similar to our online RECS
performance values. These results confirm the challenge of achieving high accuracy values,
and our results are close to those values.
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Table 8. Performance accuracy results from Yang et al. [24] for Deep Learning vs. non-Deep
Learning approaches.

Category Valence Arousal
hafr‘dcraftEd highest 76.9% 73.06%
eatures

lowest 64.3% 66.20%

difference 12.6% 6.86%

average 71.66% 69.37%

deep highest 87.44% 88.49%

neural network

lowest 72.06% 75.12%

difference 15.38% 13.37%

average 81.4% 80.5%

6. Application Scenario

At present, the cost of EEG devices is significantly less than traditional EEG helmets,
and their design is more user friendly [18,19]. A new generation of EEG sensors, namely
EEG head bands, currently exist, such as Emotiv Insight, Muse InteraXon, Emotiv Epoc+
and Neurosky Mindwave (see Figure 9 for a muse EEG head band).

Figure 9. New generation of EEG head bands.

Schools, colleges, individual users and online learning systems can afford to use EEG
head bands for real-time emotional classification in different contexts. The EEG recordings
can be transmitted via Bluetooth connected to his/her computer or smartphone. When
a learner is watching a course in the e-learning portal or Learning Management System
(LMS), she/he can wear the EEG device connected to the learning platform via Bluetooth.
Then, the learner’s EEG data can be transmitted to the e-learning platform (see Figure 10).

Incorporating our developed real-time emotion recognition classification system can
process the obtained data and then classify the learner’s emotional state needs to map
arousal and valence to emotional states. After that, we can convert those valence and
arousal labels into discrete emotion labels with the help of 2D VA space emotion model
(see Figure 2 earlier in the text) as follows:

¢ Excited (high valence and high arousal)
¢ Angry (low valence and high arousal)

e  Sad (low valence and low arousal)

¢ Relaxed (high valence and low arousal)
¢ Happy (high valence)

¢ Bored (low valence)

¢  Frustrated (high arousal)

*  Sleepy (low arousal)

We have done a test on the discrete emotion mapping based on the valence-arousal
status. The results in terms of accuracy, F1-score and confusion matrix are shown in Table 9
and Figure 11, respectively.
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Table 9. Performance of RECS on discrete emotional state mapping using valence—arousal emo-
tion status.

Performance Metrics

Emotions
Acc. F1-Score

Excited 0.54 0.55
Angry 0.55 0.55
Relaxed 0.35 0.35
Sad 0.37 0.37
Happy 0.56 0.57
Bored 0.44 0.42
Frustrated 0.59 0.58
Sleepy 0.42 043

Excited ##LER 61 93 55 ] ] o o
Angry 1 57 [183 24 52 ] 0 1) 0
Relaxed 1 83 28 S84 55 o ] o o

Sad{ 5 50 61 9% O 0 ] 0

true label

Happy {1 0 o ] o

Bored { 0 o 0 o

Frustrated { 0 1] 0 o

Sleepy 1 0 o 0 o ]

N I{p T I‘_-‘ S zvb -*
& &S Q‘&ﬁ & & o Py o
Y«
predicted label

Figure 11. Confusion matrix for discrete emotion mapping based on valence-arousal status.
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The system can label the content segment with the emotional states of a learner.
By doing this, the tutor can easily identify in real-time the students having negative
emotions (sad or angry), and a quick action can be taken to shift the learner’s negative
emotion to positive (happy or relaxed) by counseling, giving more information, more
details on learning exercise, scaffolding, etc. Identifying negative emotion at an earlier
stage is a very crucial task. Emotion researchers in the learning domain aim to identify
those learners having negative emotions while learning; otherwise, there is a high chance
that those students could drop out of the course, which would affect their academic results.
By understanding the emotional state’s classification in real-time using EEG data streams,
tutors and students can improve and extend the use of educational technology and offer
potential incentives for enhancing learning outcomes. This scenario can potentially be
useful for learners as well as tutors in the e-learning context.

An application scenario of interest in this context is that of augmented workspace
within Eurecat’s materials laboratory (Eurecat Technology Centre of Catalonia, Spain:
https:/ /eurecat.org/en/ accessed on 19 February 2021) where students perform learning
tasks such as characterization of materials, erosion of the material, measuring the flexibility
of materials, etc. The teacher shows the students the steps they have to follow for complet-
ing the learning exercise. According to the real-time emotion classification by RECS, the
teacher will see the students” emotional state in a dashboard. Then he/she will adapt the
pace of the explanation—slowing down or accelerating—and pay attention to particular
cases. Thus, the teacher will provide personalized support to those students who are not
following as expected, and they will provide extra tasks to advanced students, thanks to
knowing the emotional state of learners.

7. Conclusions

The effects of emotions on optimizing and enhancing e-learning outcomes have been
studied by several researchers in the field. To accomplish this objective, several machine
learning and deep learning methods have been proposed in the literature. However, the ex-
isting methods in the literature are data-hungry, and to extract emotion, more computations
are required. Such methods are suitable for an offline mode where emotion recognition
data are stored and can be retrieved infinitely, but these methods are inappropriate for e-
learner’s real-time emotion monitoring. In this research, we have addressed this challenge
by developing an online emotion classifier utilizing Logistic Regression (LR) trained in
incremental fashion using the Stochastic Gradient Descent (SGD) algorithm for real-time
emotion classification using EEG data stream. Based on the comparison results with offline
emotion classifiers (such as SVM, MLP and DT) as well as streaming approaches (HT, HAT,
ARF, DWE and AEE), we can conclude that our proposed approach for real-time emotion
classification from EEG signal stream is effective in terms of significant average accuracy
and F1-score improvement.

In summary, we have developed a real-time emotion classification system from the
EEG data stream, which can classify emotion in real-time and outperform other offline
and stream classifying approaches. We anticipate that our developed real-time emotion
classification system can effectively classify the emotions of learners in real-time when they
are learning from LMS and engaging themselves in the e-learning context.

8. Limitations and Future Works

In this work, we have used the DEAP data set. We would like to apply our approach
to other data sets for e-learners’ emotion classification. Alternative data sets would give us
more insights on emotion classification as well as for the suitability of using the emotion
classifiers in e-learning contexts.

We also would like to study in more detail the concept drift change [60] happening in
a data stream and how the model can be updated with the change so that the classifier’s
performance can be improved. We will design a drift detector that can be combined with
our classification algorithm to boost its accuracy beyond the current state.
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In the future, we are also planning to conduct a study to collect data from learners in
different contexts, and we will observe the performance of our proposed framework on
the collected data set. We will also extend the emotional class study to a more granular
number of classes to capture a more fine-grained emotion classification.
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Abbreviations

The following abbreviations are used in this manuscript:

Acc Accuracy

AEE Addditive Expert Ensemble

ANN Artificial Neural Network

ARF Adaptive Random Forest

CEM Categorical Emotion Model

CNS Central Nervous System

Db4 Wavelet Daubechies 4

DEAP  Database for Emotion Analysis using Physiological Signals

DL Deep Learning
DS Data stream
DT Decision Tree

DEM Dimensional Emotion Model
DWE Dynamic Weighted Ensemble

EEG electroencephalogram
FN False Negative

FP False Positive

GD Gradient descent

HT Hoeffding Tree

HAT Hoeffding Adaptive Tree

KNN K-Nearest Neighbors

LMS Learning Management Systems
LR Logistic Regression

ML Machine learning

MLP Multi-layer Perceptron

MOA Massive Online Analysis
MOOC Massive Online Open Courses

mr Misclassification Rate
Pre Precision
Rec Recall

RECS Real-time Emotion Classification System
SGD Stochastic gradient descent
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SSE Sum of squared error

STD Standard deviation

SVM Support Vector Machine

TP True Positive

TN True Negative

VA Valence-arousal

VAD Valence-arousal-dominance
WT Wavelet Transformation
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