
Computing
https://doi.org/10.1007/s00607-020-00895-6

SURVEY ART ICLE

Tutorial on systems with antifragility to downtime

Kjell Jørgen Hole1

Received: 5 May 2020 / Accepted: 22 December 2020
© The Author(s) 2021

Abstract
An antifragile system of software and stakeholders, including designers, developers,
and operators, learn from incidents how to avoid outages and maintain high uptime.
This tutorial article reviews how to design and operate such socio-technical systems
with antifragility to downtime. It documents the importance of four design principles
and two operational principles by exploring the polar opposite anti-principles and
the interplay between the principles and the anti-principles. The design principles
mandate a software design of separate and isolatable processeswith sufficient diversity
and redundancy. The processes should communicate asynchronously over an external
network. The operational principles imply that the software development teams should
repeatedly inject artificial failures into the production system to understand its behavior
and detect and mitigate vulnerabilities as the system and its environment change.

Keywords Antifragility · Distributed systems · Design principles · Uptime

Mathematics Subject Classification 68-01, 68M14, 68M15

1 Introduction

In the context of socio-technical systems of software and stakeholders, a principle
is a fundamental proposition or rule for stakeholders to create or manage the soft-
ware such that it behaves according to specifications. The opposite of a principle is an
anti-principle, which leads to misbehaving software. This tutorial-style review studies
four design principles and two operational principles for software systems with high
uptime. Rather than focusing primarily on the principles, the article mostly consid-
ers the corresponding anti-principles. There is a rewarding interplay between the six
principles and their polar opposite anti-principles. When we study both principles and

B Kjell Jørgen Hole
hole@simula.no

1 Simula UiB, Thormøhlens gate 53D, 5006 Bergen, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00895-6&domain=pdf
http://orcid.org/0000-0003-2960-2462


K. J. Hole

anti-principles, it becomes evident how stakeholders can design and operate software
systems with high uptime.

The tutorial considers how to avoid downtime in socio-technical systems due to
natural incidents like software bugs, design flaws, configuration mistakes, and hard-
ware failures. A socio-technical system is fragile, robust, or antifragile to downtime
caused by these natural events [1,2]. The discussed anti-principles lead to fragility,
while the opposite principles provide antifragility to downtime. The study of the anti-
principles strengthens earlier claims that the principles are fundamental to achieving
high uptime in socio-technical systems [2]. The principles are often called patterns in
computer science. Although most of the principles or patterns are well known to the
software community, it is much less known how to combine them to create antifragility
to downtime.

The design and operational principles lead to distributed software systems proac-
tively maintained by their stakeholders. The design principles mandate a software
system of separate and isolatable processes with adequate redundancy and diversity.
The processes should communicate over an external network using asynchronous
communication. The operational principles imply that engineering teams should reg-
ularly induce failures in a production system to learn how to improve it and maintain
a low downtime. Together, the principles and the polar opposite anti-principles define
a technology-agnostic foundation for the design and operation of socio-technical sys-
tems with antifragility to downtime. Although programming languages, development
techniques, and database technologies change, this foundation should be stable in the
foreseeable future.

The literature discusses many types of antifragility in, for example, cybersecurity
[3–5], software [6–8], complex adaptive systems [9–11] and biology [12]. However,
the current tutorial focuses solely on avoiding downtime in socio-technical systems
that change over time. The primary audience is students, practitioners, and computer
scientists wanting to learn about adaptive systems with high uptime. (If you are an
experienced Erlang programmer or an expert on microservices, the article may not be
for you). The author searched extensively for well-written books, review articles, and
tutorials on antifragility and related topics such as the design of distributed systems,
parallel programming, systemic risk, and complex adaptive systems. Together, the
cited works and their references constitute a starting point for readers to learn more
about creating, maintaining, and analyzing antifragile systems.

The organization of the tutorial is as follows. Section 2 provides the system view
used in the article. Section 3 introduces the anti-principles, and Sect. 4 discusses
the polar opposite principles. A case study in Sect. 5 illustrates how to use both
the anti-principles and the principles. Section 6 introduces three design choices and
one operational choice obtained by applying the principles to distributed software
systems of separate processes. Finally, Sect. 7 examines when and how to create
socio-technical systems with antifragility to downtime and discusses a possible need
for more principles.

123



Tutorial on systems with antifragility to downtime

2 System view

This section sets the stage for the discussion of the anti-principles. It introduces two
classes of software designs; discusses vulnerabilities and failures in software systems;
defines fragile, robust, and antifragile socio-technical systems; and examines the need
for system monitoring to learn about a system’s behavior.

2.1 Software designs

A design defines a software system’s components, interfaces, data formats, data flows,
and storage solutions. While software systems consist of both hardware and soft-
ware, we mostly consider software design. A typical monolithic software system has
a layered composition with at least three layers that handle user interaction, business
logic, and data storage. Each layer contains units that provide the functionality of the
system. The units can be subroutines, functions, or classes. They are compiled and
combined into a single executable file, resulting in a deployment monolith indepen-
dent of other applications. If a system needs to support many simultaneous users, it
deploys one or more load balancers that distribute user requests to multiple servers
(physical machines), each running a copy of the executable.

A distributed software system consists of modules, where each module contains
a cohesive set of units. Separate processes realize the functionality of one or more
modules in a distributed system. Each process is a set of operations directed toward a
goal. An active process executes its operations; else, it is inactive. A process may store
data during inactive periods. The processes run on multiple servers and communicate
over an external network to complete various tasks. Each process decides how to
respond to a request from another process, including ignoring it altogether. Since
processes are autonomous decision-makers that cooperate voluntarily, no process can
force another process to do anything [13].

A system with millions of users may have thousands of processes that run on many
servers. The processes can even move between machines during system operation. A
process exists until it crashes or the system terminates it. There are different types of
distributed systems with various kinds of processes [14], including Erlang processes
[15,16] and microservices [17–22]. Here, we focus on the fundamental properties of
processes and their communication in large distributed systems.

2.2 Vulnerabilities and failures

A vulnerability in a software system is a design flaw, an implementation bug, a mis-
take in the system configuration, or a hardware malfunction. Experience shows that
all large software systems have vulnerabilities that lead to failures. A local failure
partly damages a system’s functionality, while a system failure destroys (nearly) all
functionality. We must prevent inevitable local failures from propagating and causing
intolerable system failures. In this paper, we consider how to avoid system downtime
due to natural incidents caused by vulnerabilities. Two earlier papers [5,23] discuss
how to prevent downtime due to attackers that intentionally exploit vulnerabilities.

123



K. J. Hole

Distributed software systems tend to fail in unclear and surprising ways [24]. A
system failure can be due to a vulnerability in a single process or multiple processes
failing at the same time because they share a common vulnerability. However, a system
can fail without there being anything wrong with its processes per se. To see why we
view a process as a function that maps an input vector to an output vector. We define
the function for a set of input vectors and a set of output vectors.

A vector outside the defined set of input vectors can occur in a system because
network problems change the communication. When the input vector to a process is
a combination of output vectors from other processes, an unusual combination—not
foreseen by the system designers—can also result in a vector outside the input vectors
set. Processes that receive input vectors they were not designed to handle may very
well generate vectors outside the defined set of output vectors. These surprising output
vectors can lead to extreme system behavior, including prolonged downtime.

2.3 Fragility, robustness, and antifragility

According to the established view, the opposite of a fragile system is a robust sys-
tem. While stressors and perturbations easily damage fragile systems, robust systems
tolerate rough treatment (up to a point). In 2012,NassimN.Taleb published his ground-
breaking book [1] Antifragility: Things that Gain from Disorder, pointing out that the
opposite of a fragile system is a system which needs stressors to thrive. Unlike robust
systems, antifragile systems learn from failures how to adjust themselves to limit the
impact of future failures and become stronger in a continually changing environment.
The human immune system is an example of an antifragile system, as it becomes
stronger from regular exposure to germs.

Presently, we do not know how tomake software systems that learn reliably without
human intervention. Therefore, it is necessary to involve at least software developers
and system operators to learn from failures. We model an antifragile system that con-
sists of a distributed software system and stakeholders with significant interests in the
system outcome as a complex adaptive system [2, Sec. 1.1], [25–27]. Since the collab-
oration between the many entities in this socio-technical system can cause undesirable
emergent behavior, the entities must adapt to each other and the environment to allow
the system to survive failures with potentially substantial negative impact.

In practice, complex adaptive systems of software and stakeholders have a varying
degree of antifragility. Since it is not possible to foresee all rare, large-impact incidents
in complex adaptive systems, antifragile systems must be able to restrict the adverse
effects of eventswith unknown causes [2, Ch. 2]. Furthermore, systems have to become
robust before they can become antifragile. Finally, no system can be antifragile to the
impacts of all kinds of incidents. It is essential to understand what types of impacts
are intolerable for a particular system and then design it to limit these effects.

The author’s book Anti-fragile ICT Systems discusses antifragility to malware
spreading [2, Ch. 8–10]. Here, we focus on making a socio-technical system antifrag-
ile to downtime. It is not enough to develop a system that is robust to known failures
to achieve high uptime. Such a system gradually becomes more fragile to downtime
as the system and its environment change in unpredictable ways. Fragility inevitably

123



Tutorial on systems with antifragility to downtime

accumulates below the surface of any robust system, and ultimately the system goes
down, perhaps for a long time [24]. An antifragile socio-technical system must limit
the impact of all failures with the potential to reduce the uptime. It is vital that devel-
opers and operators continuously learn from small-impact failures how to change and
improve the technical system to keep it running.

2.4 Systemmonitoring

It is necessary to monitor a system’s behavior to achieve antifragility to downtime.
In particular, it is crucial to detect local failures early, preferably before they spread
and cause system failures. To learn what went wrong when a monolith misbehaves or
crashes, software developers study data logs and the single executable’s source code.
It is often not clear what code to analyze when a distributed system fails. The software
consists of many separate processes that run on multiple servers and communicate in
convolutedways over an external network. Thus, sophisticated real-timemonitoring of
both individual processes and their interplay is needed to detect unusual or undesirable
behaviors.

It is not enough to know that a process is alive.We also need to verify that the process
is responding the way it should. The monitoring software can test processes, or the
processes can report to the monitoring software regularly. It must also be possible to
track requests as they move through a system. Note that system monitoring, learning
from failures, and mitigating problems is not only a technical challenge. It requires the
right organizational structures and support frommanagement to ensure that developers
and operators learn about problems early and fix them quickly [17–22].

3 Anti-principles

The author has previously discussed the four design principles and the first opera-
tional principle listed in the left column of Table 1 for socio-technical systems with
antifragility to downtime [2, Ch. 4]. The table introduces one additional operational
principle in the last row. Rather than directly arguing the importance of the six prin-
ciples, this section provides a general discussion of the fragility to downtime caused
by applying the polar opposite anti-principles in the table’s right column to sizeable
software systems. The next section uses the anti-principles to explain the importance
of the listed principles.

3.1 Monolith

Software monoliths are simple to develop, test, and deploy, and they scale by running
multiple copies behind a load balancer. However, while massive monoliths with high
uptime exist, a monolith’s single executable incurs fragility of downtime. A local
failure caused by an internal mistake in a unit (for example, a memory leak) or an
abnormal interaction between two units is likely to halt accurate data processing and
terminate the executable. While we can reduce the fragility to downtime by running

123



K. J. Hole

several executables, significant fragility remains if the instances contain the same
vulnerabilities. Since any substantial application includes vulnerabilities, a massive
deployment monolith is fragile to downtime. It is not a recommended design choice
when a very high uptime is essential to a software system’s long-term success.

3.2 Inseparable

Consider a distributed software system containing two communicating processes A
and B. If A’s functionality significantly degrades when B stops working correctly,
then A is strongly dependent on B. To illustrate, let the process A depend on the
functionality of the process B to produce output data from input data. If A generates
incorrect output data when B misbehaves, then A is strongly dependent on B. If
a system contains processes that are strongly dependent on a process B, then it is
hard to isolate B by taking down its connections to other processes without severely
damaging the system’s functionality. When B misbehaves, it can thus adversary affect
other processes and eventually take down the whole system. We say that a process B
is inseparable from the system when other processes strongly depend on B.

There are disadvantages associated with inseparable processes. It is challenging to
modify an inseparable process’s functionality because it is necessary to change other
processes simultaneously. We need to plan and execute a coordinated software release
rather than make a code change in a single process. Many inseparable processes in a
system lead to infrequent and expensive software updates. Furthermore, it becomes
too hard and costly to remove old software technologies. While legacy systems may
appear to be stable with long periods of uninterrupted operation, they also tend to
experience unplanned downtime due to maintenance problems. These maintenance
problems increase over time as it becomes harder to find individuals with intimate
knowledge of the deployed legacy technologies.

3.3 Uniformity

In agriculture, a monoculture is a widespread practice of growing a single crop in
an area. A continuous monoculture, where the same plant is cultivated year after
year, can cause a buildup of pests and diseases to spread rapidly because the whole
harvest is susceptible. Computer science has adopted the termmonoculture to describe

Table 1 Four design principles
and two operational principles to
ensure antifragility to downtime,
as well as the corresponding
anti-principles

Principle Anti-principle

Design Separate processes Monolith

Isolatable Inseparable

Diversity Uniformity

Redundancy Uniqueness

Operational Fail fast Fail slow

Skin in the game No skin in the game

123



Tutorial on systems with antifragility to downtime

networked computers that run the same software. A monoculture could be vulnerable
to catastrophic failure of all its machines due to prevalent poor design, software bugs,
or misconfigurations. In practice, not all computers that run the same software are
vulnerable since they reside on different networkswith varyingmanagement and router
policies. The machines on a particular network also have different configurations and
patch levels, making a fraction of the computers immune to the consequences of a
universal vulnerability.

A distributed system of networked computers that run a standard operating system,
communication protocol, or application software has a degree of uniformity when the
computers share vulnerabilities. Thedegree of uniformity is equal to the largest fraction
of computers with the same vulnerability. Note that we consider physical machines
and not individual processes. The reason is that when multiple processes run on the
same machine, they may all fail when one crashes. The degree of uniformity is equal
to one when each machine in a monoculture runs an instance of the same vulnerable
process. In general, a detailed study of a system is needed to determine the degree
of uniformity. The degree varies over time as the system changes. While it is hard to
measure the exact degree of uniformity, it should be clear that a highly uniform system
is susceptible to failure due to widespread vulnerabilities.

3.4 Uniqueness

A process is unique in a distributed software system if it is the only one providing
a particular functionality. A distributed system’s degree of uniqueness is the fraction
of unique processes. A system with the ability to run multiple instances of each pro-
cess can vary the degree of uniqueness. As we reduce the degree of uniqueness by
adding multiple copies of more kinds of processes, the system becomes increasingly
redundant. A distributed system loses functionality when a unique process crashes. If
a system has many unique processes, some of these processes are likely to be single
points of failure that take down the whole system when one fails.

3.5 Fail slow

An antifragile system learns from failures how to adapt and improve over time. While
the learning is mostly carried out by humans today, a software system may deploy
artificial intelligence in the future. Whether humans or machines learn, it is necessary
to detect failures to learn from them. Although it is evident that failure occurs when
a process or a whole system crashes, it can be challenging to identify partial fail-
ures where processes continue to run, but the system produces delayed or the wrong
output data.

Designers and developers make assumptions about how a distributed software
system fails; in particular, they make assumptions about how communication delay
impacts a system’s operation. The assumptions are often incomplete. Latency tends
to affect a distributed system in ways that are very hard to foresee. When misbehav-
ing processes are allowed to run for a long time, they can adversarially impact other
processes. This failure propagation can create system failures, including prolonged

123



K. J. Hole

downtime, with substantial negative impact. We say that a process fails slowly when
the communication latency is unusually large, or the process generates erroneous out-
put data for a long timewithout human operators or the software system itself detecting
any problems. Slow failures impede learning frommistakes and make a system fragile
to unplanned downtime.

3.6 No skin in the game

In a hard-to-understand complex adaptive system like the international financial sys-
tem, many operators benefit from the upside when the system behaves well without
paying for the downside when it misbehaves [28]. Bankers and corporate executives
receive bonuses for positive performance but do not have to pay out reverse bonuses
for negative performance—only the investors take a loss. This transfer of risk to the
customers gives bankers and executives an incentive to hide risk, thereby delaying
financial blowups and making them larger. Risk hiding was a primary underlying
reason for the financial crisis of 2008 [29–31].

Stakeholders of a software system have no skin in a game, or no dog in the fight
when they do not share the risk associated with the system. People take less ownership
of a system and its behavior when they have no skin in the game. In particular, a team
of software developers without any responsibility for system failures and the resulting
downtime does not take extra care to avoid problems. It does not spend time learning
about the system behavior to detect and rectify vulnerabilities as the system and its
environment change. Instead, the team ignores technical debt and starts to add new
functionality to the system. Over time, the tendency to ignore technical debt while
adding complexity leads to fragility to downtime.

To better understand the consequences of the anti-principle of no skin in the game,
we study an example. Any shoddy code in a software product may expose users to risk
unknown to them. As a thought experiment, consider when a programming mistake
causes a popular spreadsheet program to make wrong calculations on rare occasions.
A vast number of users and the complicated spreadsheet models used by businesses
make it likely that the financial damage is substantial before the mistake is detected
and corrected. Some users suffer considerably, but the cost to the software company
that made the spreadsheet program is limited since it has no liability for its product
under current laws. In other words, the company has little or no skin in the game.

4 From anti-principles to principles

This section introduces a six-step procedure consisting of four steps to create a tech-
nical system of software and hardware with robustness to downtime, followed by two
additional steps to develop an antifragile socio-technical system, where stakeholders
maintain and improve the technical system over time. The procedure uses the dis-
cussed anti-principles in Table 1 to provide general explanations for why the tabulated
opposite principles are necessary to design and operate antifragile systems. Since

123



Tutorial on systems with antifragility to downtime

companies tend to build software monoliths that they later transform into distributed
software systems [22], the procedure assumes a monolith exists.

4.1 Design principles

A monolithic software system with a single executable is likely to go down when one
of its units experiences a problem. Since all sizeable monoliths contain vulnerabili-
ties, they are fragile to downtime. The first step to increase uptime is to divide the
functionality of a monolith into separate processes that run on a set of networked
machines. This system must have at least two physical computers to observe each
other’s activity and restart crashed processes. If there is only one machine, it is impos-
sible to reboot a process that collapsed due to a hardware or power failure. When there
is a second machine, it can run the crashed process. If one computer goes down and
all its processes die, another computer can restart these processes and run them until
the crashed computer recovers.

Since each separate process consists of tightly integrated units, a whole process
goes down when one of its units develops a problem. If the processes are insepara-
ble, then the entire system stops functioning correctly. The second step to reduce
downtime is, therefore, to prevent a process with a problem from negatively affecting
other processes. Consider two communicating processes A and B. If the process A’s
functionality is nearly unaffected when process B malfunctions, then A is weakly
dependent on B. When all processes that interact with B are weakly dependent on
B, then B is isolatable. All processes in a distributed system should be isolatable to
prevent any process with a problem from taking down the whole system.

The third step toward robustness to downtime is to avoid a distributed system with
a high degree of uniformity, that is, a system whose servers run software with the
same vulnerability. A widespread weakness can cause many processes to crash at the
same time. Software diversity alleviates general vulnerabilities. We can use compilers
with “diversity engines” to add diversity during the compilation of the processes and
the underlying software of a distributed system [32,33], [2, Ch. 8–10]. The servers
can also run different versions or even completely different implementations of the
processes.

The fourth and last step to ensure robustness to downtime is to avoid a distributed
system with a high degree of uniqueness. Such a system has many processes with
unique functionality. Some of these processes are likely to be single points of failure
that take down the whole system when they fail. System designers must avoid single
points of failure, and system operators must introduce redundancy by runningmultiple
instances of processes to alleviate the uniqueness problem. Software developers often
realize processes as virtual machines or (Docker) containers, which are isolated and
replaced when they misbehave. The use of virtualization makes it economically viable
to deploy redundant and diverse services to limit the impact of failures.

123



K. J. Hole

4.2 Operational principles

Software systems with large-scale distributed designs have hardware and software
components that fail all the time [21]. It is impossible to avoid these failures, espe-
cially when a system changes daily. The only real choice is whether a distributed
system should fail fast or slow. A monolith fails quickly when a unit fails because the
application runs as a single executable. Hence, the tendency to fail fast is a problem
when we consider uptime of monoliths.

The situation is the opposite for distributed systems of separate and isolatable pro-
cesses. The fifth step mandates that individual processes fail fast to facilitate the
detection of failures, isolation of the processes, and activation of countermeasures to
limit further the damage, such as default replies when processes are isolated. Increas-
ingly slow failure detection, or even worse silent failures of processes, complicates
stakeholders’ learning about the system behavior and lead to failure propagation with
growing consequences. Note that while the individual processes should fail fast, the
overall system should, ideally, not fail at all.

A software system designed to be robust to downtime caused by known failures
becomes fragile over time as the system and its environment change in unpredictable
ways. Software developers and system operators must learn about new vulnerabilities
and improve the system to maintain robustness to downtime. Since it is impossible
to predict all future failures [2, Ch. 2], the system must limit the impact of failures
with unknown origins. It is necessary to focus on preventing different types of damage
rather than describing all possible failure scenarios and their initiating causes.

The sixth step requires that developers and operators share the responsibility
for downtime and remove vulnerabilities; that is, they must have skin in the game
[28,34,35]. Software developers creating a system should be responsible for mitigat-
ing problems with their code, and operators should make sure that the system runs
without severe hiccups. The stakeholders should have operational responsibilities not
to punish them when things go wrong, but to make sure that they learn from mistakes
how to maintain and improve the system. The stakeholders must continue to miti-
gate weaknesses as the system and its environment change to achieve antifragility to
downtime.

4.3 Overview of principles

In summary, the four design principles of separate processes, isolatable, diversity,
and redundancy outline how to create a distributed software system that is robust to
downtime. The two operational principles of fail fast and skin in the game describe
how software developers and system operators can make the same system antifragile
to downtime by continuously learning how to improve the system. The quality and
speed of the never-ending learning process determine the degree of antifragility.

In addition to the logical justifications for the six principles, empirical evidence
supports these propositions’ importance. Netflix has applied the fundamental ideas
to develop and operate a microservice-based media streaming solution in the cloud
with antifragility to downtime [36–38]. Later, the paper discusses tools and techniques

123



Tutorial on systems with antifragility to downtime

developed by Netflix to learn about vulnerabilities from injected failures in a produc-
tion system. There is also evidence that other companies, includingGoogle,Microsoft,
LinkedIn, Slack, and Uber, have implemented the discussed principles to attain high
uptime [21,39,40]. The following case study illustrates how the (anti-) principles could
be used.

5 Case study: e-government system

The principles and anti-principles in Table 1 guide the design and operation of socio-
technical systems with antifragility to downtime. Here, we apply the anti-principles to
determine fragilities in an electronic government (e-government) system and the polar
opposite principles tomake it antifragile [2]. The case study illustrates the advantage of
considering both anti-principles and principles to attain antifragility. The discussion
is partly inspired by two analyses of the Norwegian e-government platform Altinn
as it appeared in 2012 [41,42]. The author makes no claims about Altinn’s design
after 2012.

5.1 Fragility and robustness to downtime

Figure 1 models the architecture of an e-government system with services devel-
oped by governmental entities to serve commercial companies and private citizens.
The model contains identical copies of a monolith, where each executable runs on a
separate server. While the use of several servers with identical executables introduces
redundancy, the degree of uniformity is equal to one when the executables share at
least one vulnerability. The unique load balancer in Fig. 1 is a single point of failure.

Database

Server

Server

Server

Server

Database

Database

Load 
Balancer

Fig. 1 E-government architecture

123



K. J. Hole

Fig. 2 Layers of user services
and components

Component

User 
service

To increase the system’s robustness to downtime, we divide the monolithic appli-
cation into separate processes and then distribute the processes over the available
servers. The distributed system achieves redundancy by running multiple instances
of each process as needed, and diversity using “diversity engines” at compile-time,
or by allowing the servers to run different versions, or even radically different imple-
mentations, of the processes. The clients communicate with the distributed system via
dedicated edge services running on the servers. The clients must know how to contact
these edge services and how to switch to another should one service fail [13, Ch. 7].

To better understand why inseparable processes constitute a problem, we return to
the 2012 Altinn platform. As illustrated in Fig. 2, Altinn consisted of user services
that ran on top of standardized components. Various government entities developed the
services, while Altinn provided the components. Any service that no longer functions
when a component crashes is strongly dependent on the component. Since multiple
user services depended on the same standardized component in Altinn, it was hard to
isolate a misbehaving component to shield the services from a component problem.

When components on different servers share databases, as illustrated in Fig. 1,
there are high dependencies between the services and the databases accessed via the
components. If a database goes down, all the dependent services stop working. Fur-
thermore, when a service A depends on another service B to update information in
a database, then A is strongly dependent on B. Strong dependencies make it hard to
isolate services and lead to failure propagation and system failures. We need isolat-
able components and services. In the next section, we discuss how to avoid strong
dependencies by exclusively letting processes own their data.

5.2 Antifragility to downtime

Classical testing of new software functionality mostly occurs before it is added to the
production system, while stakeholders of an antifragile system must continuously test
the production system itself. Even with classical testing, it is more challenging to test
an e-government platform with many national services than to test a single enterprise
application. The Altinn organization did not have an acceptable test environment and

123



Tutorial on systems with antifragility to downtime

test procedures in 2012 [41,42]. The testing was unacceptable in all phases of the
development process, and the ability to correct discoveredmistakeswas limited.While
Altinn tested the components, the service owners tested the services developed on top
of the components. The testing tools available to the service owners were inadequate.
Because of insufficient testing, many bugs were not detected in the code before it went
into production. Due to budgetary constraints, Altinn did not correct many known
defects in the production code [41].

The Altinn experience demonstrates the need to learn from comprehensive and
repeated testing before and after code is in production. Learning from one’s own
and others’ failures requires an open and blame-free culture, where developers and
operators responsible for vulnerabilities are encouraged to explain why and how
these weaknesses occur and how they were mitigated. Parts of the software indus-
try have embraced DevOps, a methodology combining Development and Operations
to facilitate an open and blame-free environment where building, testing, and releasing
software happens rapidly, frequently, and more reliably than with previous method-
ologies. DevOps teams creating and operating an e-government platform must focus
on testing to achieve antifragility to downtime. The teams must realize the fail fast
operational principle to detect problems rapidly and have skin in the game [26] to learn
from the issues.

6 Design and operational basis

We have argued at length the fundamental importance of the principles separate pro-
cesses, isolatable, diversity, redundancy, fail fast, and skin in the game in Table 1.
Here, we introduce three design choices and one operational choice by applying the
principles to distributed software systems with many separate processes that commu-
nicate over unreliable networks. The selections form a technology-agnostic design and
operational basis for systems with antifragility to downtime.

6.1 Local persistent storage

As discussed earlier, when there are weak dependencies between the processes in a
distributed system, the processes are isolatable, making it possible to detach a trouble-
some process from the system. Here, we assume that the system has enough diversity
and redundancy to cope with the loss of the process. The e-government case study
illustrated that a central database creates strong dependencies between processes in a
distributed system. We, therefore, study how to achieve weak dependencies when a
system uses persistent storage.

A process with a mutable or changeable state, often referred to as a stateful process,
alters information in a database or an in-memory data structure that persists between
process activations. Consider a distributed systemwheremultiple processes have states
in a central database. If the database goes down, these processes are unable to carry
out their tasks. In other words, the processes are strongly dependent on the database.
Furthermore, the database is a single point of failure. Finally, a process A is strongly

123



K. J. Hole

dependent on a process B when A depends on B to update information in the database.
Hence, weakly dependent processes cannot share a database. A similar argument
shows that weakly dependent processes cannot share any in-memory data structure.
It follows that any stateful process must maintain the state locally and not make it
directly available to any other process.

Since a centralized database creates strong dependencies between processes, we
need to build distributed systems of weakly dependent processes with local persistent
data storage; that is, stateful processes must maintain individual databases even if
several processes must store similar data. Processes can store data in flat files, SQL
databases, or NoSQL databases, depending on their needs. While processes should
never share a database, they may share a distributed and highly redundant cloud-
based database solution like the Cassandra column-family store or the Mongo DB
document database [19, Ch. 5], given that different processes only access isolated
portions of the solution. More information about distributed NoSQL databases is
available in the book NoSQL Distilled by Pramod J. Sadalage andMartin Fowler [43].
It is particularly important to understand the data consistency issues that emerge when
we use distributed database solutions.

6.2 Asynchronousmessage passing

There is no process in charge of the system behavior in a software system of weakly
dependent or isolatable processes. A message from one process to another is not a
command but a request for some data or action. The receiving process may or may
not produce a reply and send it back to the requesting process. If the receiving process
refuses to carry out the request, then there is little the requesting process can do to
force the receiving process to fulfill the request. Hence, a fundamental property of a
truly distributed system without central control is the need for cooperation between
processes.

Thus, to avoid shared mutable state and strong dependencies between processes,
they need to exchangemessages via application programming interfaces (APIs).When
an application’s processes have well-defined APIs, we can update the processes inde-
pendently of each other as long as we do not change the APIs. To change a process
without affecting its API, we should hide most of the functionality by making the API
small. The messages must have a standard format and contain task-specific content,
not arbitrary “objects” to avoid complicated data parsing and processing. The pro-
cesses may not send pointers to internal functionality or data because this would again
create strong dependencies between them.

With synchronous communication, a process A on a server sends a request to another
process B that may run on a different server. The request blocks the operation of a
process A until the process B completes its calculations and returns a response to A.
With asynchronous communication, process A sends amessage stating that something
happened and expects process B to act on this information. Process A does not wait
for an answer from B but continues to carry out other tasks. Process A may receive a
response from B later, but often no response is expected.

123



Tutorial on systems with antifragility to downtime

It is easier to reason about synchronous (request/response) communication than
asynchronous (event-based) communication because we know if a request received an
answer. However, synchronous communication requires highly reliable communica-
tion. When processes communicate synchronously over an external network between
servers, communication failures cause processes to hang. There may be a significant
delay before processes receive a response to a request even without any network fail-
ure. During this waiting time, the requesting processes sit idly, wasting computational
resources. Hence, synchronous communication creates strong dependencies between
processes, while asynchronous communication establishes process boundaries and
help to ensure weak dependencies and, thus, isolatable processes [17, Ch. 4], [18, Sec.
9.4].

6.3 Supervisors and workers

Carl Hewitt has created the Actor Model, a mathematical model of concurrent com-
putation that treats concurrent processes, called actors, as the universal primitives.
The central ideas of the Actor Model [44–46] allow an antifragile system’s processes
to fail fast with limited impact. In practice, the processes run on a collection of net-
worked servers. Each server runs an instance of a runtime system. It controls how the
processes spawn other processes, assigns processes to a server’s processing cores, and
determines how the processes send asynchronous messages directly to one another. A
process receives messages in a mailbox and processes one message at a time. When
a system restarts a process, it need not delete the mailbox, thus, effectively hiding the
restart from the other processes. The runtime system supports location transparency. A
programmer may not know and do not care about what machine a process is running.

The Actor Model allows any process to generate another process on any server.
The creator process is a supervisor, and the created process is a worker. A supervisor
typically produces one or more workers and delegates tasks to them. Spawned workers
run independently and concurrently. The supervisor sends asynchronous messages to
the workers to complete a task. It also monitors the workers to handle any occurring
problems. The supervisormay start a timerwhen it delegates a job to one of its workers.
If a worker does not respond in time, then the supervisor decides how to proceed.

If a worker runs into a problem, it suspends itself and notifies the supervisor about
the failure. When the supervisor receives the notification, it may continue without
the worker’s missing information, restart the suspended worker, move it into a valid
state, spawn a new instance of the worker with an empty mailbox, or initiate some
other action. A failing worker’s ability to notify its supervisor allows processes on
one server to monitor processes on different servers and recover from a complete
server failure. No matter the underlying reason for a problem, the goal is to prevent
a slow or crashed process from taking down the whole system. To avoid a process in
trouble from being hammered by incoming messages, a programmer can wrap it in a
circuit breaker pattern that stops the flow of requests [47]. Circuit breakers allow for
smooth recovery and self-healing, stemming the flow of messages to a failed process
to accelerate its recovery process.

123



K. J. Hole

In the Actor Model, the supervisors and workers reside in a hierarchy: A worker
can spawn other workers. The first worker then becomes the supervisor of the new
workers. One of the new workers can again become a supervisor by generating more
workers. If a supervisor cannot handle a problem, then it escalates the issue to its
supervisor. At the top of the supervisor-worker hierarchy is the runtime system. If
the runtime system cannot handle a problem, then the whole system crashes. This
hierarchical supervision strategy frees up the workers from handling their problems,
which means that developers can focus on business logic and create workers with little
or no error handling code.

6.4 Failure injection

Even if riskmanagement of a socio-technical system has allowed stakeholders to avoid
failures with severe consequences for a long time, there is a remaining risk of future
failures with a sizeable negative impact. It is difficult to quantify this risk because
large distributed software systems tend to fail in ways that are hard to foresee [2, Ch.
2], [24]. Furthermore, it is hard to learn from failures when there are only a few minor
errors between rare significant malfunctions [48]. The operational principle of fail fast
suggests that we can alleviate these problems by regularly injecting artificial failures
into a system to test it. This failure injection should be done by stakeholders with skin
in the game to ensure adequate learning. Sophisticated system monitoring is essential
to detect and limit the consequences of injecting these artificial failures.

The customer-facing software systems belonging to Netflix, Facebook, Amazon,
and Google require very high uptime. Stakeholders continuously mitigate problems
caused by software and hardware failures, network latencies, configuration errors,
and power outages. We focus on Netflix’s cloud-based system that streams movies
and television shows over the internet to millions of viewers. This distributed system
has problematic behaviors and failure modes. It is impossible to predict all possi-
ble incidents with serious negative consequences because of the system’s very many
interacting components.

To uncover and rectify weaknesses, Netflix invented Chaos Engineering [36–38],
a set of fault-injection tools and techniques to experiment on its system (https://
principlesofchaos.org). Examples of events injected by the tools are transient network
failures, surges in incoming requests, and malformed data inputs. Netflix’s engineers
use the tools to run fault-injection experiments to find design flaws, implementation
bugs, and configuration errors before real system incidents occur. Thus, Chaos Engi-
neering is an approach for learning about system behavior by applying empirical
exploration. Unlike mere testing of a specific condition, Chaos Engineering generates
new knowledge about the system.

Before running an experiment, the responsible engineering team defines expected
behavior, denoted “steady state,” as ameasurable output of a system. The team hypoth-
esizes that this state continues during the experiment. The manual or automated
experiment then induces some adversarial events and collects observations about sys-
tem behavior. Surprising and unwanted behavior disproves the steady-state hypothesis

123

https://principlesofchaos.org
https://principlesofchaos.org


Tutorial on systems with antifragility to downtime

and provides evidence that there exist one or more system vulnerabilities. The team
acts on this information to mitigate undesirable behavior.

Netflix’s system contains many microservices that run in a cloud divided into
regions, each with multiple data centers. It is necessary to run experiments in this
production system since it is impossible to reproduce all aspects of a distributed sys-
tem within a test environment. The company initially created the tool Chaos Monkey
to run experiments. It closes down randomly selected microservices to ensure that the
production system tolerates this frequent failure without the customers experiencing
problems.

Thenewer toolChaosKong simulates the outage of an entire regionwith several data
centers, verifying the system’s ability to transition service from one region to another.
Netflix does not take a whole region offline. Instead, the system assumes that a region
has gone offline and starts directing client requests to an alternative region. Netflix
has many other tools. During these tools’ design, the engineers considered tradeoffs
between realistic events andpotential harm tousers. Furthermore, the engineers usually
apply a tool to a subset of users to limit the impact if something goes wrong.

To create failure injection experiments, the Netflix tool Failure Injection Testing
(FIT) changes headers of requests at the edge of the microservice system. FIT adds a
failure scenario to a percentage of the headers of a class of requests.When themodified
requests move through the system, injection points between the microservices check
for the failure scenario and act accordingly. FIT covers the impact space between
the small failures generated by Chaos Monkey and the massive failures simulated by
Chaos Kong. In 2016, Netflix launched the Chaos Automation Platform (ChAP) to
run tool-based experiments automatically. To examine amicroservice, ChAP launches
experiment and control clusters of the service and applies a FIT scenario to the experi-
mental group.ChAP then compares real-timemetrics from the twogroups to determine
the impact of the FIT scenario.

Chaos Engineering allows stakeholders to learn about a technical system’s behavior
and build confidence in its ability to withstand adversarial events. Netflix’s experience
strongly suggests that comprehensive and frequent Chaos Engineering detects vulner-
abilities, verifies robustness, and leads to antifragility. Problems must be removed
promptly, for example, by adding countermeasures to limit the impact of future
incidents. Although Chaos Engineering originated at Netflix, it has spread to other
companies and may become a regular part of site reliability engineering [39,40].

7 Discussion

Any complex software system fails because there is always something that goeswrong,
from self-inflicted outages caused by buggy processes or operators that misconfigure
a system to incidents outside the control of the system operators like denial-of-service
attacks or network failures. Furthermore, no matter how hard software developers
try, they cannot build flawless applications. To ensure high uptime, we used known
design and operational principles to develop a basis for socio-technical systems with
antifragility to downtime. The modeled socio-technical solutions consisted of stake-
holders and technical systems of software and hardware. This final section discusses

123



K. J. Hole

when and how to create such antifragile systems. It also considers the possible need
for more principles.

7.1 When to build antifragile systems

After studying this paper, the reader may be under the impression that monolithic
applications are always inferior to distributed systems. This view iswrong—monoliths
are perfectly acceptable solutions in many cases. We should only create a distributed
software system when a monolith would struggle to satisfy stated availability, per-
formance, or scaling requirements [49]. The author focused on the six design and
operational principles in Table 1 precisely because they support Internet-scale solu-
tions, preferably implemented on cloud infrastructures with support for virtualization
and distributed storage [2].

Not all socio-technical systems can be made antifragile to downtime. An antifragile
solution requires a technical system with highly distributed architecture based on
some variation of the Actor Model [44–46], where numerous processes run in parallel
on multiple (multicore) machines. Many programs would slow down if we tried to
parallelize them. A reader interested in designing distributed systems should study
Domain-Driven Design [46,50] to understand better how to divide a solution into
processes. The many books on microservices [17–22] describe how to realize these
processes. In practice, companies often build monoliths that they later transform into
microservice solutions when the need arises [22].

Since it is impossible to predict rare, consequential incidents in complex distributed
systems, an organization wanting to achieve antifragility to downtime must develop
skills to run failure-inducing processes to surface vulnerabilities. At the time of this
writing, Chaos Engineering is the state-of-the-art approach. Books [36–38,40] and
conference talks (on Youtube) document that companies embrace Chaos Engineering
to reduce system downtime. Readers wanting to operate antifragile systems should
study Chaos Engineering [36–38,40].

We can use numerous programming languages to create software that supports
downtime antifragility, but some languages are particularly well suited to the task.
The functional programming language Erlang and its runtime system [15,16] support
the outlined design and operational basis for systems with antifragility to downtime.
Other programming languages and runtime systems also support the fundament for
antifragility. One option is the language Elixir (https://elixir-lang.org) that uses the
same runtime system as Erlang. Another possibility is to use one of the languages Java
or Scala for the Java Virtual Machine and the actor-based toolkit Akka (http://akka.
io).

7.2 More principles?

Many published principles [2,5,7,11,51,52] provide foundations for various aspects
of antifragility (see [5,7,11] for examples). Although this paper’s author has only
discussed principles for antifragility to downtime, the presented principles are valid
for other types of antifragility, including antifragility to malware attacks [2]. There is

123

https://elixir-lang.org
http://akka.io
http://akka.io


Tutorial on systems with antifragility to downtime

considerable overlap between the many published principles. Some of them are rather
apparent consequences of more fundamental principles. Other propositions sound
good, but it is unclear how to realize them. The author chose the basic design and
operational propositions that are realizable and do not overlap. The discussion of the
polar opposite anti-principles shows that the selected principles are necessary, but
perhaps not sufficient, to achieve antifragility to downtime. Antifragility in socio-
technical systems is an active area of research. Future work may determine more
non-overlapping principles that clarify how to design or operate systems with different
antifragility types.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Taleb NN (2012) Antifragile: things that gain from disorder. Random House, New York
2. Hole KJ (2016) Anti-fragile ICT systems. Springer
3. Uzunov AV, Nepal S, Chhetri MB (2019) Proactive antifragility: a new paradigm for next-generation

cyber defence at the edge. In: Proceedings of the IEEE 5th international conference on collaboration
and internet computing (CIC), Los Angeles, CA, USA, pp 246–255

4. Chhetri MB, Uzunov AV, Vo QB, Nepal S, Kowalczyk R (2019) Self-improving autonomic systems
for antifragile cyber defence: challenges and opportunities. In: Proceedings of the IEEE international
conference on autonomic computing (ICAC), Umeå, Sweden, pp 18–23

5. KøienGM (2020)A philosophy of security architecture design.Wirel PersonCommun 113:1615–1639
6. Monperrus M (2015) Software that learns from its own failures. Technical report. arXiv:1502.00821
7. Monperrus M (2017) Principles of antifragile software. In: Proceedings of Salon des Refusés
8. Russo D, Ciancarini P (2017) Towards antifragile software architectures. Procedia Comput Sci

109:929–934
9. Tolk A, Johnson IV JJ (2013) Implementing antifragiles: systems that get better under change. In:

Proceedings of the 34th international annual conference of the american society for engineering man-
agement (ASEM), Minneapolis, Minnesota, USA, pp 118–226

10. BakhouyaM, Gaber J (2015) Approaches for engineering adaptive systems in ubiquitous and pervasive
environments. J Reliab Intell Environ 1(2–4):75–86

11. Bruijn H, Gröβler A, Videira N, (2019) Antifragility as a design criterion for modelling dynamic
systems. Syst Res Behav Sci 37(1):23–37

12. DanchinA,BinderPM,NoriaS (2011)Antifragility and tinkering in biology (and in business) flexibility
provides an efficient epigenetic way to manage risk. Genes 2(4):998–1016

13. Burgess M (2015) Thinking in promises: designing systems for cooperation. O’Reilly, Sebastopol
14. Steen M, Tanenbaum AS (2016) A brief introduction to distributed systems. Computing 98(10):967–

1009

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1502.00821


K. J. Hole

15. Armstrong J (2013) Programming Erlang: software for a concurrent world, 2nd edn. Pragmatic Book-
shelf, New York

16. Cesarini F, Vinoski S (2016) Designing for scalability with Erlang/OTP: implement robust, fault-
tolerant systems. O’Reilly, Sebastopol

17. Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly, Sebastopol
18. Wolff E (2016) Microservices: flexible software architecture. Addison-Wesley, Boston
19. Nadareishvili I, Mitra R, McLarty M, Amundsen M (2016) Microservice architecture: aligning prin-

ciples, practices, and culture. O’Reilly, Sebastopol
20. Richardson C, Smith F (2016)Microservices: from design to deployment. NGINX. https://www.nginx.

com/resources/library/designing-deploying-microservices
21. Fowler SJ (2016) Production-readymicroservices: building standardized systems across an engineering

organization. O’Reilly, Sebastopol
22. Newman S (2020) Monolith to microservices: evolutionary patterns to transform your monolith.

O’Reilly, Sebastopol
23. Hole KJ, Otterstad C (2019) Software systems with antifragility to downtime. IEEE Comput 52(2):23–

31
24. Dekker S (2011)Drift into failure: fromhunting broken components to understanding complex systems.

CRC Press, Boca Raton
25. Mobus GE, Kalton MC (2015) Principles of system science. Springer, New York
26. Crutchfield JP (2009) The hidden fragility of complex systems—consequences of change, chang-

ing consequences. In: Ascione G (ed) Cultures of change: social atoms and electronic lives. Actard
Publishers, New York, pp 98–111

27. Helbing D (2009) Systemic risks in society and economics. Available at SSRN. https://ssrn.com/
abstract=2413205 or https://doi.org/10.2139/ssrn.2413205

28. Taleb NN, Sandis C (2016) The skin-in-the-game heuristic for protection against tail events. In:
DeMartino GF, McCloskey DN (eds) The Oxford handbook of professional economic ethics. Oxford
University Press, Oxford

29. Mandelbrot B, Hudson RL (2006) The misbehavior of markets: a fractal view of financial turbulence.
Annotated edn. Basic Books, New York

30. Taleb NN (2010) The black swan: the impact of the highly improbable, 2nd edn. Random House, New
York

31. Dekker S (2013) Drifting into failure: complexity theory and the management of risk. In: Banerjee
S (ed) Chaos and complexity theory for management: nonlinear dynamics. IGI Global, Hershey, pp
241–253

32. Larsen P, Brunthaler S, Franz M (2015) Automatic software diversity. IEEE Secur Priv 13(2):30–37
33. Larsen P, Brunthaler S, Davi L, Sadeghi AR, Franz M (2015) Automated software diversity. Morgan

and Claypool, San Rafael
34. Safire W (2006) Skin in the game. The New York Times Magazine, 17 Sept 2006
35. Taleb NN (2018) Skin in the game: hidden asymmetries in daily life. Random House, New York
36. Basiri A, Behnam N, Rooij R, Hochstein L, Kosewski L, Reynolds J, Rosenthal C (2016) Chaos

engineering. IEEE Softw 33(3):35–41
37. Rosenthal C, Hochstein L, Blohowiak A, Jones N, Basiri A (2017) Chaos engineering: building con-

fidence in system behavior through experiments. O’Reilly, Sebastopol
38. Rosenthal C, Jones N (2020) Chaos engineering: system resiliency in practice. O’Reilly, Sebastopol
39. Beyer B, Jones C, Petoff J,MurphyNR (2016) Site reliability engineering: howGoogle runs production

systems. O’Reilly, Sebastopol
40. Miles R (2019) Learning Chaos Engineering: discovering and overcoming systemweaknesses through

experimentation. O’Reilly, Sebastopol
41. Det Norske Veritas (2012) Vurdering av Altinn II-platformen. Report in Norwegian commissioned by

the Norwegian Ministry of Trade and Industry, version 1.1
42. Capgemini Norge (2012) Altinn—en plattform å satse på? Report in Norwegian commissioned by the

Norwegian Ministry of Trade and Industry
43. Sadalage PJ, Fowler M (2013) NoSQL distilled: a brief guide to the emerging world of polyglot

persistence. Addison-Wesley, New York
44. Murray J (2015) Introduction to the actor model for concurrent computation. video at https://www.

youtube.com/watch?v=lPTqcecwkJg

123

https://www.nginx.com/resources/library/designing-deploying-microservices
https://www.nginx.com/resources/library/designing-deploying-microservices
https://ssrn.com/abstract=2413205
https://ssrn.com/abstract=2413205
https://doi.org/10.2139/ssrn.2413205
https://www.youtube.com/watch?v=lPTqcecwkJg
https://www.youtube.com/watch?v=lPTqcecwkJg


Tutorial on systems with antifragility to downtime

45. McKee H (2016) Designing reactive systems: the role of actors in distributed architecture. O’Reilly,
Sebastopol

46. Lightbend (2017) Modernization: the end of the heavyweight era. White paper
47. Nygard MT (2007) Release it!: resign and deploy production-ready software. Pragmatic Bookshelf,

New York
48. Dekker S, Pitzer C (2016) Examining the asymptote in safety progress: a literature review. Int J Occup

Saf Ergon 22(1):57–65
49. Wilder B (2012) Cloud architecture patterns: using Microsoft Azure. O’Reilly, Sebastopol
50. Vernon V (2016) Domain-driven design distilled. Addison-Wesley, New York
51. Verhulst E (2014) Applying systems and safety engineering principles for antifragility. In: Proceedings

of 1st international workshop: antifragile. Hasselt, Belgium
52. Russo D, Ciancarini P (2016) A proposal for an antifragile software manifesto. Procedia Comput Sci

83:982–987

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Tutorial on systems with antifragility to downtime
	Abstract
	1 Introduction
	2 System view
	2.1 Software designs
	2.2 Vulnerabilities and failures
	2.3 Fragility, robustness, and antifragility
	2.4 System monitoring

	3 Anti-principles
	3.1 Monolith
	3.2 Inseparable
	3.3 Uniformity
	3.4 Uniqueness
	3.5 Fail slow
	3.6 No skin in the game

	4 From anti-principles to principles
	4.1 Design principles
	4.2 Operational principles
	4.3 Overview of principles

	5 Case study: e-government system
	5.1 Fragility and robustness to downtime
	5.2 Antifragility to downtime

	6 Design and operational basis
	6.1 Local persistent storage
	6.2 Asynchronous message passing
	6.3 Supervisors and workers
	6.4 Failure injection

	7 Discussion
	7.1 When to build antifragile systems
	7.2 More principles?

	References




