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ABSTRACT Logic Encryption is a hardware security technique that protects integrated circuit designs that
are fabricated at untrusted pure play foundries from being pirated or maliciously modified. In the technique,
logic gates are added to the design that are driven by an added key input bus, such that the correct behavior
of the circuit is recovered with only the exact correct key input pattern. However, the power, performance,
and area (PPA) cost of implementing logic encryption has often been ignored in the literature in favor of
increasing the level of security provided. This has proved to be a significant hurdle in transitioning the
method to use in commercial-grade designs and a systematic methodology of constraining the cost of logic
encryption is needed. In this paper, we propose a generalized Constraint-Directed Logic Encryption (CDLE)
methodology. In CDLE, the potential design space of encrypted versions of a circuit is searched to apply
logic encryption under PPA constraints. Two example CDLE methods are proposed. The first is a concurrent
tree search method which uses commercial tools to sample designs for their PPA cost and determine the
optimal encryption strategy. In this method, PPA cost is accurately analyzed at the cost of heavy runtime.
The second is a machine learning approach which estimates the PPA cost to predict the optimal encryption
strategy. The machine learning model developed in this work is limited, but the results are promising as a
direction for study in logic encryption. Detailed experimental results evaluating both methods are presented.

INDEX TERMS Hardware security, integrated circuits, logic encryption, cost metrics, logic synthesis,
machine learning.

I. INTRODUCTION

THE rising cost of manufacturing integrated circuits (ICs)
has lead many circuit design houses to outsource their

fabrication by contracting third party pure play foundries to
reduce production costs [1], [2]. However, this has come at
the cost of reduced trust in the IC supply chain. The global-
ization of IC production has opened an opportunity for bad
actors at untrusted foundries to maliciously mishandle, steal,
or modify the intellectual property (IP) of circuit designers.
Some popular foundries are located in countries with weak IP
protection policies and enforcement, compounding the issue
[2]. This has lead to an estimated annual cost of over $100
billion to the semiconductor industry in piracy and damages
[3], [4]. Ways IP can be stolen or modified include IC
overproduction [5], reverse engineering [6], hardware Trojan
insertion [5], and IC counterfeiting [7].

A. LOGIC ENCRYPTION
Roy, Koushanfar, and Markov [2] proposed a new hardware
security technique to prevent the piracy of IC designs known
as logic encryption (or logic obfuscation, or logic locking).
In their method, a circuit is modified by the insertion of key
gates, which are driven by an added input bus, called the key
inputs. The key gates are added such that, for at least one
input pattern on the key inputs, the original output behavior
of the circuit can be recovered (effectively making the key
gates dummy gates). However, under any other key input
pattern, the output behavior of the circuit is corrupted for one
or more primary (non-key) input pattern(s).

The circuit is rendered effectively useless to an attacker
unless the correct key pattern, known only to the circuit
designer, is asserted on the key input bus. Once the locked
circuit is returned to the designer after fabrication, it can
be activated before being sold on the market by loading the
correct key into non-volatile memory to drive the key inputs.
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FIGURE 1. Example of logic encryption of a netlist by inserting XOR, XNOR, and OR gates with correct key K=01000.

If an attacker at an untrusted foundry cannot uncover the
correct key, then the design is effectively useless and cannot
be stolen or mishandled. Therefore, the circuit designer is
in control of their design throughout the entire supply chain
through logic encryption.

B. CONSTRAINT-DIRECTED LOGIC ENCRYPTION

Logic encryption is an evolving field of research in hardware
security. Since Roy et al. proposed the technique, several
attacks to uncover the correct key input have been proposed.
Numerous techniques have been developed in response to
bolster the level of security provided by logic encryption
and increase the attack complexity against a locked circuit.
However, the cost of improving the level of security provided
by logic encryption is not well understood, especially in
terms of power, performance, and area (PPA) [1]. A few logic
encryption methods individually attempt to constrain area [8]
or performance [2] impact, but many methods do not consider
cost metrics at all. A cost evaluation of state of the art logic
encryption methods is lacking in the field, which is a major
hurdle preventing the technology from being implemented
in more than a couple commercial designs. Furthermore, a
formal, systematic approach to efficiently implementing it
is sorely needed to transition the technology to large-scale
commercial designs, and only exists in a limited form [9].

We propose a Constraint-Directed Logic Encryption
(CDLE) methodology as a systematic approach to efficiently
implementing logic encryption in a circuit. The methodology
is driven by both security and cost metrics. In CDLE, po-
tential logic encryption implementations are considered, each
with an associated PPA cost and a level of security provided
by encryption. The most optimal encrypted design is chosen
based on user-set cost and security constraints (defined in the
design specification). Therefore, designs produced using the
methodology are optimized for both security and cost.

CDLE is not a single method; it is a family of methods. In
addition to the methodology, we have developed two example
methods that follow the CDLE framework. The first is a tree-
based search. Multiple threads are harnessed to concurrently
estimate the PPA of potential designs using commercial off-
the-shelf EDA tools. By sampling the potential encrypted

design space, the method converges on the optimal encrypted
design. The second is a machine learning approach. In this
method, a machine learning model is trained using PPA
cost data collected from a set of training designs. Then, the
optimal encryption strategy can be predicted based on the
training results.

This paper is organized as follows. In Section II, a brief
background of logic encryption is given. In Section III, an
overview of CDLE is presented as a generalized strategy for
implementing logic encryption while responding to design
constraints. In Section IV, the CDLE concurrent tree search
method is presented along with, in Sections V and VI, the
results of using the method to apply logic encryption to a
set of commercial-grade test designs. In Section VII, we
show a CDLE machine learning method and compare the
results of experimentation with those of the concurrent tree
search. In Section VIII, potential research directions are
suggested based on the overall methodology, the results of
each example method, and the comparison between them.

II. BACKGROUND
Logic encryption is a hardware security technique first in-
troduced by Roy, Koushanfar, and Markov in their 2010
paper, Ending Piracy of Integrated Circuits (EPIC) [2]. Their
security strategy was devised to combat IP theft. The locking
mechanism proposed by Roy, et al. involved the addition of
new primary inputs, called key inputs, to the circuit design. If
the correct key is applied to these inputs, the output behavior
of the circuit will be equivalent to the design specification.
Under application of an incorrect key, the output behavior
of one or more primary (non-key) input patterns is corrupted.
This prevents theft of circuit IP by rendering the design unus-
able unless the correct key is known, which is only known to
the circuit designer. The designer can then activate each chip
using the key, stored in secure non-volatile memory, before
selling them on the market.

Early logic encryption methods aimed for enough output
corruption to make an incorrect key obvious during testing,
but not enough to easily eliminate incorrect keys. Thus, 50%
hamming distance from normal output behavior under appli-
cation of an incorrect key was the primary goal [1]. Attacks
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TABLE 1. Examples of logic encryption strategies

Encryption Schemes

SAT-Vulnerable SAT-Resilient Sequential

EPIC [2] SARLock [10] Encrypt Flip-Flop [11]

SLL [12] Anti-SAT [13] ChainLock [14]

Key Interdependency [15] TTLock [16] StateLock [17]

Hardware Enlightening [18] SFLL [8]

Cyclic Modification [19]

SRCLock [20]

against logic encryption were soon devised, necessitating
novel and specific logic encryption strategies to responded
to the attacks [21], [22].

Attacks can be classified into two types: oracle-guided and
oracle-less. An oracle is a working copy of the circuit with
which the correct input-output behavior of the circuit can
be observed without access to the netlist. This can come in
the form of an IC obtained from the market, or a black box
simulation of the design. See Table 2 for examples of attacks
against logic encryption. One of the most potent attacks
proposed among these was an oracle-guided attack proposed
by Subramanyan, Ray, and Malik called the satisfiability
attack, or SAT attack [23]. This attack leveraged a Boolean
satisfiability engine to eliminate entire classes of keys at a
time by only observing input-output behavior of the locked
circuit and the oracle. This was a vast improvement over
other attacks of the time which relied on brute force and/or
structural analysis. Unlike other attacks, SAT was guaranteed
to find the exact correct key without any brute force required,
making it particularly potent.

After its proposal, the focus of the field shifted to SAT.
Many logic encryption strategies were devised to specifically
thwart SAT [10], [19], [31], new attacks and improvements to
SAT were created to combat these methods specifically [24],
[26]–[28], and even stronger encryption methods [8], [16],
[20] attempted to prevent ever-strengthening attacks. See
Table 1 for examples of SAT-vulnerable and SAT-resilient

TABLE 2. Examples of Attacks against logic encryption

Attacks

Oracle-Guided Oracle-Less

Key Sensitization [21] Removal: SPS [24]

SAT [23] FALL [25]

AppSAT [26]

CycSAT [27]

Removal: AGR [24]

Sequential SAT [14]

BeSAT [28]

SMT [29]

KC2 [30]

logic encryption strategies. The race of strengthening logic
encryption versus increasingly potent attacks has lead to
improved security metrics of logic encryption methods being
the focus of the field, with cost metrics more or less ignored.
However, considering cost metrics is an important step to
transitioning this technology to the commercial realm [1],
[9].

For most of the past decade, logic encryption methods and
attacks were mostly limited to combinational logic. Sequen-
tial behavior was not considered for encryption strategies and
attacks generally relied on flip-flops being a part of control-
lable and observable scan chains [1], [23]. However, recent
research has involved developing encryption methods [11],
[17], [32] that lock sequential logic and state machines, and
attacks that target sequential behavior specifically, including
an improvement to SAT that converts sequential logic to a
combinational equivalent through an unrolling process [14],
[30]. See Table 1 for examples of logic encryption strategies
that specifically modify sequential logic .

A. METRICS
Two types of metrics can be considered when applying logic
encryption to protect a design [1]. One set of metrics involve
the strength of security provided by the applied encryption.
Examples of these metrics are:
• Output Corruption – The degree to which the IC

output is affected by incorrect keys. This is typically
quantified by the Hamming Distance (HD) between the
correct output behavior and the output behavior under
each correct key. A basic ideal value is 50%, large
enough such that the application of an incorrect key is
noticeable in post-silicon validation testing, but small
enough to ensure difficulty in cracking the key.

• Key Size – The number of key inputs pins that are added
to the design. In general, the larger the key size, the more
difficult the encryption is to crack.

• Attack Resilience – The known attack strategies against
which the encryption strategy is resilient. This depends
on the particular key gate placement strategy used.

The second set of metrics involve the cost of applying logic
encryption. These are PPA (power, performance, and area)
metrics. The addition of key gates have an impact on these
metrics for any design:
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• Power Usage – Additional logic gates consume addi-
tional power when operating the IC. This comes in two
forms, static power from leakage current, and dynamic
power from gate output switching activity.

• Performance Degradation – The speed at which the IC
can be operated. Despite attempts to lessen the critical
timing of a design, adding logic encryption can affect
the critical path or introduce a new critical path. If
this results in negative timing slack, then the IC must
be operated at a lower clock speed with the added
encryption.

• Area Footprint – The additional area on the die re-
quired for the IC with added encryption. Adding key
gates increases the logic gate count, which may require
additional area if the die area needs to be increased to
place and route the additional logic.

Novel logic encryption methods of the past decade of-
ten respond directly to security metrics, especially attack
resilience. Known attacks present a challenge to the effec-
tiveness of logic encryption and responding to these attacks is
an important design consideration. Some encryption methods
consider cost metrics, especially area. However, cost metrics
are often ignored in favor of improving security metrics.

III. CONSTRAINT-DIRECTED LOGIC ENCRYPTION
The proposed constraint-directed logic encryption (CDLE)
methodology balances cost and security to find an optimal
encryption strategy. Consider a design C to be encrypted
with a desired security goal, Sopt, which can include, for
example, attacks to protect against and an allowed key size
range. Assume that the design specification of C includes
a set, PPAinc, which represents the allowed increase in
power, performance, and area after encryption. There is a
design space of possible designs, DC , containing all possible
encrypted versions of C using known encryption methods.
An encrypted version of the design Ci

E ∈ DC has its own
encryption parameters which include, but is not limited to,
an obfuscation scheme and key size, and has its own security
and cost metrics. There is a subset of designs that meet Sopt,
DS

C ⊆ DC , and another subset of designs that have PPA
costs less than PPAinc, Dppa

C ⊆ DC . Consider the set
Dopt

C = DS
C ∩ Dppa

C , which represents the set of designs
in DC that meet the security goal while also staying within
the PPA constraints of the design specification. If Dopt

C 6= ∅,
then ∃ Copt

E ∈ Dopt
C , the encrypted version of C within Dopt

C

which maximizes all security metrics.
The goal of CDLE is, first, to identify the subset of

encrypted designs Dopt
C , and then find the optimized design

Copt
E within that set which maximizes each security metric.

Therefore, the methodology can be seen as a set of functions
Fi(C, Sopt, PPAinc) that have the design C, security goal
Sopt, and the maximum allowed PPA increase PPAinc as
input, and output an optimally encrypted design Copt

E . The-
oretically, there is an exact correct Copt

E such that increasing
the security metrics, even slightly, exits the optimized design
space Dopt

C .

Ideally, all algorithms in the methodology would return the
same Copt

E . However, different methods will estimate PPA
and security metrics for each design in DC differently, and
may produce a variety of estimations of Copt

E as well. Addi-
tionally, methods will have a variety of expected execution
times, which can depend on the method itself, as well as
design-specific parameters such as post-synthesis gate count.
Methods in the methodology should aim to return an accurate
Copt

E , but should also have a reasonable execution time, based
on the needs of the circuit designer. In general, using more
accurate PPA and security estimation methods that produce a
more accurate Copt

E could result in longer execution time, cre-
ating a trade-off between these two properties of the CDLE
methodology. However, this trade-off does not necessarily
hold. As methods of metrics estimation are explored, some
methods could prove to be a direct improvement to others.
Our work begins to explore the methodology with this in
mind.

A. EXAMPLE: BINARY SEARCH-BASED ALGORITHM
The constraint-directed logic encryption method of Luria
et al. [9], though basic, does fit into the scheme of the
methodology proposed in this work. Therefore, it can serve as
an introductory example for the methodology. In this design-
space search algorithm, the set of encrypted designs that
meet the security goal, DS

C , was determined by grading the
available encryption methods in terms of attack resilience. In
this method, only SAT-resilient encryption schemes were in-
cluded in DS

C , using randomly generated correct key patterns
for all encrypted designs. Only combinational benchmarks
were tested, so sequential locking methods were ignored.
The quality of security provided by a design was based on
the encryption scheme grade, and the key size. Encryption
schemes used were (in order of decreasing security grade):

1) SFLL-HD
2) SRCLock
3) Cyclic

4) TTLock
5) Anti-SAT
6) SARLock

The search algorithm proposed by Luria, et al. [9] is shown
in Algorithm 1. First, the PPA of the original design is
measured. Then, for each encryption scheme in the ranking,
the design is encrypted at the minimum allowed key size,
kmin. If Ckmin

E does not meet the PPA constraint, then the
algorithm moves to the next encryption scheme in the rating.
If it does meet the constraint, then the design is encrypted at
the maximum allowed key size, kmax. If Ckmax

E meets the
PPA constraint, then the design is immediately accepted as
the optimal encrypted design, Copt

E . Otherwise, the optimally
secure design has a key size within kmin and kmax. The space
of potential key sizes between the maximum and minimum
key size is searched by binary search, encrypting the design
and measuring the PPA of Ci

E at each searched key size.
The algorithm terminates when the optimal key size is found,
such that increasing the key size by 1 breaks PPAmax. If all
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Algorithm 1 Constraint-Directed Logic Encryption using
Binary Search
Require: Original Circuit C; Key width bounds

kmin, kmax; Cost constraints PPAmax; Ranked
encryption methods E

Ensure: Encrypted circuit Copt
E

1: PPAo ← get_cost(C)
2: for e ∈ E do
3: Ckmin

e ← encrypt(C, e, kmin)
4: PPAkmin

e ← get_cost(Ckmin
e )

5: if PPAkmin
e ≤ PPAmax then

6: Ckmax
e ← encrypt(C, e, kmax)

7: PPAkmax
e ← get_cost(Ckmax

e )
8: if PPAkmax

e ≤ PPAmax then
9: return Ckmax

e

10: end if
11: kleft = kmin, kright = kmax

12: while kleft ≤ kright do
13: kmid = floor((kleft + kright)/2)
14: Ckmid

e ← encrypt(C, e, kmid)
15: PPAkmid

e ← get_cost(Ckmid
e )

16: if PPAkmid
e ≤ PPAmax then

17: kleft = kmid

18: else
19: kright = kmid − 1
20: end if
21: end while
22: return C

kleft
e

23: end if
24: end for
25: return failure

encryption schemes are tried without finding Copt
E , then the

algorithm fails (Dopt
C = ∅).

The authors used the following strategy for constraining
PPA for the original design and each encrypted version:

• Power – This was constrained as a percentage of the
power usage of the original design. Both switching and
leakage power were considered in estimations.

• Performance – The maximum delay overhead on the
critical path was determined by the allowed slack. Any
encrypted design should have a slack greater than or
equal to 0 on the critical path.

• Area – The sum total combinational area and intercon-
nect area was used as the area calculation. A set per-
centage increase from the original design area was the
constraint for encrypted designs (similar to the power
constraint).

For this method, the PPA of each design was estimated
using both Synopsys Design Compiler (DC) [33] and Syn-
opsys IC Compiler (ICC) [34]. For each of these, the design
was simulated using Icarus Verilog [35] to collect switching
information to inform and increase the accuracy of DC and
ICC PPA estimations. This collection represents the get_cost

function of Algorithm 1. For simulation, a testbench of 10000
total test patterns was generated once per design, and used for
all encrypted versions of the design. Synopsys Tetramax [36]
automated test pattern generator was utilized to stimulate
critical paths in the design, and then the rest of the test
patterns were randomly generated.

The algorithm had three main steps, the first of which was
estimating the PPA of the original design which involves
DC execution time, tDC , and ICC execution time, tICC . It
was found that tICC >> tDC , so PPA estimation had an
approximate execution time of tICC . In the next step, PPA
are measured at kmin for potentially every encryption scheme
in the set of encryption schemes. Therefore, step two had
a worst-case execution time of NEtICC for NE encryption
schemes tried. Then, in step three, the best key size is found
by binary search. This had a worst-case execution time of
log2(kmax − kmin)tICC to run PPA collection at every
step of the binary search. As a whole, the algorithm had
a worst-case execution time of texec = tICC(1 + NE +
log2(kmax − kmin)), assuming tICC is approximately equal
for all designs.

This constraint-directed logic encryption method was only
tested for small, combinational benchmarks with less than
4,000 logic gates. Execution time was not reported in their
work. However, place and route is a complicated problem,
and increases in complexity with design gate count. The
complexity of PPA estimation and execution time limited the
data set in this CDLE method. Furthermore, the algorithm’s
time complexity is directly related to tICC , resulting in a very
heavy-handed, though accurate, solution to the constraint-
directed logic encryption methodology. In the next section,
improvements to this algorithm will be explored to 1) extend
this method to sequential designs, 2) drastically decrease
execution time, and 3) improve its applicability to a set of
larger, more realistic designs.

IV. CDLE CONCURRENT TREE SEARCH
In the binary search constraint-directed logic encryption
implementation, PPA measurements are carried out for one
design at a time. Therefore, for every design that needs to be
produced and have PPA estimated to converge on Copt

E , the
overall execution time of that CDLE algorithm is increased
by the execution time of IC Compiler place and route, tICC .
In the worst case, the number of times ICC was executed
to find the best encryption scheme among NE schemes is
O(NE), and O(log(krange)) times to find the best key size
among the range of acceptable key sizes, krange. Using
ICC to estimate PPA is very accurate, but also very time
consuming. Therefore, effectively reducing the number of
times this estimation needs to be performed to arrive at Copt

E

is one strategy for decreasing the overall execution time of
the algorithm.

One property of the PPA estimation of different encrypted
designs in DC is the parallelization property. At each step of
the binary search algorithm of CDLE, an encrypted version
of the original design, Ci

E ∈ DC is produced and PPA is
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estimated using Design Compiler and IC Compiler. However,
this process is completely independent of doing the same
process for a separate encrypted design, Cj

E . Therefore, the
PPA of Ci

E and Cj
E can be estimated simultaneously. Due to

this property of this PPA collection strategy, the CDLE search
method can be done in parallel for different designs. The
parallelization property of PPA collection will be the basis
upon which the Concurrent Tree Search solution to CDLE
is built. Therefore, it can be seen as a direct improvement
to the CDLE binary search algorithm. This modification to
the algorithm will theoretically return the same Copt

E , but in
faster execution time than the binary search algorithm.

A. PPA ESTIMATION

The PPA estimation strategy of the concurrent tree search is
almost identical to that of the binary search algorithm, except
executed in parallel. In this strategy, there are two versions
of the PPA estimation flow: one for the original design, C,
and one for encrypted versions that are explored, Ci

E . Each
of these PPA estimation flows involves a series of steps to
inform and carry out the estimation. This involves interfacing
several external commercial off-the-shelf (COTS) electronic
design automation (EDA) tools. We have used Synopsys
Design Compiler (DC) [33] for logic synthesis, Synopsys IC
Compiler II (ICC) [34] for place and route synthesis, Syn-
opsys Tetramax [36] for automated test pattern generation
(ATPG), and Icarus Verilog [35] for netlist-level simulation.
PPA estimations are based on the following factors:

• Power – Power is reported with both cell switching and
leakage power. Switching power is determined by anno-
tating cells with user-provided switching information,
and leakage power is determined by the cell library.

• Performance – The critical timing of the design de-
termines its performance. The maximum delay with
primary inputs and flip-flops serving as start points and
primary outputs and flip-flops serving as end points
is measured as the critical path delay. The allowed
performance increase is used to determine the slack on
this path.

• Area – The area is measured as the total footprint of
the core area, including logic cells, net connections, I/O,
and filler area in the design.

Each PPA estimation flow is divided into two sub-flows.
The first is estimation using Design Compiler, in which the
design is simulated for switching information, and then PPA
estimated for the netlist after logic synthesis. The second
is estimation using IC Compiler, in which the design is
simulated again, using the synthesized netlist, and then the
IC layout is placed and routed. Then, PPA is estimated more
accurately using the produced layout.

1) Pre-Encryption Design

The PPA of C is estimated, first using DC, with the following
steps:

1) Preliminary Logic Synthesis – The design is syn-
thesized to produce a test strategy for ATPG, and a
technology-mapped netlist for simulation.

2) Test Pattern Generation – Tetramax fast sequential
ATPG is used to produce test patterns that stimulate
critical paths of the design. Additional random test pat-
terns are generated to produce a total of 5000 patterns.
This was lowered from 10000 patterns used in the
binary search method to accommodate larger designs.

3) Simulation – The design is simulated using the test
patterns generated in the previous step. This produces
switching information for nets in the design, which will
improve the accuracy of the power estimation.

4) DC PPA Estimation – PPA is estimated using logic
synthesis. After synthesis is complete, PPA is reported
by Design Compiler using the identified metrics.

After a fully synthesized and technology-mapped netlist is
produced, the PPA is estimated more accurately using ICC:

1) Simulation – The design is simulated again using the
same test patterns as the DC estimation.

2) ICC PPA Estimation – PPA is estimated using an
IC layout. After place and route are complete, PPA
is reported by IC Compiler using the same identified
metrics.

2) Encrypted Designs
The PPA estimation flow of all Ci

E is similar to that of C, but
with certain modifications. One of the main modifications is
the removal of test pattern generation. Since under applica-
tion of the correct key Ci

E = C, the same test pattern strategy
from the PPA estimation of C can be used for Ci

E , with the
addition of the correct key pattern being constantly applied
to set of key inputs. Therefore, the test pattern generation
step can be skipped for all Ci

E , and the testbench of the
simulation step can reuse the test patterns used for C, with the
correct key being constantly applied throughout simulation.
Therefore, the steps to estimate PPA with DC are:

1) Encryption – C is encrypted using the encryption
parameters corresponding to the target Ci

E , including
encryption scheme and key size. The design is en-
crypted with a randomly generated correct key pattern,
unique to the specific Ci

E being produced.
2) Preliminary Logic Synthesis – Ci

E is synthesized to
produce a technology-mapped netlist for simulation.

3) Simulation – The encrypted design is simulated using
the same test patterns as C. This produces switching
information for nets in the design, which will improve
the accuracy of the power estimation.

4) DC PPA Estimation – PPA is estimated using logic
synthesis. After synthesis is complete, PPA is reported
by Design Compiler using the identified metrics.

After PPA is estimated using DC, the results are compared
with the ICC PPA results of the original design. If the PPA
of the encrypted design meet the allowed PPA cost set by
the designer, then the design is accepted as a part of Dopt

C ,
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FIGURE 2. Parallel PPA collection strategy

and PPA estimation is concluded for this Ci
E . If the PPA

constraints are not met, then PPA estimation continues to ICC
estimation for more accurate results:

1) Simulation – The design is simulated again using the
same test patterns as the DC estimation.

2) ICC PPA Estimation – PPA is estimated using an
IC layout. After place and route are complete, PPA
is reported by IC Compiler using the same identified
metrics.

Figure 2 shows the combined PPA estimation strategy
for the concurrent tree search CDLE method. The number
of PPA estimations for encrypted designs that can be run
concurrently is dependent on the number of available threads
to execute the estimation flows. One additional piece of the
strategy to improve the parallel execution of the method
is concurrent execution of PPA estimations for C and the
first set of encrypted designs that are explored. Rather than
waiting for PPA estimations of C to finish before beginning
parallel execution of encrypted designs, the PPA estimation
of the C can be added to the first parallel exploration of
encrypted designs. This is feasible with the addition of a few
locks and considerations:

1) Simulation of any design cannot begin without test pat-
terns. Therefore, the test pattern generation step of the
PPA flow of C must complete before any simulation
is done for any designs. This can cause execution of
PPA estimations of Ci

E to pause until test patterns are
available.

2) For any DC PPA estimations of Ci
E , if the post-ICC

PPA estimation of C is not completed, then ICC PPA
estimation of Ci

E will be executed without checking if
the DC PPA meets the constraints.

3) For any ICC PPA estimations of Ci
E , if the post-ICC

PPA estimation of C is not completed, then the process
must wait until the post-ICC PPA estimation of C is
completed before deciding if the PPA constraints have

been violated.
This PPA estimation strategy will be used in the concurrent

tree method of CDLE as an attempt to improve execution
time over the binary search method, while still maintaining
the same level of accuracy. This can be seen as an improved
version of the get_cost function from Algorithm 1 that can
handle several designs at once, rather than one. Since PPA
estimation is very parallelizable, especially for any Ci

E that
are being explored, this should introduce a speedup directly
related to the number of parallel computation threads that are
available.

B. SECURITY EVALUATION OF ENCRYPTION SCHEMES
Each logic encryption schemes has attack resistance, often by
design, that has been experimentally shown by the authors of
the scheme. Refer to Tables 3 and 4 for a summary of this
theoretical attack resilience per encryption scheme. SMT was
excluded from the attacks in this table because behavioral
locking mechanisms are outside the scope of this work, and
otherwise SMT [29] behaves as SAT does. This table will be
the basis with which to measure attack resilience of a particu-
lar encryption strategy. The attack resilience will be assumed
to be the sum of the attacks against which each encryption
scheme applied to each design protects. Therefore, several
compound encryption schemes can be formulated to create a
security strategy that protects against specific attacks.

For each design, a ranking of possible compound encryp-
tion strategies based on their proven resilience to known at-
tack methods is used to quantify the attack resilience security
metric. First, encryption methods were chosen based on their
resilience to SAT-based and removal attacks:

1) SFLL
2) SRCLock
3) Cyclic Modification
4) SARLock
5) Anti-SAT
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TABLE 3. Resiliency table for combinational encryption methods. 7 denotes resilience, ≈ denotes resilience based on sub-method

Sensitization SAT AppSAT CycSAT Removal FALL BeSAT
EPIC 7 7
SLL 7 7 7
Key Int. 7 7 7
SARLock 7 7 7 7 7
AntiSAT 7 7 7 7 7
TTLock 7 7 7 7 7
SFLL 7 7 7 7 7 ≈ 7
Cyclic 7 7 7 7 7
SRCLock 7 7 7 7 7 7

TABLE 4. Resiliency Table for sequential encryption methods. 7 denotes
resilience

Sequential SAT KC2
EFF
ChainLock 7
StateLock 7 7

Then, methods were ranked in order of resilience to se-
quential attack methods. StateLock was excluded to reduce
encryption implementation overhead:

1) ChainLock
2) Encrypt Flip-Flop
These SAT-resilient and sequential encryption methods

were combined to produce the final ranking:
1) ChainLock + SFLL
2) EFF + SFLL
3) ChainLock + SRCLock
4) EFF + SRCLock
5) ChainLock + Cyclic
6) EFF + Cyclic
7) ChainLock + SARLock
8) EFF + SARLock
9) ChainLock + Anti-SAT

10) EFF + Anti-SAT
This set of compound encryption schemes forms the set

of acceptable encryption schemes implemented in DS
C , the

set of encrypted versions of the design C which fulfill the
security goal, Sopt. The rating will serve to find the maximum
level of security within Dopt

C , the set of designs that meet both
the PPA constraint and the security goal. Designs within Dopt

C

which maximize the encryption scheme rating will maximize
the number of attacks against which the design is resilient,
maximizing the overall level of security. Then, the key size
can be maximized to further maximize security. These are the
two security metrics upon which the concurrent tree search-
based CDLE method bases DS

C , and Copt
E .

Authors of several SAT-resilient encryption schemes rec-
ommend pairing a SAT-resilient encryption scheme with a
SAT-susceptible scheme to ensure an adequate amount of
output corruption from the obfuscation strategy, as several
SAT-resilient schemes have low corruption on incorrect keys.
Randomly placed key gates (as in EPIC [2]) was chosen as
the SAT-susceptible scheme in this method due to its straight-
forward and quick implementation, and since no additional
attack resilience is required from the added scheme. For each

compound encryption scheme listed, 45% of key inputs are
dedicated to each listed obfuscation method, and 10% are
dedicated to randomly placed key gate encryption.

C. METHOD ALGORITHM
The algorithm for the concurrent tree search CDLE method
is a modified version of the binary search-based method.
Refer to Algorithm 2. The original circuit C, minimum and
maximum integer key sizes allowed kmin and kmax, cost
constraints PPAmax, ranked encryption methods E, and a
new input, the integer number of concurrent computation
threads T (T ≥ 1) are provided. In this algorithm, the
function encrypt produces a set of encrypted designs of
C, rather than one design as in the binary search-based
algorithm, using a set of encryption schemes at one key size,
or one encryption scheme at a set of key sizes. Also, get_cost
becomes get_costs, which returns sets of PPA values for a set
of designs, rather than one design. The encrypted design with
maximum security within Dopt

C is ensured upon successful
execution of the algorithm. The algorithm may not succeed
if the PPA constraint is too tight for the set of encryption
methods and key size range used, in which case Dopt

C = ∅.
This algorithm has the same three basic steps as the binary

search-based algorithm. First, the PPA of C is estimated.
Concurrently, T − 1 encrypted designs at key size kmin

are produced, with encryption schemes starting at the top
of the ranking. The PPA of these designs is estimated using
Design Compiler and IC Compiler, and checked for breaking
PPAmax. The design with the highest ranked encryption
scheme that does not break PPAmax is used for the next
step. If all of the encrypted designs break PPAmax, then the
next T encryption schemes are attempted at key size kmin.
If all possible encryption schemes break PPAmax at kmin,
then the algorithm returns a failure, because no design in DS

C

meets the PPA constraints.
If one or more encryption schemes are found to be within

PPAmax, then the strongest in the ranking among them,
Emax is chosen for the final step, the concurrent tree search
of the key space of potential key sizes. In the first loop of
the search, the range of key sizes between and including
kmin and kmax is divided into T sections. The set of key
sizes, kvals at the end of each division, including kmax but
not kmin, are selected for encryption. C is encrypted using
Emax and the selected key sizes, producing T encrypted
designs, for which the PPA of each design is estimated. For
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Algorithm 2 Constraint-Directed Logic Encryption using
Concurrent Tree Search
Require: Original Circuit C; Key width bounds

kmin, kmax; Cost constraints PPAmax; Ranked
encryption methods E; Computation threads T

Ensure: Encrypted circuit Copt
E

1: E+ ← null ∪ E // Encrypting with null does nothing
2: for i = 0, ... |E+|

T do
3: do in parallel
4: Dkmin

C ← encrypt(C, {Ei, Ei+1, ..., Ei+T−1}, kmin)
5: PPAkmin ← get_costs(Dkmin

C )
6: end
7: for Ckmin

Emax
∈ Dkmin

C | Ckmin

E 6= C do
8: if PPAkmin

Emax
≤ PPAmax then

9: kleft = kmin, kright = kmax

10: while kleft < kright do
11: if kright 6= kmax then
12: kstep = floor(

kright−kleft

T+1 )
13: kvals = {kleft + kstep, ..., kleft + Tkstep}
14: else
15: kstep = floor(kmax−kmin

T )
16: kvals = {ki ∈ {kmin + kstep, ..., kmin+

(T − 1)kstep, kmax} | ki > kmin}
17: end if
18: do in parallel
19: Dkvals

C ← encrypt(C,Emax, kvals)
20: PPAkvals ← get_costs(Dkvals

C )
21: end
22: kvalsleft = {ki ∈ kvals | PPAkvals

i

≤ PPAmax}
23: kvalsright = {ki ∈ kvals | PPAkvals

i

> PPAmax}
24: if kvalsleft 6= ∅ then
25: kleft = max(kvalsleft)
26: end if
27: if kvalsright 6= ∅ then
28: kright = min(kvalsright)− 1
29: end if
30: end while
31: return C

kleft

Emax

32: end if
33: end for
34: end for
35: return failure

all ki ∈ kvals that meet the PPA constraints, the maximum
is used as the new minimum of the search space (kleft),
unless no key sizes met the PPA constraints in which case
the minimum of the search space remains the same. For all
ki ∈ kvals that do not meet the PPA constraints, one less
than minimum is used as the new maximum of the search
space (kright). If all key sizes met the PPA constraints, then
the maximum remains the same. The loop breaks once the
minimum of the search space meets the maximum. So, in

the first loop, where kmax as a part of the tested kvals, if
kmax meets the constraints, then kleft = kright = kmax, so
the loop terminates and returns the design with a key size of
kmax. This way, if the entire key space is within PPAmax,
then the algorithm will return kmax in one iteration of the key
size search.

After the first loop, if kmax does not meet the PPA con-
straints, the key size space to be explored shrinks to between
the new kleft and kright. In iterations after the first, kvals
no longer includes kright, so the search space is divided into
T + 1 sections, and C is encrypted with Emax and the key
sizes at division points, not including kleft and kright (so
that the number of encrypted designs created is always T ).
The PPA of each encrypted design is estimated. The space of
potential key sizes shrinks to the set between the maximum
key size that met the PPA constraint (max(kvalsleft)) and
before, but not including, the minimum key size that did not
meet the PPA constraint (min(kvalsright)). This explores
the design space iteratively by ruling out key sizes between
sampled ones that fail, accepting those between ones that
succeed as a part of Dopt

C , and exploring the rest of the
design space in the next iteration. This continues until the
unexplored design space shrinks to nothing, and the design
with the maximum rated encryption scheme with the max-
imum key size that does not violate PPAmax is returned
as Copt

E . Because the design space is guaranteed to shrink
each iteration, the algorithm is guaranteed to converge on a
single Copt

E if an encryption method, Emax can be found.
The specific Copt

E found, however, may be inaccurate, based
on the margin of error of ICC PPA estimation for each design
which it is performed.

Since the first and second step of the algorithm are exe-
cuted concurrently, their worst-case execution time can be
combined. It will be assumed that the execution time of PPA
collection steps is equivalent among versions of C. Addition-
ally, it will be assumed that the execution time of estimating
PPA with ICC eclipses that of DC (tICC >> tDC), so tICC

will be used as the worst case timing for PPA estimation.
For the estimation of PPA for C and Ci

E at kmin, the
worst case execution time is the number of PPA calculation
"batches" necessary for C and to explore the entire ranking,
tICC

1+|E|
T . In the concurrent tree key size search, the binary

search problem is sped up with concurrent sampling points.
This converts the time complexity from O(log2(krange))
to O(logT+1(krange)) for T concurrent threads and krange
potential key sizes. This results in a worst-case execution
time of logT+1(kmax − kmin) for the key size search step
of the algorithm. The overall worst case execution time is
therefore texec = tICC(

1+|E|
T + logT+1(kmax − kmin)).

The execution time of this algorithm is a direct improve-
ment over that of the binary search-based algorithm. At
T = 1 thread, the algorithm becomes equivalent to the binary
search algorithm, both functionally and by execution time,
with a worst case of texec = tICC(1+ |E| T + log2(kmax−
kmin)). Additionally, the execution time of the first two steps
of Algorithm 2 is O( 1

T ) with T parallel threads, and of the
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TABLE 5. Opencores [37] and ITC’99 [38] circuits chosen for CDLE experimentation

CIRCUIT GATE COUNT

Stepper Motor 193 Module for controllong 4 or 6 wire stepper motor

SS_PCM 427 PCM Interface

USB Phy 507 USB 1.1

sasc 647 Simple asynchronous serial controller which includes 4 byte receive
and a 4 byte transmit FIFO and external baud rate generator

Simple SPI 847 Enhanced version of SPI with a wider operating frequency range,
4deep read and write fifo and 8 bit wishbone interface

caprng 913 Generates complex pseudo random numbers

Hilbert Tranformer 1,630 Approximates the hilbert transform with a digital filter

systemcdes 2,096 Implementation of DES algorithm in System C for low
power applications

des_area 2,698 Area optimised single DES IP core working in CBC mode (Cipher
block chaining ), sequential impelementation requiring 16 cycles to
complete one encryption or decryption cycle

des3_area 3,072 Area optimised triple DES IP core working in CBC mode (Cipher
block chaining ), sequential impelementation requiring 48 cycles to
complete one encryption or decryption cycle

TV80 6,221 8 bit Z80 compatible microprocessor core

ac97_ctrl 12,121 AC97 Controller core. It provides an interface to external AC97 audio
Codec

USB Func 12,984 USB 1.1 slave/device IP core

aes_cipher 17,153 128 bit AES encryption algorithm

sha256core 17,958 Implementation of SHA 256 hashing algorithm

des_perf 23,430 Performance optimised single DES IP core, working in ECB mode.
This is a pipelined architecture having 16 cycle pipeline. So it can
perform encryption/decryption every cycle

aes_inv_cipher 27,427 AES decryption

des3_perf 71,991 Performance optimised triple DES IP core, working in ECB mode.
This is a pipelined architecture having 48 cycle pipeline. So it can
perform encryption/decryption every cycle

vga_lcd 124,350 VGA/LCD Controller core is a wishbone revB.3 compliant embed-
ded VGA core capable of driving CRT and LCD displays.

b19 174,519 Cross-connected Viper and and Intel 80386 microprocessors

cf_rca 196,946 A platform for dynamic reconfigurable computing.

final step is O( 1
logT ), both of which strictly decrease as the

number of threads increases (again, T ≥ 1). Therefore,
not only is this method a direct improvement of the binary
search-based method, but it is a superset of that method, in
which the binary search method is the worst version.

V. CONCURRENT TREE SEARCH EXPERIMENTATION
A. EXPERIMENTAL SETUP

To test the CDLE concurrent tree search algorithm, a group
of 21 test circuit designs were selected from the Opencores
IP core database [37] and ITC ’99. benchmark circuit suite
[38]. These designs were chosen as examples of modern
IP cores that showcase the possible applications of logic
encryption. They were also chosen for their range of post-
logic synthesis gate counts. All designs were synthesized
using a 90nm technology node. Some small designs were
selected for proof-of-concept, and then larger designs will
show the limits of execution time and PPA estimations for
designs with gate counts over 100,000. See Table 5 for more

information for each benchmark circuit.

All experimentation was performed using an AMD Ryzen
Threadripper 1950X 3.4GHz 16 core (32 thread) processor
and 64GB RAM. The number of threads utilized in each
experiment was controlled to 8 (T = 8), unless otherwise
specified. Circuits were encrypted using the compound en-
cryption schemes mentioned in the previous section, with a
minimum key size kmin = 32, and a maximum key size
kmax = 512. For all circuit simulation, 5,000 input patterns
were used between those from automated test pattern gen-
eration and additional randomly generated test patterns. All
synthesis during experimentation used a 90nm technology
node.

The concurrent tree search algorithm was developed for
this work in the Go programming language [39] as a part
of the Constrained and Obfuscated Design-Space Explo-
ration for Security (CODES) platform. CODES provides
many tools and methods for encrypting designs, including
this CDLE method, and implements encryption schemes.
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TABLE 6. Encryption strategies chosen by CDLE concurrent tree search for various PPA constraints as a percentage of the original design PPA. A ’-’ denotes
failure of the algorithm to find an optimally encrypted design

Design Name 50% 25% 10% 5% 1%

steppermotor CHL+SFL 149 CHL+SFL 67 - - -

ss_pcm CHL+SRC 150 CHL+SRC 54 CHL+SRC 32 - -

usb_phy CHL+SFL 133 CHL+CYC 103 CHL+SRC 53 - -

sasc EFF+SFL 136 CHL+SFL 38 EFF+SRC 257 CHL+SRC 73 CHL+SRC 82

simple_spi CHL+SAR 345 CHL+SAR 88 - - -

caprng CHL+SRC 153 CHL+SRC 68 CHL+SRC 55 - -

hilbert CHL+SFL 502 CHL+SFL 266 CHL+SFL 88 CHL+SFL 37 -

systemcdes CHL+SFL 512 CHL+SFL 512 CHL+SFL 444 CHL+SFL 255 EFF+SFL 309

des_area_opt CHL+SFL 512 CHL+SFL 316 CHL+SFL 151 CHL+CYC 32 -

des3_area_opt CHL+SFL 512 CHL+SFL 482 CHL+SFL 87 CHL+SRC 180 -

Go includes a straightforward multithreading construct, gor-
outines, which were utilized for parallel design space ex-
ploration. For each time CDLE was performed, the final
encryption scheme and key sizes chosen for Copt

E (if Copt
E

exists), the total execution time, PPA of the final and original
designs as well as the PPA cost as a percentage increase from
the original PPA, and the algorithm trajectory were collected.
CDLE was executed for several sets of PPA constraints for
each design. The chosen encryption strategies of all PPA
constraint sets tested will be reported for all designs success-
fully encrypted, as well as which constraint sets resulted in
failure of the tree search algorithm (i.e. the PPA constraints
were too strict). One design, the Hilbert Transformer, was
selected for more detailed execution time data collection. A
set of CDLE tree search algorithm tests were selected as case
studies for closer examination as a representative group in
terms of encryption scheme chosen and algorithm trajectory.
The case studies will include full algorithm trajectory and
PPA results, as well as more detailed information about the
designs being studied.

B. RESULTS
The CDLE Concurrent Tree Search algorithm was attempted
for all test designs in Table 5. However, for designs with gate
counts over 5,000, execution time of the algorithm became
prohibitively long. Therefore, a full results set was obtained
for the 10 smallest designs of the set. This already shows
one limitation of the algorithm, which will be discussed
later. The concurrent tree search algorithm was executed for
5 sets of PPA constraints for each test design. Constraints
are represented as a percentage increase from the PPA of
the original, pre-encrypted design. For each constraint set,
the power, performance, and area were constrained to the
same percentage increase. The set of constraints used in these
experiments were 50%, 25%, 10%, 5%, and 1% for each
power, performance, and area. The results of this experimen-
tation are reported in Table 6. A "-" in the table denotes
failure of the algorithm to find a suitable encryption strategy
(i.e. the PPA constraints were too tight). The compound

encryption scheme and key size selected are reported for
each experiment. The schemes correspond to the compound
encryption schemes utilized, with the following codes for
each encryption scheme:

• SFL: SFLL
• SRC: SRCLock
• CYC: Cyclic
• AST: Anti-SAT

• SAR: SARLock
• EFF: Encrypt Flip-

Flop
• CHL: ChainLock

The most chosen encryption scheme was Chain-
Lock+SFLL, which is expected because the algorithm pri-
oritizes encryption scheme over key size for security. For
sequential encryption schemes, Encrypt Flip-Flop was rarely
selected over ChainLock. In most cases, less secure encryp-
tion schemes were used for tighter PPA constraints. However,
there are some notable exceptions. For usb_phy, SRCLock
was chosen at 10% PPA, while Cyclic was chosen at 25%.
Also, for SASC, EFF was chosen for ChainLock at 50%, but
not for 25%, and the key size increases from 5% and 1% PPA.
These inconsistencies could be due to some randomness in
the power estimation based on the test patterns chosen during
the test pattern generation step of the PPA estimation strategy.
Otherwise, the ranking behaves as expected. SFLL was the
most popular combinational scheme, and AntiSAT was never
used (likely, SARLock was always the better option at similar
cost). Also, as the gate count of a design increases, the
more likely it is to meet stricter PPA requirements. There
are exceptions though, especially SASC.

In Figure 4, the execution times of each CDLE experiment
for which an encrypted design is found are reported vs the
pre-encryption gate count of each design. This appears to be
a roughly linear relationship, with about 1.55s of execution
time added per logic gate. This is likely related to the direct
proportionality found between texec and tICC . It also appears
that the spread of execution time tends to increase with gate
count. Additionally, the best-case time levels off for larger
designs. The best-case scenario for execution time is the case
in which the best possible encryption scheme and key size
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FIGURE 3. Execution time in seconds vs thread count of CDLE encryption of Hilbert Transformer and Simple SPI

FIGURE 4. Execution time in seconds of each successful CDLE execution vs
pre-encryption gate count

are chosen. Since this involves less steps than the worst-case,
and less layouts are produced, the result is a smaller increase
in execution time vs gate count.

In addition to the CDLE experiments performed with 8
concurrent threads, additional experiments were performed
for various thread counts for two selected designs, the Hilbert
Transformer and Simple SPI. Data points at 150%, 100%,
50%, 25%, and 10% PPA constraints were collected, for

thread counts of 1, 2, 4, and 8 each. The execution time
of each of these experiments are plotted in Figure 3. For
each, the second plot contains the curve representing the
predicted worse-case execution time at each thread count.
For the worst case curve, the longest ICC execution time
among all of the plotted experiments was used as tICC .
As expected, all of these experiments executed in less time
than the predicted worst case. In fact, these experiments did
not tend to approach the worst case execution time at all,
with very little difference between them compared to the
worst case, especially for the Simple SPI design. In general,
the execution times do follow the same curve shape as the
worst case, with some exceptions such as simple SPI at 25%
constraints. The spread of execution time also appears to
decrease with increased thread count.

C. CASE STUDY: AREA OPTIMIZED 3-DES

Several individual CDLE experiments have been selected
as brief case studies that highlight different behaviors and
trajectories of the algorithm and edge cases. One case is
presented in this section, and the remaining case studies are
in the Appendix. The execution trajectory of the algorithm
is represented as a series of bars, from top to bottom. In
the first step, encryption schemes are tried in parallel at
kmin until the best within the PPA constraints is found. In
the remaining steps, the key size space is explored until
the maximum allowed key size is found. The ticked key
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FIGURE 5. CDLE Trajectory and result of des3_area with PPA constrained to 5% increases

sizes between the maximum and minimum of the remaining
exploration space are the sampled key sizes at each step, each
tried in parallel. The maximum and minimum key sizes inn
each step are not sampled, except kmax, which is always
sampled in the second step. The green "constraints met" area
is determined by the maximum sampled key size which met
the PPA constraints. The smallest key size that violated the
PPA constraints determines the "constraints violated" area.
The area between is unexplored, and determines the key size
space of the next step. In the final step, the best key size is
determined.

The area optimized 3-DES is the largest design among the
set of designs used for this set of experiments. The algorithm
trajectory is shown in Figure 5. This example shows that
even when tight PPA requirements are used on larger designs,
a secure encryption scheme can be chosen due to the low
impact of logic encryption relative to the size of the design.
The chosen encryption scheme was ChainLock+SRCLock at
key size 180. In the final step, no key sizes were within the
PPA constraints, so the maximum key size of the previous
step within the constraints was chosen. The layout produced
by ICC2 for the final encrypted design is in Figure 6. The
algorithm executed in 1h 43m 33s. The execution time of
CDLE quickly began to increase for designs with logic gate
counts of more than a few thousand, including this design.
The PPA values estimated during this case were:
• Original Power: 0.649 mW
• Original Performance: 22.78 ns
• Original Area: 0.0342 mm2

FIGURE 6. Layout of encrypted des3_area. On right, the key inputs and their
respective key gates are highlighted, yellow corresponding to ChainLock,
orange to SRCLock, and red to randomly placed gates.

• Final Power: 0.568 mW (13% Improvement)
• Final Performance: 18.52 ns (19% Improvement)
• Final Area: 0.0352 mm2 (2.8% Increase)
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FIGURE 7. Modified PPA collection strategy without IC Compiler II

VI. MODIFIED CONCURRENT TREE SEARCH: DC ONLY
The execution time of the CDLE concurrent tree search
algorithm grows linearly with ICC execution time, as seen
in Figure 4. For designs with gate counts larger than even
1,000, execution time grew to several hours, and designs with
gate counts over 10,000 were skipped in experimentation
due to the execution time. Furthermore, Figure 3 shows the
predicted behavior of increasing thread count on execution
time. That is, increasing the thread count has diminishing
returns in that regard for the concurrent tree search algo-
rithms. Therefore, simply increasing the number of threads
for execution is not a viable strategy for handling larger
designs than 10,000 gates.

The best strategy for decreasing the worst-case execution
time, texec = tICC(

1+|E|
T + logT+1(kmax − kmin)), should

be to decrease tICC . Estimating PPA with IC Compiler II
is, in general, very accurate. However, producing a layout
for every design explored in DC before reaching Copt

E is not
practical for large designs. As discussed earlier, tICC >>
tDC . Logic synthesis executes much more quickly for any
given design, and produces PPA estimations based on the
resulting netlist. Therefore, to save on execution time, a
modified PPA estimation flow is proposed in Figure 7. This
flow removes PPA estimation using IC Compiler, as well as
the simulation step that informed that estimation.

Effectively, for the new worst case execution time, tDC
exec,

tICC is replaced with tDC . It follows that, since tICC
exec ∝

tICC and tICC >> tDC , that tICC
exec >> tDC

exec. The caveat
to basing the algorithm on DC PPA estimation, rather than
ICC, is increased inaccuracy of the estimation. During place
and route, IC Compiler makes optimizations to the design
and routing that change (especially reduce) power usage and
area, and improve performance. Therefore, it is expected that

improved execution time will be exchanged with quality of
results from this CDLE algorithm. However, this opens the
possibility of using CDLE with larger designs. In this section,
the modified CDLE using only DC will be explored. Other
than the PPA collection strategy, the algorithm and design
exploration process is unchanged from the one laid out in
Algorithm 2.

A. RESULTS
The experimental setup of the concurrent tree search algo-
rithm is equivalent to that of other experimentation for this
algorithm. The initial PPA of each unencrypted design was
estimated for using both the ICC and DC PPA estimation
strategies. The power estimation averages 19% more from
DC, and area 26% less, compared to the same unencrypted
designs that were estimated with ICC. Performance, however,
is much more egregious. The performance for unencrypted
designs estimated with DC were, on average, 8.25 times
slower than those with ICC. This large disparity shows the
importance of estimating these post-layout when accuracy is
desired. For CDLE, this may or may not be important, de-
pending on if the disparity between DC and ICC is consistent
within the scope of a design to be encrypted. If it is, then
CDLE should produce the same results with or without ICC.

The modified design-space search algorithm using only
DC estimation was performed for all test benchmarks in
Table 5 for 5 sets of PPA constraints. For all constraint
sets, the allowed power, performance, and area increase
are represented by the allowed percent increase in each of
these values compared to those of the original design. For
each set of constraints, the same allowed increase was used
for each power, performance, and area. For example, 5%
denotes a 5% allowed increase in power usage, the same
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TABLE 7. Encryption strategies chosen by CDLE concurrent tree search without ICC for various PPA constraints as a percentage of the original design PPA. A ’-’
denotes failure of the algorithm to find an optimally encrypted design

Design Name 25% 10% 5% 1% 0.10%

steppermotor CHL+SFL 55 - - - -

ss_pcm CHL+CYC 38 - - - -

usb_phy EFF+SFL 78 CHL+AST 45 - - -

sasc CHL+SFL 33 - - - -

simple_spi EFF+SFL 37 - - - -

caprng CHL+SRC 85 CHL+SRC 32 - - -

hilbert CHL+SFL 368 CHL+SFL 133 CHL+SAR 74 - -

systemcdes CHL+SFL 225 EFF+SFL 74 EFF+SAR 35 - -

des_area_opt CHL+SFL 275 - - - -

des3_area_opt CHL+SFL 368 CHL+SFL 85 CHL+SRC 34 - -

tv80 CHL+SFL 512 CHL+SFL 90 - - -

ac97_ctrl_top CHL+SFL 512 - - - -

usb_funct CHL+SFL 512 EFF+SFL 76 - - -

aes_cipher CHL+SFL 512 CHL+SFL 512 CHL+SFL 313 - -

sha256core EFF+SFL 444 EFF+SRC 76 - - -

des_perf_opt CHL+SFL 512 CHL+SFL 512 CHL+SFL 489 - -

aes_inv_cipher CHL+SFL 512 CHL+SFL 503 CHL+SFL 503 EFF+SAR 86 -

des3_perf_opt CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 CHL+SFL 35 CHL+AST 50

vga_lcd CHL+SFL 512 CHL+SRC 254 - - -

b19 CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 - -

cfrca CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 CHL+CYC 60 -

FIGURE 8. Overall execution time in seconds as a function of pre-encryption
gate count for each CDLE design experiment

increase for critical path timing, and the same percentage
increase for total area. All PPA estimations were collected
from Design Compiler, including that of the original design
against which the PPA of encrypted designs were compared.
For these experiments, 25%, 10%, 5%, 1%, and 0.1% PPA
constraints were used, which use smaller values than the ICC
experimentation due to the inclusion of larger designs. The
encryption strategies, including encryption schemes and key

sizes chosen, for each design at each PPA constraint set are
shown in Table 7. A ’-’ denotes failure of the algorithm to find
an optimally encrypted design (i.e. the PPA constraints are
too strict to find a viable encryption strategy). The three-letter
codes for encryption schemes used are the same as those
used in previous experiments. Additionally, like in previous
encryption strategies, 45% of key inputs are used for each
listed encryption strategy, and 10% are reserved to drive
randomly placed key gates.

The predominant encryption schemes chosen using the
algorithm was ChainLock+SFLL. By design, the process will
select the strongest encryption algorithm when possible, to
protect against as many attacks as possible. There are several
instances, especially for larger designs, where the strongest
possible encryption strategy, ChainLock+SFLL at key size
512, was selected. This indicates situations in which the
PPA constraints are loose enough to allow any encryption
scheme in the security goal Sopt. As expected, tightening
PPA constraints lowered the optimized security metrics, until
an encrypted design within the PPA constraints could not be
found.

The execution time of each successful CDLE experiment
is plotted as a function of the gate count of the original
design in Figure 8. These are the overall execution times of
the algorithm, including each DC execution. The execution
time of each PPA constraint for each design in Table 7 is
reported and therefore each gate count has several data points
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FIGURE 9. Execution time in seconds vs thread count of DC-Only CDLE encryption of SS_PCM, Simple SPI, and Stepper Motor

associated with it. As expected, the overall execution time
is much improved compared to that of the concurrent tree
search using ICC, having an expected average execution time
of about 0.124s per pre-encryption logic gate, compared to
1.55s with ICC. The largest designs, which contain close to
200,000 logic gates, have an execution time on the order
of a few hours, which is comparable to that of 10,000 gate
designs when ICC is used for PPA estimation. There appears
to be a linear increase in average execution time for any
given design for gate count. This is in line with the linear
relationship between tDC , the worst-case execution time
of Design Compiler, and the worst-case overall execution
time. However, the maximum execution time for each design
appears to level off just above 25,000 seconds. This could be
due to the maximum algorithm execution time being a rare
case for each experiment.

Similar to the experiments using ICC, execution time was
also explored as a function of thread utilization in a separate
set of experiments. The results of this experimentation are
shown in Figures 9 and 10, which have both a plot contain-
ing only the data, and one that also contains the expected
worst-case execution time for each design. The designs used
for these experiments were the Hilbert Transformer, Simple
SPI, SS_PCM, Stepper Motor, and USB Physical designs.
However, PPA constraints of 150%, 100%, 50%, 25%, and
10% increases in each metric were used for all designs tested.
Higher PPA constraints were used compared to other DC
experimentation due to the selected designs being among the
smallest in terms of pre-encryption gate count. The worst-
case execution time in each case is plotted as well, using
the worst case DC execution time among these sets of ex-
periments as tDC for each design. As expected, in all cases,
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FIGURE 10. Execution time in seconds vs thread count of DC-Only CDLE encryption of Hilbert Transformer and USB Physical

the overall execution time of each experiment was below
the worst-case execution time limit, and tended to follow a
similar shapes to their respective worst-case curves. Simple
SPI and the Hilbert Transformer, however, had execution
times well below the worst-case for all tested constraints.

The results of the USB Physical core show an interesting
case. All of the data points lie below the worst-case curve,
except for one experiment in which the maximum execution
time was met for one 8-thread experiment. This data point
corresponds to the 10% PPA constraint experiment, in which
the resulting encryption strategy was ChainLock+Anti-SAT
at key size 45. ChainLock+Anti-SAT is the second lowest
ranked encryption scheme. With a total of 10 encryption
schemes and 8 threads, this places the encryption scheme in
the worst-case group in execution order in the second step of
the algorithm. Also, at a key size of 45, the third step of the
algorithm represented a full concurrent tree search. There-
fore, this experiment represents the worst-case execution of
the algorithm. This shows the accuracy of the predicted worst
case execution time. Another interesting data point is the
100% PPA constraint experiment of the same design. In this
case, an extra step needed to be added to the algorithm to
fully explore the key size space. This made the trajectory
approach the worst case execution time, but not violate it.

B. CASE STUDY: AREA OPTIMIZED 3-DES

Brief case studies have been selected to highlight specific
CDLE experiments using only DC for PPA estimation. Some

studies have been selected as interesting cases, and some for
comparison of the corresponding case study done for ICC
experimentation. In these studies, a layout was produced with
ICC2 after the completion of CDLE, and PPA estimations
were made from the layout for comparison with the DC
estimations. One case study is shown in this section, and
other case studies are presented in the Appendix. The figures
are organized in the same way as in the previous case studies.

The area optimized 3-DES case was selected as a com-
parison between the concurrent tree search algorithm using
ICC PPA estimation and DC. The algorithm trajectory is
shown in Figure 11. In the corresponding ICC case study,
ChainLock+SRCLock with key size 180 was the optimal
encryption strategy. In this case, the same encryption scheme
was chosen, but at a smaller key size of 34. This result
is slightly less conclusive, but will definitely be within the
PPA constraints based on the ICC result. This case finished
executing after 5m 57s, versus the 1h 43m 33s execution time
of the same case with ICC.

There was some disparity between the PPA values from
ICC versus DC. For the unencrypted des3_area, the power
estimation is 27% larger from DC compared to ICC, 296%
slower in performance, and 18% smaller in area. This dis-
parity, especially in performance, could degrade the quality
of results from CDLE when using only DC to estimate PPA.
The PPA estimated in this experiment were:

• Original Power: 0.725 mW
• Original Performance: 90.2 ns
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FIGURE 11. CDLE Trajectory and result of des3_area with PPA constrained to 5% increases

• Original Area: 0.0282 mm2

• Final Power: 0.747 mW (3.0% Increase)
• Final Performance: 94.5 ns (4.8% Increase)
• Final Area: 0.0290 mm2 (3.0% Increase)

The layout produced with ICC2 after CDLE is shown in
Figure 12, with key gates and their respective driving key
inputs highlighted on right. The design PPA was also esti-
mated from this layout. The power usage was significantly
lower, the performance drastically improved, and area usage
was slightly greater compared to the DC estimation:

• Layout Power: 0.605 mw
• Layout Performance: 11.4 ns
• Layout Area: 0.0309 mm2

C. COMPARING ICC AND DC STRATEGIES
Comparing the execution times of the concurrent tree search
of CDLE using the full PPA estimation strategy with IC
Compiler II, and the modified strategy using Design Com-
piler only, there is a clear advantage of using DC only for
estimations over ICC. The execution time of the algorithm is
greatly reduced in the former case, as anticipated. For all of
the cases that can be compared (matching design and PPA
constraints), 67.5% of 40 experiments returned matching
encryption schemes but different key sizes, which includes
cases where no encryption strategy was found for either
strategy. Of the 25 cases shown, 48% returned matching
encryption schemes. Five cases were able to return a result
using ICC estimation, but no result for DC estimation. There

FIGURE 12. Layout of encrypted des3_area after CDLE with DC only. On
right, the key inputs and their respective key gates are highlighted, yellow
corresponding to ChainLock, orange to SRCLock, and red to randomly placed
gates.

are no cases in which DC returned a result, and ICC did not.
There are also no cases in which both strategies returned
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the exact same encryption scheme and key size. However,
a couple of cases returned results with a difference of less
than 10 key bits, such as des3_area_opt with 10% constraints,
SASC at 25%. When at least one strategy found an encryp-
tion strategy, estimation with ICC returned a higher security
strategy than estimation with DC in 80% of cases either by
scheme or key size, including those in which no strategy was
found with DC.

VII. CDLE MACHINE LEARNING APPROACH
The CDLE Concurrent Tree Search method showed a direct
speedup compared to the binary search-based method pro-
posed by Luria, et al. [9]. By utilizing parallel computation
threads, the design space was more efficiently explored.
However, there were diminishing returns in execution time
with respect to thread count. Even with additional threads,
the method could have a prohibitively long execution time
for large designs. This is primarily due to the PPA estimation
strategy, which heavily relies on many instances of logic
synthesis and place and route to accurately estimate PPA. The
limitations of the concurrent tree search method highlight a
need for accurate and quick CDLE methods. One potential
strategy to achieve this is by taking a machine learning
approach to CDLE. Building a model with which to predict
PPA costs would front-load the execution time to a training
loop. Comparatively, predicting a CDLE outcome would take
a negligible amount of time. Therefore, we will explore a
machine learning CDLE method.

The machine learning implementation used for CDLE in
this work will involve two steps. The first is the training
loop. In the training loop, several designs will be selected as
a training set. The gate pre-encryption post-logic synthesis
gate count of each design will be collected. Each design will
be encrypted with the individual encryption schemes that
make up the compound encryption schemes identified for
implementation earlier in this work. Therefore, each training
design is encrypted with the encryption methods below in-
dividually, at key sizes ranging from 32 to 256 at steps of
32. Therefore, a prediction for each compound encryption
scheme can be built at any key size between 32 and 512. The
individual encryption schemes used in training are:

• SFLL [8]
• SRCLock [20]
• Cyclic [19]
• Anti-SAT [31]

• SARLock [10]
• Encrypt Flip-Flop [11]
• ChainLock [14]
• Random (EPIC [2])

The power, performance, and area of each encrypted de-
sign will be estimated using the full PPA estimation strategy
using IC Compiler II estimations to build the machine learn-
ing model. Each PPA estimation will be compared to that
of the unencrypted design, so each PPA data point will be
a percent cost from the origianl design. The data from PPA
estimation will be analyzed so an accurate regression of the
data can be built. The regression model will use encryption
scheme, key size, and design gate count as independent

variables to predict each power, performance, and area cost of
any encrypted design. It is expected that three submodels will
be built for each PPA metric. Furthermore, due to the poten-
tial difficulty of quantifying the encryption scheme variable,
a regression will be made for each encryption scheme, with
key size and design gate count as independent variables. This
will be done for each PPA submodel, so the total number
of expected regressions created is 3 ∗ |E|, where E is the
set of training encryption schemes. Additionally, a strategy
for building predictions for compound encryption schemes
with the model will be devised. This should provide a very
accurate model with which to predict the PPA of designs
within a design space of potential encrypted designs in the
context of a CDLE flow.

The second step of the machine learning implementation
is the experimentation step. In this step, the regression model
built in the training loop will be utilized to make predictions
for a set of experimental designs separate from the training
set. The same designs that were used to experiment with the
CDLE Concurrent Tree Search will be used for this step. To
search the design space, Algorithm 3, which is a modification
of the binary search-based Algorithm 1, will be used. In this
algorithm, the encrypt and get_cost functions are replaced
with predict_cost, which uses the regression model to pre-
dict the PPA of an encrypted version of C based on the given
encryption scheme and key size without needing to encrypt.
The Concurrent Tree Search algorithm could also be used,
but the main expected complexity of the experimentation
is calculating the regression from training data, not in the
execution of the algorithm itself. Therefore, the expected
overall speedup from parallel threads is negligible.

One goal of the machine learning approach is for it to
be extensible to designs outside of the training set, so the
training set will not overlap with this experimentation step at
all to test the generalization limits of the machine learning
model. This experimentation step should give a look into the
capability of the machine learning approach to CDLE, and
ideas for improvements to the approach so it can become a
robust solution to the CDLE problem.

A. TRAINING
A set of 22 designs from the Altera Synthesis Cookbook [40]
were selected to train the CDLE machine learning model.
There is no overlap between this training set and the test
designs used to perform experiments for the concurrent tree
search-based algorithm. Instead, the latter will be used to
perform experiments using the machine learning model. The
training set designs, their post-logic synthesis gate count, and
functions are listed in Table 8.

Several designs were generated by varying the input/output
bus, and therefore the size of the overall circuit in terms of
gate count. This was done to ensure a predictable spread of
gate counts among the designs, to increase coverage of the
potential use cases for the prediction. The gate counts of the
overall set was restricted to below 30,000 to reduce training
time.
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Algorithm 3 Constraint-Directed Logic Encryption Driven
by Machine Learning
Require: Original Circuit C; Key width bounds

kmin, kmax; Cost constraints PPAmax; Ranked
encryption methods E

Ensure: Encrypted circuit Copt
E

1: for e ∈ E do
2: PPAkmin

e ← predict_cost(e, kmin)
3: if PPAkmin

e ≤ PPAmax then
4: PPAkmax

e ← predict_cost(e, kmax)
5: if PPAkmax

e ≤ PPAmax then
6: return Ckmax

e

7: end if
8: kleft = kmin, kright = kmax

9: while kleft ≤ kright do
10: kmid = floor((kleft + kright)/2)
11: PPAkmid

e ← predict_cost(e, kmid)
12: if PPAkmid

e ≤ PPAmax then
13: kleft = kmid

14: else
15: kright = kmid − 1
16: end if
17: end while
18: return C

kleft
e

19: end if
20: end for
21: return failure

There are two main limitations to this training set. One,
the size of the training set is lacking. Ideally, training data for
hundreds or even thousands of designs would be collected
to ensure adequate coverage of potential logic patterns and
netlist constructions in the estimation. The second limitation
is the size of the designs. Due to the large amount of data
collection being attempted, the gate size was limited com-
pared to the test set. The purpose of this exploration into a
machine learning approach is to offer a possible alternative
to the methods presented so far in this work. This machine
learning model will serve as a limited example and impetus
for machine learning in logic encryption.

For each design in the training set, encryption was at-
tempted using the individual (non-composite) encryption
schemes at key sizes between 32 and 256 with a step size
of 32 (up to 64 total encrypted versions of each design).
At times, encryption can fail, especially for small designs
using encryption schemes that have a requirement on input
space and/or non-flop gate count, or if the circuit structure
otherwise does not support the encryption scheme. For each
encrypted design, the PPA was estimated using both the full
ICC PPA estimation strategy as well as the modified one
using only DC, and compared to that of the pre-encrypted
design. The percentage increases in PPA were recorded as
one data point for each (3 total data points per encrypted
design). A total of 8,808 data points were collected for all
PPA for all designs, representing a total of 1,468 ICC/DC

TABLE 8. Designs from the Altera Synthsis Cookbook [40] selected to train
the CDLE machine learning model

CIRCUIT GATE COUNT

Approx FP Sqrt 92

CRC32 DAT48 378

Stream MUX 382

UART 383

VGA 474

64-bit Descrambler 683

64-bit Scrambler 699

128-bit Descrambler 1,088

128-bit Scrambler 1,211

Gearbox 32x33 1,319

64-bit Divider 1,853

256-bit Descrambler 1,888

256-bit Scrambler 2,452

512-bit Descrambler 3,493

128-bit Divider 3,733

256-bit Divider 7,788

512-bit Scrambler 7,971

AES 10,139

1024-bit Descrambler 13,972

512-bit Divider 14,919

1024-bit Scrambler 19,745

1024-bit Divider 29,543

PPA estimations.

Several machine learning models were considered which
each utilize separate regressions for power, performance, and
area for each encryption scheme, a total of 24 regressions
per model. Two basic features were considered for each
regression model: key size and pre-encryption gate count.
The gate count feature should be seen as a course feature
to estimate more subtle circuit features that effect the PPA
impact of encryption. The exploration of such features is
left to future research. The relationship between key size
and PPA cost was strongly linear in most cases. See the
examples in Figure 13. Area and power costs both showed
strong positive linear correlation. Performance, on the other
hand, tended to be constant in key size in most cases. Simple
linear regression was chosen for power, performance, and
area to model the key size behavior, if gate count is held
constant. To determine the correlation between gate count
and PPA cost, the costs were plotted as a function of pre-
encryption gate count for all training designs, controlling for
key size and encryption scheme. See the examples in Figure
14. For most cases, a positive inverse correlation fit best for
pre-encryption gate count. With these correlations in mind,
three candidate multivariable regression equations to relate
PPA cost to both key size and design gate count tested were
considered:
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FIGURE 13. Selected examples of regression for key size vs PPA cost

• Linear: PPA = a+ bk + c
g

• Interaction: PPA = a+ bkg
• Linear + Interaction: PPA = a+ bk + c

g + dk
g

where PPA is power, performance, or area, k is the key
size, g is the gate count, and all other variables are regression
coefficients. Each of these models could potentially result in
the single-variable behavior seen during training. Therefore,
the results of models using each regression equation will be
compared.

Each regression model was created using Python 3.6.3 [41]
using the SciPy 1.5.2 [42] least squares method. Three candi-
date robust least squares regression methods implemented in
SciPy were chosen for comparison of quality of results. Each
least squares method varies the loss function of residuals
when minimizing the cost function, as described in the SciPy
optimize least squares function documentation [42]:

• Soft_l1: rho(z) = 2(
√
1 + z − 1)

• Cauchy: rho(z) = ln(1 + z)
• Arctangent: rho(z) = arctan(z)

The normalized root mean square error (NRMSE) was col-
lected for each linear fit model and averaged over the differ-
ent cost functions, reported in Table 9 for ICC training data

and Table 10 for DC data. The RMSE of each model was
normalized using the average PPA cost of the model. These
NRMSEs show a highly linear relationship for power and
area in most cases, but performance is not well fit by a linear
regression. Models with low NRMSE confirm the behavior
seen in the training data in Figures 13 and 14. Therefore,
linear regression works for this preliminary CDLE example.
However, better regression models may exist and should be
explored in future research.

Each of these least squares methods was tested using each
regression equation for all necessary regressions to build the
models. This resulted in a total of 9 candidate regression
models for CDLE, with two submodels each using ICC and
DC training estimation. Each submodel used 24 regressions.
Each regression model was tested and the results of each will
be compared to determine the model that provides the best
quality of results.

The last attribute of the regression model to consider is
how to build predictions for compound encryption schemes
using those for individual schemes. When applying a com-
pound encryption scheme, the schemes are applied in order,
and a fraction of the key space is dedicated to each encryption
scheme. Considering the linear relationship between cost and
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FIGURE 14. Selected examples of regression for gate count vs PPA cost

TABLE 9. Normalized root mean square error, averaged among cost
functions for each fit model using results with ICC PPA estimation

Model
Average NRMSE - ICC

Power Performance Area

Linear 0.236 1.22 0.0271

Interaction 0.156 0.627 0.0271

Linear+Inter 0.195 0.898 0.0271

TABLE 10. Normalized root mean square error, averaged among cost
functions for each fit model using results with DC PPA estimation

Model
Average NRMSE - DC

Power Performance Area

Linear 0.0445 0.595 0.0286

Interaction 0.0445 0.515 0.0286

Linear+Inter 0.0445 0.707 0.0286

key size found during training for power and area, it will be
assumed that the costs of encryption schemes in a compound
strategy are simply additive. So, power and area costs will
be predicted for each encryption scheme for the key size

equivalent to the size of the key space dedicated to them, and
then summed. For performance, which is constant for key
size, the cost of each scheme will be predicted in a similar
manner, and the maximum among them will be accepted as
the final performance cost prediction. The performance cost
being based on longest timing path lends itself to this sort of
prediction model as well.

B. TEST RESULTS
To test the effectiveness of the 9 candidate CDLE machine
learning models, predictions of Copt

E were made for all test
designs for each regression model. The experimental setup
used is the same as that for the concurrent tree search, except
using the machine learning models to make predictions for
Copt

E of each test design, for several sets of PPA constraints.
The models were implemented into the CODES platform and
predictions were made using the regression equation pertain-
ing to the model under test, and the regression coefficients de-
termined by least squares. Predictions were made using both
the models built from PPA estimations using IC Compiler II,
as well as the model using Design Compiler PPA estimations
with PPA constraints of 25%, 10%, 5%, and 1%, and 0.1%.
These values were chosen to match the experimentation done
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TABLE 11. Encryption scheme and key size predicted by the regression with the highest quality of results using ICC training estimations, interaction regression
with a Cauchy cost function.

Design Name 25% 10% 5% 1% 0.10%

steppermotor CHL+SFL 35 - - - -

ss_pcm CHL+SFL 80 - - - -

usb_phy CHL+SFL 94 - - - -

sasc CHL+SFL 122 CHL+SFL 32 - - -

simple_spi CHL+SFL 157 CHL+SFL 42 - - -

caprng CHL+SFL 166 CHL+SFL 46 - - -

hilbert CHL+SFL 297 CHL+SFL 81 - - -

systemcdes CHL+SFL 414 CHL+SFL 118 - - -

des_area_opt CHL+SFL 503 CHL+SFL 145 CHL+SAR 35 - -

des3_area_opt CHL+SFL 512 CHL+SFL 168 CHL+SAR 47 - -

tv80 CHL+SFL 512 CHL+SFL 301 CHL+SFL 47 - -

ac97_ctrl_top CHL+SFL 512 CHL+SFL 512 CHL+SFL 106 - -

usb_funct CHL+SFL 512 CHL+SFL 512 CHL+SFL 97 - -

aes_cipher CHL+SFL 512 CHL+SFL 512 CHL+SFL 136 - -

sha256core CHL+SFL 512 CHL+SFL 512 CHL+SFL 136 - -

des_perf_opt CHL+SFL 512 CHL+SFL 512 CHL+SFL 171 - -

aes_inv_cipher CHL+SFL 512 CHL+SFL 512 CHL+SFL 203 - -

des3_perf_opt CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 - -

vga_lcd CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 - -

b19 CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 - -

cfrca CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 - -

FIGURE 15. Percent of CDLE experiments that matched chosen encryption
scheme when compared with the corresponding DC or ICC concurrent tree
search results for each machine learning model tested. Experiments in which
no encryption scheme could be found were counted as matches. Each cost
function produced the same results, so these are not shown.

in the Concurrent Tree Search DC experiments, since the full
set of experimental designs was utilized for each model. After
CDLE results were predicted for each model, they were each
compared to the results of the CDLE concurrent tree search
experiments for quality of results. The regression models
using ICC PPA estimations were compared to the Concurrent
Tree Search ICC experimentation, and likewise for regression
models using DC estimations and the DC Tree Search results
for all test cases that overlap.

In Figures 15 – 17, the quality of results of the regression
models tested are compared to the control data, which are

FIGURE 16. Percent of CDLE experiments that matched chosen encryption
scheme when compared with the corresponding DC or ICC concurrent tree
search results for each machine learning model tested. Experiments in which
no encryption scheme could be found were ignored. Each cost function
produced the same results, so these are not shown.

the respective concurrent tree search ICC and DC results.
The three metrics used to determine quality of results were
the percent of overlapping test cases that produced the same
encryption scheme as the control including cases in which no
valid encryption strategy could be found (called "null" cases),
the same metric but excluding all null cases, and the percent-
age of cases in which the machine learning model returned
a result, but the concurrent tree search algorithm returned
no result. The final metric is referred to as "false positives".
The models for each individual cost functions are grouped

VOLUME x, 0000 23



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3059163, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 17. Percent of CDLE experiments in which no encryption strategy
could be chosen for DC or ICC concurrent tree search results, but one was
found for the machine learning model in question. Each cost function produced
the same results, so these are not shown.

together under their overarching regression equation, because
the results are equivalent among different cost functions in
terms of these metrics. The only variation in results among
the cost functions was some change in key sizes.

When considering null results as matching between the
control and machine learning cases, the interaction models
performed significantly better than the purely linear and
combination models. However, when the null matches are not
considered, the interaction model performed slightly worse
than the other models. However, when considering false
positive cases, the interaction model performed much better
than the others. In fact, the interaction model using ICC
training estimations showed almost no false positive cases.
For the linear and combination models, cases in which an
encryption strategy could be found for both machine learning
and concurrent search tended to be more accurate than those
for the interaction model. However, this comes at the cost a
large number of false positive cases.

The linear and combination models did not vary in result
for increasing gate count. However, the interaction model fol-
lowed the expected behavior the closest, that is, as the design
gate count increased encryption strategies could be found us-
ing tighter PPA constraints. Therefore, the interaction model
showed the highest quality of results. Since the results among
cost functions were similar, the cost function with the lowest
average relative error, the Cauchy function, was chosen as
the highest quality result. The experimentation results for the
interaction model using Cauchy cost are shown in Table 11
using ICC training estimation. The results in each case tended
to be dominated by ChainLock+SFLL encryption. While this
was the most chosen scheme in the concurrent tree search
algorithm as well, there were a significant amount of cases in
which other schemes were chosen. However, in these results,
only a couple of cases show other obfuscation schemes
used. Additionally, the variation in the chosen schemes with
gate count is not as strong as in the concurrent tree search
results. In the following section, adjustments are made to the
interaction Cauchy regression model to better fit the results
from concurrent tree search.

C. MODEL ADJUSTMENTS
The regression model fitting the interaction equation and
using the Cauchy cost equation showed the highest quality
of results among the 9 regression equation and cost function
combinations tested. When compared to the results of the
concurrent tree search algorithm, this model matched the
results the most closely among the models tested, especially
considering cases in which other models found a "false pos-
itive" and returned a result when the concurrent tree search
did not. However, even considering matches of encryption
scheme chosen between machine learning and concurrent
tree search, the best machine learning model still showed
very little variation in encryption scheme chosen, with an
overabundance of cases in which Chainlock and SFLL were
chosen. Additionally, the relation between gate count and
encryption strategy was not as strong in the interaction and
Cauchy regression model as it was in the concurrent tree
search. With these differences in mind, several adjustments
were made to the highest quality machine learning model in
order to better fit the concurrent tree search results. These
adjustments were made under the assumption that the lim-
itations of the training set caused these inconsistencies and
that the adjustments merely account for the training set. The
adjustments made were:

1) All regression coefficients for SFLL were scaled up by
a factor of 10. It is possible that the training designs
chosen happened to favor the SFLL block architecture,
which includes Hamming distance calculation. Many
training designs were communication modules, which
include comparators that could also be found in SFLL
Hamming distance hardware. This could have caused
significant underestimation of the cost of SFLL.

2) The intersection term of all regressions were multiplied
by a factor of 0.01. A key size of 0 should result in no
added cost, regardless of overall gate count. Therefore
this term was effectively eliminated from each model.

3) For all regressions, the coefficient of the interaction
term was scaled by a factor of 5. This adjustment was
made to compensate for the reduction of the intersec-

FIGURE 18. Percent of CDLE experiments that matched chosen encryption
scheme when compared with the corresponding DC or ICC concurrent tree
search results for the adjusted and original versions of the highest quality
machine learning model. Experiments in which no encryption scheme could
be found were counted as matches.
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TABLE 12. Encryption scheme and key size predicted for each test design and PPA constraint set by the regression with the highest quality of results using ICC
training estimations, interaction regression with a Cauchy cost function, after adjustments were made.

Design Name 25% 10% 5% 1% 0.10%

steppermotor - - - - -

ss_pcm EFF+SFL 32 - - - -

usb_phy CHL+SRC 62 - - - -

sasc EFF+SFL 32 CHL+SAR 34 - - -

simple_spi EFF+SFL 35 EFF+SRC 32 - - -

caprng CHL+SRC 79 CHL+SRC 35 - - -

hilbert CHL+SFL 92 CHL+SFL 32 CHL+SRC 39 - -

systemcdes CHL+SFL 48 CHL+SRC 77 CHL+SRC 39 - -

des_area_opt CHL+SFL 167 CHL+SRC 91 CHL+SRC 48 - -

des3_area_opt CHL+SFL 78 CHL+SRC 111 CHL+SRC 58 - -

tv80 CHL+SFL 134 CHL+SFL 56 CHL+SFL 65 EFF+CYC 32 -

ac97_ctrl_top CHL+SFL 512 CHL+SFL 152 CHL+SFL 182 EFF+SFL 32 -

usb_funct CHL+SFL 333 CHL+SFL 115 CHL+SFL 122 CHL+SRC 46 -

aes_cipher CHL+SFL 376 CHL+SFL 212 CHL+SFL 212 CHL+SRC 61 -

sha256core CHL+SFL 409 CHL+SFL 512 CHL+SFL 82 CHL+SFL 32 -

des_perf_opt CHL+SFL 509 CHL+SFL 204 CHL+SFL 332 CHL+SRC 82 -

aes_inv_cipher CHL+SFL 512 CHL+SFL 240 CHL+SFL 272 EFF+SFL 49 -

des3_perf_opt CHL+SFL 512 CHL+SFL 512 CHL+SFL 395 CHL+SFL 152 CHL+SAR 36

vga_lcd CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 CHL+SFL 117 CHL+SRC 43

b19 CHL+SFL 512 CHL+SFL 512 CHL+SFL 502 CHL+SFL 311 CHL+SRC 39

cfrca CHL+SFL 512 CHL+SFL 512 CHL+SFL 512 CHL+SFL 181 CHL+SRC 77

FIGURE 19. Percent of CDLE experiments that matched chosen encryption
scheme when compared with the corresponding DC or ICC concurrent tree
search results for the adjusted and original versions of the highest quality
machine learning model. Experiments in which no encryption scheme could
be found were ignored.

tion term.

After the identified adjustments were made to each regres-
sion in the interaction model using Cauchy cost, predictions
were made for each test design again, as shown in Table 12
using ICC training data. As expected, the behavior of the
machine learning model now more closely resembles that of
the concurrent tree search. ChainLock and SFLL is still the
most chosen scheme, but does not dominate the results as
it did before the model was adjusted. Now, other schemes
have been chosen as the PPA constraints are tightened. Ad-

FIGURE 20. Percent of CDLE experiments in which no encryption strategy
could be chosen for DC or ICC concurrent tree search results, but one was
found for the machine learning model in question.

ditionally, the increasing amount of successful results with
gate count much more closely resembles the concurrent tree
search results for both ICC and DC estimations.

Adjusting the model shows overall behavior closer to the
concurrent tree search, as seen by comparing Tables 11
and 12 to similar results from the concurrent tree search
experimentation, such as Table 7. However, the metrics used
do not confirm this. The comparisons of the adjusted, or
compensated, model and the original model using these
metrics are shown in Figures 18 – 20. The adjusted machine
learning model showed some loss of accuracy in choosing
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encryption schemes overall. More egregiously, the number
of false positives almost doubled for the model using DC
estimations. The ICC model, however, performed just as well
after adjustment. By these metrics, the adjusted model did not
show any improvement. However, further adjustment could
improve the edge behavior of successful cases in choos-
ing an encryption scheme. There are more cases in which
ChainLock and SRCLock are chosen in the machine learning
model, than in the concurrent tree search. These cases tend
to happen on the edge of tight PPA constraints, but this edge
of SRCLock cases is tighter in the concurrent tree search.
Additionally, there are designs in the concurrent tree search
which did not follow the trend of increasing gate count shown
in this machine learning model. A more advanced machine
learning model could take circuit structure into account in
more detail than it was for this model.

VIII. CONCLUSIONS AND FUTURE WORK
In this work, a generalized Constraint-Directed Logic En-
cryption (CDLE) methodology was presented. Since the in-
ception of logic encryption, research related to it has been
driven by finding new potential attacks and developing new
encryption methods with security metrics in mind. However,
cost metrics have not been considered in the literature in
general. A major issue in the field as it stands is implementing
the technique in designs with stringent cost requirements, and
one of the hurdles for achieving that is the lack of analysis
of the PPA costs of adding logic encryption to a design. We
have presented CDLE, a methodology developed to respond
to the need for a holistic, extensible approach to applying
logic encryption to any given design using known encryption
methods in a way that responds to both security and cost
requirements. Methods that fit in the CDLE framework con-
verge on an encrypted design that optimally responds to both
the designer’s security goal and PPA constraints. Along with
the methodology, we have proposed two example methods
that follow the methodology, a concurrent tree search method
and a machine learning approach.

The CDLE Concurrent Tree Search method explores the
encrypted design space of a circuit in parallel by sampling
encryption strategies and estimating their associated PPA
cost using commercial off-the-shelf EDA tools. The algo-
rithm requires a ranking of available encryption strategies
and constraints the allowed PPA costs as percentages of that
of the original design constrained the acceptable design space
and returns the most optimally encrypted design based on
the estimations made through the exploration. Experimen-
tation on encrypted circuits using this strategy showed the
expected speedup of increasing the number of computation
threads. However, the returns of increasing thread count were
diminishing. Therefore, this method cannot be significantly
improved by the use of more threads. Additionally, relying
on accurate PPA estimations using repeated place and route
procedures lead to prohibitively long execution time for large
designs. Using logic synthesis only to estimate PPA lead to a
trade-off between execution time improvement and accuracy

of PPA results. Therefore, the CDLE Concurrent Tree Search
method can be extended to large, commercial-grade designs,
especially if only logic synthesis is used for PPA estimation.
Place and route PPA estimation can be used as well if more
accurate results are desired, or if the design in question is
small.

A machine learning approach to CDLE was also presented
in this work in order to reduce the time of producing an
encryption strategy while maintaining the level of accuracy
of the Concurrent Tree Search method. A group of 22 designs
were identified as a small training set, for which the PPA cost
of implementing several logic encryption strategies was esti-
mated. From these estimations, three candidate models were
constructed from multivariable linear regression to estimate
the PPA costs of different encryption schemes as functions
of key size and gate count of the unencrypted design. Of
the three candidate models, the one that produced the best
results was an interaction model of the form PPA = a+ bkg
for key size k, gate count g, and power, performance, or
area cost PPA. However, the model needed to be adjusted
to recover similar behavior to that of the Concurrent Tree
Search method for varying PPA constraints. Considering the
very limited training design set and small amount of training
done, the results are promising and some of the original
behavior of the tree search method was able to be modeled.
Therefore, the machine learning direction is a promising one
for CDLE, although the process needs to be matured past the
model used in this work.

FUTURE WORK
Since considering cost constraints for logic encryption is a
new direction for the field, there is a lot of room for future
work. CDLE is a methodology, not a single method for
driving the application of logic encryption. Therefore many
new methods can be developed under the CDLE umbrella.
Improvements to the CDLE methodology itself could be
made as well. Using commercial tools like Synopsys IC
Compiler II and Design Compiler proved to have a trade-
off between execution time and accuracy of cost metrics
estimation. More lightweight solutions to estimating the cost
of applying different logic encryption schemes to a design
need to be considered. Such methods could be tied into logic
synthesis, or perform RT-level analysis so no synthesis is re-
quired. The security metrics in the CDLE methods proposed
in this work were assumed based off of theoretical attack re-
silience. A more robust CDLE approach could tie decryption
attempts into the design-space exploration processes, using
known state of the art attack methods. This would improve
the trust of the result from CDLE.

In this work, a limited example of machine learning
was shown. There is much room to grow in this direction
in logic encryption, and the method would benefit greatly
from a much more mature machine learning model and a
larger training data set. More subtle model features should
be considered for future models as only two features, key
size and design gate count, were considered in this work.
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Many other circuit features, such as logic depth or sequential
element count, can effect the PPA impact of encryption and
should be explored in future work. Though the models in
this work were limited, they still showed promising results
and machine learning should be considered as a direction
for future work. More methods can be developed for CDLE
that improve on the ones presented in this work, or take the
methodology in new directions. The methodology is intended
to be flexible and evolve with the field of logic encryption.
More logic encryption methods driven by design constraints
need to be explored for this hardware security method to
transition to production, and CDLE provides a framework for
these methods.

APPENDIX: ADDITIONAL CDLE CASE STUDIES
In the following appendix pages, several additional brief
case studies are presented to supplement the results and case
studies shown in this work. The case studies highlight edge
behaviors of the concurrent tree search algorithm and inter-
esting cases from the experimentation results. The figures
follow the same format as previous case study sections. For
all DC results, a layout was produced after the completion of
CDLE using ICC2 and PPA was estimated from the layout
for comparison with DC PPA estimations.
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FIGURE 21. CDLE Trajectory and result of simple_spi with PPA constrained to 50% increases

A. CONCURRENT TREE SEARCH WITH ICC
1) Simple SPI
In this case, the Simple SPI design was encrypted using
CDLE with PPA constraints of 50% each. The algorithm tra-
jectory is shown in Figure 21. The chosen encryption strategy
was ChainLock+SARLock with added Random encryption at
key size 345. This shows a usual execution trajectory of the
algorithm. In the final step, none of the tried key sizes met
the PPA constraints. Therefore, the maximum accepted key
size from the previous step was used as the best key size. The
layout produced for the final encrypted design is in Figure 22.
The algorithm executed in 35m 49s total, including all logic
synthesis and layout place and route. The original and final
PPA values estimated in this experiment were:
• Original Power: 0.265 mW
• Original Performance: 2.2 ns
• Original Area: 0.0176 mm2

• Final Power: 0.387 mW (46% Increase)
• Final Performance: 3.16 ns (44% Increase)
• Final Area: 0.0251 mm2 (43% Increase)

FIGURE 22. Layout of encrypted Simple SPI after CDLE. On right, the key
inputs and their respective key gates are highlighted, yellow corresponding to
ChainLock, orange to SARLock, and red to randomly placed gates.
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FIGURE 23. CDLE Trajectory and result of systemcdes with PPA constrained to 25% increases

2) SystemC DES
This trajectory is an example of the edge case in which
the PPA constraints are loose enough to allow the maxi-
mum possible security provided by the possible encryption
strategies. The algorithm trajectory is shown in Figure 23.
In the first step, the encryption scheme that protected the
most attacks was within the PPA constraints, and then in the
second step, the maximum key size met the PPA constraints.
Therefore, it was immediately accepted in this step. This way,
the algorithm executes more quickly if the PPA constraints
are loose compared to the cost of encryption. Therefore, the
chosen encryption strategy was ChainLock+SFLL at key size
512. Additionally, power usage was improved by synthesis
with encryption in this case. The layout produced for the final
encrypted design is in Figure 24. The total execution time of
the algorithm was 46m. The original and final PPA values
were estimated at:
• Original Power: 1.02 mW
• Original Performance: 21.92 ns
• Original Area: 0.0508 mm2

• Final Power: 0.942 mW (7.6% Improvement)
• Final Performance: 26.82 ns (22% Increase)
• Final Area: 0.0520 mm2 (2.3% Increase)

FIGURE 24. Layout of encrypted systemcdes after CDLE. On right, the key
inputs and their respective key gates are highlighted, yellow corresponding to
ChainLock, orange to SFLL, and red to randomly placed gates.
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FIGURE 25. CDLE Trajectory and result of des_area with PPA constrained to 5% increases

3) Area Optimized DES
This case shows an edge case in which the algorithm executes
successfully, but the final key size is kmin. The algorithm
trajectory is shown in Figure 25. The encryption strategy
chosen in the first step was ChainLock+Cyclic, and in the
remaining steps, none of the sampled designs met the PPA
constraints. Therefore, at each step, the unexplored design
space shrunk at the small end of the key size space, until it
collapsed to key size 32. Since 32 passed the PPA constraints
in step 1, it was accepted as the best key size. This still
happens in a normal amount of time compared to other key
sizes. The layout produced for the final encrypted design is
in Figure 26. The total execution time was 1h 23m 12s, and
the estimated PPA values were:
• Original Power: 0.469 mW
• Original Performance: 13.52 ns
• Original Area: 0.0261 mm2

• Final Power: 0.490 mW (4.5% Increase)
• Final Performance: 14.14 ns (4.6% Increase)
• Final Area: 0.0270 mm2 (3.4% Increase)

FIGURE 26. Layout of encrypted des_area after CDLE. On right, the key
inputs and their respective key gates are highlighted, yellow corresponding to
ChainLock, orange to Cyclic, and red to randomly placed gates.
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FIGURE 27. CDLE Trajectory and result of SASC with PPA constrained to 1% increases

4) SASC
The SASC CDLE experiments show peculiar behavior. The
algorithm trajectory is shown in Figure 27 For one, the
security metrics of the final designs found by the algorithm
from 10% to 1% PPA constraints increase, which the op-
posite of the expected behavior, which is to decrease the
security metrics and meet the PPA requirements. This can
be explained by randomness in the power estimation with
random test patterns. However, in this specific SASC case, all
PPA were improved by synthesis. SASC is a simple design,
containing only a 4 byte data reciever and FIFO. Therefore,
even a slight optimization in a cost metric can make a large
impact in the overall cost of the design. The final encryption
scheme chosen in this case was ChainLock+SRCLock at key
size 82, found in 33m 30s. The layout produced for the final
encrypted design is in Figure 28. The PPA values estimated
were:
• Original Power: 0.380 mW
• Original Performance: 2.65 ns
• Original Area: 0.0226 mm2

• Final Power: 0.271 mW (28% Improvement)
• Final Performance: 2.17 ns (18% Improvement)
• Final Area: 0.0184 mm2 (19% Improvement)

FIGURE 28. Layout of encrypted SASC after CDLE. On right, the key inputs
and their respective key gates are highlighted, yellow corresponding to
ChainLock, orange to SRCLock, and red to randomly placed gates.
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FIGURE 29. CDLE Trajectory and result of cfrca with PPA constrained to 1% increases

B. CONCURRENT TREE SEARCH WITH DC
1) CF RCA
This is a case of the largest design in the test set by gate count,
encrypted using CDLE with 1% constraints for each power,
performance, and area. The algorithm trajectory is shown in
Figure 29. In the first step, ChainLock+Cyclic was chosen
as the best encryption scheme within the PPA constraints. In
the second step, none of the sampled key sizes were within
the constraints, so the smallest key sizes were tested. By the
final step, key size 60 was found to be the largest within the
constraints. The algorithm was executed in 6h 54m 3s. So,
even with only DC, the execution time can grow quickly for
gates with large gate counts. The estimated PPA values in this
experiment for the original and optimally encrypted designs
were:
• Original Power: 43.561 mW
• Original Performance: 8920.9 ns
• Original Area: 3.0003 mm2

• Final Power: 43.992 mW (0.99% Increase)
• Final Performance: 8633.7 ns (3.2% Improvement)
• Final Area: 3.0087 mm2 (0.28% Increase)
The layout produced with the final encrypted design is

shown in Figure 30. The PPA estimated from this layout
showed significantly reduced power and area usage, and
much improved performance compared to the DC PPA es-
timation.
• Layout Power – 21.0 uW
• Layout Performance – 185.28 ns

FIGURE 30. Layout of encrypted cfrca after DC-only CDLE. On right, the key
inputs and their respective key gates are highlighted, yellow corresponding to
ChainLock, orange to Cyclic, and red to randomly placed gates.

• Layout Area – 1.8723 mm2
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FIGURE 31. CDLE Trajectory and result of des3_perf with PPA constrained to 0.1% increases

2) Performance Optimized 3-DES
This is a case of one of the larger designs of the test set
by gate count, encrypted with very tight PPA constraints of
0.1%. The algorithm trajectory is shown in Figure 31. As
expected, an encryption strategy with weaker security metrics
was selected in response. ChainLock+AntiSAT was chosen
as the encryption scheme, which was rarely chosen in other
experiments. The PPA constraints must be relatively strict,
but not too strict, for this too happen. For large designs,
this breakpoint is very close to 0. During the key size space
search, 50 was the maximum key within the PPA constraints.
The toal execution time was 6h 49m 21s, and the PPA values
estimated for the original and encrypted designs were:
• Original Power: 18.750 mW
• Original Performance: 668.98 ns
• Original Area: 1.2043 mm2

• Final Power: 18.762 mW (0.064% Increase)
• Final Performance: 667.17 ns (0.27% Improvement)
• Final Area: 1.2052 mm2 (0.067% Increase)
The layout produced with the final encrypted design is

shown in Figure 32. The PPA estimated from this layout
showed increases in power and area, and much improved
performance compared to the DC PPA estimation.
• Layout Power – 28.600 mW
• Layout Performance – 165.29 ns
• Layout Area – 1.5225 mm2

FIGURE 32. Layout of encrypted des3_perf after DC-only CDLE. On right, the
key inputs and their respective key gates are highlighted, yellow corresponding
to ChainLock, orange to AntiSAT, and red to randomly placed gates.
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FIGURE 33. CDLE Trajectory and result of systemcdes with PPA constrained to 25% increases

3) SystemC DES
A comparison case study between this CDLE method using
ICC and DC PPA estimations encrypts systemcdes with PPA
constraints of 25%. The algorithm trajectory is shown in
Figure 33. The corresponding experiment using systemcdes
with ICC used ChainLock+SFLL at key size 256 for the best
encryption strategy. In this case, the same encryption scheme
was used, but at key size 226. The execution time with ICC
estimation was 46m, while this case finished in 4m 36s. This
is also considering that the ICC case executed in only two
steps, choosing the maximum security encryption strategy
quickly, while this case required 4 steps to close on a key
size.

Like the case of des3_area, there was a large disparity
between the DC and ICC PPA estimations for the unen-
crypted design, and therefore the encrypted design as well.
For the unencrypted systemcdes, the power estimation is 61%
smaller from DC compared to ICC, 416% slower in perfor-
mance, and 49% smaller in area. The PPA values estimated
during this experiment were:

• Original Power: 0.388 mW
• Original Performance: 113 ns
• Original Area: 0.026 mm2

• Final Power: 0.482 mW (24% Increase)
• Final Performance: 115.7 ns (2.3% Increase)
• Final Area: 0.0304 mm2 (17% Increase)

The layout produced with the final encrypted design is
shown in Figure 34. The PPA estimated from this layout

FIGURE 34. Layout of encrypted systemcdes after DC-only CDLE. On right,
the key inputs and their respective key gates are highlighted, yellow
corresponding to ChainLock, orange to SFLL, and red to randomly placed
gates.
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showed, as expected, a significant increase in power, in-
creased area, and much improved performance compared to
the DC PPA estimation.
• Layout Power – 0.753 uW
• Layout Performance – 25.78 ns
• Layout Area – 0.03949 mm2
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