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ABSTRACT Domain adaptation (DA) is a technology that transfers knowledge from the source domain to
the target domain. General domain adaptation assume that the source and the target domain have the same
label space. However, in practical application tasks, the label of the target domain is often only a subset
of the source label. For this situation, partial domain adaptation is usually used as an effective solution to
transfer knowledge from a large number of labeled data sets to unlabeled micro data sets. In this article,
a weighted partial domain adaptation method is proposed to solve the Acoustic Scene Classification (ASC)
problem. Our method establish a connection between source and target domains to do the partial domain
adaptation. Experiments are carried out on TUT and ESC-50 datasets which show that our method achieves
state-of-the-art results. What is more, we apply the algorithms to an optical fiber perimeter security system
to complete early warning by identifying intrusion signals.

INDEX TERMS Partial domain adaptation, generative adversarial training, multi-weighting scheme, acous-

tic scenes classification, optical fiber perimeter security system.

I. INTRODUCTION

Acoustic scenes classification (ASC) is the task for assigning
the labels to the audio signals to determine the environment
in which the signals are collected [1], [2]. In recent years,
domain adaptation method (DA) based on deep learning (DL)
has been proved to be an effective trick to solve classifica-
tion tasks [3]. Existing domain adaptation methods generally
assume that source and target domain share the same label
space. However, in real ASC task, signals to be classified
are usually only the part of the training data set. Standard
DA is difficult to obtain satisfactory classification results in
this situation. Therefore, partial domain adaptation (PDA) [4]
is proposed to transfer knowledge from source dataset with
sufficient labels to target dataset with fewer labels.

Domain adaptation (DA) is now widely used in computer
vision [5], image recognition [6], natural language process-
ing [7] and other fields. However, up to date, only a few
studies applied domain adaptation (DA) methods to acoustic
scenes classification (ASC) task. In 2018, IEEE Audio and
Acoustic Signal Processing (AASP) proposed an ASC task
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with mismatched recording devices [8]. In this task, the data
collected by each recording device can be regarded as a
separate data domain. Therefore, DA is naturally used to
solve the problem. S.Gharib et al used generative adversarial
networks as feature extractors to extract domain-invariant
features for domain adaptation [9]. K.Drossos et al replaced
the adversarial adaptation process with Wasserstein Genera-
tive Adversarial Networks (WGAN) to improve the transfer
effect [10]. However, the above methods are still based on
the assumption that two domains have the same label spaces.
In this article, we are addressing the transfer problem where
target labels are the part of source labels.

Therefore, we propose a weighted partial domain adap-
tation method based on generative adversarial learning.
We establish a connection between two generators to preserve
the class-level structure during domain adaptation. A multi-
weighting scheme is proposed not only to complete the selec-
tion of shared categories in the source domain, but also to
help the network to distinguish whether the sample belongs to
shared categories. Experiments are conducted on widely used
acoustic classification datasets TUT dataset [9] and ESC-50
dataset [11], [12]. Results show that our method improves
more than 20% classification accuracy in both dataset after
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domain adaptation. What is more, we apply our method to
a perimeter security system [13] and achieve good alarm
function.

The rest of the article is organized as follows. Section II
gives a brief description on related work. In Section III,
we introduce our method in details. Section IV provides the
experiments on TUT and ESC-50 dataset. Our algorithm is
also applied to a fiber optic security system which is also
introduced in Section IV. Finally, we conclude the article
in Section V.

Il. RELATED WORK

A. DOMAIN ADAPTATION

Domain adaptation (DA) is a representative method in trans-
fer learning, which uses sufficient source domain samples
to improve the performance of the target domain model.
Here we introduce the basic ideas of domain adaptation.
Source and target domain are noted as Dg = (Xgs, Ys) and
Dr = (Xr, YT), where X represents the data distribution
and Y represents the label processing. The key to the domain
adaptation algorithm is to design a classifier H over x. The
expected error of the H over its input x can be expressed as
follow.

€(H,Y)=LH(x),Y (x))

where L is the loss function, € (H, Y) indicates the differ-
ences between the output of the classifier H and the label Y.
The goal of domain adaptation is to adjust H to get the small
error €5 (H, Y) in the source domain and adapt it to the target
domain with low vaule of e7 (H, Y).

The classifier H with the low €5 (H, Y) can be obtained
from classical training on the source domain Dg. However,
H cannot be optimized by retraining on the target domain D7
due to the lack of labels. Therefore, the focus of domain adap-
tation changes to reduce the discrepancy between Xg and Xr.

B. MAXIMUM MEAN DISCREPANCY

As mentioned above, the goal of domain migration is to
reduce the discrepancy between the source domain and
the target domain. Maximum mean discrepancy (MMD)
[14], [15] can reflect the similarity between two distributions,
so it is often used as an important indicator in the domain
adaptation algorithm to measure the discrepancy between the
two domains.

Specifically, the statistical test method based on MMD
refers to the following method. For samples of two distri-
butions, we calculate the mean value of the samples on the
continuous function f and take the mean difference as the
mean discrepancy of the two distributions. Then the MMD
is obtained by looking for the continuous function f in the
sample space to make this mean discrepancy have the maxi-
mum value. Assume that m and n are two data sets sampled
from two distributions p and ¢ respectively and F is used
to represent a continuous function set in the sample space.
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Then MMD can be represented by the following formula:

MMD [F. p.q] = fsug (Enp [f (m)] = Enq [f (m)])

C. ADVERSARIAL-TRAINING BASED DOMAIN
ADAPTATION METHODS

Many domain adaptation algorithms have achieved good
adaptation effects based on adversarial training. Such as
Adversarial Discriminative Domain Adaptation
(ADDA) [16], Multi-Adversarial Domain Adaptation
(MADA) [17] and Conditional Adversarial Domain Adapta-
tion (CDAN) [18]. In these methods, a domain discriminator
is trained to minimize the domain discrepancy. Aadver-
sarial losses can make sure that the learned function can
transfer an individual source sample to the desired domain.
However, previous methods only focus on the global trans-
form. Since the discriminator can reduce the domain discrep-
ancy, it destroys the class semantic feature in each category.
Therefore, a partial domain adaptation algorithm is proposed
based on adversarial training to overcome this shortcoming.

lll. PROPOSED METHOD

In this section, our weighted partial domain adaptation
method is introduced in details. Some mathematical notation
is set to interpret our algorithm. Soucrce and target domain
are defined as Dy = (Xs, Ys) and Dy = (X7, Yr), where
X represents the data and Y represents the label. And in
the acoustic scenes classification (ASC) task of this article,
the data of the same category in the source domain and the
target domain have the same feature distribution (Mg = Mr),
while the target label is a subset of the source label (Y7 € Ys).

A. NETWORK FRAMEWORK

The weighted partial domain adaptation we proposed is
based on the theory of generative adversarial neural networks
(GAN) [19]. The overall framework of our network is shown
in Figure.1.

B. GENERATIVE TRAINING

As shown in Figure.1, two generators G and G; are built in
source and target domain respectively. G aims to generate
simliar data F; based on the source data X;. G; does the same
job to generate the fake data Fy. The training loss of the
generator in the source domain is consistent with the GAN
network.

EEAN (Xs) = Edi.;r + Eclss
Lais, = E [log Cy (X)] + E [log (1 — C, (Gs (X)))]
Acclsj =E [10g Cs (Xs, Ys)] +E [log Cs (Gs (Xs) Ys)]
where Ly, is the discrimination loss and L, is the clas-
sification loss. After that, classifier Cy uses both the real

source data X; and the generated fake data F; as input
for training. A similar training process takes place in the
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FIGURE 1. The overall framework of our network.
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target domain.

EtGAN (Xm Xt) = Edis, + Ecls,
Lais, = E[log C; (X,)]+E [log (1-C; (G; (X0)))]
Les, = E[log C; (Fy, Ys)] + E [log C; (Fy, V)]

where ?t is the pesudo label from the Cy(X;). Here Cy is a
pre-trained classifier only based on the source data Xj.

Similar to the training of GAN, we put the classifier and
generator together for joint generative training. Maximum
mean discrepancy (MMD) is selected as an indicator for
generator training. MMD can reflect the distribution discrep-
ancy between two domains. In our network, two types of
MMD loss are applied to describe the data distribution. One
is the global MMD that shows the distance between source
and target domain center. The other is the class MMD that
calculates the distance between each class data. The whole
MMD lose in the network is defined as follows.

1
ﬁzsv/lztvm = ‘C;?lilMD + ]VLZJIMD

where N is the number of data classes. We integrate the gen-
erator training loss and MMD loss to complete the generative
training of our network. To sum up, generator and classifier
are respectively established in the source and target domain.
The classifier takes the output of the generator as input and
aims to get the best classification result, while the generator
aims to minimize the joint loss which is shown as follows. A
in the equation controls the relative weight of two losses.

L= Lay + LGan +* (L + Lhamp)

C. MULTI-WEIGHTING SCHEME

After training the generators and classifiers, a multi-
weighting scheme is proposed to complete the subsequent
partial domain adaptation. In our method, we propose two
weights to do the partial domain adaptation. One is the
shared-class weight [20], which is used to select the shared
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category between two domains. The other is the shared-
sample weight. Our method consider the weight of the cate-
gory and the sample at the same time to achieve better transfer
effect.

We first introduce the shared-class weight. We treat the
output of the last convolutional layer in the classifier trained
in the previous chapter as a feature extractor to get the data
feature M (x). The general idea is to learn both discrimina-
tor and domain invariant features. Therefore, the discrimi-
nator loss in our network is similar to the GAN minimax
loss:

min m[a)lxﬁ (D, My, My) = Ex~z,(x) [log D (M (x))]

5. M;

+Ex~z, [log (1—=D (M; (x)))]

where M, and M, are the features from source and target data.
D is the domain discriminator to identify whether the features
come from the source or target domain. The loss minimizes
the data distribution divergence on the feature space M while
produces a stricter bound for the discriminator D to achieve
the more accurate identification results.

In the process of training the discriminator D, for any M(x)
and M;(x), training the discriminator D is to maximize the
loss:

mlz;lx L (D, Mg, M)

= / Zs (x)log D (M (x))

+Z; (x)log (1 — D (M, (x))) dx
- /zs (m) log D (m) + Z, (m) log (1 — D (m)) dm

m

where m = M(x) is the feature sample after extraction.
And the theoretical optimal solution D of this optimization
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problem can be obtained by Leibniz’s rule.
Zs (m)
Zs (m) + Z; (m)

As mentioned above, the shared-class weight is proposed
to determine whether the features extracted are from indepen-
dent or shared classes in two domains. Fortunately, we find
that the optimum D* is a good indicator. It can be found
that when the value of D*(m) is closes to 1, features are
more likely to come from the particular classes in the source
domain. Conversely, when the value of D*(m) is closes to 0,
features are more likely to come from the shared classes.
Therefore, the shared-class weight we propose is related to
D*(m), and the relationship between the two is as follows.

Z; (m)
Zs (m) + Z; (m)
Itis clear from the equation that the shared-class can reflect
the distribution of data and give larger weight to similarly
distributed data to achieve the purpose of selecting shared

classes between two domains. The shared-class weight wg,.
is normalized for network training as follows.

D* (m) =

Ww(m) =1—D*(m) =

w (m)
Wse (M) = ——————
Em’\'zs (m) w (m)

The training process of wy. is done through the discrimi-
nator Dg (shown in Figure.1). Another discriminator D with
the weighted data is trained to reduce the shift on the shared
classes. After adding the weight wy., the traing goal our
network turns to:

min max L (D, Mg, M)
Mg,M, D
= Ex~Z(x) [Wsc(m) IOgD (M (x))]

+ Ei~z, 0 [log (1 — D (M, (x)))]

For the discriminator D1, wg. can be seen as a constant.

So the optimum D; can also be obtained by Leibniz’s rule.
Wse (M) Zs (m)
Wse (m) Zs (m) + Z; (m)

After the shared classes between the two domains are deter-
mined, shared-sample weights wg, are proposed to improve
our weighting scheme. A novel shared-sample classifier Cg
(not shown in Figure.1) is established to distinguish whether
a sample belongs to shared classes. We normalize the output
of the C; by the sigmod function to obtain the shared-sample
weight wgg.

Di* (m) =

wis (x) = sigmoid (Css (M (x)))

The larger wgs(x) is, the more likely sample x is relevant
to shared classes. Therefore, the multi-weighting we pro-
posed can not only select shared classes for partial domain
migration, but also can correct misclassified samples and
greatly improve the fault tolerance of the model. In summary,
we design a multi-weighting algorithm based on the gener-
ation of the generative adversarial training to complete the
partial domain adaptation.
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IV. EXPERIMENTS AND APPLICATIONS

Several experiments are carried out on TUT and ESC-50
Acoustic Scenes dataset. We compared our algorithm with
SOTA domain adaptation algorithms. Experimental results
show that our method achieves better domain adaptation
effect. The migrated network can achieve higher classifica-
tion accuracy.

A. EXPERIMENTS ON TUT AND ESC-50 DATASET

TUT dataset is widely used in Acoustic Scenes Classification
task. The dataset includes audio recordings collected under
ten different acoustic scenes, such as ‘park’, ‘metro station’,
‘street traffic’ and so on. Each class of audio data is recorded
by three different acquisition devices and marked with A, B
and C to distinguish. Device A is a professional recording
device that can capture high quantity audio data, while device
B and C are common recording devices. In our experiments,
we regard the data from device A as the source domain data
and data from B, C as the target domain data to do the domain
adaptation.

The ESC-50 dataset is a labeled collection of 2000 environ-
mental audio recordings suitable for Acoustic Scenes Clas-
sification. The dataset consists of 5-second-long recordings
organized into 50 semantical classes (with 40 examples per
class). In our domain adaptation experiments, we divide the
data under each type of label into two parts, one as the source
domain data and the other as the target domain data.

In both TUT and ESC-50 dataset, we take the energy spec-
trum of the audio signal as the input to the network and use
the deep network as the feature extractor to extract abstract
features instead of traditional speech features. Feature extrac-
tor is designed as a residual convolution neural network
with long short term memory (LSTM) [21]. The network
establishes five layers of convolution layers and three lay-
ers of LSTM to extract the time-frequency features of the
input. Moreover, residual concepts are introduced in to
address the possible degradation problem. Domain discrimi-
nators are simply designed as four layers of fully connected
layers.

In order to verify the effect of partial domain adaptation
algorithm, the data in the source domain selects all classes
of data, while the data in the target domain only selects part
classes of data. We select different types of target data for
multiple experiments.

Figure.2 records the average classification accuracy with-
out domain adaptation in TUT dataset. On the contrary, aver-
age accuracy after domain adaptation is shown in Figure.3.
It is clear that target data without domain adaptation is diffi-
cult to obtain good recognition results on the classifier trained
in the source domain. The average recognition accuracy is
only 20.4%. This is because the differences in the acquisition
equipment will greatly affect the characteristics of the audio
signals. In addition, the shift on label domain also increases
the difficulty of classification task. In contrast, results in
Figure.3 demonstrate the effectiveness of our algorithm.
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FIGURE 2. TUT classification results before domain adaptation.
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FIGURE 3. TUT classification results after domain adaptation.

TABLE 1. Ablation Experiments on Multi-Weighting Scheme on TUT
Dataset.

Ablation experiments S—>T T—S Avg(%)
Without wse 59.16 +£0.18  46.01 +0.26 52.59
Without wss 46.51 £0.23  42.38 :0.12 44.45

With multi-weighting  62.05 +0.12  50.57 £ 0.23 56.31

TABLE 2. Ablation Experiments on Multi-Weighting Scheme on
ESC-50 Dataset.

Ablation experiments S—>T T— S Avg(%)
Without ws. 79.09 +£0.35 76.59 £0.57 77.84
Without ws s 72.42+0.29 70.37+0.39 71.40

With multi-weighting  82.40 £0.02  80.92 +0.26 81.66

It is obvious that the recognition accuracy on the diagonal of
Figure.3 is significantly improved. The recognition accuracy
of any class has been improved to more than 30% and the
average classification accuracy rate has increased to 56%.

An ablation experiment is designed to reflect the
effectiveness of our multi-weighting scheme. We cancel the
shared-class weight wy. and the shared-sample weight wg
separately, and conduct ablation experiments on the TUT and
ESC-50 dataset. The results of the ablation experiments are
recorded in Table 1 and Table 2.

It can be seen from the Table 1 and the Table 2 that
the multi-weighting scheme we designed effectively improve
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the domain adaptation results of the network. Furthermore,
the improvement of the shared-class weight wy. to the net-
work is significantly greater than the shared-sample weight
wys. It is reasonable that wg. can help judge whether the
extracted features are from independent or shared classes,
which plays a decisive role in our partial domain adaptation
methods.

More experiments are proposed to prove the superior-
ity of our method. Comparisons are carried out between
our method and SOTA domain adaptation methods. Deep
Adaptation Network (DAN) [22], Joint Adaptation Network
(JAN) [23], Adversarial Discriminative Domain Adapta-
tion (ADDA) [16], Multi-Adversarial Domain Adaptation
(MADA) [17], Conditional Adversarial Domain Adaptation
(CDAN) [18], Selective Adversarial Networks (SAN) [24],
Asymmetric Tri-training for unsupervised Domain Adapta-
tionare (ATDA) [18] and Multiple Instance Detection Net-
work (MIDN) [25] are selected for comparison experiments.

For the reliability of the experiment, we not only transfer
the knowledge from the source domain to the target domain
(S — T), but also convert the target domain and the source
domain (T — S). The results of the comparative experiments
on TUT dataset are recorded in Table 3 and results on ESC-50
dataset are shown in Table 4.

TABLE 3. Accuracy(%) on TUT Dataset.

Domain adaptation methods S—T T—S Avg
DAN 48.73+£0.29 46.70+0.24 47.72
JAN 59.16 +£0.18 46.01 £0.26  52.59
ADDA 49.01 £0.27 47.96 +£0.30 48.49
MADA 56.77 £0.20 46.89+0.29 51.83
CDAN 57.37+0.21 49.56 £0.17 53.47
SAN 56.75+0.36  49.29 £0.25 53.02
ATDA 47.35+0.34 46.91+0.27 47.13
MIDN 58.67+0.25 49.74+0.26 54.21
Our method 62.05+0.12 50.57+0.23 56.31
TABLE 4. Accuracy(%) on ESC-50 Dataset.
Domain adaptation methods S—T T—S Avg
DAN 73.95+0.43 69.33+0.35 71.64
JAN 77.42+0.29 70.374+0.39 73.90
ADDA 75.12+0.31 70.65+0.17 72.89
MADA 78.67+0.23 T74.28+0.30 76.48
CDAN 78.18+0.16 75.424+0.25 76.80
SAN 76.38 +0.33 78.86 £0.25 77.62
ATDA 73.224+0.33 72.42+045 72.82
MIDN 77.37+0.24 T77.534+0.19 7745
Our method 82.40 £0.02 80.92+0.26 81.66

As shown in Table 3 and Table 4, our method performs
best across both transfer tasks. It outperforms the second best
method by more than 3% on both two dataset. We raise aver-
age accuracy from the baseline DAN of 71.64% to 81.66%
on ESC-50 dataset which indicates that the multi-weighting
scheme we proposed is reasonable and effective.
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B. APPLICATION IN PERIMETER SECURITY SYSTEM

Since our method has achieved good recognition accuracy on
acoustic classification task, we apply it to a perimeter security
system and achieve satisfactory results.

With the development of society, the intelligent perimeter
security system has been applied in various occasions. So we
design a perimeter security system [13], [21] based on the
optical fiber sensors. System collects external intrusion sig-
nals through optical fiber sensors and analyzes the types of
intrusion signals to achieve the purpose of early warning.
The overall framework of the perimeter security system we
designed is shown in Figure.4.

Intrusion

JR e—

Sensing fiber

Laser source

FIGURE 4. The overall framework of perimeter security system.

In our designed perimeter security system, the optical fiber
sensor collects signals from the vibration on the optical path.
The collected signal can be regarded as an audio signal. Thus
the perimeter security system can be seen as an alternative
audio scene classification task. What is more, although the
security system has retrained various types of intrusion sig-
nals, when the security system works, each intrusion signal
is individually detected and identified, which also coincides
with the thought of partial adaptation. The training data
contains a variety of intrusion signals, including vehicles
passing by, man-made mining, etc. However, the intrusion
signal is finally divided into two classes according to their
labels, which is only divided into harmful intrusion signals
and harmless intrusion signals. Our algorithm is only used in
the previous intrusion signal classification task.

TABLE 5. Alarm Accuracy in Different Environment.

Classification methods ~ Sunny days  Rainy days
DNN 76.3% 74.8%
BPNN 86.9% 82.7%
SVM 87.6% 84.5%
Our method 90.2% 86.7%

Traditional recognition algorithms like Back Propagation
Neural Networks (BPNN), Support Vector Machines (SVM)
and Deep Neural Networks (DNN) are used to conduct com-
parative experiments with our method. And the results are
shown in Table 5. It is clear from the Table 5 that our method
achieves the best recognition accuracy in any environment.
This proves that our algorithm can achieve the good domain

VOLUME 9, 2021

adaptation effect on different data sets, which is effective and
universal.

V. CONCLUSION

In this article, a weighted partial domain adaptation method
is proposed for acoustic scenes classification task. We expand
on the ideas of Generative Adversarial Networks and estab-
lish a connection between the two generators in the source
and target domain. Therefore, generators can preserve the
class-level structure while generating the data samples. What
is more, a multi-weighting scheme is proposed to com-
plete the partial domain adaptation. The shared-class weights
obtained through discriminator training can help us find
shared categories between domains. Moreover, the shared-
sample weights serve as a good supplement to describe the
association between samples and shared classes. Experiments
are taken on TUT and ESC-50 dataset among our method and
the SOTA domain adaptation algorithms (DAN, JAN, ADDA,
MADA, CDAN, SAN, ATDA, MIDN). Results show that our
method outperforms the second best method by more than 3%
on both two dataset. What is more, our method is applied to
the optical fiber security system and achieves good results,
which proves that our algorithm has a strong universality.
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